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MAPS FOR GLOBAL SEPARATION OF ROOTS∗

MÁRIO M. GRAÇA†

Abstract. The global separation of the fixed-points of a real-valued function g on an interval D = [a, b] is
considered by introducing the notions of quasi-step maps associated to g and quasi-step maps educated by two
predicates. The process of ‘education’ by the predicates is an a priori global technique which does not require initial
guesses. The main properties of these maps are studied and the theoretical results are illustrated by some examples
where appropriate quasi-step maps for Newton and Halley methods are applied.
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1. Introduction. Separation of real roots is a classical subject dating back to the seminal
work of Lagrange [11] on polynomial equations. In this paper we aim to offer a different
computational perspective to the global separation of roots of a general nonlinear equation by
constructing certain iteration maps which will be called quasi-step maps.

We consider the problem of finding the roots of a given real-valued equation f(x) = 0
on a closed interval D = [a, b], which we write as a fixed-point equation x = g(x). Let
Z = {z1, z2, . . . , zn} be the non-empty set of (distinct) fixed-points of the map g. If the set Z
was known, then a good model of a map separating the fixed-points of g in the interval D is
the following step map Ψ:

(1.1) Ψ(x) =

n∑
i=1

ziXIi(x), x ∈ D,

where XIi is the characteristic function of the subinterval Ii ⊂ D (i.e., XIi(x) = 1 for x ∈ Ii
and XIi(x) = 0 otherwise) and the intervals Ii are pairwise disjoint.

In general, a step map of the form (1.1) is not directly constructable from g since the set
of fixed-points Z is unknown. It is then natural to look for a map Ψ̃ of the form

(1.2) Ψ̃(x) =

s∑
i=1

g̃(x)XJi
(x), x ∈ D,

where:
(a) The union of the intervals Ji is contained in D and each Ji contains at least one

fixed-point of g.
(b) The function g̃ is continuous on each subinterval Ji.
(c) The function g̃ preserves the fixed-points of g on each Ji.

Like the map (1.1), the map (1.2) may be seen as a tool for a separation of points in Z . A map
Ψ̃ of the type (1.2) will be called a quasi-step map (see Definition 2.1).

The construction of a map g̃ as in (1.2) will be done by considering one or more predicates
which are based upon the map g and the domain D. The predicates to be used hereafter are
denoted by P0 and P1. Given a constant d > 0, these predicates are:

P0 : x ∈ D, y = g(x) ∈ D and |y − x| < d,(1.3)
P1 : x ∈ D, y = g(x) ∈ D, w = g(y) ∈ D and |w − y| ≤ |y − x|.(1.4)
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For any point x ∈ D, the predicate P0 tests the image y = g(x) while P1 tests two applications
of g.

A collection of subintervals Ji ⊂ D is induced by a sort of divide and conquer effect
from the action of one or both predicates. Moreover, when we use the predicate P0 (resp. P1),
the value assigned to g̃(x) in (1.2) will be y = g(x) (resp. w = g(g(x))) for all points x ∈ D
for which P0 (resp. P1) is true. For all the other points x ∈ D for which the predicate under
consideration is false, the value zero will be assigned to g̃(x). A map Ψ̃ as in (1.2) constructed
from one or more predicates will be called an ‘educated’ map in the sense that the construction
of this map is based on the action of the predicate(s).

As explained in detail in Section 2, under mild assumptions on g, the above predicates P0

and P1 lead to quasi-step maps of type (1.2) separating fixed-points of the initial map g. As we
will see, it is convenient to choose an initial map g satisfying the property of attracting points in
D which are sufficiently close to the fixed-points. Fortunately, such a choice of maps g does not
present any difficulty due to the plethora of iteration maps in the literature enjoying the referred
attracting property. Among them we will consider the celebrated Newton-Raphson and Halley
maps since, as it is well known, under mild assumptions, both maps have at least linear local
convergence and so guarantee the referred attracting property ([5, 6, 9, 14, 17, 22, 23, 27]). The
proofs of how the predicates will lead to quasi-step maps separating fixed-points of g, given
in Section 2, use mainly the fixed-point theorem for closed and bounded real intervals or the
Banach contraction principle (see, for instance, [17, 18, 28]) and properties of nonexpansive
iterated contractions [16, 20].

The paper is divided into two parts. In the first part (Section 2) the main theoretical results
are established and the second part deals with worked examples (Section 3). In Section 2
we show under which conditions on g or on its fixed-points, the predicates P0 and P1 will
enable the construction of quasi-step maps providing a global separation of the fixed-points
of g (Propositions 2.4 and 2.6). A brief reference on how the composition of quasi-step maps
may be implemented to achieve accurate approximations of fixed-points of g is also made; see
Section 2.1.1.

Section 3 is devoted to examples illustrating the separation of fixed points by constructing
quasi-step maps from the predicates P0 and P1. We begin with a family of trigonometrical
functions fk presented by Charles Pruitt in [21]. Due to the fact that these functions only admit
integer zeros (cf. Proposition 3.3), we are able to numerically construct (Example 3.4) a step
map which provides not only all the zeros of f3 but it also enables to distinguish composite
numbers from prime numbers in the interval of definition of the map. Pruitt functions are also
used (Examples 3.6 and 3.7) to illustrate the main features of several quasi-step maps derived
from Newton and Halley maps educated by the predicates P0 and P1.

In Example 3.8, a strongly oscillating transcendental function f is considered. Certain
discretized versions of composed Halley educated maps are applied in order to globally
separate a large number of zeros of f producing at the same time accurate approximations of
them.

2. Separation of fixed-points. In this section we show how the predicates P0 and P1

given by (1.3) and (1.4) enable the construction of quasi-step maps of type (1.2) from a given
function g. Given an interval D = [a, b] and a constant d > 0, we note that if x is a fixed-point
of g, then the predicates P0 and P1 hold true for x.

In what follows we assume that a real-valued map g is given, D is the closed interval
D = [a, b] ⊂ R, and XB denotes the characteristic function of the set B. We denote by
Z ⊂ D the (non-empty) finite set of the fixed-points of g, say z1, z2, . . . , zn. Let us define a
quasi-step map.
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DEFINITION 2.1. Let g : R → R be a function and D = [a, b] ⊂ R. A quasi-step map
associate to g is a function Ψ̃ of the form

(2.1) Ψ̃(x) =

s∑
k=1

g̃(x)XJk
(x), for x ∈ D,

where:
(a) Any subinterval Jk contains at least one fixed-point of g, and the union of these

intervals is contained in D (i.e., J =
⋃s

k=1 Jk ⊆ D).
(b) The function g̃ is continuous on each subinterval Jk.
(c) g̃(z) = z for any fixed-point z of g belonging to Jk.
We note that if in the above definition all the subintervals Jk are pairwise disjoint and the

number s coincides with the number n of the fixed-points of g, then the quasi-step map Ψ̃
separates all the fixed-points of g in D.

For practical purposes we choose either one or both predicates P0, P1 to construct a
quasi-step map as in (2.1). Such a map will be called ‘educated’ by the predicate(s) in the
sense that the map is the result of the action of the predicate(s) on the interval D.

DEFINITION 2.2 (Educated map). Let g be a real-valued map and consider the interval
D ⊆ R, XB the characteristic function of a set B, d a positive constant, and P0, P1 the
predicates in (1.3) and (1.4), respectively. Let {Li

k} be the collection of subintervals of D
where the predicate Pi (i = 0, 1) holds true.

(a) The quasi-step map

Ψ̃i(x) =
∑
k

g̃i(x)XLi
k
(x), x ∈ D,

is said to be educated by the predicate Pi, if g̃i(x) = 0 for all x ∈ D \
⋃

k L
i
k and

on each Li
k we have g̃i = g for i = 0 and g̃i = g ◦ g for i = 1.

(b) The quasi-step map

Ψ̃(x) =
∑
k

g̃(x)XJk
(x), x ∈ D,

is said to be educated by both predicates P0 and P1, if we have g̃i(x) = 0 for
x ∈ D \ ∪k(L0

k ∩ L1
k) and g̃ = g ◦ g in each Jk = L0

k ∩ L1
k.

Note that a map educated by the predicate P0 is a map which is necessarily zero at all
x ∈ D where (x, g(x)) does not lie in a band of width 2d centered at the line y = x. This is the
reason why we call d the vertical displacement parameter. On the other hand, the predicate P1

tests y = g(x) ∈ D and w = g(y) ∈ D satisfying |w − y| ≤ |y − x|. Since for y 6= w the
quantity (w − y)/(y − x) represents the slope of the line through the points (x, y) and (y, w)
we call P1 the slope predicate.

We note that the ‘education’ of a map is an a priori global technique (i.e., no initial
guesses are required) which may be seen as a counterpart of the classical a posteriori stopping
criteria used in root solvers algorithms for the local search of roots; see for instance [15] and
references therein.

Although in this work we only adopt the predicates P0 and P1, other predicates could
be considered in order that the respective educated map will satisfy other criteria such as
monotony or alternate local convergence. Also, an ‘education’ of the map f instead of the
map g may be of interest, namely in the light of well-known sufficient conditions for local
monotone convergence of Newton and Halley methods; see for instance [4, 13].
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2.1. Quasi-step maps from the predicates P0 and P1. In this section we address the
question what kind of functions g may be chosen in order to construct educated maps from the
predicates P0 and P1 leading to a global separation of fixed-points of g. In particular, with
respect to the predicate P0, we show that the contractivity of g near each of its fixed-points and
a conveniently chosen vertical displacement parameter d provide quasi-step maps isolating
fixed-points of g in D. In the case of the predicate P1, under mild hypotheses on g, this
predicate implies that g is a strictly non-expansive iterated contraction near fixed-points, which
enables the construction of an educated map by P1 that isolates fixed-points of g as well.

Recall [16, p. 120] that a map g defined on a domain D is called contractive on a set
D0 ⊂ D if there is an α < 1 such that |g(x)− g(y)| ≤ α |x− y|, for all x, y ∈ D0.

LEMMA 2.3. Let d be a positive number and z a fixed-point of g belonging to D = [a, b].
If g is contractive in the interval

Iz = [z − d, z + d] ⊆ D,

and the predicate P0 holds true for any point of Iz , then there exists a bounded closed interval

Jz = [z − ε, z + ε] ⊆ Iz, ε > 0,

such that the map

Ψ̃z(x) = g̃z(x)XJz (x) x ∈ D,

with g̃z(x) = 0 if x ∈ D \ Jz and g̃z = g in Jz isolates the (unique) fixed-point z of g in D.
Proof. First note that the hypothesis on the predicate P0 gives

(2.2) |g(x)− x| < d, x ∈ Iz.

The points (x, g(x)) of the plane satisfying the above inequality (2.2) belong to a closed
planar region delimited by the parallel horizontal lines y = z + d, y = z − d and the oblique
parallel lines y = x+ d, y = x− d. Denote by P the parallelogram bounding such a region,
and note that the diagonals of P intersect at the point A = (z, z).

Let D be the closed disk of radius r = d/
√

2 centered at A. This disk is inscribed in the
region delimited by P . As by hypothesis g is contractive in Iz , g is continuous in this interval.
So, there exists δ > 0 such that

x ∈ [z − δ, z + δ] =⇒ |g(x)− z| < r.

Also by the contractivity of g, there exists a number K with 0 ≤ K < 1 (K is a contractivity
constant) such that the graph of g lies inside a cone section with vertex at A and whose edges
form an angle |α| = arctan(K) < π/4 at the vertex A. Therefore, there exists a number
0 < ε < r such that the square region S = [z − ε]× [z + ε] ⊂ R2 is contained in the disk D.
Moreover, for the closed interval Jz = [z− ε, z+ ε] we have g(Jz) ⊆ Jz . As Jz is closed and
g is contractive in Jz , it follows from the Banach contraction principle that there is a unique
fixed-point of g in Jz , which is obviously the point z. It is now immediate that the map Ψ̃z

isolates z in D.
We now assume that the setZ of the fixed-points of g is ordered and define the resolution η

of Z as the minimum of the distances between any pair of consecutive points of Z .
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PROPOSITION 2.4. Let Z = {z1, . . . , zn} be the ordered set of the fixed-points of g and η
its resolution. Consider g and P0 satisfying the conditions of Lemma 2.3 on each interval
Izi = [zi − d, zi + d] with

d <
η

2
·

Then, there exists a collection of disjoint subintervals Jzi ⊂ Izi with J =
⋃n

i=1 Jzi ⊂ D
and maps g̃zi defined as g̃zi(x) = 0 for x ∈ D \ J and g̃zi = g in each interval Jzi such that

Ψ̃(x) =

n∑
i=1

g̃zi(x)XJzi
(x), x ∈ D,

is an educated map by P0 separating all the fixed-points of g in D.
Proof. The hypotheses on g and P0 imply that the conditions in Lemma 2.3 are satisfied

for each fixed-point zi. That is, (i) there exists a closed subinterval Jzi = [zi − εi, zi + εi] of
Izi = [zi − d, zi + d] ⊂ D, (ii) the map g is continuous in Jzi , and (iii) the fixed-point zi is
the unique fixed-point of g in Jzi .

Hence, as d < η/2, the subintervals Jzi are obviously disjoint and, by the definition of
an educated map by P0 (cf. Definition 2.1), the map Ψ̃ is an educated map separating the
fixed-points of g.

We now explain the role of the slope predicate P1 in the construction of a quasi-step
map. The next lemma shows that if |g′(x)| 6= 1 near a given fixed-point z (i.e., a non-neutral
fixed-point) and the predicate P1 holds in a certain interval containing z, then it is possible to
isolate this fixed-point.

LEMMA 2.5. Let z ∈ D be a fixed-point of a map g which is of class C1 in the interval
Xz = [z − ε, z + ε] ⊂ D (ε > 0). Assume that g(Xz) ⊆ Xz , |g′(x)| 6= 1 for all x ∈ Xz , and
P1 holds true for all non-fixed-points of g belonging to Xz . Then we have:

(i) There is a closed bounded subinterval X̃z = [z− µ, z+ µ] of Xz where the map g is
a strictly nonexpansive iterated contraction, that is,

|g(g(x))− g(x)| < α |g(x)− x|, for α < 1.

(ii) The map

(2.3) Ψ̃z(x) = g̃z(x)XX̃z
(x), x ∈ D,

with g̃z(x) = 0 for x ∈ D \ X̃z and g̃z = g ◦ g in X̃z isolates the fixed-point z.
For the notion of an iterated contraction and properties of nonexpansive iterated contrac-

tions, we refer to [16, Chapter 12.3] and [20, Section 6].
Proof. (i) Note that the inequality in P1 means that |g(g(x))− g(x)| ≤ |g(x)− x| for all

x in Xz with x 6= g(x). Defining the function

q(x) =
g(g(x))− g(x)

g(x)− x
,

we have ∣∣∣∣g(g(x))− g(x)

g(x)− x

∣∣∣∣ ≤ 1 ⇐⇒ |q(x)| ≤ 1,

which implies that

(2.4) lim
x→z
|q(x)| ≤ 1.
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Let N(x) = g(g(x))− g(x) and M(x) = g(x)− x. Since g ∈ C1(Xz), both the functions
N and M are of class C1 in Xz . As

N ′(x) = g′(x) (g′(g(x))− 1) and M ′(x) = g′(x)− 1,

L’Hôpital’s rule gives

lim
x→z
|q(x)| = lim

x→z

|N ′(x)|
|M ′(x)|

= lim
x→z

|g′(x) (g′(g(x))− 1)|
|g′(x)− 1|

= |g′(z)| 6= 1,

where the last equality follows from the continuity of g and g′ and the hypothesis |g′(x)| 6= 1.
Hence, the inequality (2.4) holds strictly proving that g is a strictly nonexpansive iterated
contraction in an interval centered at z, say X̃z .

(ii) Since g is strictly nonexpansive in X̃z and g(X̃z) ⊆ X̃z , by Edelstein’s Theorem
([16, Chapter 12.3]), the sequence xk+1 = g(xk), for any x0 ∈ X̃z converges to the unique
fixed-point of g in X̃z . As g̃(X̃z) ⊆ X̃z , it holds that g(g(X̃z)) ⊆ X̃z , and thus the map Ψ̃z

in (2.3) isolates the fixed-point z in D.
We note that if the hypotheses of the above lemma are satisfied for all the fixed-points

of g, then we are able to separate all of them. The precise statement is as follows.
PROPOSITION 2.6. Let Z = {z1, . . . , zn} be the fixed-points of a map g. Suppose

that for each point zi in Z all the assumptions of Lemma 2.5 are satisfied in the subinter-
vals Xzi = [zi − εi, zi + εi]. Then, there exists a collection of disjoint subintervals of D,
Ki = [zi − δ, zi + δ], and maps g̃zi with g̃zi(x) = 0 for x ∈ D \

⋃
iKi and g̃zi = g ◦ g in

Ki such that the map

(2.5) Ψ̃(x) =

n∑
i=1

g̃zi(x)XKi
(x), x ∈ D,

is an educated map by the predicate P1 separating all the fixed-points of g.
Proof. By Lemma 2.5 there are closed subintervals X̃zi = [zi − µi, zi + µi] each of them

containing a unique fixed-point zi of g. Taking δ = min{µ1, . . . , µn} and the subintervals
Ki = [zi − δ, zi + δ] ⊂ X̃zi , the collection of the intervals Ki is disjoint and the union of
these intervals is contained inD. Also, by the proof of Lemma 2.5, the function g is continuous
on each Ki, and so g ◦ g is continuous on each Ki. Therefore, the map Ψ̃ in (2.5) satisfies
all the conditions of the definition of an educated map by P1 and clearly separates all the
fixed-points zi of g.

2.1.1. Composition of quasi-step maps. It is easy to see that the composition of a
quasi-step map with itself is again a quasi-step map. Moreover, if the function g̃ entering
in Definition 2.1 of a quasi-step map Ψ̃ is contractive in each interval Ji, then it is natural
that compositions of Ψ̃ with itself will provide better approximations of the fixed-points of g
than Ψ̃. Since in Example 3.8 we use compositions of Halley educated maps by P1, let us
briefly explain some of their features.

Let gr denote the r-fold composition of the map g with itself, that is, gr = (g◦g◦· · ·◦g◦g)

and g1 = g. Let as before Z = {z1, . . . , zn} be the set of fixed-points of a map g and Ψ̃(x) a
quasi-step map

Ψ̃(x) =

n∑
k=1

g̃(x)XJk
(x), for x ∈ D,
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with g̃ a contractive map on each interval Jk = [zk − δ, zk + δ] ⊂ D and g̃(zi) = zi, for all
i = 1, . . . , n. Due to the contractivity of g̃ on each Jk, there exists a constant 0 ≤ L < 1 such
that

|g̃r(x)− zk| ≤ Lr|x− zk|, x ∈ Jk.

This implies that the values of Ψ̃r on each subinterval Jk are closer to zk than the values of Ψ̃
in the same interval.

We remark that if g is a map satisfying all the conditions of Proposition 2.6, then the
respective map Ψ̃ educated by the predicate P1 is of the form (1.2). Therefore, for r > 1, the
map Ψ̃r should be considered as a map in D closer to a step map than the map Ψ̃.

3. Examples. We present several examples illustrating our procedures for the global
separation of roots. The first set of examples deal with a family of functions fk which we
name Pruitt functions (see Definition 3.2) and the second set (Example 3.8) with a strongly
oscillating transcendental function.

In Example 3.4 we obtain a step map for the Pruitt function f3, and in the remaining
examples, appropriate quasi-step maps are constructed based on the Newton and Halley maps
educated by one or both the predicates P0 and P1. For a convergence analysis and historical
developments of the Newton and Halley methods, we refer to [1, 4, 9, 13, 19, 20, 27].

As before, the equation x = g(x) is a fixed-point version of f(x) = 0. The set of fixed-
points of g, Z , is generally unknown, and we aim to find its elements in a given interval D. In
all the examples, no initial guesses of the fixed-points are required. We consider for g either
the Newton Nf or the HalleyHf maps associated to f . These maps are defined as follows.

DEFINITION 3.1 (Newton and Halley maps). Given a sufficiently differentiable map f ,
the Newton and Halley maps associate to f are, respectively,

Nf (x) = x− f(x)/f ′(x),

Hf (x) = x− 2f(x)f ′(x)

2 f ′(x)2 − f(x) f ′′(x)
·

(3.1)

It is well-known (see [13, 17, 19] and references therein) that if f is sufficiently smooth
on the interval D, both Nf and Hf share the following properties: (a) for simple zeros of
f , Nf andHf have a local order of convergence p > 1, and (b) for multiple zeros of f , Nf

andHf have a local linear convergence, (i.e., p = 1). In particular, for simple zeros, the order
of convergence of Nf and ofHf is, respectively, p ≥ 2 and p ≥ 3.

In the light of our purposes, bothNf andHf satisfy a very convenient property concerning
the zeros of f : (i) If z is a simple zero of f , then z is a locally super attracting fixed-point
of Nf and Hf . (ii) If z is a zero of f of higher multiplicity, then z is locally an attracting
fixed-point of Nf andHf . In both cases the assumption |g′(x)| 6= 1, for x sufficiently close
to z, of Lemma 2.5 is automatically satisfied. The other assumption in this lemma, that is,
g(Xz) ⊆ Xz depends on the particular function f . However, in the case that this hypothesis
does not hold for f , we can use both predicates P0 and P1 in order to separate the fixed-points
of g taking an appropriate vertical displacement parameter d in the predicate P0.

We note that besides Nf and Hf , one could choose any other iteration map g from the
plethora of maps in the literature even with a higher order of convergence, for instance, the
family of Halley maps presented in [24], which has maximal order of convergence, or the
recursive family of iteration maps in [8] obtained from quadratures which has arbitrary order
of convergence.
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3.1. Step and quasi-step maps for Pruitt’s functions. In this paragraph we consider
a family of functions introduced by Pruitt in [21] to illustrate our construction of step and
quasi-step maps as tools for global separation of roots. Due to the peculiar fact that these
functions only admit integer roots, we begin by showing that in this case we are able to present
a step map which provides all the zeros of a Pruitt’s function in a given interval.

DEFINITION 3.2. Let k be a positive integer. The kth Pruitt function fk is defined by

(3.2) fk(x) =

k∏
i=1

sin

(
xπ

pi

)
, for x ∈ Ik = [3/2, p2k + 1/3],

where pi denotes the ith prime number.

Step maps for Pruitt functions. In what follows we denote by [x] the closest integer to
x ∈ R. The next proposition gives a step map of a Pruitt function.

PROPOSITION 3.3. Let fk be the kth Pruitt function defined on Ik as in (3.2), [ · ] : Ik → Z
the closest integer function, and Ψk : Ik → Ik the map defined by

(3.3) Ψk(x) =

{
[x], if fk([x]) = 0,

0, if fk([x]) 6= 0.

Then,
(i) the set Z of the fixed-points of Ψk coincides with the set of zeros of fk, and it is given

by Z = P0 ∪M with

P0 = {p : p is prime and 2 ≤ p ≤ pk},
M = {s : s is a multiple of an element of P0, and pk < s ≤ p2k},

(ii) Ψk is a step map in Ik separating all the zeros of fk in the interval Ik,
(iii) the zeros of Ψk which are integers are the primes p such that pk ≤ p < p2k.
Proof. (i)–(ii) Noting that the solutions of sin(π x/p) = 0 are x = r p (with r ∈ Z), it

follows from the definition of fk that a zero of fk is an integer which belongs either to the set
of primes P0 or to the setM of the multiples of the elements in P0. As the fixed-points of Ψk

are the integers of Ik which are zeros of fk, the fixed-point set of Ψk is precisely Z = P0∪M.
It is now obvious that (3.3) can be written as the step map

Ψk(x) =

p2
k−1∑
i=1

ci XIi(x), x ∈ R,

where ci is a non-negative integer and the intervals Ii are defined as

Ii = [i+ 1/2, i+ 3/2], for i = 1, . . . , p2k − 2,

Ip2
k−1 = [p2k − 1/2, p2k + 1/3],

with I =
⋃p2

k−1
i=1 Ii, which means that Ψk separates the fixed-points of fk.

(iii) From the proof of (i)–(ii) it is immediate that the integers in Ik \ Z are the prime
numbers p belonging to [pk − 1/2, p2k + 1/3], that is, pk ≤ p < p2k.

We remark that from the above proposition, the zeros of fk in Ik = [2, p2k] are the first pk
primes, 2, 3, . . . , pk, and all their multiples which are less or equal to p2k. Furthermore, any
integer j with pk < j ≤ p2k, is a composite number if fk(j) = 0 and is a prime number if
fk(j) 6= 0.
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FIG. 3.1. Left: the graph of the Pruitt function f3 on D = [1.5, 25.5]. Right: the graph of the step map Ψ3

and the line y = x (dashed).

In the following example the step map given in Proposition 3.3 is constructed for the 3rd
Pruitt function.

EXAMPLE 3.4. Let us consider k = 3 and the Pruitt function f3:

f3(x) = sin(xπ/2) sin(xπ/3) sin(xπ/5), x ∈ I3 = [2− 1/2, 25 + 1/3].

The system Mathematica [25] has been utilized to compute the step map Ψ3 defined in (3.3).
For this purpose, the built-in system function Round[ ] is used as the closest integer function.
Note that for numbers γ of the form γ = x.5, Round[γ] produces the nearest even integer.

The graphs of f3 and Ψ3 are displayed in Figure 3.1. Projecting the graph of Ψ3 onto
the y-axis we obtain the zeros of f3. In fact, as predicted by Proposition 3.3, this set is
Z = P0 ∪M, with

(3.4) P0 = {2, 3, 5}, M = {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25},

where P0 is the set of the first 3 primes and M the set of composite numbers which are
multiples of the primes in P0. Moreover, by Proposition 3.3 (iii), the step map Ψ3 may also be
used to detect the prime numbers greater than 5. It is clear from the graph of Ψ3 in Figure 3.1,
that these prime numbers are the integers (on the x-axis) which belong to those intervals
where Ψ3 is equal to zero. These primes are in the set P = {7, 11, 13, 17, 19, 23}.

REMARK 3.5. The sieve of Eratosthenes is an algorithm [3] providing the prime numbers
less than a given integer n ≥ 2. One of the versions of this algorithm computes precisely the
set of primes P from the set P0 ∪M in Proposition 3.3. Thus, the step function (3.3) may be
seen as another computational version of the Eratosthenes algorithm. We refer to [12] for a
discussion of efficient practical versions of the sieve of Eratosthenes using appropriate data
structures.

Halley and Newton quasi-step maps for Pruitt functions. In the examples below we
illustrate the construction of Halley and Newton quasi-step maps educated by the predicates
P0 and P1 for the Pruitt family. Although such construction does not depend on an a priori
knowledge of the multiplicities of the zeros of the function, we note that for a Pruitt function fk,
we are dealing with both simple and multiple zeros in the interval Ik. In fact, the multiplicities
of the zeros of fk satisfy an interesting property: on Ik there are zeros of multiplicity m, where
m takes all the integer values m = 1, 2, . . . , k − 1. This property follows from the particular
form of fk, and although it can be proved in full generality, we briefly explain it through a
particular example, namely, with the Pruitt function f4.
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The set of the first four primes is P4 = {2, 3, 5, 7}. LetM1 be the set of all the multiples
of the elements of P4 which belong to the interval I4 = [4− 1/2, 49 + 1/3]. That is,

M1 = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24,

25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49}.

The elements ofM1 are zeros of f4 having multiplicity at least one. Consider now the 6 =
(
4
2

)
numbers which are products of two elements of P4. These products are

s1 = 2× 3, s2 = 2× 5, s3 = 2× 7, s4 = 3× 5, s5 = 3× 7, s6 = 5× 7.

LetM2 be the set of the multiples of s1, s2, . . . , s6 which belong to I4:

M2 = {6, 10, 12, 14, 15, 18, 20, 21, 24, 28, 30, 35, 36, 40, 42, 45, 48}.

The elements ofM2 are zeros of f4 with multiplicity at least two. Thus, the simple zeros
of f4 belong to the set Z1 =M1\M2, namely to

Z1 = {2, 3, 4, 5, 7, 8, 9, 16, 22, 25, 26, 27, 32, 33, 34, 38, 39, 44, 46, 49}.

Taking the products of three elements of P4, we obtain

s1 = 2× 3× 5, s2 = 2× 3× 7, s3 = 2× 5× 7, s4 = 3× 5× 7.

The setM3 of all the multiples of s1 to s4 belonging to I4 is

M3 = {s1, s2} = {30, 42}.

As all the elements ofM3 have multiplicity greater or equal to three, the set Z2 =M2 \M3

is the set of double zeros of f4:

Z2 = {6, 10, 12, 14, 15, 18, 20, 21, 24, 28, 35, 36, 40, 45, 48} (double zeros).

Finally, as the product of all the elements of P4 is 2× 3× 5× 7 > 49, there are no zeros of
multiplicity greater or equal to four in I4. This means that

Z3 =M3 = {30, 42} (triple zeros)

is the set of the zeros of f4 with multiplicity m = 3 in the interval I4.
Note that for the function f3 treated in Example 3.4, either using the previous reasoning

or just by an inspection of the graph of f3 in Figure 3.1, we draw the following conclusions:
• The set of simple zeros of f3 is

(3.5) {2, 3, 4, 5, 8, 9, 14, 16, 21, 22, 25}.

• The set of double zeros of f3 is

(3.6) {6, 10, 12, 15, 18, 20, 24}.

The following two examples illustrate several features of the Halley and Newton quasi-
step maps associated to Pruitt functions educated by the predicates P0 and P1 in (1.3) and (1.4),
respectively. A quasi-step map educated by the predicate P0 will be denoted by Ψ̃0 and by Ψ̃1

in the case of P1.
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FIG. 3.2. The Halley educated map Ψ̃0 for d = 0.5 and D = [1.5, 8.5].
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FIG. 3.3. (A) Left: the Halley educated map Ψ̃0 for d = 0.2. (B) Right: the Halley educated map Ψ̃0 for d = 0.1.

EXAMPLE 3.6 (Halley quasi-step maps for f3). Let f3 be the 3rd Pruitt function restricted
to the interval D = [1.5, 8.5] and g = Hf3 the respective Halley map. Let Ψ̃0 be a Halley map
educated by the predicate P0.

Recall from (3.5) and (3.6) that in D all the zeros of f3 are simple except z = 6, which
is a double zero. So, 2, 3, 4, 5, 8 are super attracting fixed-points ofHf3 while z = 6 is only
attracting. Between two consecutive zeros of f3 there is exactly one repelling fixed-point
ofHf3 . This means thatHf3 has fixed-points which are not roots of f3(x) = 0. Moreover, the
fixed-points ofHf3 which are zeros of f3 are precisely the attracting fixed-points ofHf3 as it
can be observed in Figure 3.2. The resolution of the set of the attracting fixed-points ofHf3 is
η = 1; see Proposition 2.4. By this proposition, if a vertical displacement d is chosen such
that d < η/2 = 0.5, then Ψ̃0 must separate the attracting fixed-points ofHf3 (i.e., the zeros
of f3) in D. This does not mean that Ψ̃0 separates all the fixed-points ofHf3 as it is clear from
Figure 3.3(A) where the graph of Ψ̃0 for d = 0.2 shows that in the interval containing 5, there
are two fixed-points ofHf3 .

In Figure 3.2 and Figure 3.3(B) we display the graphs of the quasi-step map Ψ̃0 obtained
for the vertical displacement d = 0.5 and d = 0.1. We observe that for d = 0.5, the educated
map Ψ̃0 coincides withHf3 while for d = 0.1 all the fixed-points ofHf3 (not just the attracting
ones) have been separated in D.

We now consider f3 defined in D = [1.5, 25.5] and the corresponding Halley mapHf3 .
As before, the graph ofHf3 in Figure 3.4(A) clearly shows the nature of the fixed-points of
this map. Namely, those fixed-points ofHf3 that are roots of f3(x) = 0 are either attracting or
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FIG. 3.4. (A) Left: the Halley’s map applied to the Pruitt function f3, in D = [1.5, 25.5]. (B) Right: the graph
of Ψ̃1 separating all the zeros of f3.
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FIG. 3.5. (A) Left: the Newton map Nf3 in D = [1.5, 25.5]. (B) Right: the Newton educated map Ψ̃0, for
d = 0.5.

super attracting, and the remaining fixed-points are repelling fixed-points. The repelling fixed-
points ofHf3 do not satisfy the predicate P1 since they are in contradiction with Lemma 2.5.
Therefore, a map Ψ̃1, educated by P1, separates all the roots of f3(x) = 0 (cf. Proposition 2.6)
as it is clear from the graph of Ψ̃1 displayed in Figure 3.4(B).

We remark that for certain classes of functions such as the Pruitt family fk, the corre-
sponding Halley map enjoys the important property of continuity. This property is not satisfied
in the case of the Newton map which will be treated in the next example. Moreover, the
analysis ofHf3 in Figure 3.2 confirms what is expected concerning the global convergence
of the Halley method with respect to the monotone behaviour of these iterative processes as
discussed in [4, 10].

EXAMPLE 3.7 (Newton quasi-step maps for f3). Let us consider the Newton map Nf3

corresponding to the Pruitt function f3 defined in D = [1.5, 25.5]. In contrast with the
Halley function of the previous example, Nf3 is not continuous in D as the graph of Nf3 in
Figure 3.5(A) shows. This graph presents several vertical asymptotes which are due to the
singularities of the function f3 in the interval. However, this time the fixed-points of Nf3

coincide with the roots of f3(x) = 0, that is, Z = P0 ∪M with P0 andM given by (3.4).
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FIG. 3.6. Left: the strongly oscillating function f . Right: its unbounded derivative.
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FIG. 3.7. Halley educated maps H̃f (left) and H̃2
f (right).

Obviously, the resolution of Z is η = 1, and all the fixed-points of Nf3 satisfy the attractivity
property referred in Proposition 2.4. By this proposition, if one chooses a vertical displacement
d < 0.5, then all the roots of f3 will be separated by the quasi-step map Ψ̃0 educated by
the predicate P0. Figure 3.5(B) shows that the Nf3-educated map Ψ̃0 for d = 0.5 globally
separates the zeros of f3.

3.2. Quasi-step maps for a strongly oscillating function. The composition of quasi-
step maps can be particularly useful to compute highly accurate roots of strongly oscillating
functions as it is illustrated in the following numerical example.

EXAMPLE 3.8 (Strongly oscillating function). We consider the function f(0) = 0,
f(x) = (x + 1/2)3/2 sin(1/x), for x 6= 0, defined in the interval D = [−1/2, 1/2]. The
function f is differentiable with unbounded derivative and so it is not locally Lipschitzian.
Close to the point x = 0 the function is strongly oscillating (see Figure 3.6).

As before, let Hf be the Halley map associated to f as defined in (3.1). The map H̃f

denotes the Halley map educated by the slope predicate P1 and H̃r
f denotes its r-fold composi-

tion.
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TABLE 3.1
CPU time (in seconds) to run FindInstance to simultaneously compute a sample of s roots in the interval

J = [−0.0097, 0.0097].

s CPU time
2 0.38

100 16.3
250 40.5
500 80.5

In Figure 3.7 the maps H̃f and H̃2
f are displayed, which shows the quasi-step nature of

these maps near the endpoints of the interval. Moreover, the same figure shows that in the
subinterval I = [−0.2, 0.2] there is a large number of fixed-points clustering around the origin.

We used the system Mathematica to compute approximations of the fixed-points of H̃f

in a certain interval centered at the origin. All the computations were carried out on a 2GHz
Intel Core i7 personal computer using standard double-precision floating-point arithmetic.
Our computations were compared with those obtained by using some built-in routines of the
system Mathematica. In particular, the command FindInstance[expr, vars,Reals, s], with
vars and expr assumed to be real, was used to compute an (unsorted) sample of s real roots
of f(x) = 0. Notably, in the interval J = [xmin, xmax] = [−0.0097, 0.0097], the code line
FindInstance[{f [u] == 0., xmin ≤ u ≤ xmax}, u, s] was run for several values of s. The
respective CPU time (in seconds) is given in Table 3.1, which shows that for large s the CPU
time approximately doubles with s. Unless one uses the system option WorkingPrecision,
Table 3.1 shows that for s = 200 zeros of f in the interval J , the referred time of 80.5 seconds
is quite unacceptable. In contrast, using the same default double-precision computer arithmetic,
the Halley educated map H̃f can separate, in less than one second, s = 200 fixed-points in the
interval J .

We considered discretized versions of the maps H̃f , H̃2
f , and H̃3

f obtained by divid-
ing the interval J = [xmin, xmax] = [−0.0097, 0.0097] into N = 1500 parts of length
h = (xmax − xmin)/N . The respectiveN+1 values of the maps at the points xi = xmin+i h,
with i = 0, . . . , N , were tabulated. Due to the large number of points considered, Table 3.2
only presents some of these values, namely those which are near the endpoints of J . For
convenience, we call T the full set of data obtained.

It is clear from Table 3.2 that the points xi where the value zero occurs for all the maps
H̃f , H̃2

f , and H̃3
f provide a collection of the subintervals where the slope predicate holds true.

In the full set T we found 273 of such subintervals. In each of these subintervals there exists
at least one fixed-point of H̃f . The analysis of T also shows that the maps H̃3

f and H̃2
f are

numerically invariant (see also Table 3.2), and so all the computed nonzero values H̃2
f (xi) are

approximations of fixed-points of the Halley mapHf with eight significant decimal digits.

The previous procedures may be implemented in order to obtain high-precision approxi-
mations of the fixed-points ofHf . This can be achieved by considering in the computations
not only a convenient machine precision but also an appropriate r-fold composition of H̃f . For
instance, taking the same sample of 1501 points xi in J , an extended precision of 1000 decimal
digits, and computing H̃r

f (xi), for r = 2 to r = 5, we obtained a new table of data in about 10
seconds of CPU time. In this case one can verify that H̃4

f and H̃5
f are numerically invariant. In

particular, for the point xN−1 = 0.0097− h ' 0.0096870667, we have zN−1 = H̃5
f (xN−1)
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TABLE 3.2
Educated maps H̃r

f (x), for r = 1, 2, 3.

xi H̃f (xi) H̃2
f (xi) H̃3

f (xi)

-0.0097 -0.0097000521 -0.0097000521 -0.0097000521
-0.0096870667 -0.0096871749 -0.0096871749 -0.0096871749
-0.0096741333 -0.0096743489 -0.0096743489 -0.0096743489
-0.0096612 -0.0096615735 -0.0096615738 -0.0096615738
-0.0096482667 0 0 0
-0.0096353333 0 0 0
-0.0096224 -0.0096221501 -0.0096221501 -0.0096221501
-0.0096094667 -0.0096095803 -0.0096095803 -0.0096095803

· · · · · · · · · · · ·
· · · · · · · · · · · ·

0.0096094667 0.0096095803 0.0096095803 0.0096095803
0.0096224 0.0096221501 0.0096221501 0.0096221501
0.0096353333 0 0 0
0.0096482667 0 0 0
0.0096612 0.0096615735 0.0096615738 0.0096615738
0.0096741333 0.0096743489 0.0096743489 0.0096743489
0.0096870667 0.0096871749 0.0096871749 0.0096871749
0.0097 0.0097000521 0.0097000521 0.0097000521

with

zN−1 =0.00968717492126197578990697768061822598

...
3785734861841858811484051025080640392894,

(3.7)

where only a certain number of the initial and the final 1000 decimal machine digits are
displayed. Computing the residual f(zN−1), we obtain

f(zN−1) ' 0. ∗ 10−997.

In order to check that zN−1 is in fact an accurate root of f(x) = 0, we use the Mathematica
function FindRoot as follows:

xN−1 = 0.0096870667;

z = x /. F indRoot[f [x] == 0, {x, xN−1}, WorkingPrecision− > 1000];

The respective value of z is such that z − zN−1 ' 0. ∗ 10−1002, which shows that all the 1000
decimal digits of zN−1 in (3.7) are correct.

As a final remark let us mention that we have applied with success several Newton-
and Halley-educated maps to a set of test functions suggested in [2, 7, 14, 26]. Suitable
discretized versions of the respective quasi-step maps allow the computation of high-accurate
roots regardless whether these roots are simple or multiple, and so the approach seems to
be particularly useful, in particular for the global separation of zeros of strongly oscillating
functions.
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