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A BDDC PRECONDITIONER FOR A SYMMETRIC INTERIOR PENALTY
GALERKIN METHOD∗
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Abstract. We develop a nonoverlapping domain decomposition preconditioner for the symmetric interior penalty
Galerkin method for heterogeneous elliptic problems. The preconditioner is based on balancing domain decomposition
by constraints (BDDC). We show that the condition number of the preconditioned system satisfies similar estimates
as those for conforming finite element methods. Corroborating numerical results are also presented.
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1. Introduction. Let Ω be a bounded polygonal domain in R2 and Ω1, . . . ,ΩJ be polyg-
onal subdomains of Ω that form a nonoverlapping decomposition of Ω. Given f ∈ L2(Ω),
consider the following model problem: Find u ∈ H1

0 (Ω) such that

(1.1)
∫

Ω

ρ∇u · ∇v dx =

∫
Ω

fv dx ∀ v ∈ H1
0 (Ω),

where ρ equals a positive constant ρj on the subdomain Ωj for 1 ≤ j ≤ J . Let Th be a
simplicial triangulation of Ω aligned with Ω1, . . . ,ΩJ and

(1.2) Xh = {v ∈ L2(Ω) : v|T ∈ P1(T ) ∀T ∈ Th}

be the discontinuous P1 finite element space associated with Th. The model problem (1.1)
can be discretized by the following symmetric interior penalty Galerkin (SIPG) method
[5, 15, 19, 20, 35]: Find uh ∈ Xh such that

(1.3) ah(uh, v) =

∫
Ω

fv dx ∀ v ∈ Xh,

where

ah(v, w) =
∑
T∈Th

∫
T

ρ∇v · ∇w dx+ η
∑
e∈Eh

ρe
|e|

∫
e

[[v]] · [[w]] ds

−
∑
e∈Eh

∫
e

(
{{ρ∇v}} · [[w]] + {{ρ∇w}} · [[v]]

)
ds.

Here η is a positive penalty parameter, Eh is the set of the edges of Th and |e| is the length of
the edge e. The weight ρe is the harmonic average of ρ with respect to the triangles sharing
the edge e: For the interior edge e shared by the triangles T±, we have

(1.4) ρe =
2ρ−ρ+

ρ− + ρ+
,
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where ρ± = ρ
∣∣
T±

. For an edge along ∂Ω we have ρe = ρ.
The jump [[v]] on the edge shared by the triangles T± is the vector defined by

(1.5) [[v]] = v+n+ + v−n−,

where v± = v|T± and n± are the unit outer normals along ∂T±. On an edge of Th along ∂Ω,
we define [[v]] = vn, where n is the unit normal pointing towards the outside of Ω.

Finally, the mean {{ρ∇v}} is defined as follows. For an interior edge shared by the
triangles T±, we have

(1.6) {{ρ∇v}} = β+(ρ−∇v−) + β−(ρ+∇v+) =
ρ−ρ+

ρ− + ρ+
(∇v− +∇v+),

where

β+ =
ρ+

ρ− + ρ+
, β− =

ρ−
ρ− + ρ+

.

On an edge of Th along ∂Ω, we define {{ρ∇v}} to be ρ∇v.
Let v ∈ Xh be arbitrary and e be an interior edge shared by the triangles T± in Th. We

can easily show

(1.7) |e| ‖ {{ρ∇v}} ‖2L2(e) . ρ2
e

(
|v|2H1(T−) + |v|2H1(T+)

)
,

by using the fact that∇v is a constant vector on e; cf. [5, 15, 20, 30].
REMARK 1.1. To avoid the proliferation of constants, throughout the paper we will use

A . B and A & B to represent the statements that A ≤ (constant)B and A ≥ (constant)B,
where the positive constant is independent of the mesh size, the subdomain size, the number
of subdomains, and ρ. The statement A ≈ B is equivalent to A . B and A & B.

Let ε be an arbitrary positive constant. From (1.7) and the relation

(1.8) ρe < 2ρ±,

we have

(1.9)
∣∣∣ ∫
e

{{ρ∇v}} · [[v]] ds
∣∣∣ . ε

(
ρ−|v|2H1(T−) + ρ+|v|2H1(T+)

)
+ ε−1 ρe

|e|
‖ [[v]] ‖2L2(e).

Similarly we have, for an edge e ⊂ ∂Ω of a triangle T in Th,

(1.10)
∣∣∣ ∫
e

{{ρ∇v}} · [[v]] ds
∣∣∣ . ερ|v|2H1(T ) + ε−1 ρ

|e|
‖ [[v]] ‖2L2(e).

Combining (1.9) and (1.10), we obtain

ah(v, v) ≥ (1− Cε)
∑
T∈Th

ρ|v|2H1(T ) + (η − Cε−1)
∑
e∈Eh

ρe
|e|
‖ [[v]] ‖2L2(e).

Hence, the following coercivity property holds: There exists a constant η0 such that, for any
η > η0,

(1.11) ah(v, v) &
∑
T∈Th

ρ|v|2H1(T ) +
∑
e∈Eh

ρe
|e|
‖ [[v]] ‖2L2(e).
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The SIPG method is one of the best known discontinuous Galerkin (DG) methods;
cf. [6] and the references therein. In this paper we will develop a nonoverlapping domain
decomposition preconditioner for the SIPG method that is based on the balancing domain
decomposition by constraints (BDDC) approach. The performance of our preconditioner (cf.
Theorem 4.14 and Theorem 4.15) is similar to the performance of BDDC preconditoners for
conforming finite element methods [14, 18, 27, 28].

REMARK 1.2. The discrete problem (1.3) can also be defined for higher order finite
elements and the extension of our results to such methods is straightforward. For the case of
discontinuous P1 finite element, one can also replace the jumps in the penalty term by their pro-
jections to the space of constant functions on the edges. Such methods have been investigated
in [7, 8], where a decomposition of the discontinuous finite element space led to a block diago-
nal structure for the stiffness matrix that can be exploited for the construction of fast solvers.

There is a growing literature on domain decomposition preconditioners for discontinuous
finite element methods [1, 2, 3, 4, 9, 11, 16, 17, 21, 22, 24, 25, 26, 31]. Among these papers,
the work in [11, 17, 22] are closest to the work in this paper. Below we will briefly describe
the differences.

For conforming finite element methods, the bilinear forms for the discrete problems can
be written as the sum of bilinear forms defined on the subdomains that only involve the degrees
of freedom (dofs) on the respective subdomains. Therefore in the BDDC or the FETI-DP
(finite element tearing and interconnecting primal-dual) approach, these subdomain bilinear
forms are decoupled along the interface of the subdomains. But this is not the case for DG
methods due to the terms in the DG bilinear forms that penalize the jumps of the discontinuous
finite element functions across the element boundaries.

In [11], where we consider the weakly over-penalized symmetric interior penalty (WOP-
SIP) method [12], we overcome this difficulty by introducing a decomposition of the discontin-
uous finite element space Xh so that the BDDC preconditioner is needed only for a subspace
of Xh whose members are continuous across the interface of the subdomains. We follow the
same approach in this paper; cf. Section 3. However the treatment of the SIPG method in
this paper is more challenging than the treatment of the WOPSIP method in [11] due to the
stronger coupling of the SIPG method. Moreover in this paper we also consider the more
general cases of heterogeneous coefficients and nonconforming meshes.

A FETI-DP domain decomposition preconditioner is developed and analyzed in [22]
for the same heterogeneous problem treated in this paper, with conforming meshes. There
the authors overcome the difficulty of the DG coupling across the interface by enlarging the
number of dofs of a subdomain to include those from the neighboring subdomains that share
an edge with it. As a result, the number of unknowns for the subdomain Schur complement
problem is doubled.

BDDC preconditioners are developed in [17] for several DG methods on conforming
meshes. For the SIPG method, the authors also enlarge the number of dofs of the subdomains
and consequently the number of unknowns for the subdomain Schur complement problem is
doubled. However we must confess that the presentation in [17] is very concise and it is difficult
for us to truly understand the subtleties of either the algorithms or the analysis in that paper.

The rest of the paper is organized as follows. In Section 2 we introduce the subspace
decomposition. We then design a BDDC preconditioner for the reduced problem in Section 3.
The condition number estimates are carried out in Section 4. Furthermore, we discuss the
extension to the case with nonconforming triangulations in Section 5. Finally, we report
numerical results in Section 6 that illustrate the performance of the proposed preconditioner
and corroborate the theoretical estimates.

For the convenience of the readers, we also include a table that provides references to the
notations throughout the paper.
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2. A subspace decomposition. In this section we introduce a subspace decomposition
of the discontinuous finite element space, which yields an intermediate preconditioner for the
discrete problem resulting from the SIPG method.

Let Γ =
(⋃J

j=1 ∂Ωj
)
\∂Ω be the interface of the subdomains; cf. Fig. 2.1(a). We assume

that the subdomains are shape-regular polygons; cf. [13, Section 7.5]. We denote the diameter
of Ωj by Hj and define H to be max1≤j≤J Hj . Let Eh,Γ be the subset of Eh containing the
edges on Γ. In order to control the effects of the high contrast among the ρj’s, we assume that
none of the triangles in Th contains more than one edge in Eh,Γ; cf. Fig. 2.1(a).

(a) (b)

FIG. 2.1. (a) A triangulation Th and a nonoverlapping domain partition of Ω with the interface Γ in thick lines.
(b) VI , the set of the interior vertices.

REMARK 2.1. For the interior penalty method investigated in [17, 22], the average
{{ρ∇v}} is given by (ρ−∇v− + ρ+∇v+)/2 and the weight ρe is given by (ρ− + ρ+)/2. The
condition that each triangle can have at most one edge on the interface Γ is not needed for this
formulation of the discrete problem because the effects of the high contrast among the ρj’s
can be controlled by the stronger weight ρe = (ρ− + ρ+)/2. Incidentally the two weights
coincide when ρ is a constant on Ω and hence in this case our method does not require this
condition on the mesh.

We will define the set Vh of the vertices of the triangles in Th by

Vh = {(p, T ) : p is a vertex of the triangle T in Th} .

The value of v at a vertex is understood to be vT (p), where vT = v|T . The set VI of interior
vertices (cf. Fig. 2.1(b)) is defined by

(2.1) VI =

{
(p, T ) ∈ Vh : both edges that share p are disjoint from

J⋃
j=1

∂Ωj

}
.

The set Vh \ VI can be partitioned into three disjoint subsets as follows:

Vh \ VI = VC ∪ VΓ ∪ V∂Ω,

where

VC = {(p, T ) ∈ Vh : p is a corner of one of the subdomains and one of the edges(2.2)
of T that contains p is on Γ} ,

VΓ = {(p, T ) ∈ Vh \ VC : one of the edges of T that contains p is on Γ} ,
V∂Ω = {(p, T ) ∈ Vh \ VC : at least one of the edges of T that contains p is on ∂Ω} ;
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(a) (b) (c)

FIG. 2.2. (a) VC , the set of the corner vertices. (b) VΓ, the set of the interface vertices on Γ. (c) V∂Ω, the set of
the boundary vertices on ∂Ω.

cf. Fig. 2.2. For simplicity, we will refer to a vertex in VC (resp. VΓ and V∂Ω) as a corner (resp.
interface and boundary) vertex.

First we decompose Xh into two subspaces as follows:

(2.3) Xh = Xh,C ⊕Xh,D,

where

Xh,C =

{
v ∈ Xh : [[v]] = 0 on the edges in Eh that are subsets of

J⋃
j=1

∂Ωj

}
(2.4)

and

Xh,D={v ∈ Xh :{{v}}=0 on the edges in Eh,Γ and v vanishes at the vertices in VI}.(2.5)

Here the weighted mean {{v}} for an edge e in Eh,Γ is defined by

(2.6) {{v}} = β−v|T− + β+v|T+
,

where the edge e is shared by the triangles T±.
REMARK 2.2. Let v = vC + vD be the decomposition of v ∈ Xh. Then vC vanishes at

the vertices in V∂Ω, vC agrees with v at the vertices in VI and vC equals {{v}} at the vertices in
VC ∪ VΓ. On the other hand, vD vanishes at the vertices in VI , vD = v at the vertices in V∂Ω,
and at a pair of neighboring vertices (p, T+) and (p, T−) in VC ∪ VΓ,

vD(p, T+) = β−
(
v(p, T+)− v(p, T−)

)
and vD(p, T−) = β+

(
v(p, T−)− v(p, T+)

)
.

Accordingly, the finite element function vC in Xh,C has one degree of freedom (dof)
associated with each pair of neighboring vertices in VC ∪ VΓ, which is represented by ‘•−•’
in Fig. 2.3(a), and one dof at each vertex in VI , which is represented by ‘◦’ in Fig. 2.3(a). The
dofs for a function vD in Xh,D are associated with the neighboring vertices in VC ∪ VΓ, which
are represented by ‘◦−◦’ in Fig. 2.3(b), and the vertices in V∂Ω, which are represented by ‘◦’
in Fig. 2.3(b).

Let Ah : Xh −→ Xh
′ be the symmetric positive-definite (SPD) operator defined by

(2.7) 〈Ahv, w〉 = ah(v, w) ∀ v, w ∈ Xh,
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(a) (b)

FIG. 2.3. (a) Degrees of freedom of Xh,C . (b) Degrees of freedom of Xh,D .

where 〈·, ·〉 is the canonical bilinear form between a vector space and its dual. Similarly, we
define the SPD operators Ah,D : Xh,D −→ X

′

h,D and Ah,C : Xh,C −→ X
′

h,C by

〈Ah,Dv, w〉 = ah(v, w) ∀ v, w ∈ Xh,D,(2.8)
〈Ah,Cv, w〉 = ah(v, w) ∀ v, w ∈ Xh,C .(2.9)

REMARK 2.3. Let Nc be the number of corners of the subdomains. The system involving
Ah,D can be reduced to a system of dimension ≈ Nc × Nc by solving a block diagonal
system where each block is 2× 2 and symmetric positive definite. Thus the solve A−1

h,D can
be efficiently implemented.

REMARK 2.4. Since the functions in Xh,C are continuous across the edges in Eh,Γ and
vanish on ∂Ω, it holds that

ah(v, w) =

J∑
j=1

ah,j(vj , wj) ∀ v, w ∈ Xh,C ,

where vj = v
∣∣
Ωj

, wj = w
∣∣
Ωj

and

ah,j(vj , wj) =
∑
T∈Th
T⊂Ωj

∫
T

ρj∇vj · ∇wj dx+ η
∑
e∈Eh
e⊂Ωj

ρj
|e|

∫
e

[[vj ]] · [[wj ]] ds(2.10)

−
∑
e∈Eh
e⊂Ωj

∫
e

(
{{ρj∇vj}} · [[wj ]] + {{ρj∇wj}} · [[vj ]]

)
ds.

Note that the bilinear form ah,j(·, ·) is local to the subdomain Ωj .
REMARK 2.5. Let v ∈ Xh be arbitrary. For the localized bilinear form in (2.10), it

follows from (1.9) and (1.10) that

(2.11) ah,j(vj , vj) ≈ ρj
( ∑
T∈Th
T⊂Ωj

|vj |2H1(T ) +
∑
e∈Eh
e⊂Ωj

|e|−1 ‖ [[vj ]] ‖2L2(e)

)
,

where vj = v|Ωj
.

REMARK 2.6. Let e be an edge shared by two triangles in Th. It can be easily shown that

(2.12) | [[v]] (p∗)|2 . |e|−1 ‖ [[v]] ‖2L2(e) ∀ v ∈ Xh,
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where p∗ is any convex combination of the two endpoints of the edge e. Moreover, (2.12) also
holds for an edge on ∂Ω.

LEMMA 2.7. Let v = vC + vD be the decomposition of v ∈ Xh according to (2.3). We
have

(2.13) 〈Ahv, v〉 ≈ 〈Ah,DvD, vD〉+ 〈Ah,CvC , vC〉 ∀ v ∈ Xh.

Proof. From the Cauchy-Schwarz inequality and (2.8)–(2.9), we have

〈Ahv, v〉 ≤ 2 (〈Ah,DvD, vD〉+ 〈Ah,CvC , vC〉) .

In the other direction, based on the relation

〈Ah,DvD, vD〉 . 〈Ahv, v〉+ 〈Ah,CvC , vC〉,

it suffices to show that 〈Ah,CvC , vC〉 . 〈Ahv, v〉. In view of Remark 2.2, we have

〈Ah,CvC , vC〉

=
∑
T∈Th

ρ|vC |2H1(T ) +
∑
e∈Eh

e⊂∪J
j=1Ωj

(ηρe
|e|

∫
e

| [[vC ]] |2 ds− 2

∫
e

{{ρ∇vC}} · [[vC ]] ds
)

(2.14)

.
∑
T∈Th

ρ|vC |2H1(T ) + η
∑
e∈Eh

e⊂∪J
j=1Ωj

ρe
|e|

∫
e

| [[vC ]] |2 ds,

and then it suffices to estimate the terms on the right-hand side of (2.14). From Remark 2.2
we know that vC − v vanishes at the vertices in VI . It then follows from a standard inverse
estimate and scaling that∑
T∈Th

|vC |2H1(T ) .
∑
T∈Th

|v|2H1(T ) +
∑
T∈Th

|vC − v|2H1(T )

.
∑
T∈Th

|v|2H1(T ) +
∑

(p,T )∈Vh

[vC(p)− v(p, T )]
2

=
∑
T∈Th

|v|2H1(T ) +
∑

(p,T )∈VC∪VΓ

[vC(p)− v(p, T )]
2

+
∑

(p,T )∈V∂Ω

|vT (p)|2

=
∑
T∈Th

|v|2H1(T ) +
∑

(p,T )∈VC∪VΓ

β2
T ′ | [[v]] (p)|2 +

∑
(p,T )∈V∂Ω

|vT (p)|2,

where βT ′ = ρ|T ′
ρ|T +ρ|T ′

< 1 and T ′ is the triangle that shares a common edge with T along Γ.
Note that the last equality follows from (2.6) and Remark 2.2.

In view of (2.12) and the obvious estimate

(2.15) ρ|Tβ2
T ′ <

ρ|T ρ|T ′
ρ|T + ρ|T ′

=
1

2
ρe,

we find ∑
T∈Th

ρ|vC |2H1(T ) .
∑
T∈Th

ρ|v|2H1(T ) +
∑
e∈Eh,Γ

ρe
|e|
‖ [[v]] ‖2L2(e)(2.16)

+

J∑
j=1

∑
e∈∂Ωj\Γ

ρj
|e|
‖ [[v]] ‖2L2(e).
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Similarly, we can establish the estimate

(2.17)
∑
e∈Eh

e⊂∪J
j=1Ωj

ρe
|e|

∫
e

| [[vC ]] |2 ds .
J∑
j=1

∑
e∈∂Ωj\Γ

ρj
|e|
‖ [[v]] ‖2L2(e).

Combining (1.11), (2.7), and (2.14)–(2.17), we see that 〈Ah,CvC , vC〉 . 〈Ahv, v〉.
REMARK 2.8. The estimate 〈Ah,CvC , vC〉 . 〈Ahv, v〉 in the proof of Lemma 2.7 depends

crucially on the condition that any triangle in Th can have at most one edge on the interface Γ.
Without this condition one would have to introduce a weighted mean {{v}} that involves the
values of ρ on three or more of the subdomains and to establish the analog of (2.15) for T and T ′

that do not share a common edge on Γ. Such “long distance” estimates are difficult to achieve
without additional assumptions on the values of ρ that are involved in the definition of {{v}}.

Based on Remark 2.3 and Lemma 2.7, our goal is to construct an efficient preconditioner
for Ah,C . For this purpose we next decompose Xh,C into two subspaces Xh,C(Ω \ Γ) and
Xh,C(Γ):

(2.18) Xh,C(Ω \ Γ) = {v ∈ Xh,C : v = 0 at all the vertices in Vh \ VI}

and

(2.19) Xh,C(Γ) = {v ∈ Xh,C : ah(v, w) = 0 ∀w ∈ Xh,C(Ω \ Γ)} .

The functions in Xh,C(Γ) are discrete harmonic functions, which are uniquely determined by
their values at the vertices in Vh \ VI .

Let the symmetric positive definite operators Ah,Ω\Γ : Xh,C(Ω \ Γ) −→ Xh,C(Ω \ Γ)
′

and Sh : Xh,C(Γ) −→ Xh,C(Γ)
′

be defined by

〈Ah,Ω\Γv, w〉 = ah(v, w) ∀v, w ∈ Xh,C(Ω \ Γ),(2.20)

〈Shv, w〉 = ah(v, w) ∀v, w ∈ Xh,C(Γ).(2.21)

From (2.19)–(2.21) we have

(2.22) 〈Ah,CvC , vC〉 = 〈Ah,Ω\ΓvC,Ω\Γ, vC,Ω\Γ〉+ 〈ShvC,Γ, vC,Γ〉 ∀ vC ∈ Xh,C ,

where vC = vC,Ω\Γ + vC,Γ is the unique decomposition of vC with respect to Xh,C(Ω \Γ) and
Xh,C(Γ).

We can now define a preconditioner B1 : X
′

h −→ Xh for Ah by

(2.23) B1 = IDA
−1
h,DI

t
D + IΩ\ΓA

−1
h,Ω\ΓI

t
Ω\Γ + IΓS

−1
h ItΓ,

where

(2.24) ID : Xh,D −→ Xh, IΩ\Γ : Xh,C(Ω \ Γ) −→ Xh and IΓ : Xh,C(Γ) −→ Xh

are natural injections, and ItD, I
t
Ω\Γ, and ItΓ are the transposes of these injections defined as

〈ItDφ, v〉 = 〈φ, IDv〉 ∀φ ∈ X
′

h, v ∈ Xh,D,

〈ItΩ\Γφ, v〉 = 〈φ, IΩ\Γv〉 ∀φ ∈ X
′

h, v ∈ Xh,C(Ω \ Γ),

〈ItΓφ, v〉 = 〈φ, IΓv〉 ∀φ ∈ X
′

h, v ∈ Xh,C(Γ).
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Given any v ∈ Xh, it follows from (2.13) and (2.22) that

(2.25) 〈Ahv, v〉 ≈ 〈Ah,DvD, vD〉+ 〈Ah,Ω\ΓvC,Ω\Γ, vC,Ω\Γ〉+ 〈ShvC,Γ, vC,Γ〉,

where v = IDvD +IΩ\ΓvC,Ω\Γ +IΓvC,Γ is the unique decomposition with respect to the spaces
Xh,D,Xh,C(Ω\Γ) andXh,C(Γ). Therefore by the theory of additive Schwarz preconditioners
we have

(2.26) κ(B1Ah) =
λmax(B1Ah)

λmin(B1Ah)
≈ 1.

REMARK 2.9. From Remark 2.4, we see that A−1
h,Ω\Γ can be implemented by solving

subdomain problems in parallel. On the other hand, the global solve S−1
h in B1 needs to be

replaced by a good parallel preconditioner.

3. A BDDC preconditioner. In this section we construct a preconditioner for the Schur
complement operator Sh based on the BDDC methodology. Let

Xh,j be the space of discontinuous P1 finite element functions on Ωj(3.1)
with resect to Th,j ,

where Th,j is the restriction of Th to Ωj , i.e.,

(3.2) Th,j = {T ∈ Th : T ⊂ Ωj},

and

Xh(Ωj) be the subspace of Xh,j whose members vanish on ∂Ωj .

We denote byHj the space of local discrete harmonic functions defined by

(3.3) Hj = {v ∈ Xh,j : v = 0 on ∂Ωj \ Γ and ah,j(v, w) = 0 ∀w ∈ Xh(Ωj)} ,

where the subdomain bilinear form ah,j(·, ·) is given by (2.10).
REMARK 3.1. Let v ∈ Hj and w ∈ Xh,j such that v = w at all the vertices in Th,j that

do not belong to VI . Then v satisfies the following minimum energy property:

ah,j(v, v) ≤ ah,j(w,w).

The spaceHC is defined by gluing the spacesHj together along the interface by imposing
continuity at the corner vertices:

HC =
{
v ∈ L2(Ω) : v

∣∣
Ωj
∈ Hj for 1 ≤ j ≤ J and v is continuous across Γ(3.4)

at the vertices in VC} ,

and we equipHC with the bilinear form:

(3.5) aCh (v, w) =
∑

1≤j≤J

ah,j(vj , wj) v, w ∈ HC ,

where vj = v
∣∣
Ωj

and wj = w
∣∣
Ωj

.
To construct a BDDC preconditioner for Sh, we introduce a decomposition ofHC :

(3.6) HC = H̊ ⊕ H0,
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where

H̊ = {v ∈ HC : v vanishes at the vertices in VC} ,(3.7)

H0 =
{
v ∈ HC : aCh (v, w) = 0 ∀w ∈ H̊

}
.(3.8)

Note that Xh,C(Γ) is a subspace of HC and there exists a projection PΓ : HC −→ Xh,C(Γ)
defined by the weighted averaging:

(3.9) PΓv = {{v}} on an edge in Eh,Γ.

The SPD operator S0 : H0 −→ H′0 is defined by

(3.10) 〈S0v, w〉 = aCh (v, w) ∀ v, w ∈ H0.

Let H̊j be the subspace of Hj whose members vanish at the corner vertices in Ωj . We
define the SPD operator Sj : H̊j −→ H̊′j by

(3.11) 〈Sjv, w〉 = ah,j(v, w) ∀ v, w ∈ H̊j .

REMARK 3.2. The positive definiteness of Sj is due to the fact that functions in H̊j
vanish at the vertices in VC , and the positive definiteness of S0 results from the fact that the
functions inHC are continuous across Γ at the vertices in VC .

We can now define the BDDC preconditioner BBDDC for Sh:

(3.12) BBDDC = (PΓI0)S−1
0 (PΓI0)

t
+

J∑
j=1

(PΓEj)S−1
j (PΓEj)t ,

where I0 : H0 → HC is the natural injection and Ej : H̊j → HC is the trivial extension
defined by

(3.13) Ej v̊j =

{
v̊j on Ωj

0 on Ω \ Ωj
∀ v̊j ∈ H̊j .

Finally, we construct the preconditioner B2 : Xh
′ −→ Xh for Ah by replacing S−1

h with
the preconditioner BBDDC :

(3.14) B2 = IDA
−1
h,DI

t
D + IΩ\ΓA

−1
h,Ω\ΓI

t
Ω\Γ + IΓBBDDCI

t
Γ.

4. Condition number estimates. In this section we analyze the condition number of
B2Ah, whose key ingredient is the condition number estimate

κ(BBDDCSh) .

(
1 + ln

H

h

)2

.

First note that

(4.1) Xh,C(Γ) = PΓI0H0 +

J∑
j=1

PΓEjH̊j .
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In detail, given any v ∈ Xh,C(Γ) ⊂ HC , there exists a unique decomposition of v from (3.6):

(4.2) v = v0 + v̊ = I0v0 +

J∑
j=1

Ej v̊j v0 ∈ H0, v̊ ∈ H̊,

where v̊j = v̊
∣∣
Ωj

, and then we have

v = PΓv = (PΓI0)v0 +

J∑
j=1

(PΓEj )̊vj

since v is continuous across the edges in Eh,Γ.
Therefore, by the theory of additive Schwarz preconditioners, e.g., [23, 29, 33, 34, 37],

it follows from (4.1) that the BDDC preconditioner BBDDC is SPD and the minimum and
maximum eigenvalues of BBDDCSh are characterized by

λmin (BBDDCSh) = min
v∈Xh,C(Γ)

v 6=0

〈Shv, v〉

min
v=PΓI0v0+

∑J
j=1 PΓEj v̊j

v0∈H0 ,̊vj∈H̊j

(
〈S0v0, v0〉+

J∑
j=1

〈Sj v̊j , v̊j〉
) ,(4.3)

λmax (BBDDCSh) = max
v∈Xh,C(Γ)

v 6=0

〈Shv, v〉

min
v=PΓI0v0+

∑J
j=1 PΓEj v̊j

v0∈H0 ,̊vj∈H̊j

(
〈S0v0, v0〉+

J∑
j=1

〈Sj v̊j , v̊j〉
) .(4.4)

4.1. A lower bound for λmin(BBDDCSh). In this section a lower bound for the mini-
mum eigenvalue is obtained from the decomposition (4.2).

LEMMA 4.1. We have

(4.5) λmin(BBDDCSh) ≥ 1.

Proof. Let v ∈ Xh,C(Γ) be arbitrary. For the decomposition of v given in (4.2), it follows
from Remark 2.4 and (3.8)–(3.11) that

〈Shv, v〉 = aCh (v, v) = aCh (v0, v0) + aCh (̊v, v̊) = 〈S0v0, v0〉+

J∑
j=1

〈Sj v̊j , v̊j〉.

Therefore we have

〈Shv, v〉 ≥ min
v=PΓI0v0+

∑J
j=1 PΓEj v̊j

v0∈H0 ,̊vj∈H̊j

(
〈S0v0, v0〉+

J∑
j=1

〈Sj v̊j , v̊j〉
)
,

which, in view of (4.3), implies (4.5).

4.2. A trace norm. In this section we construct a trace norm for the space Hj that is
equivalent to the energy norm. This equivalence relation is the key to establishing an upper
bound for the maximum eigenvalue of BBDDCSh in Section 4.3.

Let T be a triangle in Th,j . We consider a set of ten nodes on T that determines a cubic
polynomial in P3(T ): three vertex nodes, six edge nodes and one center node; cf. Fig. 4.1. Let
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(a) (b) (c) (d)

FIG. 4.1. (a) Nodes of T in Th. (b) Vertex nodes of T . (c) Edge nodes of T . (d) A center node of T .

(a) (b) (c)

FIG. 4.2. (a) Edge nodes in (i) of Definition 4.2. (b) Vertex nodes in (ii) of Definition 4.2. (c) Vertex nodes in
(iii) of Definition 4.2.

Nvertex (resp. Nedge and Ncenter) be the set of the vertex nodes (resp. edge nodes and center
nodes) in Th,j .

DEFINITION 4.2. Given any v ∈ Xh,j , we define a continuous piecewise cubic polynomial
v∗ along ∂Ωj according to the following rules (cf. Fig. 4.2):

(i) v∗ equals v at the edge nodes in Nedge that are on ∂Ωj .
(ii) At a vertex node p in Nvertex that is a corner of Ωj , v∗ equals one of the values of v

at (p, T ) in VC .
(iii) At a vertex node p in Nvertex that is not a corner of Ωj , v∗(p) is defined as

v∗(p) =
1

2

(
v(p, T1) + v(p, T2)

)
where (p, T1) and (p, T2) are the two vertices associated with p that do not belong
to VI .

REMARK 4.3. Step (i) in Definition 4.2 guarantees that all the information for v is stored
in v∗ and we can reconstruct v from v∗. This is the reason for using cubic polynomials in the
construction of v∗.

REMARK 4.4. Note that v∗ is determined by the nodal values of v at the nodes along ∂Ωj
that do not belong to VI . In particlular, if v ∈ Xh,j vanishes at all the nodes associated with a
closed edge of Ωj that do not belong to VI , then v∗ also vanishes on that edge.

REMARK 4.5. In view of rule (ii) in Definition 4.2, the function v∗ is not unique. The
flexibility in assigning the value of v∗ at the corner vertices will become useful later.

The following lemma establishes the equivalence between the energy norm and a trace
norm forHj .

LEMMA 4.6. We have

ah,j(v, v) ≈ ρj |v∗|2H1/2(∂Ωj) ∀ v ∈ Hj ,
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where v∗ is the continuous piecewise cubic polynomial on ∂Ωj constructed from v according
to Definition 4.2.

We will prove Lemma 4.6 through an enriching process that connects Xh,j to a cubic
Lagrange finite element space:

X̃h,j = {ṽ ∈ C(Ω̄j) : ṽ
∣∣
T
∈ P3(T ) ∀T ∈ Th,j}.

DEFINITION 4.7. We define the enriching operator Ej : Xh,j −→ X̃h,j by the following
rules:

(i) Ejv equals v∗ on ∂Ωj .
(ii) Ejv equals v at the center nodes in Ncenter.

(iii) At an edge node p in Nedge that is not on ∂Ωj , (Ejv)(p) is the average of the values
of v from the two sides of the edge containing p.

(iv) At a vertex node p in Nvertex that is interior to Ωj , (Ejv)(p) is the average of the
values of v at p.

LEMMA 4.8. We have

ρj |Ejv|2H1(Ωj) . ah,j(v, v) ∀ v ∈ Xh,j .

Proof. Let v ∈ Xh,j be arbitrary. It follows from a standard inverse estimate and scaling
that

|Ejv|2H1(Ωj) =
∑

T∈Th,j

|Ejv|2H1(T )

.
∑

T∈Th,j

|Ejv − v|2H1(T ) +
∑

T∈Th,j

|v|2H1(T )(4.6)

.
∑

T∈Th,j

∑
p∈N (T )

[(Ejv − vT )(p)]2 +
∑

T∈Th,j

|vT |2H1(T ),

where N (T ) = Ncenter(T ) ∪Nedge(T ) ∪Nvertex(T ) is the set of the nodes that determines
a cubic polynomial.

Let T ∈ Th,j be arbitrary. According to rule (ii) of Definition 4.7, we have

(Ejv − vT )(p) = 0 at the center p of T ,

and hence

(4.7)
∑

p∈N (T )

[(Ejv − vT )(p)]2 =
∑

p∈Nedge(T )∪Nvertex(T )

[(Ejv − vT )(p)]2.

Consider first an edge node p ∈ Nedge(T ). Due to rule (i) of Definition 4.2 and Defi-
nition 4.7, it suffices to focus on a node p ∈ Nedge(T ) that is not on ∂Ωj . Assume that p
is on the common edge e shared by triangles T and T ′ in Th,j . It follows from rule (iii) of
Definition 4.7, scaling and (2.12) that

[(Ejv − vT )(p)]2 =
[1

2

(
vT ′(p)− vT (p)

)]2
. |e|−1‖ [[v]] ‖2L2(e).(4.8)

Consider next a vertex node p in Nvertex(T ), which does not belong to ∂Ωj . According
to rule (iv) of Definition 4.7, we have

(4.9) (Ejv)(p)− vT (p) =
1

|Tp|
∑

T ′∈Tp\{T}

(
v(p, T ′)− v(p, T )

)
,
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where Tp is the set of the triangles in Th,j sharing the vertex p. We consider a chain of triangles
T0, . . . , T` such that T0 = T, T` = T ′, and the consecutive triangle Ti−1 and Ti in this chain
share a common edge ei; cf. [9]. Then, using the Cauchy-Schwarz inequality and (2.12), we
obtain

[
v(p, T )− v(p, T ′)

]2
.
∑̀
i=1

[v(p, Ti−1)− v(p, Ti)]
2(4.10)

.
∑̀
i=1

|ei|−1‖ [[v]] ‖2L2(ei)
.
∑
e∈Ep

|e|−1‖ [[v]] ‖2L2(e),

where Ep is the set of all the edges in Th,j sharing p. Combining (4.9) and (4.10), we find

(4.11) [(Ejv − vT )(p)]2 .
∑
e∈Ep

|e|−1‖ [[v]] ‖2L2(e).

Similarly, for a vertex node p in VT that belongs to ∂Ωj , it holds that

(4.12) [(Ejv − vT )(p)]2 .
∑
e∈Ep
e 6⊂∂Ωj

|e|−1‖ [[v]] ‖2L2(e).

The lemma follows from (2.11), (4.6)–(4.8), and (4.11)–(4.12).
DEFINITION 4.9. We define a map Fj : X̃h,j −→ Xh,j triangle by triangle as follows.

Let T ∈ Th,j and N (T ) be the set of the nodes that determines the cubic Lagrange finite
element on T .

(i) If T does not have an edge on ∂Ωj , then Fj ṽ equals ṽ at the three vertex nodes
in N (T ).

(ii) If T has two edges on ∂Ωj \ Γ, then Fj ṽ equals ṽ at three of the four edge nodes in
N (T ) that belong to ∂Ωj .

(iii) If T has only one edge e on ∂Ωj , then Fj ṽ equals ṽ at the two edge nodes on e and
at the center of T .

REMARK 4.10. Let v ∈ Xh,j be arbitrary and w = Ej(v). According to Remark 4.3
and rules (ii) and (iii) of Definition 4.9, Fj(w) equals v at all the vertices on ∂Ωj that do not
belong to VI .

Since the bilinear form ah,j(·, ·) only involves edges interior to Ωj , it follows from
Definition 4.9 and a direct local calculation that

(4.13) ah,j(Fj(ṽ),Fj(ṽ)) . ρj |ṽ|2H1(Ωj) ∀ ṽ ∈ X̃h,j .

Proof of Lemma 4.6. Let v ∈ Hj (⊂ Xh,j) be arbitrary and v∗ be the continuous piecewise
cubic polynomial on ∂Ωj constructed from v according to Definition 4.2. Based on (i) of
Definition 4.7, v∗ is identical to the trace of Ejv ∈ X̃h,j . Then, combining the trace theorem
and Lemma 4.8, we arrive at

ρj |v∗|2H1/2(∂Ωj) . ρj |Ejv|2H1(Ωj) . ah,j(v, v).

In the other direction v∗ can be extended to a finite element function in X̃h,j such that

(4.14) |v∗|2H1(Ωj) . |v∗|
2
H1/2(∂Ωj);
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cf. [32, 36], [13, Section 7.5]. Note that w = Fj(v∗) ∈ Xh,j equals v at all vertices in Th,j
that do not belong to VI ; cf. Remark 4.10. Then, by Remark 3.1 and (4.13), we have that

ah,j(v, v) ≤ ah,j(w,w) . ρj |v∗|2H1(Ωj),

which together with (4.14) implies

ah,j(v, v) . ρj |v∗|2H1/2(∂Ωj).

4.3. An upper bound for λmax(BBDDCSh). In this section we analyze the maximum
eigenvalue of BBDDCSh by using the trace norm constructed in Section 4.2.

The following lemmas establish the key estimates for an upper bound for λmax(BBDDCSh).
LEMMA 4.11. We have

(4.15) aCh (PΓI0v0, PΓI0v0) .
(

1 + ln
H

h

)2

aCh (v0, v0) ∀ v0 ∈ H0.

Proof. Let v0 ∈ H0 be arbitrary, z = v0 − PΓI0v0 ∈ H̊ and zj = z
∣∣
Ωj
∈ H̊j . In view of

(3.5) it suffices to focus on ah,j(zj , zj).
Let E1, . . . , ENj

be the edges of the subdomain Ωj . (Note that Nj is limited by the shape
regularity of the subdomains.) Since zj ∈ Hj vanishes at all the corner vertices in Ωj , we can
write

zj =

Nj∑
`=1

zj,E`
,

where zj,E`
∈ Hj agrees with zj at all the vertices on the edge E` that do not belong to VI

and zj,E`
vanishes at all the vertices on the other edges of Ωj that do not belong to VI .

Let v0,j = v0

∣∣
Ωj
∈ Hj for 1 ≤ j ≤ J . It suffices to show that

(4.16) ah,j(zj,E , zj,E) .
(

1 + ln
H

h

)2

(ah,j(v0,j , v0,j) + ah,k(v0,k, v0,k)),

where E is the common edge shared by the subdomains Ωj and Ωk. Summing up (4.16) over
all the edges of Ωj and over all the subdomains, we have

aCh (z, z) .
(

1 + ln
H

h

)2 J∑
j=1

ah,j(v0,j , v0,j),

which then implies (4.15).
For the estimate (4.16), we first apply Lemma 4.6 to obtain

(4.17) ah,j(zj,E , zj,E) . ρj |z̃j,E |2H1/2(∂Ωj),

where z̃j,E is the continuous piecewise cubic polynomial on ∂Ωj constructed from zj,E
according to Definition 4.2. According to Remark 4.4, the function z̃j,E vanishes on all
the edges of Ωj except the edge E and it also vanishes at the endpoints of the edge E
because zj,E ∈ H̊j . Consequently we can apply a standard truncation estimate for piecewise
polynomials (cf. [10, Section 3], [34, Section 4.6], [13, Section 7.5]) to conclude that

(4.18) |z̃j,E |2H1/2(∂Ωj) .
(

1 + ln
H

h

)
‖z̃j,E‖2L∞(E) + |z̃j,E |2H1/2(E).
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The definition of PΓ (cf. (2.6) and (3.9)) implies

zj,E = βk(v0,j − v0,k),

where βk = ρk
ρj+ρk

< 1.
Let ṽ0,j (resp. ṽ0,k) be the continuous piecewise cubic polynomial on ∂Ωj (resp. ∂Ωk)

constructed according to Definition 4.2. Note that according to rule (ii) of Definition 4.2, the
value of ṽ0,j (resp. ṽ0,k) at the endpoints of E can be assigned to equal the values of v0,j

(resp. v0,k) at the corner vertices shared by Ωk and Ωj due to the flexibility mentioned in
Remark 4.5. Therefore we have

(4.19) z̃j,E = βk(ṽ0,j − ṽ0,k) on E.

Let us now estimate the first term on the right-hand side of (4.18). Since v0 is continuous
at the vertices in VC , there exists a number α such that v0,j(p) = α = v0,k(p) at an endpoint
p of the edge E. Hence, both ṽ0,j − α and ṽ0,k − α vanish at the endpoint p of E. It then
follows from (1.8), (4.19), Lemma 4.6, and a discrete Sobolev inequality (cf. [10, Lemma 3.4],
[34, Section 4.6]) that

ρj‖z̃j,E‖2L∞(E) . ρjβ
2
k

(
‖ṽ0,j − α‖2L∞(E) + ‖α− ṽ0,k‖2L∞(E)

)
= ρj‖ṽ0,j − α‖2L∞(E) +

ρjρk
ρj + ρk

βk‖α− ṽ0,k‖2L∞(E)

≤ ρj‖ṽ0,j − α‖2L∞(E) + ρk‖α− ṽ0,k‖2L∞(E)(4.20)

.
(

1 + ln
H

h

)(
ρj |ṽ0,j − α|2H1/2(∂Ωj) + ρk|α− ṽ0,k|2H1/2(∂Ωk)

)
.
(

1 + ln
H

h

)(
ah,j(v0,j , v0,j) + ah,k(v0,k, v0,k)

)
.

Using (1.8), (4.19), and Lemma 4.6, we can estimate the second term on the right-hand
side of (4.18) by

ρj |z̃j,E |2H1/2(E) . ρj |ṽ0,j |2H1/2(E) + ρk|ṽ0,k|2H1/2(E)(4.21)

. ah,j(v0,j , v0,j) + ah,k(v0,k, v0,k).

The estimate (4.16) follows from (4.17)–(4.18) and (4.20)–(4.21).
LEMMA 4.12. We have

(4.22) aCh (PΓEj v̊j , PΓEj v̊j) .
(

1 + ln
H

h

)2

ah.j (̊vj , v̊j) ∀ v̊j ∈ H̊j .

Proof. Let v̊j ∈ H̊j be arbitrary and z = PΓEj v̊j . From the definitions of PΓ and Ej , it is noted
that z is supported in the union of Ωj and all the subdomains which share an edge with Ωj .

We first observe that

(4.23) zj = z
∣∣
Ωj

= βj v̊j ,

where βj =
ρj

ρj+ρk
< 1 and hence

ah,j(zj , zj) = β2
j ah,j (̊vj , v̊j) ≤ ah,j (̊vj , v̊j).
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Let Ωk be a subdomain which shares an edge E with Ωj . We will show that

(4.24) ah,k(zk, zk) .
(

1 + ln
H

h

)2

ah,j (̊vj , v̊j),

where zk = z
∣∣
Ωk
∈ Hk. Note that zk = zj at the vertices on the closure of E that do not

belong to VI and zk vanishes at all the vertices on all the other edges of Ωk that do not belong
to VI .

Let z̃k be the continuous piecewise cubic polynomial on ∂Ωk constructed according to
Definition 4.2. The derivation of (4.24) is analogous to the derivation of (4.16) in the proof
of Lemma 4.11. In fact it is simpler because z̃k vanishes at the endpoints of E according to
rule (ii) of Definition 4.2. By combining a standard truncation estimate, a discrete Sobolev
inequality Lemma 4.6 and (4.23), we find

ah,k(zk, zk) . ρk|z̃k|2H1/2(∂Ωk)

. ρk

((
1 + ln

H

h

)
‖z̃k‖2L∞(E) + |z̃k|2H1/2(E)

)
= ρk

((
1 + ln

H

h

)
‖z̃j‖2L∞(E) + |z̃j |2H1/2(E)

)
. ρj

((
1 + ln

H

h

)
‖ ˜̊vj‖2L∞(E) + | ˜̊vj |2H1/2(E)

)
. ρj

(
1 + ln

H

h

)2

| ˜̊vj |2H1/2(∂Ωj)

.
(

1 + ln
H

h

)2

ah,j (̊vj , v̊j).

The following lemma results immediately from Lemma 4.11 and Lemma 4.12.
LEMMA 4.13. There exists a positive constant C independent of h, H , J , and ρ such that

(4.25) λmax(BBDDCSh) ≤ C
(

1 + ln
H

h

)2

.

Proof. Let v ∈ Xh,C(Γ) be arbitrary. Consider a decomposition of v in the form of

v = PΓI0v0 +

J∑
j=1

PΓEj v̊j v0 ∈ H0, v̊j ∈ H̊j (1 ≤ j ≤ J).

Based on the characterization of the maximum eigenvalue in (4.4), we need to find an upper
bound for 〈Shv, v〉 in terms of 〈S0v0, v0〉 and 〈Sj v̊j , v̊j〉.

Since PΓEj is supported in the union of Ωj and the subdomains which share an edge with
Ωj , it follows from the Cauchy-Schwarz inequality that

〈Shv, v〉 = aCh

(
PΓI0v0 +

J∑
j=1

PΓEj v̊j , PΓI0v0 +

J∑
j=1

PΓEj v̊j
)

. aCh (PΓI0v0, PΓI0v0) +

J∑
j=1

aCh (PΓEj v̊j , PΓEj v̊j),

which together with (4.15) and (4.22) implies

(4.26) 〈Shv, v〉 .
(

1 + ln
H

h

)2(
〈S0v0, v0〉+

J∑
j=1

〈Sj v̊j , v̊j〉
)
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for an arbitrary decomposition of v ∈ Xh,C(Γ).
The estimate (4.25) follows from (4.4) and (4.26).

4.4. Condition number estimates for BBDDCSh and B2Ah. The following bound
for the condition number of BBDDCSh is a direct consequence of Lemma 4.1 and Lemma 4.13.

THEOREM 4.14. There exists a positive constant C independent of h, H , J , and ρ such
that

κ(BBDDCSh) =
λmax(BBDDCSh)

λmin(BBDDCSh)
≤ C

(
1 + ln

H

h

)2

.

We also have a similar estimate for B2Ah.
THEOREM 4.15. There exists a positive constant C independent of h, H , J , and ρ such

that

κ(B2Ah) =
λmax(B2Ah)

λmin(B2Ah)
≤ C

(
1 + ln

H

h

)2

.

Proof. From the estimates (4.5) and (4.25) for the extreme eigenvalues of BBDDCSh, it follows
that

〈B−1
BDDCvC,Γ, vC,Γ〉 ≤ 〈ShvC,Γ, vC,Γ〉(4.27)

.
(

1 + ln
H

h

)2

〈B−1
BDDCvC,Γ, vC,Γ〉 ∀ vC,Γ ∈ Xh,C(Γ).

Combining (2.25) and (4.27), we have

〈Ah,DvD, vD〉+ 〈Ah,Ω\ΓvC,Ω\Γ, vC,Ω\Γ〉+ 〈B−1
BDDCvC,Γ, vC,Γ〉

.〈Ahv, v〉(4.28)

.
(

1 + ln
H

h

)2(
〈Ah,DvD, vD〉+ 〈Ah,Ω\ΓvC,Ω\Γ, vC,Ω\Γ〉+ 〈B−1

BDDCvC,Γ, vC,Γ〉
)

for any v ∈ Xh, where v = IDvD + IΩ\ΓvC,Ω\Γ + IΓvC,Γ is the unique decomposition of v
with respect to Xh,D, Xh,C(Ω \ Γ), and Xh,C(Γ). It then follows from (3.14), (4.28), and the
theory of additive Schwarz preconditioners that

(4.29) 1 . λmin(B2Ah) and λmax(B2Ah) .
(

1 + ln
H

h

)2

.

5. The case of nonconforming meshes. In this section we extend our preconditioning
techniques to the case of nonconforming meshes. For simplicity we will focus on the mod-
ification of the algorithm for the model problem (1.1) with ρ = 1. But the case where ρ is
piecewise constant can also be treated in a similar fashion.

Let Th be a nonconforming simplicial mesh for Ω, where hanging nodes occur only along
the interface; cf. Fig. 5.1(a). We assume that if an edge of a triangle in Th has a hanging node,
then the edge is the union of the edges of other triangles in Th; which of course are from the
other side of Γ. Let e ⊂ Γ be an edge of a triangle in Th. Then e belongs to the set Eh,Γ if (i) e
is the common edge of two triangles in Th, or (ii) e contains at least one hanging node. In other
words, the set Eh,Γ consists of only the long edges, such as the red line segment in Fig. 5.1(b).

The construction of the intermediate preconditioner B1 involves only Xh,C and Xh,D.
The definition ofXh,C remains the same under the new definition of Eh,Γ. This means that for a
function v ∈ Xh,C associated with the nonconforming mesh in Fig. 5.1(b), its value at vertex 1
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(a)

5

4

6

321

(b)

FIG. 5.1. (a) A nonconforming triangulation with hanging nodes along Γ where the red line segment depicts
one edge in Eh,Γ. (b) Nonconforming meshes along a long edge in Eh,Γ.

matches its value at vertex 5, its value at vertex 4 matches its value at vertex 6, and its values at
vertices 2 and 3 are determined by the requirement that v is continuous at the red line segment.

The definition of Xh,D is modified as follows. A function v ∈ Xh belongs to Xh,D if (i)
v vanishes at the vertices in VI , and (ii) {{v}} = 0 at the vertices of the edges of Eh,Γ that do
not belong to VI . This means that for a function v ∈ Xh,D associated with the nonconforming
mesh in Fig. 5.1(b), its value at vertex 1 is (−1)× its value at vertex 5, its value at vertex
4 is (−1)× its value at vertex 6, and its values at the vertices 2 and 3 are unconstrained.
Consequently, Ah,D is a block diagonal matrix where each block corresponds to an edge in
Eh,Γ and its dimension is 2 plus the number of hanging nodes that appear on the edge.

The proof of the condition number estimate (2.26) remains the same.
The preconditioner B2 involves the BDDC preconditioner, whose construction remains

the same under the new definition of Eh,Γ. Here we only illustrate the meaning of the projection
operator PΓ : HC −→ Xh,C(Γ) for the non-conforming mesh in Fig. 5.1 (b): the values of
PΓv at the two vertices of the red line segment are given by the mean of its values at the vertices
1 and 5 and the mean of its values at the vertices 4 and 6. The values of PΓ at the vertices 2
and 3 are then determined by the requirement that PΓv is continuous at the red line segment.

The key ingredient for the condition number estimates in Section 4 is Lemma 4.6, whose
proof relies on Lemma 4.8. Below we sketch the idea behind the extension of Lemma 4.8 to
the case of nonconforming meshes.

Let v ∈ Xh,k. We define v† ∈ Xh,k so that v and v† have the same values at all the
vertices except the ones on ∂Ωk ∩ Γ that are interior to the edges in Eh,Γ, and the values of v†

at these vertices are chosen so that the restriction of v† to ∂Ωk ∩ Γ is piecewise linear with
respect to the edges in Eh,∂Ωk∩Γ = {e ∈ Eh,Γ : e ⊂ ∂Ωk ∩ Γ}. For example (cf. Fig. 5.1(b)),
the value of v† at the vertices 1 and 4 equal to the values of v. But the values of v† at the
vertices 2 and 3 are determined by the condition that v† restricted to the red line segment is a
linear polynomial. Let Eh,k be the set of the edges of triangles in Th,k. Then we have

(5.1)
∑

T∈Th,k

|v − v†|2H1(T ) +
∑
e∈Eh,k

e⊂Ωk

|e|−1‖v − v†‖2L2(e) ≤ Cah,k(v, v),

where the positive constant C depends on the shape regularity of Th,k and the maximum
number of hanging nodes that can appear on the edges in Eh,∂Ωk∩Γ.

The proof of Lemma 4.8 carries over to the function v† and hence Lemma 4.8 also holds
for v because of (5.1).
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ρS ρL
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FIG. 6.1. (a) Piecewise constant coefficients ρ in a checkerboard pattern. (b) Decompositions of Ω into J
subdomains for J = 22, 42, 82.

Consequently, Theorem 4.14 and Theorem 4.15 remain valid but now the constants in the
estimates also depend on the maximum number of hanging nodes on the edges in Eh,Γ.

6. Numerical results. In this section we present some numerical results to illustrate the
performance of the preconditioners BBDDC and B2

We consider the model problem (1.1) on the unit square Ω = (0, 1) × (0, 1). The
coefficient ρ is distributed in a checkboard pattern with two different constants ρS and ρL for
ρS ≤ ρL; cf. Fig. 6.1(a). The domain Ω is divided into J nonoverlapping squares so that ρ is a
constant on each subdomain and the length of the horizontal/vertical edges of the squares is
denoted by H; cf. Fig. 6.1(b). We use a uniform triangulation Th of Ω, where h denotes the
mesh size; cf. Fig. 2.1(a).

The discrete problem resulting from the SIPG method is solved by the preconditioned
conjugate gradient algorithm. For comparison, the conjugate gradient iteration is also carried
out without preconditioning. The iteration is stopped when the relative residual is less
than 10−6. In Table 6.1 and Table 6.4, the sign − in the CG Iter columns indicates that the
conjugate gradient iteration fails to stop before the maximum number of iterations (= the total
number of unknowns of the discrete problem) is reached.

Numerical results for the preconditioner B2 are presented in Table 6.1. For comparison,
the results for case of ρ = 1 are also presented in Table 6.2. Both set of results are in agreement
with the theoretical estimates in (4.29).

TABLE 6.1
Performance of the preconditioner B2 in case of discontinuous coefficients ρ where ρS = 1, ρL = 105, and

η = 5.

J 1/h H/h PCG Iter κ λmin(B2Ah) λmax(B2Ah) CG Iter

22
6 3 18 5.6914 2.9889e-1 1.7011 −

12 6 17 6.3193 2.7325e-1 1.7267 −
24 12 17 6.5063 2.6644e-1 1.7336 −

42 12 3 20 8.0552 2.8408e-1 2.2884 −
24 6 19 9.6797 2.7016e-1 2.6151 −

82 24 3 23 8.2283 2.8408e-1 2.3375 −

Table 6.3 shows that the performance of the preconditioner B2 is independent of the
choice of η.

The robustness of the preconditioner B2 with respect to the jump in ρ is demonstrated in
Table 6.4, where ρS = 1 and ρL ranges between 1 and 105; cf. Fig. 6.1(a).
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TABLE 6.2
Performance of the preconditioner B2 in case of ρ = 1 where η = 5.

J 1/h H/h PCG Iter κ λmin(B2Ah) λmax(B2Ah) CG Iter

22
6 3 16 5.6874 2.9915e-1 1.7014 44

12 6 16 6.3172 2.7334e-1 1.7267 79
24 12 16 6.5849 2.6645e-1 1.7545 149

42 12 3 16 6.4992 2.9873e-1 1.9415 79
24 6 18 9.0475 2.7332e-1 2.4729 149

82 24 3 18 7.0336 2.9854e-1 2.0998 149

TABLE 6.3
Dependence of the preconditioner B2 on η where ρ = 1, J = 42, and h = 1/16.

η
B2Ah Ah

κ PCG Iter κ CG Iter

5 7.5117 17 7.7883e+2 102
10 5.9025 16 1.5611e+3 137
50 8.1257 20 7.7914e+3 253

100 8.8201 20 1.5578e+4 299

TABLE 6.4
Robustness of the preconditionerB2 with respect to the jump in the coefficient ρ where ρS = 1, η = 5, J = 42,

and h = 1/12.

ρL

B2Ah Ah

κ PCG Iter κ CG Iter

1 6.4992 16 4.2383e+2 83
101 7.7321 17 1.3226e+3 200
102 8.0202 18 1.1169e+4 482
103 8.0517 18 1.1042e+5 −
104 8.0549 19 1.1030e+6 −
105 8.0552 20 1.1029e+7 −

TABLE 6.5
Results for the preconditioners BBDDC and B2 for ρS = 1, and ρL = 10 where η = 5 and J = 32.

1/h H/h
BBDDCSh B2Ah

κ λmin λmax κ λmin λmax

9 3 1.3082 1.0000 1.3082 5.9399 2.8824e-1 1.7121
18 6 1.4640 1.0000 1.4640 6.4698 2.7129e-1 1.7551
30 10 1.5872 1.0000 1.5872 6.8798 2.6693e-1 1.8365
36 12 1.6328 1.0000 1.6328 7.0218 2.6611e-1 1.8686
48 18 1.7066 1.0000 1.7066 7.2479 2.6525e-1 1.9225

From a comparison between the results in Table 6.5, the decisive effect of the precondi-
tioner BBDDC on the performance of the preconditioner B2 can be observed, which agrees
with the analysis in Theorem 4.15.
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FIG. 6.2. Left figure: the behavior of κ (BBDDCSh) / (1 + ln(H/h))2 for the BDDC preconditioner; Right
figure: the behavior of κ (B2Ah) / (1 + ln(H/h))2 for the preconditioner B2.
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FIG. 6.3. Left figure: Type A; Center figure: Type B; Right figure: Type C.

TABLE 6.6
Results for the preconditioners BBDDC and B2 for three different types of coefficient distribution where η = 5

and J = 32.

1/h Type κ(BBDDCSh) κ(B2Ah) κ(Ah)

9
A 1.6324 6.0782 2.4113e+2
B 1.3932 6.0386 3.4076e+5
C 1.0007 6.0401 3.3000e+6

36
A 2.7886 10.6070 3.9386e+3
B 2.1798 8.4656 4.5804e+6
C 1.0016 6.5222 4.4116e+6

The numbers κ (BBDDCSh) / (1 + ln(H/h))
2 and κ (B2Ah) / (1 + ln(H/h))

2 are plot-
ted in Fig. 6.2 against H/h. As H/h increases, these two numbers settle down around 0.1 and
0.5, which indicates that the condition number estimates in Theorem 4.14 and Theorem 4.15
are sharp. Table 6.6 shows how the performance of the preconditioners BBDDC and B2 is
affected by a variation of the jump of ρ in three different patterns depicted in Fig. 6.3. The
minimum of the multiplicative jump across the edges of subdomains is 1, 10, and 104 for
Type A, Type B, and Type C, respectively.

The numerical results in Table 6.7 present the performance of the preconditioners BBDDC
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FIG. 6.4. A nonconforming triangulation of Ω for case of ρ = 1, where J = 32.

TABLE 6.7
Results for the preconditioners BBDDC and B2 in case of a nonconforming triangulation where ρ = 1 and

η = 10.

J 1/hc H/hc
BBDDCSh B2Ah Ah

κ λmin λmax κ λmin λmax κ

32
6 2 1.2423 1.0000 1.2423 8.1014 2.2008e-1 1.7830 3.3226e+2

12 4 1.5755 1.0000 1.5755 8.0913 2.2066e-1 1.7854 1.3113e+3
24 8 2.0866 1.0000 2.0866 9.5509 2.2067e-1 2.1076 5.2346e+3

62 12 2 1.5470 1.0000 1.5470 8.1482 2.1967e-1 1.7899 1.3259e+3
24 4 2.0908 1.0000 2.0908 9.5502 2.2064e-1 2.1071 5.2601e+3

and B2 for the case of nonconforming meshes (cf. Fig. 6.4), which agrees with the discussion
in Section 5.

Appendix A. References for the notations. For the convenience of the readers, we
provide references in Table A.1 for the notations that appear in multiple sections.

TABLE A.1
References for the notations.

Notation Reference Notation Reference Notation Reference

Ah (2.7) Ah,C (2.9) Ah,D (2.8)
ah,j(·, ·) (2.10) Ah,Ω\Γ (2.20) aCh (3.5)
BBDDC (3.12) B1 (2.23) B2 (3.14)
Ej (3.13) HC (3.4) Hj (3.3)
H̊ (3.7) H0 (3.8) ID (2.24)
IΓ (2.24) IΩ\Γ (2.24) PΓ (3.9)
ρe (1.4) {{ρ∇v}} (1.6) Sh (2.21)
Sj (3.11) S0 (3.10) Th,j (3.2)
[[v]] (1.5) VI (2.1) VC (2.2)
Xh (1.2) Xh,C (2.4) Xh,C(Γ) (2.19)
Xh,C(Ω \ Γ) (2.18) Xh,D (2.5) Xh,j (3.1)
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