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TWO RECURSIVE GMRES-TYPE METHODS FOR SHIFTED LINEAR SYSTEMS
WITH GENERAL PRECONDITIONING∗

KIRK M. SOODHALTER†

Abstract. We present two minimum residual methods for solving sequences of shifted linear systems, the
right-preconditioned shifted GMRES and shifted Recycled GMRES algorithms which use a seed projection strategy
often employed to solve multiple related problems. These methods are compatible with a general preconditioning of all
systems, and, when restricted to right preconditioning, require no extra applications of the operator or preconditioner.
These seed projection methods perform a minimum residual iteration for the base system while improving the
approximations for the shifted systems at little additional cost. The iteration continues until the base system
approximation is of satisfactory quality. The method is then recursively called for the remaining unconverged systems.
We present both methods inside of a general framework which allows these techniques to be extended to the setting
of flexible preconditioning and inexact Krylov methods. We present some analysis of such methods and numerical
experiments demonstrating the effectiveness of the proposed algorithms.
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1. Introduction. We develop techniques for solving a family (or a sequence of families)
of linear systems in which the coefficient matrices differ only by a scalar multiple of the
identity. There are many applications which warrant the solution of a family of shifted linear
systems such as those arising in lattice quantum chromodynamics (QCD) (see, e.g., [14])
as well as other applications such as Tikhonov-Phillips regularization, global methods of
nonlinear analysis, and Newton trust region methods [5]. The goal is to develop a framework
in which minimum residual methods can be applied to shifted systems in a way that
(a) allows us to exploit the relationships between the coefficient matrices and
(b) is compatible with general (right) preconditioning.

In this paper, we use such a framework to propose two new methods: one which is built
on top of the GMRES method [32] for solving a family of shifted systems (cf. (2.1)) and one
which is built on top of a GCRO-type augmented Krylov method [10] which, when paired
with a harmonic Ritz vector recycling strategy [25, 26], is an extension of the GCRO-DR
method [27] to solve a sequence of shifted system families (cf. (2.2)). To do this, we use
a seed projection strategy often proposed for use in conjunction with short-term recurrence
iterative methods [6, 7, 19, 29].

The rest of this paper is organized as follows. In the next section, we discuss some
previous strategies to treat such problems and discuss some of their limitations. In Section 3,
we review the minimum residual Krylov subspace method GMRES as well as two GMRES
variants, one for shifted linear systems and the other extending GMRES to the augmented
Krylov subspace setting, i.e., Recycled GMRES. In Section 4, we present a general framework
to perform minimum residual projections of the shifted system residuals with respect to the
search space generated for the base system. In Section 4.1 we use this framework to derive
our shifted GMRES method, and in Section 4.2 we derive a shifted Recycled GMRES method.
In Section 5, we present some analysis of the expected performance of these methods. In
Section 6, we present some numerical results before concluding in Section 7.
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2. Background. Consider a family of shifted linear systems, which we parameterize by
`, i.e.,

(2.1)
(
A + σ(`)I

)
x(`) = b for ` = 1, . . . , L.

We call the numbers
{
σ(`)

}L
`=1
⊂ C shifts, A the base matrix, and A + σI a shifted matrix.

For notational simplicity, we have assumed here that b does not depend on σ(`), but we could
just as well discard this assumption as none of the methods developed in this paper require
the right-hand sides (or the initial residuals) of the equations in (2.1) to have any relationship.
Systems of the form (2.1) are called shifted linear systems. Krylov subspace methods have
been proposed to simultaneously solve this family of systems; see, e.g., [8, 12, 13, 20, 37].
These methods satisfy requirement (a) but are not compatible with general preconditioning
strategies as they rely on the invariance of the Krylov subspace under constant shift of the
coefficient matrix; cf. (3.4). Specially chosen polynomial preconditioners, however, have been
shown to be compatible with such methods; see, e.g., [1, 3, 4, 18, 23, 34, 43].

We can introduce an additional parameter i, which indexes a sequence of matrices
{Ai} ⊂ Cn×n, and for each i, we solve a family of linear systems of the form

(2.2)
(
Ai + σ

(`)
i I
)

x
(`)
i = bi for ` = 1 . . . Li.

We consider the case that the right-hand side varies with respect to Ai but not for each shift,
but this assumption is again only for simplicity and could be discarded. Augmented Krylov
subspace methods have been proposed for efficiently solving a sequence of linear systems
with a slowly changing coefficient matrix, allowing important spectral information generated
while solving Aixi = bi to be used to augment the Krylov subspace generated when solving
Ai+1xi+1 = bi+1; see, e.g., [27, 33, 42]. In cases such as a Newton iteration, these matrices
are available one at a time, while in a case such as an implicit time-stepping scheme, the matrix
may not change at all.

In [41], the authors explored solving a family of shifted systems over an augmented Krylov
subspace. Specifically, the goal was to develop a method which solves the family of systems
simultaneously, using one augmented subspace to extract all candidate solutions, which also
had a fixed storage requirement, independent of the number of shifts L. It was shown that in
general within the framework of GMRES for shifted systems [13] and subspace recycling [27],
such a method does not exist. In the context of subspace recycling for Hermitian linear systems,
in the absence of preconditioning, Kilmer and de Sturler proposed a MINRES method in a
subspace recycling framework which simultaneously solves multiple non-Hermitian systems,
which all differ from a real-symmetric system by a complex multiple of the identity [20]. This
is done by minimizing the shifted residuals over the augmented Krylov subspace that is built
using the symmetric Lanczos process. In this paper, we focus exclusively on problems in
which the base coefficient matrices Ai are non-Hermitian.

A conclusion one can draw from [41] is that we should avoid methods relying on the
invariance of Krylov subspaces under a constant shift of the identity; cf. (3.4). Relying on
this invariance imposes restrictions on our ability to develop an algorithm. Furthermore,
relying on this shift invariance means we cannot use arbitrary preconditioners. General
preconditioners are unavailable if we want to exploit shift invariance as Krylov subspaces
generated by preconditioned systems are not invariant with respect to a shift in the coefficient
matrix. In the case that preconditioning is not used, a subspace recycling technique has been
proposed [40] that is built on top of the Sylvester equation interpretation of (2.1) observed by
Simoncini in [36]. However, this is also not compatible with general preconditioning.
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Learning from the results in [41], we focus on methods which do not rely on shift
invariance. Rather than focusing on specific Krylov subspace techniques (augmented or
not), we instead begin by developing a general framework of minimum residual projection
techniques for shifted linear systems. In this framework, we extract candidate solutions for
all shifted systems from the augmented Krylov subspace for one linear system, and we select
each candidate solution according to a minimum residual Petrov-Galerkin condition. This
framework is compatible with arbitrary right preconditioners, and the computational cost for
each additional shifted system is relatively small but nontrivial. By specifying subspaces
once the framework is developed, we derive minimum residual methods for shifted systems
that are compatible with general right preconditioning. Though not considered in this paper,
the framework is also compatible with flexible and inexact Krylov methods. These methods
descend from the Lanczos-Galerkin seed methods, see, e.g., [6, 7, 19, 29].

In this work, we restrict ourselves to right-preconditioned methods. Doing this allows
us to derive methods which require extra storage but no extra applications of the operator or
preconditioner, and we minimize the unpreconditioned residual’s 2-norm rather than some
other norm; see [35] for more details.

3. Preliminaries. We begin with a brief review of Krylov subspace methods as well as
techniques of subspace recycling and for solving shifted linear system. Recall that for many
Krylov subspace iterative methods for solving

(3.1) Ax = b

with A ∈ Cn×n , we generate an orthonormal basis for

Kj(A,u) = span
{
u,Au, . . . ,Aj−1u

}
with the Arnoldi process, where u is some starting vector. Let Vj ∈ Cn×j be the matrix with
orthonormal columns generated by the Arnoldi process spanning Kj(A,u). Then we have the
Arnoldi relation

(3.2) AVj = Vj+1Hj

with Hj ∈ C(j+1)×j ; see, e.g., [31, Section 6.3] and [38]. Let x0 be an initial approximation
to the solution of a linear system that we wish to solve and r0 = b − Ax0 be the initial
residual. At iteration j, we choose xj = x0 + tj , with tj ∈ Kj(A, r0). In GMRES [32], tj
satisfies

tj = argmin
t∈Kj(A,r0)

‖b−A(x0 + t)‖ ,

which is equivalent to solving the smaller minimization problem

(3.3) yj = argmin
y∈Cj

∥∥∥Hjy − ‖r0‖ e
(j+1)
1

∥∥∥ ,
where e

(i)
µ denotes the µth Cartesian basis vector in Ci. We then set xj = x0 + Vjyj . Recall

that in restarted GMRES, often called GMRES(m), we run an m-step cycle of the GMRES
method and compute an approximation xm. We halt the process, discard Vm, and restart with
the new residual. This process is repeated until we achieve convergence.

Many methods for the simultaneous solution of shifted systems (see, e.g., [8, 12, 13, 14,
21, 37]) take advantage of the fact that for any shift σ ∈ C, the Krylov subspace generated by
A and b is invariant under the shift, i.e.,

(3.4) Kj(A,b) = Kj(A + σI, b̃),
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as long as the starting vectors are collinear, i.e., b̃ = βb for some β ∈ C \ {0}, with a shifted
Arnoldi relation similar to (3.2)

(3.5) (A + σI)Vj = Vj+1Hj(σ),

where Hj(σ) = Hj + σ

[
Ij×j
01×j

]
. This collinearity must be maintained at restart. In [41],

this was shown to be a troublesome restriction when attempting to extend such techniques
to augmented Krylov methods. In the case of GMRES, Frommer and Glässner [13] were
able to overcome this by minimizing only one residual in the common Krylov subspace and
forcing the others to be collinear. This strategy also works in the case of GMRES with deflated
restarts [8] because of properties of the augmented space generated using harmonic Ritz
vectors. However, it was shown in [41] that residual collinearity cannot be enforced in general.
Furthermore, it is not compatible with general preconditioning. The invariance (3.4) can lead
to great savings in memory costs but with a loss of algorithmic flexibility. Thus in Section 4,
we explore an alternative.

We briefly review Recycled GMRES for non-Hermitian matrices A. Augmentation
techniques designed specifically for Hermitian linear systems have also been proposed; see,
e.g., [19, 33, 42]. For a more general framework for these types of methods, see [16], the
elements of which form a part of the thesis of Gaul [15], which contains a wealth of information
on this topic. Gaul and Schlömer describe recycling techniques in the context of self-adjoint
operator equations in a general Hilbert space [17].

We begin by clarifying what we mean by Recycled GMRES. We use this expression to
describe the general category of augmented GMRES-type methods which are then differenti-
ated by the choice of augmenting subspace. As we subsequently explain, these methods can
all be formulated as a GMRES iteration being applied to a linear system premultiplied with a
projector. The intermediate solution to this projected problem can then be further corrected
yielding a minimum residual approximation for the original problem over an augmented
Krylov subspace. GCRO-DR [27] is one method in this category, in which the augmented
subspace is built from harmonic Ritz vectors.

The GCRO-DR method represents the confluence of two approaches: those descending
from the implicitly restarted Arnoldi method [22], such as Morgan’s GMRES-DR [24], and
those descending from de Sturler’s GCRO method [10]. GMRES-DR is a restarted GMRES
algorithm, where at the end of each cycle, harmonic Ritz vectors are computed, and a subset
of them is used to augment the Krylov subspace generated at the next cycle. The GCRO
method allows the user to select the optimal correction over arbitrary subspaces. This concept is
extended by de Sturler in [11], where a framework is provided to optimally reduce convergence
rate slowdown due to discarding information upon restart. This algorithm is called GCROT. A
simplified version of the GCROT approach, based on restarted GMRES (called LGMRES) is
presented in [2]. Parks et al. in [27] combine the ideas of [24] and [11] and extend them to a
sequence of slowly-changing linear systems. They call their method GCRO-DR. This method
and GCROT are Recycled GMRES methods.

Suppose we are solving (3.1), and we have a k-dimensional subspace U whose image
under the action of A is C = AU . Let P be the orthogonal projector onto C⊥. Let x0 be such
that r0 ∈ C⊥. At iteration m, the Recycled GMRES method generates the approximation

xm = x0 + sm + tm,

where sm ∈ U and tm ∈ Km(PA, r0). The corrections sm and tm are chosen according to
the minimum residual Petrov-Galerkin condition over the augmented Krylov subspace, i.e.,

(3.6) rm ⊥ A (U +Km (PA, r0)) .
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At the end of the cycle, an updated U is constructed, the Krylov subspace basis is discarded,
and we restart. At convergence, U is saved to be used when solving the next linear system.
This process is equivalent to applying GMRES to the projected problem

(3.7) PA (x̂0 + t) = Pb

where tm is the mth GMRES correction for (3.7) and the second correction sm ∈ U is the
orthogonal projection of tm onto U where orthogonality is meant with respect to the inner
product induced by the positive-definite matrix A∗A1; see, e.g., [15, 16].

Recycled GMRES can be described as a modified GMRES iteration. Let U ∈ Cn×k
have columns spanning U , scaled such that C = AU has orthonormal columns. Then we
can apply P = I−CC∗ to Avj using k steps of the Modified Gram-Schmidt process. The
orthogonalization coefficients are stored in the mth column of Bm = C∗AVm, which is
simply Bm−1 with one new column appended. Let Hm and Vm be defined as before but
for the projected Krylov subspace Km (PA, r0). Enforcing (3.6) is equivalent to solving the
GMRES minimization problem (3.3) for Km (PA, r0) and setting

sm = −UBmym and tm = Vmym,

so that

xm = x0 −UBmym + Vmym = x0 +
[
U Vm

] [−Bmym
ym

]
.

This is a consequence of the fact that the Recycled GMRES least squares problem as stated
in [27, Equation 2.13] can be satisfied exactly in the first k rows, which was first observed
in [10]. The choice of the subspace U then determines the actual method.

4. A direct projection framework. We develop a general framework of minimum
residual methods for shifted linear systems which encompasses both unpreconditioned and
preconditioned systems. This framework and the methods which follow from it are all based
on the Lanczos-Galerkin projection scheme for solving multiple linear systems with the same
or similar coefficient matrices and different right-hand sides. This was suggested in [28] and
further analyzed and extended in, e.g., [6, 7, 19, 29]. In all variants of this scheme, one applies
a Krylov subspace iteration to solve one of the linear systems and projects the residuals of the
other systems using this already-generated Krylov subspace.

We propose to solve both a single family of shifted systems (2.1) and sequences of shifted
system families of the form (2.2). However, it suffices to propose our method in a simpler
setting in which we drop the index i and assume that there are only two systems, a base system
and a shifted system. Thus for simplicity, we restrict our description to the following two
model problems: the unpreconditioned problem

(4.1) Ax = b and (A + σI)x(σ) = b

and the right-preconditioned problem

(4.2) AM−1w = b and (A + σI)M−1w(σ) = b,

where w0 = Mx0 and w0(σ) = Mx0(σ) and with the setting xm = M−1wm and
xm(σ) = M−1wm(σ) after m iterations. In this context, we can propose minimum residual
Krylov subspace methods in the cases that we do or do not have an augmenting subspace U .

1We can write explicitly sm = PUtm where we define PU = U (U∗A∗AU)−1 U∗A∗A, which can be
rewritten as PU = UC∗A.
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We describe the proposed methods in terms of a general sequence of nested subspaces,

S1 ⊂ S2 ⊂ · · · Sm ⊂ · · · .

This allows us to cleanly present these techniques as minimum residual projection methods
and later to give a clear analysis applicable to any method fitting into this framework. Then
we can derive different methods by specifying Sm, e.g., Sm = Km(A, r0).

Let {Sm}mi=1 be the nested sequence of subspaces produced by some iterative method
for solving (4.1) or (4.2) after m iterations. In the unpreconditioned case (4.1), suppose that
we have initial approximations x0 and x0(σ) for the base and shifted systems, respectively.
For conciseness, let us denote A(σ) = A + σI. At iteration m, we compute corrections tm,
tm(σ) ∈ Sm, which satisfy the minimum residual conditions

(4.3) b−A(x0 + tm) ⊥ ASm and b−A(σ)(x0(σ) + tm(σ)) ⊥ A(σ)Sm.

In the preconditioned case (4.2) where we take, e.g., Sm = Km(AM, r0), suppose that we
begin with initial approximations w0 = Mx0 and w0(σ) = Mx0(σ). Let us denote the
preconditioned operators

Ap = AM−1 and Ap(σ) = (A + σI)M−1.

At iteration m, we compute corrections tm, tm(σ) ∈ Sm, which satisfy the minimum residual
conditions

(4.4) b−Ap(w0 + tm) ⊥ ApSm and b−Ap(σ)(w0(σ) + tm(σ)) ⊥ Ap(σ)Sm.

We emphasize that the same preconditioner is used for all systems.
In this framework, we assume that the minimizer for the base case is constructed via

a predefined iterative method which generates the sequence {Sm}. Therefore, it suffices to
describe the residual projection for the shifted system. We can write the update of the shifted
system approximation by explicitly constructing the orthogonal projector which is applied
during a Petrov-Galerkin projection. Let {s1, s2, . . . , sm} be a basis for Sm which we take as
the columns of Sm ∈ Cn×m. Then we can write this projection and update as

rm(σ) = r0(σ)−A(σ)Smym(σ) and
xm(σ) = x0(σ) + Smym(σ),

(4.5)

where ym(σ) = Nm(σ)−1 (A(σ)Sm)
∗
r0(σ) and Nm(σ) = (S∗mA(σ)∗A(σ)Sm) is the pro-

jection scaling matrix since we do not assume that A(σ)Sm has orthonormal columns. For
well-chosen Sm, these projections can be applied using already-computed quantities.

In the following sections, we derive new methods by specifying the subspaces {Sm} and
a matrix Sm. This will define Nm(σ). We show that for these choices, Nm(σ) is composed of
blocks which can be built from already-computed quantities. Thus, for appropriate choices of
Sm, either (4.3) or (4.4) can be applied with manageable additional costs.

We highlight that a strength of this framework is that we can develop methods for shifted
systems on top of an existing iterative methods with a few modifications. As the framework
only requires a sequence of nested subspaces, it is completely compatible with both standard
Krylov subspace methods as well as flexible and inexact Krylov subspace methods.

4.1. A GMRES method for shifted systems. In the case that we apply the GMRES
iteration to the base system, at iteration m, our search space is Sm := Km(A, r0), and the
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matrix Sm := Vm has the first m Arnoldi vectors as columns. The projection and update (4.5)
can be simplified due to the shifted Arnoldi relation (3.5). The matrix

Nm(σ) := Hm(σ)
∗Hm(σ) ∈ Cm×m

can be constructed from the already computed upper Hessenberg matrix. Thus the projec-
tion (4.3) can be rewritten as

xm(σ) = x0(σ) + Vm(σ)ym(σ) and

rm(σ) = r0(σ)−Vm+1Hm(σ)ym(σ),

where ym(σ) =
(
H(σ)∗H(σ)

)−1
Hm(σ)

∗
V∗m+1r0(σ). As it can be appreciated, applying this

is equivalent to solving the least squares problem

(4.6) ym(σ) = argmin
y∈Ci

∥∥Hm(σ)y −V∗m+1r0(σ)
∥∥

and setting xm(σ) = x0(σ) + Vmym(σ). This method has some similarities with the GMRES
method for shifted systems of Frommer and Glässner [13], which is derived from the invari-
ance (3.4), but the methods are distinct. In the method proposed in [13], one must solve small
linear systems for each shifted system and it is required that the initial residuals be collinear
whereas here one must solve the small least-squares problem (4.6) with no collinearity require-
ment. Furthermore, what we propose does not guarantee convergence of all systems in one
Krylov subspace whereas in [13], this is guaranteed under certain conditions. However, the
strengths of the proposed method are that there is no requirement of collinearity for the initial
residuals and the ability for preconditioning.

4.1.1. Preconditioning. Introducing preconditioning into this setting presents complica-
tions. No longer can we use the shifted Arnoldi relation (3.5) as we could in the unprecon-
ditioned case. However, by storing some extra vectors as in Flexible GMRES [30], one can
enforce (4.4) with no additional application of the operator or preconditioner.

Recall that in right-preconditioned GMRES (see, e.g., [31, Sections 9.3.2 and 9.4.1]),
Sm := M−1K(Ap, r0), and Sm := M−1Vm. This space is never explicitly constructed
though, since if ym is the solution to the GMRES least squares problem (3.3) in the precondi-
tioned case, then we simply set xm = x0 + M−1 (Vmym). However, in flexible GMRES,
one must store this basis. For all 1 ≤ i ≤ m, let zi = M−1vi, and let these vectors be the
columns of Zm ∈ Cn×i so that Zm = M−1Vm.

With these vectors, one can enforce (4.4). Observe that we can write Ap(σ) = Ap+σM−1.
We explicitly project the residual but this time onto {Ap(σ)Km(Ap, r0)}⊥,

(4.7) rm(σ) = r0(σ)−
(
Ap + σM−1

)
VmNm(σ)

−1
[(

Ap + σM−1
)
Vm

]∗
r0(σ),

where Nm(σ) =
[(

Ap + σM−1
)
Vm

]∗ [(
Ap + σM−1

)
Vm

]
. With the right-preconditioned

shifted Arnoldi relation (
Ap + σM−1

)
Vm = Vm+1Hm + σZm

we rewrite

Nm(σ) = H
∗
mHm + σH

∗
mV∗m+1Zm + σZ∗mVm+1Hm + |σ|2 ZmZm.
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Thus, the approximation update and the residual projection (4.7) can be rewritten

xm(σ) = x0(σ) + Zmym(σ),

rm(σ) = r0(σ)−
(
Vm+1Hm + σZm

)
ym(σ),

where ym(σ) = Nm(σ)−1
[(

Vm+1Hm + σZm
)]∗

r0(σ). This projection process involves
only the precomputed matrices (Hm, Vm+1, and Zm+1). The matrices H

∗
mHm,

H
∗
mV∗m+1Zm, and Z∗mZm can be computed once, independent of the number of shifted

systems. The solution of a dense Hermitian linear system with Nm(σ) must be performed for
each σ. This solution of a Hermitian m×m linear system costs O(m3) floating point opera-
tions (FLOPS). The right-preconditioned shifted GMRES algorithm (sGMRES) is shown in
Algorithm 4.1. Observe that an implementation can rely heavily on an existing GMRES code.
It should be noted that all but one step of the shifted residual projections can be formulated
in terms of block/BLAS-3 operations so that most computations for all shifts are performed
simultaneously.

Algorithm 4.1: Right preconditioned shifted GMRES (sGMRES()).

Input :A ∈ Cn×n; b ∈ Cn; {σ`}L`=1 ⊂ C; initial Approximations {x(σ`)}L`=1;
ε > 0; cycle length m ∈ N

Output :{x(σ`)}L`=1 such that ‖r(σ`)‖ / ‖r0(σ`)‖ ≤ ε for all `
1 for ` = 1 . . . L do
2 r(σ`) = b− (A + σ`I)x(σ`)

3 γ1 = ‖r(σ1)‖
4 if L > 1 then
5 while ‖r(σ1)‖ /γ1 > ε do
6 Compute and overwrite x(σ1), r(σ1), Vm+1, Zm, Hm by calling GMRES() for

A + σ1I, M, b, x(σ1), and m
7 Compute and overwrite H

∗
mHm, H

∗
mV∗m+1Zm, and Z∗mZm

8 for ` = 2 . . . L do
9 N← H

∗
mHm + σ`H

∗
mV∗m+1Zm + σ`Z

∗Vm+1Hm + |σ`|2 ZmZm

10 y← N−1
[(

Vm+1Hm + σ`Zm
)]∗

r0(σ`)

11 x(σ`)← x0(σ`) + Zmy

12 r(σ`)← r0(σ`)−
(
Vm+1Hm + σ`Zm

)
y

13 For all ` = 2, . . . L compute and overwrite x(σ`) by recursively calling sGMRES()
for A, b, M, {σ`}L`=2, {x(σ`)}L`=2, ε, and m

14 else
15 while ‖r(σ1)‖ /γ1 > ε do
16 Compute and overwrite x(σ1), r(σ1) by calling GMRES() for A + σ1I, M, b,

x(σ1), and m

4.2. An rGMRES method for shifted systems. Suppose now that our iteration for the
base system is a Recycled GMRES method.

We begin by projecting the initial residual r−1(σ) associated to the initial approximation
x−1(σ) so that we begin with r0(σ) ⊥ A(σ)U . This is equivalent to computing the minimum
residual correction t0(σ) ∈ U and setting x0(σ) = x−1(σ) + t0(σ). In Recycled GMRES,
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such a projection is necessary to correctly derive the algorithm. For the shifted system, the
projection is not necessary, but it does allow for some simplifications later in the derivation.
We have then

(4.8) x0(σ) = x−1(σ) + Uy0(σ) and r0(σ) = r−1(σ)−A(σ)Uy0(σ),

where y0(σ) = N0(σ)−1 (A(σ)U)
∗
r−1 and N0(σ) = (A(σ)U)

∗
(A(σ)U). Since we have

A(σ)U = C + σU, this projection can be simplified and computed with manageable addi-
tional expense,

r0 = r−1 − (C + σU)N0(σ)
−1(C + σU)∗r−1,

where we rewrite N0(σ) = Ik×k + σC∗U + σU∗C + |σ|2 U∗U. The matrices C∗U and
U∗U must only be computed once regardless of the number of shifts, and for each shift we
solve N0(σ)y0(σ) = (C + σU)∗r−1(σ).

After a cycle of Recycled GMRES for the base system, (4.3) must be enforced for each
shifted system. At iteration m, our search space is Sm = U +Km(PAp, r0). The augmented
matrix Sm :=

[
U Vm

]
contains as columns the basis for U and Km(PAp, r0). In this case,

we have Nm(σ) =
{

(A + σI)
[
U Vm

]}∗ {
(A + σI)

[
U Vm

]}
. From [41], we have the

identity

(A + σI)
[
U Vm

]
=
[
(C + σU)

(
CBm + Vm+1Hm + σVm

)]
.

Thus, in the unpreconditioned case, for the augmented Krylov subspace, we can rewrite (4.3)
as

rm(σ) = r0(σ)−
[
(C + σU)

(
CBm + Vm+1Hm + σVm

)]
ym(σ) and

xm(σ) = x0(σ) +
[
U Vm

]
ym(σ),

where ym(σ) = Nm(σ)−1
[
(C + σU)

(
CBm + Vm+1H

(σ)

m

)]∗
r0(σ) and

Nm(σ)=

[
I + σC∗U + σU∗C + |σ|2 U∗U Bm + σU∗CBm + σU∗Vm+1Hm + |σ|2 U∗Vm

B∗m + σB∗mC∗U + σH
∗
mV∗m+1U + |σ|2 V∗mU B∗mBm + H

∗
mHm + σHm + σH∗m + |σ|2 I

]
.

This projection can be performed using already computed quantities, and the matrices U∗C,
U∗U, U∗CBm, U∗Vm+1Hm, H

∗
mHm, Hm, and B∗mBm need only be computed once

regardless of the number of shifts. The computation of ym(σ) must be performed for every
shift at a cost of O((m+ k)3).

4.2.1. Preconditioning. Introducing right preconditioning creates some difficulties which
we can again surmount by storing some extra vectors. We note that in the case of precondi-
tioning, we have C = AM−1U. In this case, for right-preconditioned Recycled GMRES, the
search space for the base system is Sm := M−1 {U +Km(PA, r0)}. Let ZU = M−1U and
Zm = M−1Vm as in Section 4.1.

Using ZU , we can cheaply perform the initial residual projection,

x0(σ) = x−1(σ) + Uy0(σ) and
r0(σ) = r−1(σ)− (Ap(σ)U) y0(σ),

(4.9)

where y0(σ) = N0(σ)−1 (Ap(σ)U)
∗
r−1(σ) and N0(σ) = (Ap(σ)U)

∗
(Ap(σ)U). We can

write

Ap(σ)U = C + σZU .
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The subspace U either is available at the start of the algorithm (in which case U must be scaled
so that ApU = C has orthonormal columns), or it is constructed at the end of a restart cycle.
In either case, ZU is available in the course of the computation and can be saved. Thus the
projection (4.8) can be performed with already computed quantities,

x0(σ) = x−1(σ) + Uy0(σ) and
r0(σ) = r−1(σ)− (C + σZU ) y0(σ),

where we rewrite y0(σ) = N0(σ)−1 (C + σZU )
∗
r−1(σ`) and

N0(σ) = I + σC∗ZU + σZ∗UC + |σ|2 Z∗UZU .

After a cycle of right-preconditioned Recycled GMRES, we must perform the projection (4.4)
for each shifted system. We proceed slightly differently in this derivation than in the unprecon-
ditioned case. We have

Nm(σ) :=
{
Ap(σ)

[
U Vm

]}∗ {
Ap(σ)

[
U Vm

]}
.

Following [27], we define

Gm =

[
Ik×k Bm

0(m+1)×k Hm

]
,

which yields the augmented Arnoldi relation

(4.10) Ap

[
U Vm

]
=
[
C Vm+1

]
Gm.

Using the relation (4.10), an identity for the shifted operator with right preconditioning follows,

(4.11) Ap(σ)
[
U Vm

]
=
[
C Vm+1

]
Gm + σ

[
ZU Zm

]
.

We use the relation (4.11) to derive the expansion

Nm(σ) = G
∗
mGm + |σ|2

[
Z∗UZU Z∗UZm
Z∗mZU Z∗mZm

]
+ σG

∗
m

[
C∗ZU C∗Zm

V∗m+1ZU V∗m+1Zm

]
+ σ

[
Z∗UC Z∗UVm+1

Z∗mC Z∗mVm+1

]
Gm.

(4.12)

Thus, the projection can be performed for each shift using already computed quantities. This
yields the following updates of the approximation and residual

xm(σ) = x0(σ) +
[
ZU Zm

]
ym(σ)

rm(σ) = r0(σ)−
{[

C Vm+1

]
Gm + σ

[
ZU Zm

]}
ym(σ),

where ym(σ) = Nm(σ)−1
{[

C Vm+1

]
Gm + σ

[
ZU Zm

]}∗
r0(σ). We observe that be-

cause of the initial projection of the shifted residual (4.9), we can simplify{[
C Vm+1

]
Gm + σ

[
ZU Zm

]}∗
r0(σ)

=
{[

C CBm + Vm+1Hm

]
+ σ

[
ZU Zm

]}∗
r0(σ)

=

[
C∗r0(σ)

B∗mC∗r0(σ) + H
∗
mV∗m+1r0(σ)

]
+ σ

[
Z∗Ur0(σ)

Z∗mr0(σ)

]
=

[
0

B∗mC∗r0(σ) + H
∗
mV∗m+1r0(σ) + σZ∗mr0(σ)

]
,
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and thus we can rewrite

ym(σ) = Nm(σ)
−1

[
0

B∗mC∗r0(σ) + H
∗
mV∗m+1r0(σ) + σZ∗mr0(σ)

]
.

Algorithm 4.2: Right-preconditioned shifted Recycled GMRES (srGMRES()).

Input :A ∈ Cn×n; b ∈ Cn; {σ`}L`=1 ⊂ C; initial Approximations {x(σ`)}L`=1;
U ∈ Cn×k; ε > 0; cycle length m ∈ N

Output :{x(σ`)}L`=1 such that ‖r(σ`)‖ / ‖r0(σ`)‖ ≤ ε for all `
1 for ` = 1 . . . L do
2 r(σ`) = b− (A + σ`I)x(σ`)

3 γ1 = ‖r(σ1)‖
4 ZU = M−1U
5 C = (A + σ1I)ZU
6 Compute QR-factorization QR = C
7 C← Q, U← UR−1, ZU ← ZUR−1

8 x(σ1)← x(σ1) + UC∗r(σ1) and r(σ1)← r(σ1)−CC∗r(σ1)

9 Compute C∗ZU and Z∗UZU
10 for ` = 2 . . . L do

%%%%% Shifted System Initial Projections %%%%%

11 N← I + σ`C
∗ZU + σ`Z

∗
UC + |σ`|2 Z∗UZU

12 y← N−1 (C + σ`ZU )
∗
r(σ`)

13 x(σ`)← x(σ`) + Uy
14 r(σ`)← r(σ`)− (C + σ`ZU ) y

15 if L > 1 then
16 while ‖r(σ1)‖ /γ1 > ε do
17 Compute and overwrite x(σ1), r(σ1), Vm+1, Zm, Hm, Bm by calling

rGMRES() for A + σ1I, M, b, x(σ1), U, C, and m
18 Compute and overwrite Gm, G

∗
mGm, Z∗UZU , Z∗UZm, Z∗mZm, C∗ZU ,

C∗Zm, V∗m+1ZU , V∗m+1Zm
19 for ` = 2 . . . L do

%%%%% Shifted System Projections %%%%%

20 N← G
∗
mGm + |σ`|2

[
Z∗UZU Z∗UZm
Z∗mZU Z∗mZm

]
+

σ`G
∗
m

[
C∗ZU C∗Zm

V∗m+1ZU V∗m+1Zm

]
+ σ`

[
Z∗UC Z∗UVm+1

Z∗mC Z∗mVm+1

]
Gm

21 y← N−1
{[

C Vm+1

]
Gm + σ`

[
ZU Zm

]}∗
r(σ`)

22 x(σ`)← x0(σ`) +
[
ZU Zm

]
y

23 r(σ`)← r0(σ`)−
{[

C Vm+1

]
Gm + σ`

[
ZU Zm

]}
y

24 Compute updated U, ZU , and C

25 For all ` = 2, . . . L compute and overwrite x(σ`) by recursively calling
srGMRES() for A, b, M, {σ`}L`=2, {x(σ`)}L`=2, U, ε, and m

26 else
27 while ‖r(σ1)‖ /γ1 > ε do
28 Compute and overwrite x(σ1), r(σ1) by calling rGMRES() for A + σ1I, M, b,

x(σ1), and m
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The matrices in the sum (4.12) must be computed only once. For each shift, we must
compute ym(σ) at a cost ofO

(
(m+ k)3

)
. The right-preconditioned shifted Recycled GMRES

algorithm (srGMRES) is shown in Algorithm 4.2. Observe that an implementation can rely
heavily on an existing Recycled GMRES code. As in the case of Algorithm 4.1, all but one
step of the shifted residual projections can be formulated in terms of block/BLAS-3 operations
so that almost all computations are performed simultaneously for all shifts. We discuss costs
further in Section 5.2.

5. Analysis of direct projection methods. In this section, we provide some analysis
of the direction projection methods. We treat two issues in this section: the quality of the
approximations and the costs of the methods.

5.1. The quality of the approximations. Since all residual corrections are minimum
residual projections, we can expect that, at worse, the projection of the shifted residual will
achieve no improvement.

We follow the analysis presented in [19]. This analysis proceed from that presented in [7]
for the case of a Hermitian positive definite coefficient matrix. In their analysis, the authors
assume that a subset of eigenvectors (spanning the subspace Y) have been well-approximated
in the underlying Krylov subspace generated by QMR applied to the base matrix (called the
seed system in [19]). The authors show that the performance of QMR applied to the non-seed
systems with projected residuals can be compared to that of a GMRES iteration in which Y
has been projected away.

In the case of Hermitian positive definite systems, the analysis of the performance of
CG-based seed-projection was also extended to the case in which the coefficient matrix varies
along with the right-hand side [6]. In this paper, the authors extend the work in [7] by applying
a Lanczos-Galerkin-type projection in the case that the system matrices as well as the right-
hand sides are changing in some structured way (which we note is also a common assumption
motivating subspace recycling methods). One of the special cases considered is the present
one, namely that of solving a family of shifted linear systems. In this case, one can again
derive CG-based bounds dependent upon the set of eigenvectors well-approximated by Ritz
vectors generated by the CG iteration applied to the base system.

In extending this analysis, there are two complications. Algorithm 4.2 does not minimize
over a Krylov subspace, and both methods may use preconditioning. In either case, we cannot
easily leverage the polynomial approximation analysis. Also of concern is that GMRES-
based methods applied to non-Hermitian problems of large dimension often must be restarted,
which does not need to be considered for the short-term recurrence-based methods treated
in [6, 7, 19]. However, if we restrict our analysis to Algorithm 4.1 without preconditioning
(i.e., M = I) and do not consider restarting, we can analyze performance based on invariant
subspace approximation. We follow [6, 7] and specifically use elements of analysis in [19] for
the non-Hermitian case.

Let us assume that A is diagonalizable with eigendecomposition

(5.1) A = FΛW with Λ = diag {λ1, λ2 . . . , λn} and W = F−1,

with fi being the ith column of F and w∗i being the ith row of W. Consider the simplified
problem (4.1), where for the base system (3.1), we have the initial residual r0. We first solve the
base system using a GMRES iteration terminating in j steps generating the subspaceKj(A, r0)
with the associated Vj and Hj . Let x0(σ) be the initial approximation for the shifted system
with the residual r0(σ) = b− (A + σI) x0(σ). Let r̂0(σ) ⊥ (A + σI)Kj(A, r0) be the result
of the Lanczos-Galerkin projection of r0(σ) after the termination of GMRES applied to (3.1).
If P is the projector onto Kj(A, r0) which is orthogonal with respect to the inner product
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induced by2 (A + σI)
∗

(A + σI) and Q is the orthogonal projector onto (A + σI)Kj(A, r0)
with respect to the Euclidean norm3, then we can then write the Lanczos-Galerkin projection
as r̂0(σ) = (I−Q) r0(σ), and the associated updated approximation x̂0(σ) results from the
error projection

(5.2) x(σ)− x̂0(σ) = (I−P) (x(σ)− x0(σ)) .

This can be seen by studying the derivation in Section 4.1 and is a general property of minimum
residual projections. With this new starting vector x̂0(σ), we now consider the performance of
GMRES applied to the shifted system.

THEOREM 5.1. Let A ∈ Cn×n be diagonalizable with eigendecomposition (5.1). Let
Kj(A, r0) be the Krylov subspace generated by j iterations of unrestarted GMRES applied
to (3.1), and for an indexing set I ( {1, . . . , n}, let Y be an invariant subspace of A spanned
by {fi}i∈I. Let PY be the orthogonal projection onto Y , and let x0(σ) be the result of the error
projection

x(σ)− x0(σ) = (I−PY) (x(σ)− x̂0(σ)) .

If we apply Algorithm 4.1 to solve (4.1) with no preconditioning and no restarting, then
the residual r̂`(σ) resulting from ` iterations of GMRES applied to the shifted system with
starting vector x̂`(σ) defined as in (5.2) satisfies the bound

‖r̂`‖ ≤ ‖r`(σ)‖+ δ,

where r`(σ) is the residual resulting from applying ` iterations of GMRES to the shifted
system with starting vector x0(σ) and δ =

∑
i∈I(λi + σ)p`(λi + σ)φifj with pj being the

jth GMRES residual polynomial associated to the iteration for starting vector x0(σ) and
φi = w∗i (I−P) (x(σ)− x0(σ)).

Proof. The structure of this proof follows that in [19], but it is also related to the results
presented in [6, Section 3.1, Case 1] of CG with Lanczos-Galerkin projection applied to shifted
systems.

Because A is diagonalizable, we can decompose the errors with respect to x̂(σ) and x(σ)

as

x(σ)− x̂0(σ) =

n∑
i=1

φifi and x(σ)− x0(σ) =

n∑
i=1
i6∈I

φifi,

which implies that

r̂0(σ) =

n∑
i=1

φi (λi + σ) fi and r0(σ) =

n∑
i=1
i6∈I

φi (λi + σ) fi.

Because the GMRES residual polynomial p̂` satisfies the minimization condition

p̂` = argmin
p∈Π`
p(0)=1

‖p(A+ σI)r̂0‖ with Π` = {p | deg p ≤ `} ,

2i.e., P = Vm
(
H(σ)∗H(σ)

)−1
Hm(σ)

∗
V∗m+1

3i.e., Q = Vm+1Hm(σ)
(
H(σ)∗H(σ)

)−1
Hm(σ)

∗
V∗m+1
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we can write

‖r̂`‖ = min
p∈Π`
p(0)=1

‖p(A+ σI)r̂0‖ ≤ ‖p` (A + σ) r̂0‖ =

∥∥∥∥∥
n∑
i=1

(λi + σ)p`(λi + σ)φifi

∥∥∥∥∥
=

∥∥∥∥∥∥∥
n∑
i=1
i6∈I

(λi + σ)p`(λi + σ)fi +
∑
i∈I

(λi + σ)p`(λi + σ)φifi

∥∥∥∥∥∥∥
≤ ‖r`(σ)‖+

∥∥∥∥∥∑
i∈I

(λi + σ)p`(λi + σ)φifi

∥∥∥∥∥︸ ︷︷ ︸
δ

.

From the definitions of fi1 and wi2 , we know that w∗i2fi1 = δi1,i2 . Thus, from the definition of
x(σ)−x̂0(σ) as well as its eigendecomposition, we have that φi = w∗i (I−P) (x(σ)− x0(σ)).

Certainly, Theorem 5.1 applies to any invariant subspace Y . However, the interesting
case, which is considered in [7, 6, 19], is when Y is such that the Krylov subspace Kj(A, r0)
contains a good approximation of it. If Kj(A, r0) actually contained Y , then it is straight-
forward to show that φi = 0 for all i ∈ I, and thus δ = 0. We can then expect that if Y is
well-approximated in Kj(A, r0), then δ would be non-zero but small. In this case, the behav-
ior of GMRES applied to the shifted system with starting vector x̂0 would mimic GMRES
applied to that same system with starting vector x0, in which the iteration is orthogonal to Y .
Unfortunately, this theory cannot be easily extended to the case that the correction space is not
a Krylov subspace as it relies on the polynomial approximation interpretation of GMRES.

Following [29], we also can analyze the effectiveness of the direct projection by decom-
posing the residual. This analysis is developed in the general framework setting presented in
Section 4 and then interpreted for the individual methods. Here we use the notation that P(·)
denotes the orthogonal projector onto the subspace specified in the argument.

THEOREM 5.2. Let the sequence of subspaces {Sm} be defined as in Section 4, and
additionally let

(5.3) Tm = (A + σI) M−1Sm.

If r0(σ) is the initial residual for the shifted system and r̂0(σ) is the residual produced by
projecting r0(σ) according to (4.4), then we have that

(5.4) r̂0(σ) = (I−P (Tm)) P (Tm+1) r0(σ) + (I−P (Tm+1)) r0(σ).

Note that in the unpreconditioned case, Theorem 5.2 can be applied by taking M = I.

Proof. Using the property of projectors, we can decompose

r0(σ) = P (Tm+1) r0(σ) + (I−P (Tm+1))r0(σ).

The minimum residual projection (4.4) can be written as

r̂0(σ) = (I−P (Tm))P (Tm+1) r0(σ) + (I−P (Tm))(I−P (Tm+1))r0(σ).

From (5.3) and the definition of Tm, we have that

Tm ⊂ Tm+1,
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which in turn yields the reverse containment of the orthogonal complements,

Tm+1
⊥ ⊂ T ⊥m

and thus

(I−P (Tm))(I−P (Tm+1))r0(σ) = (I−P (Tm+1))r0(σ).

This yields the result.
COROLLARY 5.3. Let the same assumptions as in Theorem 5.2 hold. Then we have the

following bound on ‖r̂0(σ)‖:

(5.5) ‖r̂0(σ)‖ ≤ ‖(I−P (Tm)) P (Tm+1) r0(σ)‖+ ‖(I−P (Tm+1)) r0(σ)‖ .

Proof. We simply take the norm of both sides of (5.4) and apply the triangle inequality.

From (5.5), we can see that the residual norm bound depends on both the effectiveness
of the minimization projection applied to the orthogonal projection of r0(σ) in Tm+1 and the
size of the part of the residual which lies in T ⊥m+1. As an aside, to connect this analysis back
to the two proposed methods, we observe that in the case of the right-preconditioned shifted
GMRES algorithm (Algorithm 4.1), we have

Sm = M−1Km(AM−1, r0) and

Tm = AM−1Km(AM−1, r0) + σM−1Km(AM−1, r0).

In the case of the preconditioned rGMRES method for shifted systems (Algorithm 4.2), we
have

Sm = M−1
{
U +Km((I−P)AM−1, r0)

}
and

Tm = C + AM−1Km((I−P)AM−1, r0) + σM−1
{
U +Km((I−P)AM−1, r0)

}
.

As another quick aside, we mention briefly that the matrix Nm(σ) is connected to a
generalized eigenvalue approximation problem associated to the computation of the harmonic
Ritz values; see, e.g., [25, 26]. This is elaborated upon in the technical report [39].

5.2. The costs of the algorithms. For Algorithms 4.1 and 4.2, we enumerate the addi-
tional per-cycle costs incurred by the proposed algorithms as they are built, respectively, on
top of a cycle of GMRES and a cycle of Recycled GMRES.

Let cold denote the cost per iteration of an existing method (here GMRES or Recycled
GMRES) and cnew the cost per iteration of the modified method (here Algorithm 4.1 or
4.2). Here we do not specify how cost should be measured. It could be by estimating, e.g.,
FLOPS, amount of data moved, or actual timings of various operations, etc. In our subsequent
calculations, though, we estimate costs in FLOPS. In this setting, we have that the new methods
cost more per iteration, i.e., cnew = cold + dnew. In Tables 5.1 and 5.2, we list, respectively,
the additional costs of each proposed algorithms, allowing us to estimate dnew. An important
consideration which we don’t treat here is the cost of applying the operator, which depends
on characteristics such as sparsity. This can dominate the cost per iteration. In judging the
effectiveness of these methods, the benefit of iteration reduction is dictated by the matrix-vector
product cost (which would also include the cost of applying the preconditioner).

We can similarly define the number of iterations required by both methods to solve all
shifted systems, i.e., jold and jnew. By assumption, the new method should solve all shifted
systems in fewer iterations, i.e., jnew = jold − anew. Roughly speaking then, the total cost of
each method can be estimated by jold · cold and jnew · cnew.
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TABLE 5.1
Cost per cycle of extra calculations performed in Algorithm 4.1 when compared to GMRES.

Operations Alg. Line FLOPS in O(·) × per cycle
H
∗
mHm 7 m3 +m2 1

V∗m+1Zm 7 n
(
m2 +m

)
1

H
∗
m

(
V∗m+1Zm

)
7 m3 +m2 1

Z∗mZm 7 nm2 1
Sum of 4 m×m matrices 9 3m2 L[(

Vm+1Hm + σZm
)]∗

r0(σ) 10 2nm L
Apply N−1 10 2

3m
3 +m2 L

x(σ`)← x0(σ`) + Zmy 11 2mn L
r(σ`)← r0(σ`)−

(
Vm+1Hm + σZm

)
y 12 2mn L

TABLE 5.2
Cost per cycle of extra calculations performed in Algorithm 4.2 when compared to Recycled GMRES.

Operations
Alg.
Line FLOPS in O(·) ×per

cycle
G
∗
mGm 18 (m+ k + 1)2(m+ k) 1
Z∗UZU 18 k2n 1
Z∗UZm 18 knm 1
Z∗mZm 18 m2n 1
C∗ZU 18 k2n 1
C∗Zm 18 knm 1

V∗m+1ZU 18 kn(m+ 1) 1
V∗m+1Zm 18 nm(m+ 1) 1[

C Vm+1

]
Gm + σ

[
ZU Zm

]
21 (m+ k + 1)2(m+ k) L

Sum of 4 matrices 21 3(m+ k) L{[
C Vm+1

]
Gm + σ

[
ZU Zm

]}∗
r(σ`) 21 2(m+ k)n L

Apply N−1 21 2
3 (m+ k)3 + (m+ k)2 L

Update approx. 22 2(m+ k)n L
Update resid. 23 2(m+ k)n L

5.2.1. Comparison of Algorithm 4.1 to GMRES. Algorithm 4.1 is built on top of
GMRES. In Table 5.1, we list all additional operations and information about their costs. From
this, we can estimate the additional per-cycle FLOP cost and then divide by m to estimate
d(4.1)
new. If we simplify, we see that

d(4.1)
new =

2

3
(L+ 3)m2 + 2m(2L+ n+ 1) + 6Ln+ n.

5.2.2. Comparison of Algorithm 4.2 to Recycled GMRES. Algorithm 4.2 is built on
top of recycled GMRES. We can compare the costs of a cycle of each algorithm by looking at
the additional costs per cycle of Algorithm 4.2. There are also a few initial one-time overhead
costs which must be taken into account. Thus in Table 5.2 we display the additional per-cycle
costs of Algorithm 4.2 and in Table 5.3 the additional one-time overhead costs.

We use Table 5.2 to estimate d(4.2)
new, but we must also take into account the onetime costs

shown in Table 5.3 by dividing those costs by the total number of iterations j(4.2)
new. After
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TABLE 5.3
One-time overhead costs in Algorithm 4.2 when compared to Recycled GMRES.

Operations Alg. Line FLOPS in O(·) × per method execution
ZU ← ZUR−1 7 k3 1

C∗ZU 9 k2n 1
Z∗UZU 9 k2n 1

Sum of 4 k × k matrices 11 3k L
(C + σZU )

∗
r(σ`) 12 2kn L

Apply N−1 12 k3 + 2
3k

2 L
x(σ`)← x(σ`) + Uy 13 2kn L

r(σ`)← r(σ`)− (C + σZU ) y 14 2kn L

simplifying we have

d(4.2)
new = (1 +

5L

3
)m2 + (2 + 3k + 3L+ 5kL+ 2n)m

+1 + 4k + 3k2 + 4L+ 6kL+ 5k2L+ n+ 3kn+ 6Ln

+
1

m
(
5k3L

3
+ k3 + 3k2L+ 2k2n+ 2k2 + 6kLn+ 4kL+ kn+ k)

+
k3 + 2k2n+

(
k3 + 2k2

3

)
L+ 6kLn+ 3kL

jnew
.(5.6)

5.2.3. Estimating the costs for specific examples. Now we can compare the costs for a
specific example. For Algorithm 4.1, let m = 50, L = 5, and n = 105. Then we have that
d(4.1)
new ≈ 1.3× 106. For Algorithm 4.2, let us store a small recycled subspace but use the same

amount of storage, i.e., m = 40 and k = 5. This yields d(4.2)
new ≈ 1.3× 106 + 2.0×106

j(4.2)
new

.
Admittedly, (5.6) is a bit unwieldy and has many parameters. However, if we make an

additional assumption on how Algorithm 4.2 is called, we can simplify the associated cost
calculation. Let us assume that k = 1

2m, i.e., that we maintain a recycled subspace half the
size of the associated Krylov subspace dimension. Then we see that we can simplify

d(4.2)
new = m3

(
L

8j(4.2)
new

+
1

8j(4.2)
new

)
+m2

(
L

6j(4.2)
new

+
45L

8
+

n

2j(4.2)
new

+
27

8

)
+m

(
3Ln

jnew
+

3L

2j(4.2)
new

+
27L

4
+ 4n+

9

2

)
+

3

2
+ 6L+

3n

2
+ 9Ln.

Let us assume for Algorithm 4.1 that we have the same values as before. To have approximately
equivalent storage for Algorithm 4.2, we setm = 25, and we have d(4.2)

new ≈ 1.5×106 + 6.9×106

j(4.2)
new

FLOPS.
In Figure 5.1, we study the growth in the estimated FLOP costs when all but one parameter

are held fixed. For srGMRES, we again assume that k = 1
2m and that the total number of

iterations needed for Algorithm 4.2 to converge is

j(4.2)
new =

n

10
4
9 + 2m

9m+9 log10 n
.

This is somewhat arbitrary, but it qualitatively matches experimental observations. This
formula is derived so that for the case that n = 106 and for m→∞ we have that j(4.2)

new → 100
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FIG. 5.1. Estimated cost in FLOPS, respectively, for different numbers of shifts, problem dimensions, and cycle
lengths with all other parameters being held constant.

and the convergence is monotonically decreasing and relatively fast. It is necessary to have
some assumption on the value of j(4.2)

new since Algorithm 4.2 has some overhead costs which
need to be amortized over the total number of iterations. In the three graphs shown, we vary,
respectively, the number of shifts (L), the problem dimension (n), and the cycle length (m)
with everything else being held constant. For the experiments in which L is held constant, we
chose L = 5. Similarly, we chose n = 107 and m = 100 in the cases that these parameters
were held constant.

We conclude by noting that we consider only one type of costs in this section. In reality,
these methods also incur storage costs and data movement costs which are nontrivial for
large-scale problems and which must be considered. Furthermore, absent preconditioning,
it is clear from the cost calculations that in the case of non-Hermitian shifted systems of the
form treated in [20] that the method considered in that paper would be much cheaper than
Algorithm 4.2, and absent preconditioning, for general non-Hermitian shifted linear systems
satisfying the conditions in [13] (e.g., collinear residuals), that method would outperform
Algorithm 4.1. Lastly, both Algorithms 4.1 and 4.2 can be used with flexible preconditioners
with no additional computational or storage costs.

6. Numerical results. We performed a series of numerical experiments to demonstrate
the effectiveness of our algorithms as well as to compare performance (as measured in both
matrix-vector product counts and CPU timings) with other algorithms. All tests were performed
in Matlab R2014b (8.4.0.150421) 64-bit running on a Mac Pro workstation with two 2.26 GHz
Quad-Core Intel Xeon processors and 12 GB 1066 MHz DDR3 main memory. For these tests,
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we use two sets of QCD matrices downloaded from the University of Florida Sparse Matrix
Library [9]. One set of matrices is a collection of seven 3072×3072 complex matrices, and the
other is a collection of seven 49152× 49152 complex matrices. These matrices, respectively,
have 119, 808 nonzero entries (i.e., ≈ 1.3% of the total) and 1, 916, 928 nonzero entries (i.e.,
≈ 0.08% of the total), and the cost of the matrix-vector product scales linearly with the number
of nonzeros. Let us denote the number of nonzero entries nnz . In order for these costs to be
able to be related to the quantities in Section 5.2, we express the number of non-zero entries in
terms of the dimension n (i.e., the cost of a matrix-vector product is on the order of

(
nnz

n

)
n).

For both the large and small QCD matrix sets, we have that
(
nnz

n

)
= 39 so that the cost of a

matrix-vector product is roughly 39n.
For each matrix D from the collection, there exists some critical value κc such that

for 1
κc

< 1
κ < ∞, the matrix A = 1

κI − D is real-positive. For each D, we took

A =
(

1
κc

+ 10−3
)

I−D as our base matrix. In our experiments then, each set is taken
as the sequence {Ai}, and we solve a family of the form (2.2). As described in [9], the
matrices D are discretizations of the Dirac operator used in numerical simulation of quark
behavior at different physical temperatures. We note that larger real shifts of Ai yield better
conditioned matrices for all i. For all experiments, we chose the right-hand side b1 = 1, the
vector of ones, and set bi = bi−1 + di, where di is chosen randomly such that ‖di‖ = 10−1.
The requested relative residual tolerance was ε = 10−8. All augmentation was with harmonic
Ritz vectors. For all experiments, we preconditioned with an incomplete LU-factorization
(ILU) for the system with the smallest shift constructed using the Matlab function ilu()
called with the default Matlab settings, which is the so-called “no-fill” version of the algorithm
also sometimes called ilu(0).

We comment that the usage of ILU was a matter of convenience and effectiveness for
these sample problems. Its usage is meant to demonstrate a proof-of-concept rather than
as advocating the usage of ILU for large-scale QCD problems. However, we nonetheless
calculate the cost of construction and application of this type of ILU preconditioner. Following
the description of ilu(0) in [31, Algorithm 10.4], if we estimate that the average number
of nonzeros per row is nz

n , then the number of FLOPS performed in the triple loop can be

bounded by nz

2
nz

n =
n2
z

2n2n.3 For both sets of matrices, this rounds up to 761n, which is
a one-time construction cost that is amortized over the entire iteration. Application of the
preconditioner involves one forward- and one backward-substitution for the sparse lower- and
upper-triangular matrices, respectively. Taken together, these two operations also scale linearly
with the number of nonzero elements of A. Here we make the assumption that the cost of both
forward- and backward-substitution also scale with the number of nonzero elements of the
triangular matrices, each of which has approximately half of the number of nonzero elements
as A. Thus the cost of applying the ILU preconditioner can also be estimated as 39n for both
sets of QCD matrices.

We also comment about methods which we have omitted from testing: the shifted restarted
GMRES method [13], the shifted GMRES-DR method [8], and the recursive Recycled GMRES
method for shifted systems proposed in [41]. We have omitted these methods from the tests as
they do not admit general preconditioning. As such, they require substantially more iterations
in many experiments. However, with the methods in [8, 13], there would be some number of

3We arrive at this estimate by noting that in the inner loop, one FLOP is performed per cycle. The growth of the
outer loop can be bounded by n. For each row visited in the outer loop, the middle loop visits every entry before the
diagonal. Thus the growth of the outer and middle loop together can be bounded by nz/2. The inner loop visits every
entry in the current row after the current entry visited by the middle loop. The growth of this loop can be estimated by
the average number of nonzero entries per row nz/n.
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TABLE 6.1
Matrix-vector product counts for different pairs (m, k) of restart cycle length and recycled subspace dimension

for shifted Recycled GMRES. The matrices used in this experiment are the smaller set of QCD matrices from [9].
Experiments were performed for larger values than shown but no further improvement was observed.

m\k 5 15 25 35 45 55 65 75 85

5 1566 1295 1205 1161 1146 1131 1126 1116 1111
20 1466 1254 1182 1141 1122 1110 1107 1103 1096
35 1418 1229 1166 1132 1113 1103 1096 1095 1091
50 1363 1223 1158 1128 1114 1105 1099 1097 1090
65 1344 1219 1159 1124 1109 1106 1099 1090 1086
80 1321 1210 1153 1123 1109 1102 1098 1091 1085
95 1321 1210 1153 1124 1108 1100 1097 1093 1084

shifts for which this method would be superior to those presented in this paper, as the cost of
recursion in our methods, even with preconditioning, would be greater than simply solving the
unpreconditioned problems simultaneously with their shifted GMRES method [13].

Since these experiments involve solving shifted systems with shifts of varying magnitudes,
it is useful to have some information about the norms of our test matrices. Therefore, we
provide both the one- and two-norms for these matrices (computed, respectively, with the
Matlab functions norm(·, 1) and svds(·, 1)). The 1-norms of these matrices all lie in
the interval (28, 31), and their 2-norms lie in the interval (11, 14).

In our first experiment, we tested Algorithm 4.2 with the set of smaller matrices for
various recycle space dimension sizes and restart cycle lengths. We solve for
shifts σ ∈ {.01, .02, .03, 1, 2, 3}. We report the total required matrix-vector products. We see
in Table 6.1 that for these particular QCD matrices, good results can be achieved for a small
recycled subspace dimension as long as the cycle length is sufficiently long.

For the remaining tests, we use the larger set of QCD matrices. In Table 6.2 we compare
time and matrix-vector product counts. For Algorithm 4.2, we chose the cycle-length/recycle
subspace dimension pair (m, k) = (80, 10) and use this pair for all experiments with Algo-
rithm 4.2 except for the one shown in Figure 6.1. Parameters for Algorithm 4.1 and other
tested methods were chosen in order to have the same per-cycle storage cost of 3k+2m = 190
vectors 4. For each family of linear systems, the experiment was performed ten times and the
average time over these ten runs was taken as the run time. We solved for a larger number of
shifts of varying magnitudes,

σ ∈ {.001, .002, .003, .04, .05, .06, .07, .8, .9, 1, 1.1, 10, 11, 12} .

We compared four methods (Algorithm 4.1, Algorithm 4.2, sequentially applied GMRES, and
sequentially applied Recycled GMRES). We see that for this problem with these shifts, both
proposed algorithms outperform the sequential applications of GMRES and Recycled GMRES
both in terms of matrix-vector product counts and run times. In this case, the sGMRES
algorithm is superior in time to srGMRES but not in terms of matrix-vector products, which
demonstrates the difference in overhead costs.

In Figure 6.1, for a total fixed augmented subspace dimension of 100, we investigate how
many matrix-vector products are required to solve the same sequence of problems with the
same shifts as in the previous experiment for different values of (m, k) such that m+ k = 100
where m is the dimension of the projected Krylov subspace and k is the dimension of the

4for storing Vm, Zm,U, C, and ZU
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TABLE 6.2
Timing (in seconds) and matrix-vector product (mat-vec) comparisons between preconditioned-shifted rGMRES,

shifted GMRES, and sequential applications of rGMRES with cycle length m = 80 and recycled subspace dimension
k = 10 applied to the large QCD matrices. The same preconditioner was used in all experiments.

Method mat-vecs time
srGMRES 3117 358.44
sGMRES 4003 322.65

Seq. rGMRES 4379 469.78
Seq. GMRES 5665 489.16
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FIG. 6.1. Matrix-vector product counts for shifted Recycled GMRES for the sequence of large QCD matrices
and the same shifts as in Table 6.2 for various pairs (m, k) of Krylov subspace dimension and recycled subspace
dimension such that the total augmented subspace Krylov subspace dimension m+ k = 100.

recycled subspace. With this we demonstrate a reduction in iterations as we allow more
information to be retained in the subspace.

In Table 6.3, we study matrix-vector product counts for different methods for shifts of
varying magnitudes. For each shift, we solve just two systems, the base system and one shifted
system. Thus we can see how many additional matrix-vector products are required for shifts of
different magnitudes. What we observe is that for this set of matrices, the overall performance
does not depend on the shift magnitude. For larger shifts, we see that Algorithm 4.2 and
sequentially applied rGMRES are comparable when there is only one shift. For the QCD
matrices, larger real shifts produce better conditioned problems and Table 6.3 illustrates the
trade-off between better conditioning and reduced effectiveness of the proposed algorithm for
larger shifts. We hypothesize that the smallest values that are attained in the middle of the
table are the result of Algorithms 4.1 and 4.2 still being effective for O(1) shifts where we
also observe improved conditioning of the shifted systems.

However, we have seen that for larger numbers of shifts, Algorithm 4.2 can exhibit
superior performance. This raises the question, what are the marginal costs of solving each
additional linear system for Recycled GMRES and shifted Recycled GMRES, i.e., how many
more matrix-vector products does each new shifted system require? This is investigated in
Figure 6.2. For two sets of twenty shifts, we calculated the marginal cost of solving each
additional shifted system using Algorithm 4.2 as compared to Recycled GMRES. In Figure 6.2
the first set of shifts (left-hand figure) were evenly-spaced points from the interval [0, 1], and
the second set of shifts (right-hand figure) were evenly spaced points from the larger interval
[1, 10]. In Figure 6.2 we see that for the smaller interval, the cost of each new shifted system
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TABLE 6.3
Comparison of matrix-vector product counts of 3 methods for different shifts sizes. In each experiment, two

systems were solved, the base system and one shifted system with the shift shown in the table column header.

Method\‖σ‖ 10−3 10−2 10−1 100 101 102 103

Sh. GMRES Alg. 4.1 1330 1405 1294 967 1067 1265 1306
Sh. rGMRES Alg. 4.2 980 1039 1017 804 908 1105 1144

Seq. rGMRES 1183 1170 1077 812 914 1111 1152
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FIG. 6.2. Comparison of the marginal cost of solving each addition shifted system. For the left-hand figure, the
shifts were evenly space points from the interval [0, 1], and in the right-hand figure, the shifts were evenly spaced
points from the larger interval [1, 10].

drops for both algorithms but that Algorithm 4.2 has the lower marginal cost per shift. For
the larger set of shifts, we see that the marginal costs for both algorithms actually increases
for each new shift. However, the marginal cost of each new shifted system for Algorithm 4.2
becomes more stable (it levels off). For sequentially applied Recycled GMRES, the marginal
costs increases steadily for all twenty shifts.

In Figure 6.3, we show the residual histories for systems solved using Algorithm 4.2 for
shifts of various magnitudes,

σ ∈
{

10−3, 10−2, 10−1, 1, 101, 102, 103
}
.

From Figure 6.3, we find (in this example) that the amount of improvement for the shifted
residuals is somewhat predicted by the shift magnitude, though we again observe that the
better conditioning of the systems with larger shifts seems to lead to more rapid convergence
but at the expense of reduced effectiveness of the Lanczos-Galerkin projection.

Omitted here is a study of the eigendecomposition of the residuals, which yielded no
discernible damping of certain eigenmodes or other interesting observable phenomena after
the projection of the shifted residuals in our experiments. Such experiments were to investigate
questions of the convergence rates observed in Figure 6.3.

7. Conclusions. We have presented two new methods for solving a family or a sequence
of families of shifted linear systems with general preconditioning. These methods are derived
from a general framework, which we also have developed in this paper. These methods use
subspaces generated during the minimum residual iteration of the base system to perform
the projections for the shifted systems. This technique is fully compatible with right pre-
conditioning, requiring only some additional storage. The strength of methods derived from
this framework is that preconditioned methods for shifted systems easily can be built on top
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FIG. 6.3. For the large QCD matrices and (m, k) = (100, 5), an illustration of the amount of residual
improvement for different magnitude shifts, σ ∈

{
10−3, 10−2, . . . , 103

}
. In each subplot, we display the residual

curves sequentially to reflect that the algorithm is called for each shifted linear system in sequence. The order in
which the systems were solved is the same as the order of the listed shifts.

of existing minimum residual projection algorithms (and existing codes) with only minor
modifications. We developed two algorithms: shifted GMRES and shifted Recycled GMRES.
We demonstrated with numerical experiments that both methods can perform competitively.

Finally, we note that our framework is fully compatible with flexible and inexact Krylov
subspace methods. As this work all follows from [6, 7, 19, 29], it is also clear that the method
is also applicable to the case that we are solving (2.2) but with right-hand sides bi,` which
vary both with respect to the coefficient matrix Ai and the shift σ`.
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