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ON THE APPROXIMATION OF FUNCTIONALS OF VERY LARGE HERMITIAN
MATRICES REPRESENTED AS MATRIX PRODUCT OPERATORS∗

MORITZ AUGUST†, MARI CARMEN BAÑULS‡, AND THOMAS HUCKLE†

Abstract. We present a method to approximate functionals Trf(A) of very high-dimensional Hermitian matrices
A represented as Matrix Product Operators (MPOs). Our method is based on a reformulation of a block Lanczos
algorithm in tensor network format. We state main properties of the method and show how to adapt the basic Lanczos
algorithm to the tensor network formalism to allow for high-dimensional computations. Additionally, we give an
analysis of the complexity of our method and provide numerical evidence that it yields good approximations of the
entropy of density matrices represented by MPOs while being robust against truncations.
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1. Introduction. Approximating functionals of very large matrices is an important prob-
lem in many fields of science, such as network analysis [3, 9, 11, 26] or quantum mechanics
[33, 37]. In many cases, the respective matrices are Hermitian due to either the underlying
physical properties of the systems they describe or the way they are constructed from, e.g.,
a graph. Naturally, as the dimensionality of the matrices becomes very high, i.e., several
tens or hundreds of thousands and above, explicit methods of function evaluation, like exact
diagonalization, break down and approximations must be made.

One paradigm for the approximation of high-dimensional matrices that has gained a lot
of attention especially in the quantum information, condensed matter, and numerical linear
algebra communities are tensor network representations [2, 15, 18, 27, 33, 37]. Among the
class of tensor networks, matrix product states (MPS) and matrix product operators (MPO)
count among the best established methods. These representations approximate large tensors
by contractions of multiple low-rank tensors in a row and have been shown to yield efficient
parametrizations of many relevant states of quantum many-body systems [17, 28, 35].

In this work, we introduce a novel method to approximate functionals of the form Trf(A)
where we assume f : CN ×CN → CN ×CN to be smooth and defined on the spectrum of A
as well as A to be Hermitian and given in MPO format. For our method, we have reformulated
a block version of the Lanczos algorithm in MPO/MPS-representation. This particular block
Lanczos algorithm will be referred to as global Lanczos algorithm in the following and has
already been used to approximate functionals of the given form for explicitly stored matrices
[4, 8]. Rewriting it for the tensor network formalism, however, allows us to consider block
vectors of size identical to A, which was previously prohibitive. Our method is thus able
to approximate Trf(A) for certain f(A) requiring only one carefully selected starting block
vector. This means that we get rid of the approximation error induced by the need to combine
the results obtained for multiple different starting block vectors. At the same time, we find
the numerical error induced by the MPS/MPO representation to be comparably small. Our
method can be applied whenever A is efficiently approximated by an MPO. We will in the
following, however, focus on the case where A has directly been defined as an MPO.

The rest of this work is structured as follows: after a basic introduction to matrix product
states and operators in Section 2, we will introduce the block Lanczos method we employ in
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this work and explain its connection to Gauss quadrature in Section 3. Following this, we
will then state our method in Section 4, show how we have reformulated the global Lanczos
method in the tensor network formalism, and discuss its properties as well as give an analysis
of its complexity. Finally, in Section 5 we will provide numerical evidence for the fast and
robust convergence of our method for the case of the trace-norm and von-Neumann entropy
of quantum mechanical density matrices. We conclude with a discussion of the results in
Section 6.

2. Matrix product states and operators. In the area of tensor networks, MPS and
MPOs form a well-established class of tensor decompositions that allow for efficient and
stable approximation of very high-dimensional vectors and matrices, respectively. While they
are commonly used in theoretical and numerical quantum many-body physics to model, e.g.,
ground and thermal states [10, 29, 33, 35, 36, 37, 38, 39, 41], they also have been independently
introduced in the numerical mathematics community under the name of Tensor Trains (TT)
[27] as a general approximation tool. Since our work is mainly motivated by applications in
quantum physics, we will adapt the respective terminology in the following.

A matrix product state is a decomposition of a vector v ∈ CN such that

vi = vi1...iL = TrCi11 C
i2
2 · · ·C

iL
L ,

where the index i is split up into L sub-indices of dimensionality d, called physical indices,
i1, . . . , iL. We will refer to C1, . . . , CL ∈ Cd×D×D as the sites or core tensors of the MPS
and D is called the bond dimension. The superscripts ij of the Cj correspond to the physical
indices. The concept of splitting up the index i is the standard way to represent vectors and
matrices in TT/MPS form and is also used for so-called quantized tensor trains (QTT) [21] in
the numerical community. While in principle every site may have its own bond dimensions,
as long as they allow for contraction with neighbouring sites, for simplicity and without loss
of generality, we will assume all sites to have identical bond dimension D. The physical
dimension d is likewise assumed to be identical for all sites. It is important to note that
N = Ld, as this relation forms the basis for the ability of MPS/MPOs to represent vectors and
matrices of very high dimensionality.

A slightly different representation can be chosen, where

vi = vi1...iL = Ci11 C
i2
2 · · ·C

iL
L ,

with C1 ∈ Cd×1×D and CL ∈ Cd×D×1. In physical terms, the former representation
corresponds to systems with closed boundary conditions (CBC) whereas the latter assumes
open boundary conditions (OBC). It is clear that OBC is a special case of CBC. For the
remainder of this work, we assume open boundary conditions for the sake of simplicity, but
the algorithm can be applied to the CBC case, albeit with a modified computational cost.
Following this decomposition, a particular element of v is described by a chain of matrix
multiplications, explaining the name of the representation.

Now, the whole vector v can be written as

v =

d∑
i1,...,iL

(Ci11 C
i2
2 · · ·C

iL
L ) (ei1 ⊗ ei2 ⊗ · · · ⊗ eiL)

=

D∑
k2,...,kL−1

(
d∑
i1

Ci11,k2ei1

)
⊗

(
d∑
i2

Ci22,k2k3ei2

)

⊗ · · · ⊗

(
d∑
iL

CiLL,kL−1
eiL

)
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=

D∑
k2,...,kL−1

u1,k2 ⊗ u2,k2k3 ⊗ · · · ⊗ uL,kL−1
,

where ej denotes the jth column of the identity matrix and the subscripts kj and kj+1 denote
the row and column indices of the matrices Cijj , respectively. This expression sheds some
light on the underlying tensor product structure of MPS and facilitates comparisons with other
tensor decomposition schemes.

We now turn our attention to the representation of operators and matrices. Abstractly, one
can define an MPO as an operator with an MPS representation in a direct product basis of the
operator linear space. More concretely, for the representation of a matrix A ∈ CN×N as an
MPO, the approach presented above can easily be adapted to yield

Aij = Ai1...iLj1...jL = Ci1j11 Ci2j22 · · ·CiLjLL ,

where i, j have been split up as before, resulting in two superscripts this time, and with the
matrices C1, . . . , CL ∈ Cd×d×D×D. In analogy to the case for a vector, we can write the
whole matrix as

A =

d∑
i1,...,iL

d∑
j1,...,jL

(Ci1j11 Ci2j22 · · ·CiLjLL )

· (ei1 ⊗ ei2 ⊗ · · · ⊗ eiL)(eTj1 ⊗ e
T
j2 ⊗ · · · ⊗ e

T
jL)

=

d∑
i1,...,iL

d∑
j1,...,jL

D∑
k2,...,kL−1

(Ci1j11,1k2
Ci2j22,k2k3

· · ·CiLjLL,kL−11
)

· (ei1eTj1)⊗ (ei2e
T
j2)⊗ · · · ⊗ (eiLe

T
jL)

=

D∑
k2,...,kL−1

U1,k2 ⊗ U2,k2k3 ⊗ · · · ⊗ UL,kL−1
,

where ej is again the jth column of the identity and eTj is its transpose. Note that this also
holds true for other product bases, like for instance the Pauli basis. Making use of these
formulations, it is easy to show that basic operations such as scalar multiplication, addition,
and inner product as well as the multiplication of an MPS by an MPO or of two MPOs can be
performed in the formalism. The addition and non-scalar multiplication, however, lead to an
increase in the bond dimension D. For the addition of two MPS/MPOs with bond dimensions
D and D′, the new bond dimension is D′′ ≤ D+D′, and for the multiplication, D′′ ≤ D ·D′
[33]. This can again easily be verified.

It is obvious from the above explanation that the bond dimension is the decisive factor
for the expressive power of the formalism. An exact representation of a vector (operator)
as an MPS (MPO) is always possible if we allow the bond dimension D to be big enough,
which may mean exponentially large in L, up to dbN/2c [38]. When the maximum value
of D is limited to some fixed value (truncated) smaller than the one required for exactness,
not all vectors or operators can be represented, which may give rise to approximation errors.
We will in the following denote that some vector v or matrix A is approximated with bond
dimension D by writing v[D] and A[D], respectively. Nevertheless, it has been found that
for many physically relevant states and operators, MPS/MPO yield good approximations for
D ∈ O(poly(L)) [35, 36, 41] leading to the total number of parameters LdD2 ∈ O(poly(L))
as opposed to dL or d2L for the whole vector or matrix, respectively. This constitutes another
main reason for their usefulness as an efficient approximation scheme.
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Algorithm 1: Global Lanczos Algorithm.

Input :Matrix A ∈ CN×N , Starting Matrix U ∈ CN×M , Number of Dimensions
K

1 U0 ← 0 ;
2 V0 ← U ;
3 for i← 1; i ≤ K do
4 βi ← ‖Vi−1‖F ;
5 if βi = 0 then
6 break ;
7 end
8 Ui ← Vi−1/βi ;
9 Vi ← AUi − βiUi−1 ;

10 αi ← 〈Ui, Vi〉 ;
11 Vi ← Vi − αiUi ;
12 end

Output :Orthonormal Basis UK ∈ CN×KM , Tridiagonal Matrix TK ∈ RKM×KM

Naturally, many methods have been developed to find optimal and canonical represen-
tations for a given D both in the numerical and the quantum physics community. The most
important algorithms for optimizing a given MPS/MPO with respect to some error function
and bond dimension thereby rely on local updates of the individual Ci with all other sites being
treated as constants, rather than considering all parameters simultaneously. These algorithms,
starting with the left- or right-most site, generally sweep back and forth over the chain of
sites updating one site per step until convergence. As all sites not considered in a given step
are treated as fixed, this sweeping scheme allows for reusage of previously computed values
in a dynamical programming fashion. As explaining the details and the complexity of these
algorithms exceeds the scope of this section, we refer the interested reader to the overview
articles [2, 15, 33, 37].

3. The global Lanczos algorithm and Gauss quadrature. The idea of employing
variants of Krylov methods to solve various types of problems, for instance, solving linear
systems [19, 22, 31], finding eigenvectors [1, 5, 23, 24] or approximating the action of an
exponential operator onto a vector [12], is already well-established. To solve, e.g., linear
systems with multiple right-hand sides and for reasons of efficiency, block versions of the
originally vector-based Krylov algorithms have been developed. While there exist several
block versions of the Lanczos algorithm [6, 8, 13, 16, 25], we will only consider the one
presented in [4] as it does not require the columns of the basis blocks to be orthogonal, which
would be prohibitive for very large matrices.

Starting from an initial matrix U ∈ CN×M , the algorithm will build up a basis of matrices
Ui = [U1, · · · , Ui] with Ui ∈ CN×iM . Now, we first need to state the inner product with
respect to which the individual Ui must be orthonormal and define it to be

〈Ui, Uj〉 = TrU∗i Uj ,

where Ui, Uj ∈ CN×M . This induces the well known Frobenius norm

‖Ui‖F = 〈Ui, Ui〉1/2,

and hence this definition of the inner product is a straightforward generalization of the one used
in the standard Lanczos algorithm. Naturally, one may also choose different inner products [8].
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For this work, we do, however, choose the Frobenius norm as it can be efficiently computed
for MPOs. Equipped with this definition, we can see that Algorithm 1 is in fact a direct
generalization of the standard Lanczos algorithm to the matrix-case. As such we find that after
i steps, the method has produced the reduction Ti of A given by

Ti =


α1 β2 0

β2 α2
. . .

. . . . . . βi
0 βi αi


and yields the partial global Lanczos decomposition

AUi = UiT̃i + βi+1Ui+1E
T
i ,

where we define T̃i = Ti ⊗ IM ∈ RiM×iM and ETi = [0, · · · ,0, IM ] ∈ RM×iM . Further-
more, it holds that

βi+1Ui+1 = (A− αiIN )Ui − βiUi−1

and

U∗iAUi = Ti,

if we apply the inner product defined previously. From now on, we will implicitly make use
of this inner product whenever appropriate. Then, all other results obtained for the original
Lanczos method carry over to the global Lanczos case.

To establish the link between the global Lanczos method and Gauss quadrature, we start
by observing that

u∗f(A)u = u∗VAf(ΛA)V ∗Au =

N∑
i=1

f(λi)µ
2
i =

∫ b

a

f(λ)dµ(λ),

with VAΛAV
∗
A being the spectral decomposition of A, µi = eTi V

∗
Au and

µ(λ) =


0 if λ < λ1 = a∑j
i=1 µ

2
i if λj ≤ λ < λj+1∑N

i=1 µ
2
i if b = λN ≤ λ

being a piecewise constant and nondecreasing distribution function. Here we assume the
eigenvalues of A to be ordered ascendingly. We can use this result to obtain

If := Tr(U∗f(A)U) =

N∑
i=1

e∗iU
∗VAf(ΛA)V ∗AUei =

N∑
i=1

∫ b

a

f(λ)dµi(λ)

=

∫ b

a

f(λ)d

N∑
i=1

µi(λ) =

∫ b

a

f(λ)dµ(λ)

for a matrix U like the initial matrix of the global Lanczos method, where we define µi(λ)

analogously to the case above and µ(λ) :=
∑N
i=1 µi(λ). This Riemann-Stieltjes integral can

now be tackled via Gauss-type quadrature, the most general formulation of which is given by

Gf :=

K∑
k=1

ωkf(θk) +

M∑
m=1

νmf(τm),
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where θk and τm are called the nodes and ωk and νm the weights of the quadrature. In this
work we only consider the case where M = 0.

It is well known that in order to determine the ωk and θk that satisfy this property, one
can construct a sequence of polynomials {p0, · · · , pK} that are orthonormal in the sense that∫ b

a

pi(λ)pj(λ)dµ(λ) = δij

and that satisfy a recurrence relation given by

(3.1) βipi(λ) = (λ− αi−1)pi−1(λ)− βi−1pi−2(λ),

where p−1(λ) ≡ 0 and p0(λ) ≡ 1. Then, the roots of pK can be shown to be the optimal
θk [7, 14]. Now, the recurrence relation yields a recurrence matrix TK defined by

TK =


α1 β2 0

β2 α2
. . .

. . . . . . βK
0 βK αK

 ,

whose eigenvalues are the zeros of pK(λ) and consequentially the θk of Gf [14]. The ωk are
given by the squared first elements of the normalized eigenvectors of TK and so,

Gf = eT1 f(TK)e1 = eT1 VT f(ΛT )V ∗T e1,

where VTΛTV
∗
T is the spectral decomposition of TK .

Now, the Ui from the global Lanczos method can be expressed by

Ui = pi−1(A)U,

with pi−1 being some polynomial of degree i− 1. Then, it is clear that

〈pi−1(A)U, pj−1(A)U〉 = 〈Ui, Uj〉 = δij

and taking into account the above derivations

〈pi−1(A)U, pj−1(A)U〉 = Tr(U∗pi−1(A)∗pj−1(A)U)

=

∫ b

a

pi−1(λ)pj−1(λ)dµ(λ).

Hence, the global Lanczos method produces orthonormal polynomials [24] that in addition
satisfy the recurrence relation stated in equation (3.1) by construction as we have seen above.
The Ti obtained by the global Lanczos algorithm is thus the recurrence matrix needed to
perform a Gauss quadrature with i nodes. If we choose U ∈ CN×N to be unitary, it follows
that

Trf(A) = Tr(U∗f(A)U) =

∫ b

a

f(λ)dµ(λ) ≈ eT1 f(Ti)e1.
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Algorithm 2: Approximation Algorithm.

Input :MPO A[DA] ∈ CN×N , Starting orthogonal MPO U [Dinit] ∈ CN×N ,
Number of Dimensions K, Maximal Bond-Dimension Dmax, Stopping
Criteria S

1 U0 ← 0 ;
2 V0 ← U ;
3 D ← Dinit ;
4 for i← 1; i ≤ K do
5 βi ←

√
contract(Vi−1, Vi−1) ;

6 if βi = 0 then
7 break ;
8 end
9 Ui ← multiplyScalar(1/βi, Vi−1) ;

10 D ← min(Dmax, D ·DA) ;
11 Vi ← multiplyAndOptimize(A,Ui, D) ;
12 D ← min(Dmax, D +DUi−1) ;
13 Vi ← sumAndOptimize(Vi,−βiUi−1, D) ;
14 αi ← contract(Ui, Vi) ;
15 D ← min(Dmax, D +DUi

) ;
16 Vi ← sumAndOptimize(Vi,−αiUi, D) ;
17 VTΛTV

∗
T ← spectralDecomposition(Ti) ;

18 Gf ← β2
1e
T
1 VT f(ΛT )V ∗T e1 ;

19 if checkStop(Gf,ΛT ,S) then
20 break ;
21 end
22 end

Output :Approximation Gf of Trf(A)

4. Assembling the parts. Now that we have reviewed the relevant theoretical aspects,
we will proceed by showing how we put together the pieces to obtain our algorithm. The
whole algorithm is presented in Algorithm 2.

Since the global Lanczos method is based on matrix-matrix multiplications, additions of
matrices, and multiplications of matrices by scalars, these operations have to be formulated
for the MPO case. As the bond dimension of the basis-MPOs grows with the number of
multiplications and additions, we need to keep track of the bond dimensions and perform
projections onto lower bond dimensions whenever necessary. Thus, the input parameters of
our method are the MPO A[DA] ∈ CN×N , an orthogonal starting MPO U [Dinit] ∈ CN×N ,
the maximal Krylov-dimension K, a set of stopping criteria S , and finally the maximal bond
dimension Dmax of the Ui.

It should be stressed that we assume U [Dinit] to be unitary and of the same dimension
as A[DA]. This allows us to replace the approximation that had to be made previously
by combining the estimations for several starting matrices by the exact computation since
now it holds that Trf(A) = TrU∗f(A)U if we assume U to be normalized without loss of
generality. This is only possible due to the fact that we translate the Lanczos method to the
MPO formalism.

Besides the case of very large matrices that can be explicitly stored but are too large for
multiplications with equally sized matrices, this is especially important for the case where the
respective matrices are only given in MPO format and N is of the order of several millions, as
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in the case of quantum many-body systems. While we introduce some approximation error
by using MPOs, we will show in Section 5 that these errors can be comparably small already
for low bond dimensions in cases of practical interest. In the following, we will omit the
declaration of the bond dimension of an MPO whenever it increases clarity.

While in principle every orthogonal MPO can serve as a starting point, in this work
we choose U [Dinit] to be the identity matrix because it has a minimal MPO formulation of
Cjki = δjk. This allows us to start from the minimal bond dimension Dinit = 1 and thus
maximizes the amount of relevant information that we can store for a given Dmax. In certain
cases it might however be possible to choose a better starting MPO, e.g., when A is very close
to being diagonal. Note that starting with the full identity matrix does not imply convergence
in one step as the identity is not a basis of the space implied by the Frobenius inner product.
For the implementation of the inner product and norm used in the global Lanczos algorithm,
we observe that

〈Ui, Uj〉 =

N∑
k=1

N∑
l=1

Ui,klUj,lk = U∗i,vecUj,vec ,

where Ui,vec and Uj,vec are the vectorized versions of Ui and Uj , respectively. This allows
us to make use of an efficient, exact way of computing the inner product of MPS [33]
by rewriting the Cjikii as Cj

′
i
i with dim j′i = dim ji · dim ki and hence vectorizing the

MPO. This functionality is implemented in contract(). The implementation of the scalar
multiplication multiplyScalar() is straightforward as it corresponds to multiplying an
arbitrary Ci—we choose C1 for simplicity—of the respective MPO by the scalar at hand.

A bit more care has to be taken when implementing the functions for the multiplica-
tion and summation of MPOs, multiplyAndOptimize() and sumAndOptimize(),
respectively. One possibility would be to first perform the respective operation exactly, i.e.,
use the bond dimension required for the exact result, and to project the resulting MPO onto
the current D via the singular value decomposition (SVD) of its Ci in a second step. It has
however been found that performing the projection simultaneously to the multiplication or
summation at the level of the individual Ci yields superiour results; see [33, 37, 40]. In case
of the multiplication, we implement this strategy by solving the optimization problem

min
C̃i

‖AUj [Dold]− Ũj [Dnew]‖2F ,

where Dold is the bond dimension used previous to the multiplication and Dnew is the bond
dimension used for the optimization. Ũj [Dnew] denotes the result of the multiplication of
A on Uj and the C̃i are its tensors. The implementation hence performs the multiplication
of the MPOs at tensor level and directly optimizes the resulting tensors for the chosen bond
dimension by employing the sweeping scheme sketched in Section 2. In order to apply this
algorithm to the case of MPO-MPO multiplication, we rewrite AUj as

(I ⊗A)Uj,vec =


A 0 0

0 A
. . .

. . . . . . 0
0 0 A



Uj,1
Uj,2

...
Uj,N

 ,
with Uj,k being the kth column vector of Uj . Due to technical reasons, we do in fact use
Uj ⊗ I and Avec. For the summation, we apply the same strategy and solve

min
C̃i

‖

(
Uj [Dold] +

∑
k

γkUk[Dk
old]

)
− Ũj [Dnew]‖2F ,
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where Dold is the bond dimension used before the addition, Dk
old are some other previously

used bond dimensions, Dnew is the bond dimension to be used for the optimization, and
γk ∈ C are some scalars. Ũj [Dnew], similarly as before, represents the outcome of the
summation and the C̃i are its tensors.

As it can be seen in Algorithm 2, we allow for exact multiplication and summation as
long as the resulting bond dimension does not grow beyond Dmax. This, however, happens
quickly since D can grow exponentially with the number of iterations, and so most of the Ui
will be represented based on Dmax. This underlines the importance of Dmax for the accuracy
of the approximation.

After the algorithm has completed one iteration of the global Krylov method, the spectral
decomposition of Ti is performed and the current approximation is computed. Based on the
approximation and the eigenvalues of Ti, the algorithm then determines if it should be stopped
in checkStop. Here we have to account for several factors.

Firstly, we know that Gf converges to the correct value in absence of approximation
errors. So, the algorithm can terminate when the distance between the previous and current
Gf becomes smaller than some ε.

Secondly, it is clear that the projection of the generated MPOs down to Dmax introduces
an approximation error. While it is possible to obtain the error of the optimization problems
described above, it is not clear how the accumulated error influences Gf precisely. However,
a possible way of detecting when the approximation error has become too large is to check
for the violation of some theoretical constraints. For instance, in case of a positive A, we
know that the Ritz-values of A must be positive as well. If Ti starts to develop significant
negative eigenvalues relative to the allowed numerical precision, we thus know that the total
approximation error has reached a level that leads to unreasonable results. The same reasoning
could be applied for other intervals in which one knows the spectrum of A to be in.

It is well known that, depending on the sign of the derivative of f in (λ1, λN ), Gf can
yield an upper/lower bound and that it converges to the true value. Based on this it is possible
to show that GM < GM+1 for the lower-bound case and GM > GM+1 for the case of an upper
bound [14]. This provides another stopping-criterion.

As the accumulation of truncation errors can lead to unreasonable results even before
the violation of the above property, we propose to keep a moving average of the last k
approximations and employ the 3σ-rule to detect improbable results. To dismiss unlikely
results, the 3σ-rule makes use of Chebyshev’s inequality, according to which the probability
for a sample from a probability distribution with finite expected value and variance to be
farther away from the expected value than three times the variance is roughly 11%. This
heuristic is justified by the guaranteed convergence in the absence of numerical errors.

After having explained the algorithm, a few remarks are in order:
(i) In this version of the algorithm, we only consider the Gauss quadrature. This is

mainly due to the fact that obtaining good lower or upper bounds on the spectrum of
A is in general not possible because of the size of its dimensions. Analogously to [4],
our algorithm can nevertheless be adapted to perform Gauss-Radau or Gauss-Lobatto
approximations.

(ii) To improve numerical stability and prevent ‘ghost’ eigenvalues from occurring, it
could be beneficial to perform reorthogonalization. Due to the MPO representation,
this would, however, be very costly and not necessarily result in a large improvement.
Thus, we do not consider this extension. It can, however, be easily added to the
algorithm.

(iii) In the presented algorithm, we stick to the canonical way of orthogonalizing the
new matrix against the old matrices individually. In the case of exactly stored
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FIG. 4.1. The number of Krylov dimensions needed to converge to the correct value of Tr
∑g
i=0(A) over the

degree of the polynomial for the exact version of the algorithm with L = logN = 10.

matrices/vectors, this scheme increases the numerical stability. Since we now employ
approximations of the exact matrices, it might, however, be worth considering to
compute αi first and then optimize the sum containing both Ui and Ui−1. The
advantage of being able to optimize the whole expression at once might outweigh the
disadvantage of orthogonalizing against both matrices simultaneously. On the other
hand, computing αi first might lead to different and possibly worse results.

(iv) As we have stated above, it is possible to obtain approximation errors from both
multiplyAndOptimize and sumAndOptimize. But these errors naturally
only refer to the current optimization and do not allow for strict bounds on the overall
error. One could of course try to increase the bond dimension for each individual
optimization until its error converges to make sure the partial result is close to exact.
The problem here is that due to the possibly exponential growth of the bond dimension
needed for exactness, Dmax is typically reached within very few iterations. From this
point on, it is not possible to increase D any more and so, the information about the
error provides little useful information. This is why we have resorted to the approach
of checking for the violation of theoretically guaranteed behaviour.

(v) From the above explanations it is clear that K and Dmax are the parameters that
control the accuracy of the approximation. For the algorithm to be of use for very high-
dimensional matrices, we must impose the restriction that K,Dmax ∈ O(poly(L)).
This property is particularly relevant for quantum mechanical simulations where N
grows exponentially with the number of particles.

While it is very difficult to rigorously analyze the convergence behaviour of our method
when facing truncation errors introduced by the MPO/MPS representation, we are able to
make a statement for the case of exact arithmetic without truncations.

THEOREM 4.1. For f : CN × CN → CN × CN being a polynomial of degree g or
a smooth function that is arbitrarily well approximated by its power series expansion up
to g and exact arithmetic without truncations, Algorithm 2 converges to the exact value in
min{g∗, bg/2c+ 1} steps, where g∗ is the degree of the minimal polynomial of A.

Proof. 1.) It follows from the fact that we perform a Gauss quadrature, which for i nodes
is exact for all polynomials up to degree 2i− 1, and employ the full identity matrix as starting
matrix for our algorithm that our method requires maximally bg/2c+ 1 steps to converge to
the exact value. 2.) Furthermore, it follows from the underlying Lanczos algorithm that our
method will converge in maximally g∗ steps, where g∗ is the degree of the minimal polynomial
ofA. From 1.) and 2.), it directly follows that our method will converge in min{g∗, bg/2c+1}
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TABLE 4.1
A listing of the complexity of the subfunctions of Algorithm 2. L = logN is the number of tensors of the MPOs,

d is the physical dimension. For simplicity, all Ui are assumed to have bond dimension Dmax and Ti is assumed to
be in RK×K .

Function Complexity

contract O(LD3
maxd

2)

multiplyAndOptimize O(LD3
maxDAd

2)

sumAndOptimize O(LD3
maxd

2)

multiplyScalar O(D2
maxd

2)

spectralDecomposition O(K3)

checkStop O(1)

steps in the exact case.
It is worth noting that this result would also hold for the global Lanczos method as

introduced in [4] if the authors would not explicitly restrict themselves to starting matrices
of significantly smaller dimension than that of A, as that restriction prevents the Gauss
quadrature from converging to the exact value. While truncation errors introduced by the
tensor network representation will deteriorate the convergence behaviour and the statement
above will therefore not be directly applicable to practical applications in general, it is still
instructive to understand the behaviour of the algorithm in the ideal case.

To illustrate the result, Figure 4.1 depicts the number of steps needed by the algorithm
without truncations to converge to the correct result with a relative error of 10−12 for increasing
degrees of the polynomials of the form f(A) =

∑g
i=0A

i and N = 1024. For a full diagonal
matrix with entries randomly sampled from the uniform distribution over [−1, 1], the algorithm
in fact needs as many steps as required by the Gauss quadrature to reach exactness. On the
other hand, for the Hadamard matrix, which only has two distinct eigenvalues, the method
always converges in two steps. A full symmetric matrix with entries uniformly sampled from
[0, 1] typically only has a few dominant eigenvalues, which corresponds to the number of steps
needed to converge being six in this case.

We will conclude this section with an analysis of the complexity of our algorithm. The
complexities of the subfunctions of Algorithm 2 are listed in Table 4.1. For the analysis of
multiplyAndOptimize, we have assumedDA to be smaller or of the same order asDmax.
If it were significantly larger, the complexity would change toO(LD2

maxD
2
Ad

2). Note that this
analysis does not extend to the number of sweeps necessary for the optimizations to converge.
For the spectral decomposition, we have for simplicity assumed all Ti to be of size K ×K.
Combining all the different results, we thus find that the overall complexity of Algorithm 2
is O(KLD3

maxDAd
4) with L = logN and since we require K,Dmax ∈ O(logN), this is

equivalent to O(poly(L)).

5. Numerical results. In this section we present numerical results obtained for a chal-
lenging problem of relevance in quantum many-body physics. Our goal thereby is to study
the convergence of the results with increasing K and Dmax. The problem we consider is
the approximation of the von Neumann entropy. For a quantum state ρ1, the von Neumann
entropy is given by S = −Trρ log ρ. In the following, we will focus on the case of states of
the form ρ = e−βH /Tre−βH , i.e., thermal equilibrium states for a Hamiltonian H at a certain

1ρ is a positive operator with unit trace, representing an ensemble of pure states.
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inverse temperature β2. Here, we assume H to be the Ising Hamiltonian with open boundary
conditions that is given by

H = J

L−1∑
i=1

σxi σ
x
i+1 + g

L∑
i=1

σzi + h

L∑
i=1

σxi ,

where σ{x,y,z} are the Pauli matrices

σx =

[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
.

Note, however, that here by σ{x,y,z}i we actually denote the tensor product I1 · · · ⊗ Ii−1 ⊗
σ
{x,y,z}
i ⊗Ii+1⊗· · ·⊗IL and analogously for σ{x,y,z}i σ

{x,y,z}
i+1 for simplicity of notation. The

Hamiltonian describes a chain of spin particles with nearest neighbour interactions and two
magnetic fields acting only on the individual particles. This choice of H has the advantage that
it is exactly solvable for h = 0, a case commonly known as ’transverse Ising’, and thus opens
the possibility to obtain a reference solution for system sizes for which it could otherwise not
be obtained [20, 32, 34]. Hence, in the following we will assume h = 0.

It is possible to find an MPO approximation to the thermal equilibrium state ρ by means
of standard MPS-techniques [12, 36, 41]. It is customary to use a purification ansatz for this
purpose, where ρ(β/2) is approximated by standard imaginary time evolution, and the whole
state is then written as ρ ∝ ρ(β/2)∗ρ(β/2). In the context of our algorithm, nevertheless,
applying exactly this ρ involves a larger cost and worse numerical condition. Instead, we apply
the method as described above to ρ(β/2) and absorb the necessary squaring into the function
that is to be approximated. In our case this means that instead of computing f(λi) = λi log λi
for each Ritz-value, we can compute f ′(λi) = λ2i log λ2i for λi corresponding to ρ(β/2).
This allows us to apply the algorithm to a possibly much more benign input at the cost of
an only slightly more complicated function. Due to truncation errors, the operator ρ(β/2)
may not be exactly Hermitian. This can be easily accounted for by taking its Hermitian part,
1
2 [ρ(β/2)∗ + ρ(β/2)], which is an MPO with at most twice the original bond dimension. In
our experiments we, however, did not find this to be necessary.

Apart from the entropy, another interesting function to examine would have been the trace
norm given by ||ρ||1 = Tr

√
ρ∗ρ, i.e., the sum of the singular values. But as we only consider

positive matrices in this scenario, this sum is equal to the trace which we know to be equal
to 1 due to the normalization of the thermal state. Directly related to this, we find that α1 as
computed by our algorithm is given by

α1 = TrU∗1V1 = TrU∗1 ρU1 =
1

β2
1

TrU∗ρU =
1

β2
1

Trρ.

So, our algorithm computes the trace of the input MPO A in one step. We verified this result
numerically and found it to hold for all considered cases. This means that the algorithm also
computes the trace norm of ρ(β) in one step in this case.

It is well known that if its sign is constant over the considered interval, then the 2Kth
derivative of f determines whether Gf poses a lower or upper bound of the true value. In our
case and for K > 1, it is given by

d2K − λ2i lnλ2i
d2Kλi

=
4(2K − 3)!

λ2K−2i

,

2Note that β is not related to the βi computed by our algorithm.
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Transverse Ising with β = 0.1 and g = J = −1
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FIG. 5.1. Convergence behavior of the algorithm for L ∈ {10, 20, 30, 50, 100}, β = 0.1 and varying
Krylov-dimension K. In (a), the convergence of the approximation is depicted. In (b), the convergence of the relative
error is shown.

Transverse Ising with β = 1 and g = J = −1
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FIG. 5.2. Convergence behavior of the algorithm for L ∈ {10, 20, 30, 50, 100}, β = 1, and varying Krylov-
dimension K. In (a), the convergence of the approximation is depicted. In (b), the convergence of the relative error is
shown.

with λi being the ith eigenvalue of ρ. Hence, we can expect our algorithm to provide
increasingly tight lower bounds for the correct value. We use the violation of this property
as a stopping criterion to account for the situation when truncation errors become too large.
Additionally, we keep the average of the last three or four—depending on β—approximations
and employ the aforementioned 3σ-rule. In case these stopping criteria are not met, we
terminate the algorithm when the absolute difference between successive approximations is
below 10−10.

In our experiments we considered systems of size L ∈ {10, 20, 30, 50, 100}, Hamiltonian
parameters J = g = 1, and inverse temperatures β ∈ {0.1, 1.0}. The bond dimension used
to obtain ρ(β2 ) was set to 20 for all cases. The convergence of the approximation as well as
the relative error for β = 0.1 and β = 1 are shown in Figure 5.1 and Figure 5.2, respectively.
Note that in order to compute the relative error, we used numerical diagonalization for L = 10
and the analytical solution [32] for L > 10. In all cases except for L = 10 and β = 0.1, where
the algorithm was stopped when the distance between successive approximations reached
the threshold, the algorithm was stopped when meeting the 3σ stopping criterion. Table 5.1
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FIG. 5.3. The spectra of ρ(β) and ρ(β
2
) of the transverse Ising Hamiltonian with J = g = −1 for L = 10

and β ∈ {0.1, 1}.

shows the change of the relative error of the final approximations with growing Dmax for
L ∈ {50, 100} and β ∈ {0.1, 1}.

For the case of β = 0.1 we observe fast convergence to good approximations in K and
Dmax as shown in Figure 5.1. The maximal bond dimension required for good convergence
only grows mildly with L allowing our method to scale very well with the size of the input.
The plots in Figure 5.1b show a plateau in the relative error at 10−7. This corresponds to the
non-vanishing difference between the exact solution and the numerical MPO used as input.
Note that for L = 10, where the input is exact, the method is able to achieve a smaller error.

The results for the larger inverse temperature β = 1 paint a slightly different picture.
While the overall behavior of our method remains the same and Figure 5.2a depicts good
convergence especially for L < 100, Figure 5.2b shows that the relative error achieved is
noticeably worse than for the case of β = 0.1. It also seems that larger values of Dmax are
required to achieve reasonable results. This phenomenon naturally becomes more pronounced
with larger L.

We conjecture that the difference in the performance observed for the two considered
values of β has two main reasons. Firstly, the bond dimension required for a good approx-
imation of ρ grows with larger β. This might in turn increase the value of Dmax required
for good accuracy, and, correspondingly, increase the approximation error incurred by ρ, so
that the computed function will be farther from the analytical solution. Secondly, the spectral
properties of the obtained MPOs for the two considered cases are significantly different. In
Figure 5.3, we show the spectra of ρ for both values of β and β/2 for L = 10, respectively.
It is clearly visible that β = 0.1 poses a much more benign case. This is underlined by the
condition numbers, which are roughly 11.9, 5.68 · 1010, 3.5 and 2.38 · 105 for β = 0.1, β = 1,
β = 0.05 and β = 0.5, respectively. They show that β = 1 in fact yields highly ill-conditioned
MPOs, functions of which are hard to approximate. These considerations also make it clear
that by absorbing the necessary squaring of the eigenvalues into the function, we obtain much
more well-conditioned input MPOs of lower bond dimension. Hence, we can conclude that
our method, while being influenced by both aforementioned factors, is relatively robust and
even works reasonably well for very difficult cases.

Table 5.1 illustrates that while our method achieves a low error for β = 0.1 and a
moderate error for β = 1 even for a small Dmax, it profits from an increase of the maximal
bond dimension. This effect is more pronounced for the lower β which is likely due to the
reasons mentioned above. For instance, for L = 100 and β = 0.1, the error decreases by
two orders of magnitude from 10−5 to about 10−7 when Dmax is raised from 20 to 180,
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TABLE 5.1
Relative error in the entropy of the transverse Ising Hamiltonian with J = −1 forL ∈ {100, 50}, g ∈ {1, 0.1}

and increasing values of the maximal bond dimension Dmax.

Dmax L = 100, β = 0.1 L = 100, β = 1 L = 50, β = 0.1 L = 50, β = 1

20 1.14 · 10−05 9.75 · 10−02 2.73 · 10−07 -
40 3.96 · 10−06 9.14 · 10−02 8.04 · 10−08 2.75 · 10−02

60 1.67 · 10−06 9.32 · 10−02 1.12 · 10−07 1.84 · 10−02

80 1.41 · 10−06 7.95 · 10−02 1.15 · 10−07 1.89 · 10−02

100 2.38 · 10−07 7.81 · 10−02 - 1.26 · 10−02

120 4.01 · 10−07 7.37 · 10−02 - 1.11 · 10−02

140 2.77 · 10−07 7.04 · 10−02 - 1.05 · 10−02

160 2.29 · 10−07 7.11 · 10−02 - 9.56 · 10−03

180 6.43 · 10−08 7.03 · 10−02 - 9.06 · 10−03

TABLE 5.2
Comparison of the runtime in seconds between SciPy’s expm function and Algorithm 2 for Tr exp(A) and

increasing values of L. Lower runtimes are printed bold.

L scipy.expm Algorithm 2
10 1 23
11 3 23
12 20 31
13 129 43
14 994 50

which still constitutes a strong truncation. It is conceivable that a further increase of the
maximal bond dimension would improve the accuracy. For L = 50 and β = 0.1, the error still
decreases when Dmax is raised from 20 to 40, but a further increase shows now effect due to
the aforementioned small error already introduced by ρ(β). We also found that Dmax limits
the number of basis MPOs that can be successfully orthogonalized and therefore effectively
controls the maximally reachable K. Hence, Dmax can be regarded as the decisive parameter
of our method.

We do not provide a proper comparison to other methods at this point because of the
simple reason that to the best of the authors knowledge there is no other algorithm that can
solve the considered kind of problem for L � 20, but for L ≤ 20 we expect the existing
highly optimized methods to outperform our method in terms of runtime. However, from
our analysis of the complexity we know that our method scales as O(logN) with the matrix
dimension N when all other parameters are kept constant. This is in contrast to methods based
on full diagonalization, which scales as O(N3). One can therefore expect our method to
eventually outperform such approaches as well as approaches with super-logarithmic scaling
in general for growing N when all other parameters are kept fixed. In Table 5.2, we provide a
small comparison of the runtime of our algorithm to that of the expm function from the SciPy
package for Python which implements a squaring-and-scaling approach. We approximated
Tr exp(A) where A is the transverse Ising Hamiltonian with L ∈ {10, 11, 12, 13, 14}. We
set Dmax = 30 which yielded good approximations and K = 100 to prevent the method
from reaching the maximal Krylov dimension before convergence. We then let the algorithm
run until the relative error between successive approximations was smaller than 10−8. The
results were obtained on an Intel i7-4790 CPU with 32GB RAM. While for smaller matrices
up to L = 12 our method is significantly slower, it does not suffer from the same drastic
increase in runtime with growing matrix size and hence outperforms expm for L > 12. We

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at


ETNA
Kent State University and

Johann Radon Institute (RICAM)

230 M. AUGUST, M. C. BAÑULS, AND T. HUCKLE

found the expm function to break down due to memory requirements for L > 14. The
results show that for the given parameters, the runtime of our method remains small for all
considered matrix sizes. However, depending on Dmax the runtime can significantly increase
to several hours. Note though that there exist several ways to speed up computations in the
MPO/MPS representation via exploitation of symmetries which we did not consider in our
implementation.

6. Discussion. In this work, we have introduced a method to approximate functionals
of the form Trf(A) for matrices of dimension much larger than 220. We started by giving
an overview of the mathematical and algorithmic ideas behind the method. Following this, a
detailed description of the algorithm together with an analysis of its complexity was provided.
We then presented numerical results for a challenging problem in quantum many-body physics.
These results indicate that our method is able to produce good approximations for a number of
Krylov steps and a maximal bond dimension logarithmic in the size of the matrix as long as
the matrix exhibits some structure that can be expressed well in the MPO/MPS-formalism and
is moderately well-conditioned. It was also shown that the maximal allowed bond dimension
is the decisive parameter of the algorithm.

There are several ways to build upon this work. Firstly, an investigation of preconditioning
methods suitable for our method could be fruitful. Secondly, a more thorough analysis of
the effect of the approximation error introduced by the tensor network formalism on the
approximation error of the Gauss quadrature would be an interesting addition. Thirdly, the
connection of the approximability of a matrix by an MPO to the convergence behavior of
our method could provide deeper understanding. Fourthly, it could be investigated which
of the many improvements over the normal Gauss quadrature, as for instance [30], can be
incorporated into our algorithm to make better use of the expensive information obtained in
the Krylov iteration. Finally, the method naturally could be applied to solve practical problems
of interest.

While our method was tested for a quantum mechanical problem, it is of course general
in nature and can be applied to any case where the matrix in question can be formulated as an
MPO or well approximated by one. Especially for matrices of dimension larger than 210 that
however can still be explicitly stored, it might be interesting to consider computing the desired
function for the MPO representation.
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