
ETNA
Kent State University and

Johann Radon Institute (RICAM)

Electronic Transactions on Numerical Analysis.
Volume 46, pp. 1–22, 2017.
Copyright c© 2017, Kent State University.
ISSN 1068–9613.

EFFICIENT EVALUATION OF SCALED PROXIMAL OPERATORS∗

MICHAEL P. FRIEDLANDER† AND GABRIEL GOH‡

Abstract. Quadratic-support functions, cf. Aravkin, Burke, and Pillonetto [J. Mach. Learn. Res., 14 (2013)],
constitute a parametric family of convex functions that includes a range of useful regularization terms found in
applications of convex optimization. We show how an interior method can be used to efficiently compute the proximal
operator of a quadratic-support function under different metrics. When the metric and the function have the right
structure, the proximal map can be computed with costs nearly linear in the input size. We describe how to use this
approach to implement quasi-Newton methods for a rich class of nonsmooth problems that arise, for example, in
sparse optimization, image denoising, and sparse logistic regression.

Key words. support functions, proximal-gradient, quasi-Newton, interior method

AMS subject classifications. 90C15, 90C25

1. Introduction. The proximal operator is a key ingredient in many convex optimization
algorithms for problems with nonsmooth objective functions. Proximal-gradient algorithms in
particular are prized for their applicability to a broad range of convex problems that arise in
machine learning and signal processing and for their good theoretical convergence properties.
Under reasonable hypotheses, they are guaranteed to achieve, within k iterations, a function
value that is withinO(1/k) of the optimal value using a constant step size and withinO(1/k2)
using an accelerated variant. Tseng [33] outlines a unified view of the many proximal-gradient
variations, including accelerated versions such as FISTA [6].

In its canonical form, the proximal-gradient algorithm applies to convex optimization
problems of the form

(1.1) minimize
x∈Rn

f(x) + g(x),

where the functions f : Rn → R and g : Rn → R ∪ {+∞} are convex. We assume that f
has a Lipschitz-continuous gradient and that g is lower semicontinuous [29, Definition 1.5].
Typically, f is a loss function that penalizes incorrect predictions of a model, and g is
a regularizer that encourages a desirable structure in the solution. Important examples of
nonsmooth regularizers are the 1-norm and total variation, which encourage sparsity in either x
or its gradient.

Suppose that H is a positive definite matrix. The iteration

(1.2) x+ = proxH

g (x−H−1∇f(x))

underlies the prototypical proximal-gradient method, where x is the most recent estimate of
the solution, and

(1.3) proxH

g (z) := argmin
x∈Rn

{
1
2‖z − x‖

2
H + g(x)

}
is the (scaled) proximal operator of g. The scaled diagonal H = αI is typically used to define
the proximal operator because it leads to an inexpensive proximal iteration, particularly in the
case where g is separable. (In that case, α has a natural interpretation as a steplength.) More

∗Received March 17, 2016. Accepted December 22, 2016. Published online on February 8, 2017. Recommended
by F. Sgallari. Research supported by ONR award N00014-17-1-2009.
†Departments of Computer Science and Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z4,

Canada (mpf@cs.ubc.ca).
‡Department of Mathematics, University of California, Davis (gabgohjk@gmail.com).

1

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

2 M. P. FRIEDLANDER AND G. GOH

TABLE 1.1
Preconditioned proximal-gradient methods.

Method Reference H

iterative soft thresholding [6] αI
symmetric rank 1 [7] αI + ssT

identity-minus-rank-1 [19] αI − ssT
proximal L-BFGS [30, 31, 38] Λ + SDST

proximal Newton [13, 21, 32] ∇2f

general matrices H , however, may lead to proximal operators that dominate the computation.
The choice of H remains very much an art. In fact, there is an entire continuum of algorithms
that vary based on the choice ofH as illustrated by Table 1.1. The table lists a set of algorithms
roughly in order of the accuracy with which H approximates the Hessian—when it exists—of
the smooth function f . At one extreme is iterative soft thresholding (IST), which approximates
the Hessian using a constant diagonal. At the other extreme is proximal Newton, which uses
the true Hessian. The quality of the approximation induces a tradeoff between the number of
expected proximal iterations and the computational cost of evaluating the proximal operator at
each iteration. Thus, H can be considered a preconditioner for the proximal iteration. The
proposals offered by Tran-Dinh et al. [32] and Byrd et al. [13] are flexible in the choice of H ,
and so those references might also be considered to apply to other methods listed in Table 1.1.

The main contribution of this paper is to show how for an important family of functions g
and H , the proximal operator (1.3) can be computed efficiently via an interior method. This
approach builds on the work of Aravkin et al. [2], who define the class of quadratic-support
functions and outline a particular interior algorithm for their optimization. Our approach is
specialized to the case where the quadratic-support function appears inside of a proximal com-
putation. Together with the correct dualization approach (Section 4), this yields a particularly
efficient interior implementation when the data that define g and H have a special structure
(Section 6). The proximal quasi-Newton method serves as a showcase for how this technique
can be used within a broader algorithmic context (Section 7).

2. Quadratic-support functions. Aravkin et al. [2] introduce the notion of a quadratic-
support (QS) function, which is a generalization of sublinear support functions [29, Chap-
ter 8E]. Here we introduce a slightly more general definition than the version implemented
by Aravkin et al. We retain the “QS” designation because the quadratic term, which is an
essential feature of their definition, can also be expressed by the version we use here.

Let Bp = {z|‖z‖p ≤ 1} and K = K1 × · · · × Kk, where each cone Ki is either a
nonnegative orthant Rm+ or a second-order cone Qm =

{
(τ, z) ∈ R× Rm−1|z ∈ τB2

}
. (The

size m of the cones may of course be different for each index i.) The notation Ay �K b means
that Ay − b ∈ K, and τBp ≡ {τz | z ∈ Bp}. The indicator of a convex set U is denoted as

δ(x | U) =

{
0 if x ∈ U ,
+∞ otherwise.

Unless otherwise specified, x is an n-vector. To help disambiguate dimensions, the p-by-p
identity matrix is denoted by Ip, and the p-vector of all ones by 1p.

We consider the class of functions g : Rn → R ∪ {+∞} that have the conjugate
representation

(2.1) g(x) = sup
y

{
yT(Bx+ d) | y ∈ Y

}
, where Y = {y ∈ R` | Ay �K b}.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 3

(The term “conjugate” alludes to the implicit duality since g may be considered as the
conjugate of the indicator function to the set Y .) We assume throughout that the feasible set Y
is nonempty. If Y contains the origin, then the QS function g is nonnegative for all x, and we
can then consider it to be a penalty function. This is automatically true, for example, if b ≤ 0.

The formulation (2.1) is close to the standard definition of a sublinear support function [28,
Section 13], which is recovered by setting d = 0 and B = I and letting Y be any convex
set. Unlike a standard support function, g is not positively homogeneous if d 6= 0. This is a
feature that allows us to capture important classes of penalty functions that are not positively
homogeneous, such as piecewise quadratic functions, the “deadzone” penalty, or indicators on
certain constraint sets. These are examples that are not representable by the standard definition
of a support function. Our definition springs from the quadratic-support function definition
introduced by Aravkin et al. [2], who additionally allow for an explicit quadratic term in the
objective and for Y to be any nonempty convex set. The concrete implementation considered
in [2], however, is restricted to the case where Y is polyhedral. In contrast, we also allow
K to contain second-order cones. Therefore, any quadratic objective terms in the definition
of [2] can be “lifted” and turned into a linear term with a second-order-cone constraint; see
Example 2.2. Our definition is thus no less general.

This expressive class of functions includes many penalty functions commonly used in
machine learning; Aravkin et al. give many other examples. In addition, they show how to
interpret QS functions as the negative log of an associated probability density, which makes
these functions relevant to maximum a posteriori estimation. In the remainder of this section
we provide some examples that illustrate various regularizing functions and constraints that
can be expressed as QS functions.

EXAMPLE 2.1 (1-norm regularizer). The 1-norm has the QS representation

‖x‖1 = sup
y

{
yTx | y ∈ B∞

}
,

where

(2.2) A =

[
In
−In

]
, b = −

[
1n
1n

]
, d = 0, B = In, K = R2n

+ .

EXAMPLE 2.2 (2-norm). This simple example illustrates how the QS representation (2.1)
can represent the 2-norm, which is not possible using the QS formulation described in [2],
where the constraints are polyhedral. With our definition, the 2-norm has the QS representation

‖x‖2 = sup
y

{
yTx | y ∈ B2

}
= sup

y

{
yTx | (1, y) �K 0

}
,

where

(2.3) A =

[
0
In

]
, b =

[
1
0

]
, d = 0, B = In, K = Qn+1.

EXAMPLE 2.3 (Polyhedral norms). Any polyhedral seminorm is a support function, e.g.,
‖Bx‖1 for some matrix B. In particular, if the set {y |Ay ≥ b} contains the origin and is
centro-symmetric, then

‖x‖ := sup
y

{
yTBx |Ay ≥ b

}
defines a norm ifB is nonsingular and a seminorm otherwise. This is a QS function with d = 0
(as will be the case for any positively homogeneous QS function) and Y := {y |Ay ≥ b}.

EXAMPLE 2.4 (Quadratic function). This example justifies the term “quadratic” in our
modified definition even though there are no explicit quadratic terms. It also illustrates the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

4 M. P. FRIEDLANDER AND G. GOH

roles of the terms B and d. The quadratic function can be written as

1
2‖x‖

2
2 = sup

y, t

{
yTx− 1

2 t | ‖y‖
2
2 ≤ t

}
= sup

y, t

{[
y
t

]T([
In
0

]
x−

[
0
1
2

]) ∣∣∣∣∣‖y‖22 ≤ t
}
.

Use the derivation in Appendix A to obtain the QS representation with parameters

A =

 0 1
2

0 1
2

In 0

 , b =

1
2

− 1
2

0

 , d =

[
0
1
2

]
, B =

[
In
0

]
, K = Qn+2.

EXAMPLE 2.5 (1-norm constraint). This example is closely related to the 1-norm
regularizer in Example 2.1 except that the QS function is used to express the constraint
‖x‖1 ≤ 1 via an indicator function g = δ(· | B1). Write the indicator of the 1-norm ball as
the conjugate of the infinity norm, which gives

(2.4)
δ(x | B1) = sup

y

{
yTx− ‖y‖∞

}
= sup

y, τ

{
yTx− τ | y ∈ τB∞

}
= sup

y, τ

{
yTx− τ | − τ1n ≤ y ≤ τ1n

}
.

This is a QS function with parameters

A =

[
−In 1n
In 1n

]
, b = 0, d =

[
0
−1

]
, B =

[
In
0

]
, K = R2n.

EXAMPLE 2.6 (Indicators on polyhedral cones). Consider the following polyhedral cone
and its polar:

U = {x |Bx ≤ 0} and U◦ =
{
BTy | y ≤ 0

}
.

Use the support-function representation of a cone in terms of its polar to obtain

(2.5) δ(x | U) = δ∗(· | U◦)(x) = sup
y

{
yTBx | y ≤ 0

}
,

which is an example of an elementary QS function. (See Rockafellar and Wets [29] for
definitions of the polar of a convex set and the convex conjugate.) A concrete example is
the positive orthant, obtained by choosing B = In. An important example, used in isotonic
regression [10], is the monotonic cone

U := {x |xi ≥ xj , ∀(i, j) ∈ E} ,

Here, E is the set of edges in a graph G = (V, E) that describes the relationships between
variables in V . If we set B to be the incidence matrix for the graph, then (2.5) corresponds to
the indicator on the monotonic cone U .

EXAMPLE 2.7 (Distance to a cone). The distance to a cone U that is a combination of
polyhedral and second-order cones can be represented as a QS function:

inf
x∈U
‖x− y‖2 = inf

x
{‖x− y‖2 + δ(x | U)}

=
[
δ(· | B2) + δ(· | U◦)

]∗
(y) = sup

{
yTx | y ∈ B2 ∩ U◦

}
.

The second equality follows from the relationship between infimal convolution and conjugates
[28, Section 16.4]. When U is the positive orthant, for example, then g(x) = ‖max{0, x}‖2,
where the max-operator is taken elementwise.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 5

3. Building quadratic-support functions. Quadratic-support functions are closed un-
der addition, composition with an affine map, and infimal convolution with a quadratic function.
In the following, let gi be QS functions with parametersAi, bi, di,Bi, andKi (with i = 0, 1, 2).
The rules for addition and composition are described in [2], which are here summarized and
amplified.

Addition rule. The function

h(x) := g1(x) + g2(x)

is QS with parameters

A =

[
A1

A2

]
, b =

[
b1
b2

]
, d =

[
d1
d2

]
, B =

[
B1

B2

]
, K = K1 ×K2.

Concatenation rule. The function

h(x) := g0(x1) + · · ·+ g0(xk),

where each partition xi ∈ Rn, is QS with parameters

(3.1) (A, B) = Ik ⊗ (A0, B0), (b, d) = 1k ⊗ (b0, d0), K = K0 ×
(k)
· · · × K0.

Here the symbol ⊗ denotes the Kronecker product. The rule for concatenation follows from
the rule for addition of QS functions.

Affine composition rule. The function

h(x) := g0(Px− p)

is QS with parameters

A = A0, b = b0, d = d0 −B0p, B = B0P.

Moreau-Yosida regularization. The Moreau-Yosida envelope of g0 is the value of the
proximal operator, i.e.,

(3.2) envH

g0(z) := inf
x

{
1
2‖z − x‖

2
H + g0(x)

}
.

It follows from [12, Proposition 4.10] that

envH

g0(z) = sup
y

{
yT(B0x+ d0)− 1

2y
TB0H

−1BT0y |A0y �K0
b0
}
,

which is a QS function with parameters

A =

0 1

2

0 1
2

R 0
A0 0

 , b =

1
2

− 1
2

0
b0

 , d =

[
d0
− 1

2

]
, B =

[
B0

0

]
, K = Qn+2 ×K0,

with the Cholesky factorization RTR = B0H
−1BT0 . The derivation is given in Appendix A,

where we take Q = B0H
−1BT0 .

EXAMPLE 3.1 (Sums of norms). In applications of group sparsity [18, 37], various norms
are applied to all partitions of x = (x1, . . . , xp), which possibly overlap. This produces the
QS function

(3.3) g(x) = ‖x1‖+ · · ·+ ‖xp‖,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

6 M. P. FRIEDLANDER AND G. GOH

where each norm in the sum may be different. In particular, consider the case of adding
two norms g(x) = ‖x1‖O + ‖x2‖M. (The extension to adding three or more norms follows
trivially.) First, we introduce matrices Pi that restrict x to the partition i, i.e., xi = Pix, for
i = 1, 2. Then

g(x) = ‖P1x‖O + ‖P2x‖M.

Then we apply the affine-composition and addition rules to determine the corresponding
quantities that define the QS representation of g:

A =

[
AO

AM

]
, b =

[
bO
bM

]
, d = 0, B =

[
BOP1

BMP2

]
, K = KO ×KM,

where Ai, bi, Bi, and Ki (with i = O,M) are the quantities that define the QS representation
of the individual norms. (Necessarily, d = 0 because the result is a norm and therefore positive
homogeneous.) In the special case where ‖ · ‖O and ‖ · ‖M are both the 2-norm, then Ai, bi,
Bi, and Ki are given by (2.3) in Example 2.2.

EXAMPLE 3.2 (Graph-based 1-norm and total variation). A variation of Example 3.1 can
be used to define a variety of interesting norms, including the graph-based 1-norm regularizer
used in machine learning [14], and the isotropic and anisotropic versions of total variation
(TV) that are important in image processing [24]. Let

g(x) = ‖Nx‖G with ‖z‖G =

p∑
i=1

‖zi‖2,

where zi is a partition of z andN is anm-by-nmatrix. For anisotropic TV and the graph-based
1-norm regularizer, N is the adjacency matrix of a graph, and each partition zi has a single
unique element, so g(x) = ‖Nx‖1. For isotropic TV, each partition captures neighboring
pairs of variables, and N is a finite-difference matrix. The QS addition and affine-composition
rules can be combined to derive the parameters of g. When p = m (i.e., each zi is a scalar),
we are summing n absolute-value functions, and we use (2.2) and (3.1) to obtain

(3.4) A = Im ⊗
[

1
−1

]
, b = 1m ⊗

[
−1
−1

]
, d = 0, B = N, K = R2m

+ .

Now consider the variation where p = m/2, (i.e., each partition has size 2), which corresponds
to summing m/2 two-dimensional 2-norms. Use (2.3) to obtain

A = Im/2 ⊗
[

0
I2

]
, b = 1m/2 ⊗

[
1
0

]
, d = 0, B = N, K = Q2 ×

(m/2)
· · · ×Q2.

4. The proximal operator as a conic QP. We describe in this section how the proximal
map (1.2) can be obtained as the solution of a quadratic optimization problem (QP) over conic
constraints,

minimize
y

1
2y
TQy − cTy subject to Ay �K b,(4.1)

for some positive semidefinite `-by-` matrix Q and a convex cone K = K1 × · · · × Kk. The
transformation to a conic QP is not immediate because the definition of the QS function
implies that the proximal map involves a nested optimization. Duality, however, furnishes a
means for simplifying this problem.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 7

PROPOSITION 4.1. Let g be a QS function. The following problems are dual pairs:

minimize
x

1
2‖z − x‖

2
H + g(x),(4.2a)

minimize
Ay�Kb

1
2y
TBH−1BT y − (d+Bz)Ty.(4.2b)

If strong duality holds, then the corresponding primal-dual solutions are related by

(4.3) Hx+BTy = Hz.

Proof. Let

h1(x) := 1
2‖x− z‖

2
H and h2(x) := sup

y∈Y

{
yT(x+ d)

}
.

If strong duality holds, then it follows from [9, Proposition 5.3.8] that

(4.4) inf
x
h1(x) + h2(Bx) = − inf

y
h∗1(−BT y) + h∗2(y),

where

h∗1(y) = 1
2‖y‖

2
H−1 + zT y and h∗2(y) = δ(z | Y)− dT y

are the Fenchel conjugates of h1 and h2 and the infima on both sides are attained. (See
Rockafellar [28, Section 12] for the convex calculus of Fenchel conjugates.) The right-hand
side of (4.4) is precisely the dual problem (4.2b). It also follows from Fenchel duality that the
pair (x, y) is optimal only if

x ∈ argmin
x

{
h1(x) + yTBx

}
.

Differentiate this objective to obtain (4.3).
Strong duality holds when B · ri dom(h1) ∩ ri dom(h2) 6= ∅. This holds, for example,

when the interior of the domain of g is nonempty since

int dom(g) 6= ∅ ⇐⇒ imB ∩ int dom(h2) 6= ∅ ⇒ B · ri dom(h1) ∩ ri dom(h2) 6= ∅.

In all of the examples in this paper, this condition holds true.

5. Primal-dual methods for conic QP. Proposition 4.1 provides a means of evaluating
the proximal map of QS functions via conic quadratic optimization. There are many algorithms
for solving convex conic QPs, but primal-dual methods offer a particularly efficient approach
that can leverage the special structure that defines the class of QS functions. A detailed
discussion of the implementation of primal-dual methods for conic optimization is given by
Vandenberghe [34]. Here we summarize the main aspects that pertain to implementing these
methods efficiently in our context.

The standard development of primal-dual methods for (4.1) is based on perturbing the
optimality conditions, which can be stated as follows. The solution y together with slack and
dual vectors s and v must satisfy

Qy −AT v = c, v �K 0, Sv = 0,

where the matrix S is block diagonal, and each mi-by-mi block Si is either a diagonal or an
arrow matrix depending on the type of cone, i.e.,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

8 M. P. FRIEDLANDER AND G. GOH

Si =

{
diag(si) if Ki = Rmi

+ ,
arrow(si) if Ki = Qmi ,

arrow(u) :=

[
u0 ūT

ū u0I

]
for u = (u0, ū).

See [34] for further details.
Now replace the complementarity condition Sv = 0 with its perturbation Sv = µe, where

µ is a positive parameter and e = (e1, . . . , ek) with each partition defined by

ei =

{
(1, 1, . . . , 1) if Ki = Rmi

+ ,
(1, 0, . . . , 0) if Ki = Qmi .

A Newton-like method is applied to the perturbed optimality conditions, which we phrase as
the root of the function

(5.1) Rµ :

yv
s

 7→
rdrp
rµ

 :=

Qy −ATv − cAy − s− b
Sv − µe

 .
Each iteration of the method proceeds by systematically choosing the perturbation parameter
µ (ensuring it decreases) and obtaining each search direction as the solution of the Newton
system

(5.2)

Q −AT 0
A 0 −I
0 S V

∆y
∆v
∆s

 = −

rdrp
rµ

,
y+v+
s+

 =

yv
s

+ α

∆y
∆v
∆s

 .
The steplength α is chosen to ensure that (v+, s+) remain in the strict interior of the cone.

One approach to solve for the Newton direction is to apply a block Gaussian elimination
to (5.2) and obtain the search direction via the following systems:

(Q+ATS−1V A)∆x = rd +ATS−1(V rp + rµ),(5.3a)

∆v = S−1(V rp + rµ − V A∆x),(5.3b)

∆s = V −1 (rµ − S∆v) .(5.3c)

In practice, the matrices S and V are rescaled at each iteration in order to yield search
directions with favorable properties. In particular, the Nesterov-Todd rescaling redefines S
and V so that SV −1 = block(u) for some vector u, where

(5.4) block(u)i =

{
diag(ui) if Ki = <mi

+ ,
(2uiu

T
i − [uTi Jui]J)2 if Ki = Qmi ,

J =

[
1 0
0 −I(mi−1)

]
.

The cost of the overall approach is therefore determined by the cost of solving, at each iteration,
linear systems with the matrix

(5.5) L(u) := Q+ATblock(u)−1A,

which now defines the system (5.3a).

6. Evaluating the proximal operator. We now describe how to use Proposition 4.1 to
transform a proximal operator (1.3) into a conic QP that can be solved by the interior algorithm
described in Section 5. In particular, to evaluate proxH

g (x), we solve the conic QP (4.1) with
the definitions

(6.1) Q := BH−1BT , c := d+Bx;

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 9

ALGORITHM 1: Evaluating proxH
g (x).

INPUT : x, H , and QS function g as defined by parameters A, b, d, B, K
OUTPUT : proxH

g (x)

Step 1: Apply interior method to QP (4.2b) to obtain y?.
Step 2: Return H−1(c−BTy?).

ALGORITHM 2: Inverse via the Sherman-Woodbury identity.

function SWinv(D,U,M)
1 D1 ← D−1

2 U1 ← D1U

3 M1 ← (M−1 + UTU1)−1

4 return D1, U1, M1

end

the other quantities A, b, and the cone K appear verbatim. Algorithm 1 summarizes the
procedure. As we note in Section 5, the main cost of this procedure is incurred in Step 1,
which requires repeatedly solving linear systems that involve the linear operator (5.5). Together
with (6.1), these matrices have the form

(6.2) L(u) = BH−1BT +ATblock(u)−1A.

Below we offer a tour of several examples, ordered by level of simplicity, to illustrate the
details involved in the application of our technique. The Sherman-Woodbury (SW) identity

(D + UMUT)−1 = D−1 −D−1U(M−1 + UTD−1U)−1UTD−1,

valid when M−1 + UTD−1U is nonsingular, proves useful for taking advantage of certain
structured matrices that arise when solving (6.2). Some caution is needed, however, because it
is known that the SW identity can be numerically unstable [36].

For our purposes, it is useful to think of the SW formula as a routine that takes the elements
(D,U,M) that define a linear operator D + UMUT and returns the elements (D1, U1,M1)
that define the inverse operator D1 + U1M1U

T
1 = (D + UMUT)−1. We assume that D

and M are nonsingular. Algorithm 4 summarizes the operations needed to compute the
elements of the inverse operator.
Typically,D is a structured operator that admits a fast algorithm for solving linear systems with
any right-hand side, and U and M are stored explicitly as dense matrices. Step 1 computes a
new operator D1 that simply interchanges the multiplication and inversion operations of D.
Step 2 applies the operator D1 to every column of U (typically a tall matrix with few columns).
Step 3 requires inverting a small matrix.

EXAMPLE 6.1 (1-norm regularizer; cf. Example 2.1). Example 2.1 gives the QS repre-
sentation for g(x) = ‖x‖1 and the required expressions for A, B, and K. Because K is the
nonnegative orthant, block(u) = diag(u); cf. (5.4). With the definitions of A and B, the
linear operator L in (6.2) simplifies to

L(u) = H−1 +ATdiag(u)A = H−1 + Σ,

where Σ is a positive definite diagonal matrix that depends on u. If it happens that the
preconditioner H has a special structure such that H + Σ−1 is easily invertible, then it may be

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

10 M. P. FRIEDLANDER AND G. GOH

convenient to apply the SW identity to obtain equivalent formulas for the inverse

L(u)−1 = (H−1 + Σ)−1 = H −H(H + Σ−1)−1H.

Banded, chordal, and diagonal-plus-low-rank matrices are examples of specially structured
matrices that make one of these formulas for L−1 efficient. They yield the efficiency because
subtracting the diagonal matrix Σ preserves the structure of either H or H−1.

In the important special case where H = diag(h) is diagonal, each component i of the
proximal operator for the 1-norm can be obtained directly via the formula

[proxH

g (x)]i = sign(xi) ·max{|xi| − 1/hii, 0},

where hii are the diagonal elements ofH . This corresponds to the well-known soft-thresholding
operator. No simple formula exists, however, for more general matrices.

EXAMPLE 6.2 (Graph-based 1-norm). Consider the graph-based 1-norm function from
Example 3.2 induced by a graph G with adjacency matrix N . Substitute the definitions of A
and B from (3.4) into the formula for L and simplify to obtain

L(u) = NH−1NT +ATdiag(u)A = NH−1NT + Σ,

where Σ := ATdiag(u)A is a positive definite diagonal matrix. (As with Example 6.1, K is
the positive orthant, and thus block(u) = diag(u).) Linear systems of the form L(u)p = q
then can be solved with the sequence of operations outlined in Algorithm 3, in which we
assume that H = Λ + UMUT , where Λ is diagonal.

ALGORITHM 3: Solving the system L(u)p = q for the graph-based 1-norm.

1 (Λ1, U1,M1)← SWinv(Λ, U,M) [H−1 ≡ Λ1 + U1M1U
T
1]

2 Σ1 ← NΛ1N
T + Σ

3 (Σ2, U2,M2)← SWinv(Σ1, NU1,M1) [L(u)−1 ≡ Σ2 + U2M2U
T
2]

4 p← Σ2q + U2M2U
T
2 q [solve L(u)p = q]

5 return p

Observe from the definition of H and the definition of Σ1 in Step 2 that

L(u) = Σ1 +NU1M1U
T
1 N

T ,

and then Step 3 computes the quantities that define the inverse of L. The bulk of the work in
the above algorithm happens in Step 3, where Σ2 ≡ Σ−11 is applied to each column of NU1

(see Step 2 of the SWinv function), and in Step 4, where Σ2 is applied to q. Below we give
two special cases where it is possible to take advantage of the structure of N and H in order
to apply Σ2 efficiently to a vector.
1-dimensional total variation. Suppose that the graph G is a path. Then the (n − 1) × n

adjacency matrix is given by

N =

−1 1
.

−1 1

 .
The matrix Σ1 := NΛ−1NT + Σ (see Step 2 of the above algorithm) is tridiagonal,
and hence equations of the form Σ1q = p can be solved efficiently using standard
techniques, e.g., [16, Algorithm 4.3.6].

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 11

Chordal graphs. If the graph G is chordal, then the matrix NTDN is also chordal when D is
diagonal. This implies that it can be factored in time linear with the number of edges
of the graph [1]. We can use this fact to apply Σ2 ≡ Σ−11 efficiently as follows: let
(Σ3, U3,M3) = SWinv(Σ, N,Λ1), which implies

Σ2 := Σ3 + U3M3U
T
3 , where Σ3 := Σ−1, M3 := (NTΣ−1N + Λ1)−1.

Because NTΣ−1N is chordal, so is M3, and any methods efficient for solving with
chordal matrices can be used when applying Σ2.

EXAMPLE 6.3 (1-norm constraint; cf. Example 2.5). Example 2.5 gives the QS repre-
sentation for the indicator function on the 1-norm ball. Because the constraints on y in (2.4)
involve only bound constraints, block(u) = diag(u). With the definitions of A and B from
Example 2.5, the linear operator L has the form

L(u) =

[
0
In

]
H−1

[
0 In

]
+

[
1Tn 1Tn
−In In

] [
diag(u1)

diag(u2)

] [
1n −In
1n In

]
,

where u = (u1, u2). Thus, L simplifies to

L(u) =

[
1Tnu (u−)T

u− H−1 + Σ

]
where Σ := diag(u+),

u+ := u1 + u2,
u− := −u1 + u2.

Systems that involve L can be solved by pivoting on the block (H−1 + Σ). The cases where
this approach is efficient are exactly those that are efficient in the case of Example 6.1.

EXAMPLE 6.4 (2-norm; cf. Example 2.2). Example 2.2 gives the QS representation
for the 2-norm function. Because K = Qn, then block(u) = (2uuT − [uTJu]J)2, where
u = (u0, ū) and J is specified in (5.4). With the expressions for A and B from Example 2.2,
the linear operator L reduces to

(6.3) L(u) = H−1 + αIn + vvT , with α = (uTJu)2, v =
√

8u0 · ū.

This amounts to a perturbation of H−1 by a multiple of the identity, followed by a rank-1
update. Therefore, systems that involve L can be solved at the cost of solving systems with
H + αIn (for some scalar α).

Of course, the proximal map of the 2-norm is easily computed by other means; our
purpose here is to use this as a building block for more useful penalties such as Example 3.1,
which involves the sum-of-norms function shown in (3.3). Suppose that the p partitions do not
overlap and have size ni, for i = 1, . . . , p. The operator L in (6.3) generalizes to

L(u) = H−1 +

α1In1 + v1(v1)T

. . .
αpInp

+ vp(vp)T

︸ ︷︷ ︸

W

,

ui = (ui0, ū
i), αi = (uiTJui)2, vi =

√
8ui0 · ūi,

where each vector ui has size ni + 1.
When p is large, we can treat each diagonal block of W as an individual (small) diagonal-

plus-rank-1 matrix. If H−1 is diagonal-plus-low-rank, for example, then the diagonal part of
H−1 can be subsumed into W . In that case, each diagonal block in W remains diagonal-plus-
rank-1, which can be inverted in parallel by handling each block individually. Subsequently,
the inverse of L can be obtained by a second correction.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

12 M. P. FRIEDLANDER AND G. GOH

Another approach when p is small is to consider W as a diagonal-plus-rank-p matrix:

W =

α1In1

. . .
αpInp

+

v
1

. . .
vp

v

1

. . .
vp

T

.

This representation is convenient: systems involving L can be solved efficiently in a manner
identical to that of Example 6.1 because W is a diagonal-plus-low-rank matrix.

EXAMPLE 6.5 (separable QS functions). Suppose that g is separable, i.e.,

g(x) = γ(x1) + · · ·+ γ(xn),

where γ : R→ R is a QS function with parameters (Aγ , bγ , Bγ , dγ ,Rnp+) and p is an integer
parameter that depends on γ. The parameters A and B for g follow from the concatenation
rule (3.1) and A = (In ⊗Aγ) and B = (In ⊗Bγ). Thus, the linear operator L is given by

L(u) = (In ⊗Bγ)H−1(In ⊗Bγ)T + (In ⊗Aγ)T diag(u)(In ⊗Aγ).

Apply the SW identity to obtain

L(u)−1 = Λ−1 − Λ−1(In ⊗Bγ)(H + Σ)−1(In ⊗Bγ)TΛ−1,

where Λ = diag(Λ1, . . . ,Λn),

Λi = ATγ diag(ui)Aγ , and Σ = diag(BTγ Λ−11 Bγ , . . . , B
T
γ Λ−1n Bγ).

Because the function γ takes a scalar input, Bγ is a vector. Hence, Σ is a diagonal matrix.
Note also that Λ is a block diagonal matrix with n blocks each of size p. We can then solve
the system L(u)p = q with the following steps:

1 q1 ← (In ⊗Bγ)TΛ−1q
2 q2 ← (H + Σ)−1q1
3 q3 ← Λ−1q2 − Λ−1(In ⊗Bγ)q2

The cost of solving systems with the operator L is dominated by solves with the block
diagonal matrix Λ (Steps 1 and 3) and H + Σ (Step 2). The cost of the latter linear solve is
explored in Example 6.1.

7. A proximal quasi-Newton method. We now turn to the proximal-gradient method
discussed in Section 1. Our primary goal is to demonstrate the feasibility of the interior
approach for evaluating proximal operators of QS functions. A secondary goal is to illustrate
how this technique leads to an efficient extension of the quasi-Newton method for nonsmooth
problems of practical interest.

We follow Scheinberg and Tang [30] and implement a limited-memory BFGS (L-BFGS)
variant of the proximal-gradient method that has no linesearch and that approximately evaluates
the proximal operator. Scheinberg and Tang establish a sublinear rate of convergence for
this method when the Hessian approximations are suitably modified by adding a scaled
identity matrix and when the scaled proximal maps are evaluated with increasing accuracy.
In their proposal, the accuracy of the proximal evaluation is based on bounding the value
of the approximation to (3.2). We depart from this criterion, however, and instead use the
residual (5.1) obtained by the interior solver to determine the required accuracy. In particular,
we require that the optimality criterion of the interior algorithm used to evaluate the operator

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 13

is a small multiplicative constant κ of the current optimality of the outer proximal-gradient
iterate, i.e.,

‖Rµ(y, v, s)‖ ≤ κ‖xk − proxg(xk −∇f(xk))‖.

This heuristic is reminiscent of the accuracy required of the linear solves used by an inexact
Newton method for root finding [15]. Note that the proximal map proxg ≡ proxI

g used
above is unscaled, which in many cases can be easily computed when g is separable.

7.1. Limited-memory BFGS updates. Here we give a brief outline of the L-BFGS
method for obtaining Hessian approximations of a smooth function f . We follow the notation
of Nocedal and Wrigth [25, Section 6.1], who use Hk to denote the current approximation to
the inverse of the Hessian of f . Let xk and xk+1 be two consecutive iterates, and define the
vectors

sk = xk+1 − xk, and yk = ∇f(xk+1)−∇f(xk).

A “full memory” BFGS method updates the approximation Hk via the recursion

H0 = σI, Hk+1 = Hk −
Hksks

T
kHk

sTkHksk
+
yky

T
k

yTk sk
,

for some positive parameter σ that defines the initial approximation. The limited-memory
variant of the BFGS update (L-BFGS) maintains the most recent m pairs (sk, yk), discarding
older vectors. In all cases, m � n, e.g., m = 10. The globalization strategy advocated by
Scheinberg and Tang [30] may add a small multiple of the identity to Hk. This modification
takes the place of a potentially expensive linesearch, and the correction is increased at each
iteration if a certain condition for decrease is not satisfied.

Each interior iteration for evaluating the proximal operator depends on solving linear
systems with L in (6.2). In all of the experiments presented below, each interior iteration has a
cost that is linear in the number of variables n.

8. Numerical experiments. We have implemented the proximal quasi-Newton method
as a Julia package [11], called QSip, designed for problems of the form (1.1), where f is
smooth and g is a QS function1. A primal-dual interior method, based on ideas from the
CVXOPT software package [1], is used for Algorithm 1. We consider below several examples.
The first three examples apply the QSip solver to minimize benchmark least-squares problems
with different nonsmooth regularizers that are QS representable; the last example applies the
solver to a sparse logistic-regression problem on a standard data set.

8.1. Timing the proximal operator. The examples that we explored in Section 6 have
a favorable structure that allows each interior iteration for evaluating the proximal map
proxH

g (x) to scale linearly with the problem size. In this section we verify this behavior
empirically for problems with the structure

(8.1) H = I + UUT , g(x) = ‖x‖1, U ∈ Rn×k,

for different values of k and n. This choice of diagonal-plus-low-rank matrices is designed to
mimic the structure of matrices that appear in L-BFGS. Here U and x are chosen with random
normal entries. As described in Example 2.1, the system L(u) is inverted in linear time using
the SW identity.

1The code is available at the URL
https://github.com/MPF-Optimization-Laboratory/QSip.jl

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://github.com/MPF-Optimization-Laboratory/QSip.jl

ETNA
Kent State University and

Johann Radon Institute (RICAM)

14 M. P. FRIEDLANDER AND G. GOH

250 500 750

n(000s)

25

50

75

T
im

e
(s

ec
s)

k = 1
k = 10
k = 100

FIG. 8.1. Time taken to compute proxH
g (x) versus n, for k = 1, 10, 100; see (8.1).

We evaluate the proximal map on 100 random instances for each combination of k and n,
and display in Figure 8.1 the average time needed to reach an accuracy of 10−7 as measured
by the optimality conditions in the interior algorithm. Because in practice, the number of
iterations of the interior method is almost independent of the size of the problem, the time
taken to compute the proximal map is a predictable, linear function of the size of the problem.

8.2. Synthetic least-square problems. The next set of examples all involve the least-
squares objective

(8.2) f(x) = 1
2‖Ax− b‖

2
2.

Two different procedures are used to construct matrices A, as described in the following
sections. In all cases, we follow the testing approach described by Lorenz [23] for constructing
a test problem with a known solution: fix a vector x? and choose b = Ax? − A−T v, where
v ∈ ∂g(x?). Note that

∂(f + g)(x?) = AT (Ax? − [Ax? −A−T v]) + ∂g(x?) = ∂g(x?)− v.

Because v ∈ ∂g(x?), the above implies that 0 ∈ ∂(f + g)(x?), and hence, x? minimizes the
objective f + g. In the next three sections, we apply QSip in turn to problems with g equal to
the 1-norm, the group LASSO (i.e., sum of 2-norm functions), and total variation.

8.2.1. One-norm regularization. In this experiment we choose g = ‖ · ‖1, which yields
the 1-norm regularized least-squares problem often used in applications of sparse optimization.
Following the details in Example 2.1, the system L(u) is a diagonal-plus-low-rank matrix,
which we invert using the SW identity.

The matrix A in (8.2) is a 2000-by-2000 lower triangular matrix with all nonzero entries
equal to 1. The bandwidth p of A is adjustable and determines its coherence

coherence(A) = max
i 6=j

aTi aj
‖ai‖‖aj‖

=

√
p− 1

p
,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 15

where ai is the ith column. As observed by Lorenz [23], the difficulty of 1-norm regular-
ized least-squares problems are strongly influenced by the coherence. Our experiments use
matrices A with bandwidth p = 500, 1000, 2000.

Figure 8.2 displays the results of applying the QSip solver with memories k = 1, 10,
labeled “QSIP mem = k”. We also consider comparisons against two competitive proximal-
based methods. The first is a proximal-gradient algorithm that uses the Barzilai-Borwein
steplength [5, 35]. This is our own implementation of the method and is labeled “Barzilai-
Borwein” in the figures. The second is the proximal quasi-Newton method implemented by
Becker and Fadili [7], which is based on a symmetric-rank-1 Hessian approximation; this code
is labeled “PG-SR1”. The QSip solver with a memory of 10 outperforms the other solvers.
The quasi-Newton approximation benefits from problems with high coherence (p large) more
than from problems with low coherence (p small). In all cases, the experiments reveal that the
additional cost involved in evaluating a proximal operator (via an interior method) is balanced
by the overall cost of the algorithm, both in terms of iterations (i.e., matrix-vector products
with A) and time.

8.2.2. The effect of conditioning. It is well known that the proximal-gradient method
converges slowly for ill-conditioned problems. The proximal L-BFGS method may help to
improve convergence in such situations. We investigate the observed convergence rate of the
proximal L-BFGS approach on a family of least-squares problems with 1-norm regularization
with varying degrees of ill conditioning. For these experiments, we take A in (8.2) as the
2000-by-2000 matrix

A = αL

[
T 0
0 0

]
+ αµI,

where T is a 1000-by-1000 tridiagonal matrix with constant diagonal entries equal to 2 and
constant sub- and super-diagonal entries equal to −1. The parameter αL/αµ controls the
conditioning of A, and hence the conditioning of the Hessian ATA of f .

We run L-BFGS with 4 different memories (“mem”): 0 (i.e., proximal gradient with a
Barzilai-Borwein steplength), 1, 10, and 100. We terminate the algorithm either when the
error drops beneath 10−8 or the method reaches 103 iterations. Our method of measuring the
observed convergence (OC) computes the line of best fit to the log of optimality versus k,
which results in the quantity

Observed Convergence :=

∑N
k=0 k · log ‖xk − x∗‖∑N
k=0 log ‖xk − x∗‖

,

where N is the total number of iterations.
The plot in Figure 8.3 shows the ratio of the OC for L-BFGS relative to the observed

convergence of proximal gradient (PG). This quantity can be interpreted as the amount of
work that a single quasi-Newton step performs relative to the number of PG iterations. The
plot reveals that the quasi-Newton method is faster at all condition numbers, but it is especially
effective for problems with moderate conditioning. Also, using a higher quasi-Newton memory
almost always lowers the number of iterations. This benefit is most pronounced when the
problem conditioning is poor.

Together with Section 8.1, this section gives a broad picture of the trade-off between the
proximal quasi-Newton and proximal gradient methods. The time required for each proximal
gradient iteration is dominated by the cost of the gradient computation because the evaluation
of the unscaled proximal operator is often trivial. On the other hand, the proximal quasi-
Newton iteration additionally requires evaluating the scaled proximal operator. Therefore,

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

16 M. P. FRIEDLANDER AND G. GOH

0 300 600 900 1200 1500 1800
-4

-2

0

2

lo
g
‖x
−
x
‖

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800
-4

-2

0

2

.

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800
-6

-4

-2

0

2

lo
g
‖x
−
x
‖

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800

-2

0

2

.

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800

Time (secs)

-6

-4

-2

0

2

lo
g
‖x
−
x
‖

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

0 300 600 900 1200 1500 1800

Iterations (000)s

-2

0

2

.

PG-SR1
Barzilai-Borwein
QSip, mem = 1
QSip, mem = 10

FIG. 8.2. Performance of solvers applied to 1-norm regularized least-squares problems of increasing difficulty.
The left and right columns, respectively, track the distance of the current solution estimate to the true solution versus
time and iteration number. Top row: p = 2000 (highest coherence); middle row: p = 1000; bottom row: p = 500
(lowest coherence).

the proximal quasi-Newton method is most appropriate when this cost is small relative to the
gradient evaluation.

8.2.3. Group LASSO. Our second experiment is based on the sum-of-norms regularizer
described in Examples 3.1 and 6.4. In this experiment, the n-vector (with n = 2000) is
partitioned into p = 5 disjoint blocks of equal size. The matrix A is fully lower triangular.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 17

5 10
log10 of condition number

0

100

200

300

400

ef
fic

ie
nc

y
re

la
ti

ve
to

P
G

L-BFGS, mem = 1
L-BFGS, mem = 10
L-BFGS, mem = 100

FIG. 8.3. Performance of the proximal quasi-Newton method relative to proximal gradient for problems of
varying condition number.

0 300 600 900 1200 1500 1800

Time (secs)

-4

-3

-2

-1

0

1

lo
g
‖x
−
x
‖

Barzilai-Borwein
QSip, Mem = 1
QSip, Mem = 10

FIG. 8.4. Performance of solvers applied to a group-Lasso problem. The horizontal axis measures elapsed time
and the vertical axis measures distance to the solution.

Figure 8.4 clearly shows that the QSip solver outperforms the PG method with the
Barzilai-Borwein step size. Although we required QSip to exit with a solution estimate
accurate within 6 digits (i.e., log ‖x− x∗‖ ≤ 10−6), the interior solver failed to achieve the
requested accuracy because of numerical instability with the SW formula used for solving the
Newton system. This raises the question of how to use efficient alternatives to the SW update
that are numerically stable and can still leverage the structure of the problem.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

18 M. P. FRIEDLANDER AND G. GOH

0 300 600 900 1200 1500 1800

Time (secs)

-6

-4

-2

0

2

lo
g
‖x
−
x
‖

Barzilai-Borwein
QSip, Mem = 1
QSip, Mem = 10

FIG. 8.5. Performance of the QSip solver applied to a 1-dimensional total-variation problem.

8.2.4. 1-dimensional total variation. Our third experiment sets

g(x) =

n−1∑
i=1

|xi+1 − xi|,

which is the anisotropic total-variation regularizer described in Examples 3.2 and 6.2. The
matrix A is fully lower triangular. Figure 8.5 compares the convergence behavior of QSip
with the Barzilai-Borwein proximal solver. The Python package prox-tv [3, 4] was used
for the evaluation of the (unscaled) proximal operator needed by the Barzilai-Borwein solver.
The QSip solver, with memories of 1 and 10, outperformed the Barzilai-Borwein solver.

8.3. Sparse logistic regression. This next experiment tests QSip on the sparse logistic-
regression problem problem

minimize
x

1

N

N∑
i=1

log(1 + exp[aTi x]) + λ‖x‖1,

where N is the number of observations. The Gisette [17] and Epsilon [27] datasets, standard
benchmarks from the UCI Machine Learning Repository [22], are used for the feature vec-
tors ai. Gisette has 5K parameters and 13.5K observations; Epsilon has 2K parameters with
400K observations. These datasets were chosen for their large size and modest number of
parameters. In all of these experiments, λ = 0.01.

Figure 8.6 compares QSip to the Barzilai-Borwein solver and to newGLMNet [20], a
state-of-the-art solver for sparse logistic regression. (Other possible comparisons include the
implementation of Scheinberg and Tang [30], which we do not include because of difficulty
compiling that code.) Because we do not know a priori the solution for this problem, the
vertical axis measures the log of the optimality residual ‖xk − proxg(xk −∇f(xk))‖∞ of
the current iterate. (The norm of this residual necessarily vanishes at the solution.) On the
Gisette dataset, Barzilai-Borwein and newGLMNNet are significantly faster than the proximal
quasi-Newton implementation. On the Epsilon dataset, however, the quasi-Newton is faster at
all levels of accuracy.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 19

0 500 1000 1500

-15

-10

-5

0

lo
g(
‖x

k
−

p
ro

x
g
(x

k
−
∇
f(
x
k
))
‖ ∞

)

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10

1000 2000 3000 4000

-15

-10

-5

0

.

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10

0 2500 5000 7500

Time (Secs)

-15

-10

-5

0

lo
g(
‖x

k
−

p
ro

x
g
(x

k
−
∇
f(
x
k
))
‖ ∞

)

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10
QSip, Memory 50

1000 2000 3000

Iterations

-15

-10

-5

0

.

newGLMnet
Barzilai-Borwein
QSip, Memory 1
QSip, Memory 10
QSip, Memory 50

FIG. 8.6. Performance of solvers on a sparse logistic-regression problem. Top row: Gisette dataset; bottom
row: Epsilon dataset. The left and right columns, respectively, track the optimality of the current solution estimate
versus elapsed time and iteration number.

9. Conclusion. Much of our discussion revolves around techniques for solving the
Newton systems (5.2) that arise in the implementation of an interior method for solving QPs.
The Sherman-Woodbury formula features prominently because it is a convenient vehicle for
taking advantage of the structure of the Hessian approximations and the structured matrices
that typically define QS functions. Other alternatives, however, may be preferable, depending
on the application.

For example, we might choose to reduce the 3-by-3 matrix in (5.2) to an equivalent
symmetrized system [

−Q AT

A D

] [
∆y
∆s

]
= −

[
−rd

rp + V −1rµ

]
with D := V −1S. As described by Benzi and Wathen [8], Krylov-based method, such as
MINRES [26], may be applied to a preconditioned system using the preconditioner

P =

[
−L(u)

D

]
,

where L(u) is defined in (5.5). This “ideal” preconditioner clusters the spectrum into three
distinct values, so that in exact arithmetic, MINRES would converge in three iterations. The
application of the preconditioner requires solving systems with L and D, and so all of the

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

20 M. P. FRIEDLANDER AND G. GOH

techniques discussed in Section 6 apply. One benefit, however, which we have not explored
here, is that the preconditioning approach allows us to approximate L−1(u) rather than to
compute it exactly, which may yield computational efficiencies for some problems.

Acknowledgments. The authors are grateful to three anonymous referees for their
thoughtful suggestions and for a number of critical corrections. We also wish to thank
Fiorella Sgallari for handling this paper as Associate Editor.

Appendix A.
Here we derive the QS representation of a support function that includes an explicit

quadratic term:

g(x) = sup
y

{
yT(B0x+ d0)− 1

2y
TQy |A0y �K0

b0
}
.

Let R be such that RTR = Q. We can then write the quadratic function in the objective as a
constraint on its epigraph, i.e.,

g(x) = sup
y, t

{
yT(B0x+ d0)− 1

2 t |A0y �K b0, ‖Ry‖2 ≤ t
}
.

Next we write the constraint ‖Ry‖2 ≤ t as a second-order cone constraint:

‖Ry‖2 ≤ t ⇐⇒ ‖Ry‖2 ≤ (t+ 1)2 − (t− 1)2

4

⇐⇒ ‖Ry‖2 +

(
t− 1

2

)2

≤
(
t+ 1

2

)2

⇐⇒

√
‖Ry‖2 +

(
t− 1

2

)2

≤ t+ 1

2

⇐⇒
∥∥∥∥[0 1

2
R 0

] [
y
t

]
+

[
− 1

2
0

]∥∥∥∥ ≤ t+ 1

2

⇐⇒

0 1
2

0 1
2

R 0

[y
t

]
�Q

 1
2
− 1

2
0

 .
Concatenating this with the original constraints gives a QS function with parameters

A =

0 1

2
0 1

2
R 0
A0 0

 , b =

1
2
− 1

2
0
b0

 , d =

[
d0
− 1

2

]
, B =

[
B0

0

]
, K = Qn+2 ×K0.

REFERENCES

[1] M. ANDERSEN, J. DAHL, AND L. VANDENBERGHE, Implementation of nonsymmetric interior-point methods
for linear optimization over sparse matrix cones, Math. Program. Comput., 2 (2010), pp. 167–201.

[2] A. Y. ARAVKIN, J. V. BURKE, AND G. PILLONETTO, Sparse/robust estimation and Kalman smoothing with
nonsmooth log-concave densities: modeling, computation, and theory, J. Mach. Learn. Res., 14 (2013),
pp. 2689–2728.

[3] A. BARBERO AND S. SRA, Fast Newton-type methods for total variation regularization in Proceedings of
the 28th Intern. Conf. on Machine Learning, L. Getoor and T. Scheffer, eds., Omnipress, Madison, 2011,
pp. 313–320.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at

ETNA
Kent State University and

Johann Radon Institute (RICAM)

SCALED PROXIMAL OPERATORS 21

[4] , Modular proximal optimization for multidimensional total-variation regularization, Preprint on arXiv,
2014. https://arxiv.org/abs/1411.0589

[5] J. BARZILAI AND J. M. BORWEIN, Two-point step size gradient methods, IMA J. Numer. Anal., 8 (1998),
pp. 141–148.

[6] A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse problems.
SIAM J. Imaging Sci., 2 (2009), pp. 183–202.

[7] S. BECKER AND J. FADILI, A quasi-newton proximal splitting method, in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, eds., NIPS, La Jolla,
2012, pp. 2618–2626.

[8] M. BENZI AND A. J. WATHEN, Some preconditioning techniques for saddle point problems, in Model Order
Reduction: Theory, Research Aspects and Applications, W. H. A. Schilders, H. A. van der Vorst, and
J. Rommes, eds., Mathematics in Industry, 13, Springer, Berlin, 2008, pp. 195–211.

[9] D. P. BERTSEKAS, Convex Optimization Theory, Athena Scientific, Nashua, 2009.
[10] M. J. BEST AND N. CHAKRAVARTI, Active set algorithms for isotonic regression; a unifying framework,

Math. Programming, 47 (1990), pp. 425–439.
[11] J. BEZANSON, A. EDELMAN, S. KARPINSKI, AND V. B. SHAH Julia: A fresh approach to numerical

computing, Preprint on arXiv, 2014. https://arxiv.org/abs/1411.1607
[12] J. V. BURKE AND T. HOHEISEL, Epi-convergent smoothing with applications to convex composite functions,

SIAM J. Optim., 23 (2013), pp. 1457–1479.
[13] R. H. BYRD, J. NOCEDAL, AND F. OZTOPRAK, An inexact successive quadratic approximation method for

L-1 regularized optimization, Math. Program., 157 (2016), pp. 375–396.
[14] H. H. CHIN, A. MADRY, G. L. MILLER, AND R. PENG, Runtime guarantees for regression problems, in

Proceedings of the 2013 ACM Conference on Innovations in Theoretical Computer Science, Association
for Computing Machinery, New York, 2013, pp. 269–282.

[15] R. S. DEMBO, S. C. EISENSTAT, AND T. STEIHAUG, Inexact Newton methods, SIAM J. Numer. Anal., 19
(1982), pp. 400–408.

[16] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 2nd ed., Johns Hopkins University Press,
Baltimore, 1989.

[17] I. GUYON, S. GUNN, A. BEN-HUR, AND G. DROR, Result analysis of the NIPS 2003 feature selection
challenge, in Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou,
eds., NIPS, La Jolla, 2004, pp. 545–552.

[18] R. JENATTON, J. MAIRAL, F. R. BACH, AND G. R. OBOZINSKI, Proximal methods for sparse hierarchical
dictionary learning, in Proceedings of the 27th Intern. Confer. Machine Learning (ICML-10), J. Fürnkranz
and T. Joachims, eds., Ominpress, Madison, 2010, pp. 487–494.

[19] S. KARIMI AND S. VAVASIS, IMRO: a proximal quasi-Newton method for solving l1-regularized least squares
problem, Preprint on arXiv, 2014. https://arxiv.org/abs/1401.4220

[20] S.-J. KIM, K. KOH, M. LUSTIG, S. BOYD, AND D. GORINEVSKY, An interior-point method for large-scale
L1-regularized least squares, IEEE J. Sel. Top. Signal Process., 1 (2007), pp. 606–617.

[21] J. D. LEE, Y. SUN, AND M. A. SAUNDERS, Proximal Newton-type methods for minimizing composite
functions, SIAM J. Optim., 24 (2014), pp. 1420–1443.

[22] M. LICHMAN, UCI Machine Learning Repository, 2013. http://archive.ics.uci.edu/ml.
[23] D. A. LORENZ Constructing test instances for basis pursuit denoising IEEE Trans. Signal Process., 61 (2013),

pp. 1210–1214.
[24] Y. LOU, T. ZENG, S. OSHER, AND J. XIN, A weighted difference of anisotropic and isotropic total variation

model for image processing, SIAM J. Imaging Sci., 8 (2015), pp. 1798–1823.
[25] J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, New York, 1999.
[26] C. C. PAIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equations, SIAM J. Numer.

Anal., 12 (1975), pp. 617–629.
[27] PASCAL, Pascal Large Scale Learning Challenge, accessed Nov. 22, 2016.

http://largescale.ml.tu-berlin.de/instructions
[28] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, 1970.
[29] R. T. ROCKAFELLAR AND R. J. B. WETS, Variational Analysis, Springer, Berlin, 1998.
[30] K. SCHEINBERG AND X. TANG, Practical inexact proximal quasi-Newton method with global complexity

analysis, Math. Program., 160 (2016), pp. 495–529.
[31] M. SCHMIDT, E. VAN DEN BERG, M. P. FRIEDLANDER, AND K. MURPHY, Optimizing costly functions with

simple constraints: a limited-memory projected quasi-Newton algorithm, in Proceedings of the 12th Inter.
Conf. on Artificial Intelligence and Statistics, D. van Dyk and M. Welling, eds., JMLR Workshop and
Conference Proceedings 5, 2009, pp. 448–455.

[32] Q. TRAN-DINH, A. KYRILLIDIS, AND V. CEVHER Composite self-concordant minimization J. Mach. Learn.
Res., 16 (2015), pp. 371–416.

[33] P. TSENG, Approximation accuracy, gradient methods, and error bound for structured convex optimization,
Math. Program., 125 (2010), pp. 263–295.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
https://arxiv.org/abs/1411.0589
https://arxiv.org/abs/1411.1607
https://arxiv.org/abs/1401.4220
http://archive.ics.uci.edu/ml
http://largescale.ml.tu-berlin.de/instructions

ETNA
Kent State University and

Johann Radon Institute (RICAM)

22 M. P. FRIEDLANDER AND G. GOH

[34] L. VANDENBERGHE, The CVXOPT linear and quadratic cone program solvers, Tech. Doc., 2010.
http://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf

[35] S. J. WRIGHT, R. D. NOWAK, AND M. A. FIGUEIREDO, Sparse reconstruction by separable approximation,
IEEE Trans. Signal. Process., 57 (2009), pp. 2479–2493.

[36] E. YIP, A note on the stability of solving a rank-p modification of a linear system by the Sherman-Morrison-
Woodbury formula SIAM J. Sci. Statist. Comput., 7 (1986), pp. 507–513.

[37] M. YUAN AND Y. LIN, Model selection and estimation in regression with grouped variables, J. R. Stat. Soc.
Ser. B Stat. Methodol., 68 (2006), pp. 49–67.

[38] K. ZHONG, I. E. H. YEN, I. S. DHILLON, AND P. K. RAVIKUMAR, Proximal quasi-Newton for computation-
ally intensive l1-regularized M-estimators, in Advances in Neural Information Processing Systems 27,
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Weinberger, eds., NIPS, La Jolla, 2014,
pp. 2375–2383.

http://etna.ricam.oeaw.ac.at
http://www.kent.edu
http://www.ricam.oeaw.ac.at
http://www.seas.ucla.edu/~vandenbe/publications/coneprog.pdf

