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A SIMPLIFICATION OF THE STATIONARY PHASE METHOD: APPLICATION
TO THE ANGER AND WEBER FUNCTIONS∗

JOSÉ L. LÓPEZ† AND PEDRO J. PAGOLA‡

Abstract. The main difficulty in the practical use of the stationary phase method in asymptotic expansions of
integrals is originated by a change of variables. The coefficients of the asymptotic expansion are the coefficients of
the Taylor expansion of a certain function implicitly defined by that change of variables. In general, this function is
not explicitly known, and then the computation of those coefficients is cumbersome. Using the factorization of the
exponential factor used in previous works of [Tricomi, 1950], [Erdélyi and Wyman, 1963], and [Dingle, 1973], we
obtain a variant of the method that avoids that change of variables and simplifies the computations. On the one hand,
the calculation of the coefficients of the asymptotic expansion is remarkably simpler and explicit. On the other hand,
the asymptotic sequence is as simple as in the standard stationary phase method: inverse powers of the asymptotic
variable. New asymptotic expansions of the Anger and Weber functions Jλx(x) and Eλx(x) for large positive x and
real parameter λ 6= 0 are given as an illustration.

Key words. asymptotic expansions, oscillatory integrals, method of the stationary phase, Anger and Weber
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1. Introduction. We consider integrals of the form

(1.1) F (x) :=

∫ b

a

ei xf(t)g(t)dt,

where (a, b) is a real interval (finite or infinite), x is a large positive parameter and the real
functions f(t) and g(t) are smooth enough in (a, b). Long ago, Stokes and Kelvin [6, 12]
made the observation that the major contribution to the value of the integral (1.1) comes from
the neighborhoods of the end points of the interval (a, b) and from the neighborhoods of those
points at which f(t) is stationary, that is, f ′(t) = 0. It is worth noting that, at the first order
of the asymptotic approximation, the contribution of stationary points, if any, dominates the
contribution of the end points.

If f(t) has no stationary points in the interval (a, b), only the end points contribute to the
asymptotic expansion of (1.1), which can be obtained by integrating by parts [14, Chap. 2,
Sec. 3]:

(1.2) F (x) =

∫ b

a

ei xf(t)g(t)dt =
ei xf(b)

i xf ′(b)
g(b)− ei xf(a)

i xf ′(a)
g(a) +

1

i x

∫ b

a

ei xf(t)g1(t)dt,

where,

g1(t) := − d

dt

(
g(t)

f ′(t)

)
.

The last integral in the right-hand side of (1.2) is of the same form as that in the left-hand
side. Then, repeating this procedure K times we obtain

(1.3) F (x) =
ei xf(b)

i xf ′(b)

K∑
k=0

gk(b)

(i x)k
− ei xf(a)

i xf ′(a)

K∑
k=0

gk(a)

(i x)k
+

1

(i x)K+1

∫ b

a

ei xf(t)gK+1(t)dt,
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with g0(t) := g(t) and

gk+1(t) := − d

dt

(
gk(t)

f ′(t)

)
, k = 0, 1, 2, . . .

Now, assume that f(t) has one or more stationary points in [a, b] of the first order. By
subdividing the interval of integration if necessary, we may assume that f(t) has only one
stationary point in the integration interval and that it occurs at the lower limit t = a; that is,
f ′(a) = 0, f ′′(a) 6= 0. We may also assume that f(t) is strictly increasing in (a, b). Then, the
integral (1.1) can be transformed into a standard integral by using the change of variable [14,
Chap. 2, Sec. 3]

(1.4) f(t)− f(a) = u2, sign(u) = sign(t− a).

The integral F (x) may be written in the form

(1.5) F (x) = ei xf(a)
∫ U

0

ei x u
2

h(u)du, h(u) = g(t)
dt

du
,

where U is a positive parameter which follows from the change of variable. In order to derive
the asymptotic expansion of F (x) for large x, it is convenient to rewrite F (x) in the form

(1.6) F (x) = ei xf(a)
(∫ ∞

0

ei x u
2

h(u)du−
∫ ∞
U

ei x u
2

h(u)du

)
.

The approximation of the first integral in the right-hand side requires the assumption that h(u)
has a Taylor expansion at u = 0: h(u) =

∑∞
n=0 cn u

n. When we replace this expansion in
(1.6) and interchange sum and integral (see [14, Chap. 2, p. 77-81] for more details) we obtain:

(1.7)
∫ ∞
0

ei x s
2

h(s)ds ∼
∞∑
n=0

cn

∫ ∞
0

ei x u
2

un du =

∞∑
n=0

Γ

(
n+ 1

2

)
cn

2(−i x)
n+1
2

.

The phase function in the second integral in the right-hand side of (1.6) has not any stationary
point in [U,∞). Therefore, its asymptotic expansion follows straightforwardly from formula
(1.3) replacing a by U and setting b =∞.

From a theoretical point of view, the problem of the derivation of an asymptotic expansion
of F (x) is solved. But from a practical point of view the situation is different. When the phase
function f(t) in (1.1) has no stationary points in [a, b], the asymptotic expansion of F (x) is
given in formula (1.3); the computation of the terms of (1.3) is straightforward and the problem
is over. But when f(t) has stationary points, the computation of the asymptotic expansion (1.7)
is not straightforward. In general, the computation of the coefficients cn is quite complicated,
depending on the difficulty of the change of variable t→ u. This is so because the coefficients
cn are the Taylor coefficients at u = 0 of the function h(u) = g(t) dtdu , which is defined in an
implicit form because, in general, the function t(u) is not explicitly known. In fact, traditional
text books of asymptotic expansions of integrals like for example [1], [4] or [14] do not give
an explicit and general analytic formula for these coefficients.

In the classical Laplace and saddle point methods, the difficulty of the computation of the
coefficients of the expansion is also a drawback for the same reason: a change of the integration
variable is defined in an implicit way. In previous papers [7, 8], inspired by the ideas of [3,
p. 113], [5], and [13], we circumvented this problem by designing modified Laplace and
saddle point methods that avoid the change of variable. In this way, these modified methods
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give asymptotic expansions where the coefficients are computed explicitly at any order of
the approximation without complicating the computation of the asymptotic sequence. In this
paper we pursue the same objective for the stationary phase method for the integral (1.1) when
f(t) has stationary points in [a, b]. In the remainder of the paper we assume (without loss of
generality as we have argued above) that f(t) has only one stationary point at t = a.

In the following section we specify with precision the conditions for the functions f(t)
and g(t) in the integrand of (1.1) and establish some preliminary results. In Section 3 we
introduce the modified method and summarize the discussion in Theorem 3.3. In Section 4
we use Theorem 3.3 to derive new asymptotic expansions of the Anger and Weber functions
Jν(x) and Eν(x) for large index ν and argument x.

2. Preliminaries. We let the function g(t) possess, perhaps, an algebraic branch point
at t = a, that is, g(t) = (t − a)s−1ḡ(t), where s ∈ (0, 1] and ḡ(t) is analytic at t = a. We
also assume that the phase function f(t) has a Taylor expansion at t = a. These analyticity
conditions for f(t) and ḡ(t) may be relaxed and require only that both, f(t) and ḡ(t), have an
asymptotic expansion at t = a. But for the sake of clarity in the exposition we require their
analyticity; on the other hand, it is the usual situation in most practical examples. We also
require that both, f(t) and ḡ(t), are infinitely differentiable in [a, b] (or [a, b) if b =∞).

In principle, the functions f(t) and ḡ(t) are defined only in [a, b]. As in the classical
method of the stationary phase, the modified method that we present here requires the extension
of the functions f(t) and ḡ(t) to infinite differentiable functions defined in [a,∞) with
f(t) ≡ 0 and ḡ(t) ≡ 0 in a neighborhood of infinity. As it is argued in [14, Chap. 2, Sec. 3],
the explicit extension is not required; a construction of this extension is detailed in [11, p. 418].
Also, as in the classical method, we extend the integration interval in (1.1) up to the infinity by
writing F (x) = F1(x)− F2(x), with

(2.1) F1(x) :=

∫ ∞
a

ei xf(t)(t− a)s−1ḡ(t)dt, F2(x) :=

∫ ∞
b

ei xf(t)g(t)dt.

Eventually, when b = ∞, F2(x) = 0 and the extensions of the functions f(t) and ḡ(t)
is not necessary. In any case, as we have explained in the introduction, all the difficulty is
encoded in the approximation of F1(x), as the asymptotic approximation of F2(x) follows
easily from (1.3). Now, the key point that makes the difference with respect to the standard
stationary phase method is that we do not require any change of variable for the first integral
F1(x). Instead, we divide the phase function f(t) into a “main part":

fm(t) := f(a) +
f (m)(a)

m!
(t− a)m

and a “secondary part" fp(t) := f(t) − fm(t), where the integer m is the order of the first
non-vanishing derivative of f(t) at t = a and p is the order of the next non-vanishing derivative.
The “main part" fm(t) and f(t) have the same asymptotic behavior at t = a: apart from the
constant term f(a), both behave as (t− a)m, and this determines the asymptotic behavior of
F1(x) for large x. Then, roughly speaking, the idea is the following: we will leave only fm(t)
in the exponent of the integral F1(x) and will attach the exponential of ixfp(t) to the function
ḡ(t):

(2.2) F1(x) = ei xf(a)
∫ ∞
a

ei x
f(m)(a)
m! (t−a)m(t−a)s−1h(t, x)dt, h(t, x) := ei xfp(t)ḡ(t).

Now, as a difference with respect to the classical method, the function that multiplies the
exponential, h(t, x), depends also on the asymptotic variable x. This technical complication,
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conveniently managed, does not distort the asymptotic analysis of F1(x). The key point is the
following: the “new" phase function in the integral (2.2) is just a power of t− a, and then a
change of variable of the form (1.4) is not required. The remaining steps are similar to those
of the classical method. We develop these ideas in detail in the following section.

3. The modified stationary phase method.

3.1. The asymptotic analysis of F1(x). The derivation of the asymptotic expansion of
F1(x) by using the classical stationary phase method requires the Taylor expansion of the
function h(u) in (1.5) at u = 0. Analogously, we require here the Taylor expansion of h(t, x)
at t = a. We may derive this expansion from the Taylor expansions of its factors ei xfp(t) and
ḡ(t). Therefore, we need to compute the coefficients An(x) and Bn of the respective Taylor
expansion of ei xfp(t) and ḡ(t) at t = a,

ei xfp(t) =

∞∑
n=0

An(x)(t− a)n, ḡ(t) =

∞∑
n=0

Bn(t− a)n.

Then, the coefficients an(x) of the Taylor expansion of the function h(t, x) at t = a,

(3.1) h(t, x) = ei xfp(t)ḡ(t) =

N−1∑
n=0

an(x)(t− a)n + hN (t, x),

where hN (t, x) is the Taylor remainder, may be computed in the form

an(x) =

n∑
k=0

Ak(x)Bn−k.

REMARK 3.1. Consider the coefficients of the Taylor expansion of fp(t) at t = a,

fp(t) =
∑∞
n=p

f(n)(a)
n! (t − a)n. Then, the coefficients An(x) of the Taylor expansion of

ei xfp(t) at t = amay be computed in terms of f (n)(a) by using the Faá di Bruno’s formula [2]:

An(x) =

n∑
k=0

bn,k
n!

(ix)k,

where bn,k are the partial ordinary Bell polynomials [10, p. 190]. They may be computed
recursively in the following form [10, p. 190]: b0,0 = 1; bn,0 = 0, n = 1, 2, 3, ...; and

bn,k =

n−k+1∑
j=p

(
n− 1
j − 1

)
f (j)(a) bn−j,k−1, n = 1, 2, 3, ..., k = 1, 2, 3, ..., n,

where empty sums must be understood as zero.
REMARK 3.2. It is straightforward to show that the coefficients an(x) are polynomials in

the variable x of degree bn/pc (see [7] for a detailed proof in a similar situation). Therefore,

an(x) = O
(
xbn/pc

)
as x→∞.

When we replace the expansion (3.1) in (2.2) and interchange sum and integral we obtain:

(3.2) F1(x) = ei xf(a)

(
N−1∑
n=0

an(x)Φn(x) +RN (x)

)
,
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with

(3.3) Φn(x) :=

∫ ∞
a

ei x
f(m)(a)
m! (t−a)m(t− a)n+s−1dt =

∫ ∞
0

ei x
f(m)(a)
m! tmtn+s−1dt

and

(3.4)
RN (x) :=

∫ ∞
a

ei x
f(m)(a)
m! (t−a)m(t− a)s−1 hN (t, x)dt

=

∫ ∞
0

ei x
f(m)(a)
m! tmts−1 hN (t+ a, x)dt.

We may compute the integral (3.3) by using the Cauchy’s residue theorem: we replace
the integration path (0,∞) in (3.3) by the straight line Γ+ := {t = uei

π
2m : 0 < u < ∞} if

f (m)(a) > 0 or by the straight line Γ− := {t = ue−i
π

2m : 0 < u < ∞} if f (m)(a) < 0. In
any case we obtain:
(3.5)

Φn(x) =

∫ ∞ e±i
π

2m

0

ei x
f(m)(a)
m! tmtn+s−1dt =

1

m

(
im!

f (m)(a)x

)(n+s)/m

Γ

(
n+ s

m

)
.

Obviously, we cannot compute exactly the integral (3.4), but we can determine its asymp-
totic behavior for large x. For this purpose we define inductively the sequence of functions
Kn(t) in the following way [14, Chap. 2, Sec. 3]:

Kn+1(t) := −
∫ t+∞ei α

π
2m

t

Kn(u) du, n = 0, 1, 2, . . . ,

with

K0(t) := ts−1ei x
f(m)(a)
m! tm .

In the above integral, α := sign
(
f (m)(a)

)
and the path of integration is the ray arg(u −

t) = (απ)/(2m). Then, the function Kn+1(t) is the n + 1 iterated integral of the function
K0(t), that may be written in the following way:

(3.6)
Kn+1(t) =

(−1)n+1

n!

∫ t+∞ei α
π

2m

t

(u− t)nus−1ei x
f(m)(a)
m! um du

=
(−1)n+1

n!
tn+s

∫ 1+∞ei α
π

2m

1

(u− 1)nus−1ei x
f(m)(a)
m! (tu)m du.

Integrating by partsN times in the rightmost integral in (3.4) and using the fact thatK ′n+1(t) =

Kn(t),Kn(∞) = 0 for all n = 1, 2, 3, ..., N , and h(n)N (a, x) = 0 for all n = 0, 1, 2, ..., N−1,
the remainder RN (x) can be written in the form:

(3.7) RN (x) = (−1)N
∫ ∞
0

KN (t)h
(N)
N (t+ a, x)dt.

Observe that, because ḡ(t) = 0 in a neighbourhood of infinity, then h(N)
N (t + a, x) = 0 in

a neighbourhood of infinity as well. From (3.1) and using Faá di Bruno’s formula for the
derivative of a composite function [2] we find that

(3.8) h
(N)
N (t+ a, x) =

(
ei x fp(t+a)ḡ(t+ a)

)(N)

= ei x fp(t+a)G(t+ a, x),
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with

G(t+ a, x) :=

N∑
k=0

(−N)k(−1)k

k!

 k∑
r=0

(i x)r

r!

r∑
j=0

(−r)j
j!

(
fr−jp (t+ a)

)(k)
f jp (t+ a)

 ḡ(N−k)(t+ a).

Rearranging sums in the above formula we can write G(t+ a, x) in the form of a polynomial

in the variable x of degree at most N : G(t+ a, x) =

N∑
k=0

(i x)kGk(t+ a), whose coefficients

Gk(t+ a) are

Gk(t+ a) :=

N∑
r=k

(−N)r(−1)r

r! k!

k∑
j=0

(−k)j
j!

(
fk−jp (t+ a)

)(r)
f jp (t+ a) ḡ(N−r)(t+ a).

From the hypotheses for f(t) and ḡ(t) we know that the functions Gk(t+ a) are analytic
functions of the variable t at t = 0. On the other hand, it is straightforward to see that
Gk(t+ a) ∼ tMax{pk−N,0} as t→ 0; in other words,

Gk(t+ a) ∼
{
tpk−N if k > bN/pc

1 if k ≤ bN/pc as t→ 0.

(Observe that, at t = 0, G(a, x) = ei xf(a)aN (x) and then Gk(a, 0) = 0 for k > bN/pc.)
Then, from (3.6), (3.7), and (3.8) we find
(3.9)

RN (x) = (−1)N
∫ 1+∞ei α

π
2m

1

(u− 1)N−1us−1du

∫ ∞
0

ei x F (t,u) tN+s−1G(t+ a, x)dt,

with F (t, u) := f(t+ a)− f(a)− f (m)(a)

m!
tm(1− um). The inner integral (in the variable

t) may be written in the form

H(u, x) :=

∫ ∞
0

ei x F (t,u) tN+s−1G(t+ a, x)dt

=

bN/pc∑
k=0

(i x)k
∫ ∞
0

ei x F (t,u) tN+s−1Gk(t+ a)dt

+

N∑
k=bN/pc+1

(i x)k
∫ ∞
0

ei x F (t,u) tN+s−1Gk(t+ a)dt.

(3.10)

In every one of the above integrals, the phase function F (t, u) has a unique stationary
point at t = 0 with F (n)(0, u) = 0, n = 0, 1, 2, ...,m−1 and F (m)(0, u) = f (m)(a)um 6= 0.
After these preparations, we can apply the classical stationary phase first order approximation
to every one of the integrals in (3.10), using formula [14, eq. (3.13)] with ρ = m, n = 0 and
λ = N + s or λ = pk + s. We obtain

H(u, x) = u−N−s
bN/pc∑
k=0

(i x)kO
(
x−

N+s
m

)
+

N∑
k=bN/pc+1

(i x)k u−pk−sO
(
x−

pk+s
m

)
as x→∞,
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where theO symbols stand uniformly for |u| ∈ [1,∞) along the ray arg(u−1) = (απ)/(2m).
The asymptotic behavior of the above sum for large x is dominated by the last term in the first
sum, the term corresponding to k = bN/pc. Therefore

(3.11) H(u, x) = u−N−sO
(
xbN/pc−

N+s
m

)
.

When we substitute (3.11) into (3.9) we obtain

RN (x) = O
(
xbN/pc−

N+s
m

)
as x→∞,

and then,

(3.12)

F1(x) = ei xf(a)

[
N−1∑
n=0

an(x)

m
Γ

(
n+ s

m

)(
im!

f (m)(a)x

)(n+s)/m

+O
(
xb

N
p c−N+s

m

)]

as x → ∞. The terms of the expansion (3.12) satisfy an(x)Φn(x) = O(xbn/pc−(n+s)/m).
Then, (3.12) is not a genuine asymptotic expansion, as the order of the terms of the expansion
do not decrease linearly with n, but in the form of a saw-tooth: the order decreases 1/m units
from every term to the next one, but it also increases 1 unit every p terms. Although this is not
a standard Poincare-like expansion, it performs perfectly well in practical applications as it is
always possible to select a prescribed order of approximation (M + s)/m (error term of the
order O(x−(M+s)/m)) by choosing a number of terms N = Mp/(p−m), with M an integer
multiple of p−m.

3.2. Summary of the discussion. The asymptotic analysis of the integral F2(x) in (2.1)
is much simpler than that of F1(x), since the phase function f(t) has no stationary points
in the integration interval [b,∞) and then we can just repeatedly integrate by parts to get an
asymptotic expansion [14, Chap. 2, Sec. 3]. We give details in the following theorem, where
we also summarize the discussion of Section 3.1 for the integral F1(x) and give the complete
asymptotic expansion of the integral F (x).

THEOREM 3.3. Let the functions f(t) and ḡ(t) := (t− a)1−sg(t) be infinitely differen-
tiable in [a, b], or in [a, b) when b = ∞, for a certain s ∈ (0, 1]. Let also the functions f(t)
and ḡ(t) be analytic at t = a. Then, for N and K = 1, 2, 3, ...,

(3.13)

∫ b

a

ei xf(t)g(t)dt = ei xf(a)

[
N−1∑
n=0

an(x)

m
Γ

(
n+ s

m

)(
im!

f (m)(a)x

)(n+s)/m

+O
(
xb

N
p c−N+s

m

)]

+
ei xf(b)

f ′(b)

[
K−1∑
k=0

gk(b)

(
− i
x

)k+1

+O
(
x−K−1

)]
,

as x→∞, where

(3.14) g0(t) := g(t), gn+1(t) := − d

dt

(
gn(t)

f ′(t)

)
, n = 0, 1, 2, . . . ,
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the integer m is the degree of the first non-vanishing derivative of f(t) at t = a and p is the
degree of the next non-vanishing derivative. For n = 0, 1, 2, ...,

an(x) :=

n∑
k=0

Ak(x)Bn−k,

where Ak(x) and Bk are the Taylor coefficients at t = a of ei xfp(t) and ḡ(t) respectively:

ei xfp(t) =

∞∑
n=0

An(x)(t− a)n, ḡ(t) =

∞∑
n=0

Bn(t− a)n.

The coefficients An(x) may be computed in the form:

An(x) =

n∑
k=0

bn,k
n!

(ix)k,

where bn,k are the partial ordinary Bell polynomials. These polynomials may be computed
recursively in the following form: b0,0 = 1; bn,0 = 0, n = 1, 2, 3, ...; and

bn,k =

n−k+1∑
j=p

(
n− 1
j − 1

)
f (j)(a) bn−j,k−1, n = 1, 2, 3, ..., k = 1, 2, 3, ..., n,

where empty sums must be understood as zero. In order to get an approximation of the order
O(x−(M+s)/m), we must take N = Mp/(p −m) and K = d(M + s)/m − 1e, where the
symbol dqe stands for the integer greater than or equal to q andM = (p−m), 2(p−m), 3(p−
m), ....

Proof. The integral in the left-hand side of (3.13) is the function F (x) = F1(x)− F2(x),
with F1(x) and F2(x) defined in (2.1). The first term in the right-hand side of (3.13) is just
the asymptotic expansion of F1(x) derived in (3.2)–(3.5). The second term is the asymptotic
expansion of F2(x) that may be derived straightforwardly: since the integrand in F2(x) is
infinitely differentiable and f(t) has no stationary points in [b,∞), by repeated integration by
parts we get the second term in the right-hand side of (3.13) with gn(t) given in (3.14). The
last sentence is trivial.

4. An example. For x > 0 and real parameter λ 6= 0, we consider the integral

(4.1) Fλ(x) :=
1

π

∫ π

0

ei x(λt−sin(t))dt.

We have that Jλx(x) = <(Fλ(x)) and Eλx(x) = =(Fλ(x)), where J and E are the Anger
and Weber functions, respectively [9, Sec. 11.10]. The first order asymptotic approximation
of Jλx(x) and Eλx(x) for large x may be found in [9, Sec. 11.11(iii)]; but only the first
few coefficients of the expansion are given. We apply below Theorem 3.3 to derive the
complete asymptotic expansions of these functions when x→∞ and λ is fixed. Conveniently
reorganized in the form of Poincaré expansions, the approximations given below agree with
those given in [9, Sec. 11.10] up to the order given there.

According to Theorem 3.3, we have f(t) = λt− sin(t), f ′(t) = λ− cos(t) and g(t) = 1,
s = 1. The location of the stationary points of f(t) depends on λ and we find four different
situations that we study separately in the following subsections.
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4.1. Case 1: −1 < λ < 1 and λ 6= 0. The phase function f has a unique stationary
point in [0, π] at t0 = arccos(λ) with 0 < arccos(λ) < π and f(t0) = λ t0 −

√
1− λ2. We

separate (4.1) in two integrals:

Fλ(x) =
1

π

∫ 0

−t0
ei x(−λt+sin(t))dt+

1

π

∫ π

t0

ei x(λt−sin(t))dt.

According to the notation of Theorem 3.3, in the first integral in the right-hand side we have
a = −t0 and b = 0. In this case the unique stationary point in the interval is found at t = −t0.
Hence m = 2, p = 3, and s = 1. On the other hand, in the second integral we have a = t0 and
b = π. In this case the unique stationary point in the interval is found at t = t0. Hence m = 2,
p = 3, and s = 1. Applying Theorem 3.3 to both integrals and after some manipulations we
obtain, for M = 1, 2, 3, ...,

(4.2)

Fλ(x) =
ei x f(t0)

π

3M−1∑
n=0

(
2 i

x
√

1− λ2

)n+1
2

Γ

(
n+ 1

2

)
Pn(x)+

− i

πx

d(M+1)/2e−2∑
k=0

(−1)k

x2k

(
g2k(0)

1− λ
+
ei xλπg2k(π)

1 + λ

)
+O

(
x−(M+1)/2

)
,

where g0(t) := 1 and, for n = 0, 1, 2,...,

gn+1(t) :=
d

d t

(
gn(t)

λ− cos(t)

)
, Pn(x) :=

1

n!

n∑
k=0

b1n,k + b2n,k
2

(i x)k,

bα0,0 := 1 , bαn,0 := 0 and bαn,k :=

n−k+1∑
j=3

(
n− 1
j − 1

)
(−1)α j cj b

α
n−j,k−1 , α = 1, 2,

with cj := (−1)(j+1)/2λ if j is odd and cj := −(−1)j/2
√

1− λ2 if j is even.
The real and imaginary parts of (4.2) constitute asymptotic expansions for the Anger and

Weber functions respectively. Then, separating the polynomial Pn(x) in real and imaginary
parts,

Pn(x) =
1

n!

[n/2]∑
k=0

b1n,2k + b2n,2k
2

(−1)k x2k︸ ︷︷ ︸
P 1
n(x)

+ i

 1

n!

[(n−1)/2]∑
k=0

b1n,2k+1 + b2n,2k+1

2
(−1)k x2k+1

 ,

︸ ︷︷ ︸
P 2
n(x)
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with P 2
0 (x) := 0, we find

Jλx(x) =
1

π

3M−1∑
n=0

(
2

x
√

1− λ2

)n+1
2

Γ

(
n+ 1

2

) (
cos (θ1) P 1

n(x)− sin (θ1) P 2
n(x)

)
+

1

πx

d(M+1)/2e−2∑
k=0

(−1)k

x2k
sin(xλπ)

1 + λ
g2k(π) +O

(
x−(M+1)/2

)
and

Eλx(x) =
1

π

3M−1∑
n=0

(
2

x
√

1− λ2

)n+1
2

Γ

(
n+ 1

2

) (
cos (θ1) P 2

n(x) + sin (θ1) P 1
n(x)

)
− 1

πx

d(M+1)/2e−2∑
k=0

(−1)k

x2k

(
g2k(0)

1− λ
+
g2k(π)

1 + λ
cos(λπ x)

)
+O

(
x−(M+1)/2

)
.

In these formulas, θ1 := x
(
λ t0 −

√
1− λ2

)
+
n+ 1

4
π.

4.2. Case 2: λ = −1. After the change of variable t→ −t we get

F−1(x) =
1

π

∫ 0

−π
ei x(t+sin(t))dt.

Following the notation of Theorem 3.3 we have a = −π and b = 0. The unique stationary
point of the phase function in the interval is found at t = −π. In this case m = 3, p = 5, and
s = 1. From Theorem 3.3 we obtain, for M = 2, 4, 6, ...,

(4.3)

F−1(x) =
e−i x π

3π

5M/2−1∑
n=0

(
6i

x

)n+1
3

Γ

(
n+ 1

3

)
Pn(x)

− i

2πx

d(M+1)/3e−2∑
k=0

g2k(0)

(−x2)k
+O

(
x−(M+1)/3

)
,

with g0(t) := 1 and, for n = 0, 1, 2,...,

gn+1(t) := − d

d t

(
gn(t)

1 + cos(t)

)
, Pn(x) :=

1

n!

n∑
k=0

bn,k(i x)k,

b0,0 := 1 , bn,0 := 0 and bn,k := −
n−k+1∑
j=5

(
n− 1
j − 1

)
sin

(
j

2
π

)
bn−j,k−1.

The real and imaginary parts of (4.3) constitute asymptotic expansions for the Anger and
Weber functions respectively. Then, decomposing Pn(x) into its real and imaginary parts,

Pn(x) =
1

n!

[n/2]∑
k=0

bn,2k(−1)k x2k︸ ︷︷ ︸
P 1
n(x)

+ i

 1

n!

[(n−1)/2]∑
k=0

bn,2k+1(−1)k x2k+1


︸ ︷︷ ︸

P 2
n(x)
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with P 2
0 (x) := 0, we find

J−x(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

)(
cos (θ2)P 1

n(x)− sin (θ2)P 2
n(x)

)
+O

(
x−(M+1)/3

)
and

E−x(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

) (
cos (θ2) P 2

n(x) + sin (θ2) P 1
n(x)

)
−
d(M+1)/3e−2∑

k=0

(−1)k g2k(0)

2π x2k+1
+O

(
x−(M+1)/3

)
.

In these formulas, θ2 := π

(
−x+

n+ 1

6

)
.

4.3. Case 3: λ = 1. The integral (4.1) reads

F1(x) =
1

π

∫ π

0

ei x(t−sin(t))dt.

In this particular case we have a = 0 and b = π and the unique stationary point of the phase
function in the interval is found at t = 0 with m = 3, p = 5, and s = 1. From Theorem 3.3
we obtain, for M = 2, 4, 6, ...,

(4.4)

F1(x) =
1

3π

5M/2−1∑
n=0

(
6i

x

)n+1
3

Γ

(
n+ 1

3

)
Pn(x)

+
ei x π

2 i πx

d(M+1)/3e−2∑
k=0

g2k(π)

(−x2)k
+O

(
x−(M+1)/3

)
,

with g0(t) := 1 and, for n = 0, 1, 2,...,

gn+1(t) :=
d

d t

(
gn(t)

cos(t)− 1

)
, Pn(x) :=

1

n!

n∑
k=0

bn,k(i x)k,

b0,0 := 1 , bn,0 := 0 and bn,k := −
n−k+1∑
j=5

(
n− 1
j − 1

)
sin

(
j

2
π

)
bn−j,k−1.

The real and imaginary parts of (4.4) constitute asymptotic expansions for the Anger and
Weber functions respectively. Therefore, separating Pn(x) in real and imaginary parts,

Pn(x) =
1

n!

[n/2]∑
k=0

bn,2k(−1)k x2k︸ ︷︷ ︸
P 1
n(x)

+ i

 1

n!

[(n−1)/2]∑
k=0

bn,2k+1(−1)k x2k+1


︸ ︷︷ ︸

P 2
n(x)

,
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with P 2
0 (x) := 0, we find

Jx(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

)(
cos

(
n+ 1

6
π

)
P 1
n(x)

− sin

(
n+ 1

6
π

)
P 2
n(x)

)

+
sin(π x)

2πx

d(M+1)/3e−2∑
k=0

g2k(π)

(−x2)k
+O

(
x−(M+1)/3

)
and

Ex(x) =
1

3π

5M/2−1∑
n=0

(
6

x

)n+1
3

Γ

(
n+ 1

3

)(
cos

(
n+ 1

6
π

)
P 2
n(x)

+ sin

(
n+ 1

6
π

)
P 1
n(x)

)

− cos(π x)

2πx

d(M+1)/3e−2∑
k=0

g2k(π)

(−x2)k
+O

(
x−(M+1)/3

)
.

4.4. Case 4: |λ| > 1. In this case, the phase function f(t) = λ t − sin(t) has no
stationary points in the interval of integration. From formula (1.3) with a = 0 and b = π we
obtain

(4.5) Fλ(x) =
i

π

M−1∑
m=0

(−1)m

x2m+1

(
g2m(0)

λ− 1
− ei x λ πg2m(π)

λ+ 1

)
+O

(
x−2M−1

)
,

with g0(t) := 1 and, for n = 0, 1, 2,..., gn+1(t) =
d

d t

(
gn(t)

cos(t)− λ

)
. The real and imaginary

parts of (4.5) constitute asymptotic expansions for the Anger and Weber functions respectively:

Jλx(x) =
1

π

M−1∑
m=0

(−1)m

x2m+1

sin(λπ x)

λ+ 1
g2m(π) +O

(
x−2M−1

)
and

Eλx(x) =
1

π

M−1∑
m=0

(−1)m

x2m+1

(
g2m(0)

λ− 1
− cos(λπ x)g2m(π)

λ+ 1

)
+O

(
x−2M−1

)
.

4.5. Numerical experiments. Tables 4.1–4.4 show some numerical experiments that
illustrate the accuracy of the above approximations for several values of λ and x and different
orders M of the approximation. As the exact value of Fλ(x), we have taken the numerical
integration of (4.1) obtained with the program Mathematica 11.
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TABLE 4.1
Relative errors supplied by the approximation (4.2).

λ = 1/2 M
x 1 2 3 4 5

15 2.418 · 10−1 5.619 · 10−3 5.182 · 10−3 1.686 · 10−3 1.474 · 10−3

50 7.642 · 10−2 1.391 · 10−3 2.894 · 10−4 2.571 · 10−5 6.314 · 10−6

125 7.541 · 10−2 6.756 · 10−4 1.959 · 10−5 3.582 · 10−6 2.629 · 10−7

500 4.261 · 10−2 1.561 · 10−4 2.007 · 10−6 1.918 · 10−7 4.286 · 10−9

1000 3.077 · 10−2 7.829 · 10−5 4.386 · 10−7 4.841 · 10−8 5.018 · 10−10

TABLE 4.2
Relative errors supplied by the approximation (4.3).

λ = −1 M
x 2 4 6 8

15 5.907 · 10−2 5.301 · 10−4 4.841 · 10−5 5.661 · 10−6

50 1.829 · 10−2 1.131 · 10−4 4.539 · 10−6 2.458 · 10−7

125 1.149 · 10−2 4.451 · 10−5 1.131 · 10−6 3.865 · 10−8

500 3.919 · 10−3 5.162 · 10−6 4.503 · 10−8 5.282 · 10−10

1000 2.467 · 10−3 2.045 · 10−6 1.125 · 10−8 8.297 · 10−11

TABLE 4.3
Relative errors supplied by the approximation (4.4).

λ = 1 M
x 2 4 6 8

15 5.907 · 10−2 5.301 · 10−4 4.841 · 10−5 5.661 · 10−6

50 1.829 · 10−2 1.131 · 10−4 4.539 · 10−6 2.458 · 10−7

125 1.469 · 10−2 3.248 · 10−5 7.141 · 10−7 2.104 · 10−8

500 3.919 · 10−3 5.162 · 10−6 4.503 · 10−8 5.283 · 10−10

1000 2.467 · 10−3 2.045 · 10−6 1.125 · 10−8 8.324 · 10−11

TABLE 4.4
Relative errors supplied by the approximation (4.5).

λ = 3/2 M
x 1 2 3 4

20 3.148 · 10−2 8.331 · 10−3 5.042 · 10−3 4.871 · 10−3

50 2.755 · 10−3 1.001 · 10−4 1.082 · 10−5 2.447 · 10−6

125 5.045 · 10−4 2.739 · 10−6 4.181 · 10−8 1.261 · 10−9

500 4.007 · 10−5 1.345 · 10−8 1.261 · 10−11 3.378 · 10−14

1000 1.001 · 10−5 8.401 · 10−10 2.081 · 10−13 6.386 · 10−16
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