
Electronic Transactions on Numerical Analysis.
Volume 44, pp. 73–82, 2015.
Copyright c© 2015, Kent State University.
ISSN 1068–9613.

ETNA
Kent State University

http://etna.math.kent.edu

REVISITING THE STABILITY OF COMPUTING THE ROOTS
OF A QUADRATIC POLYNOMIAL∗

NICOLA MASTRONARDI† AND PAUL VAN DOOREN‡

Abstract. We show in this paper that the roots x1 and x2 of a scalar quadratic polynomial ax2 + bx+ c = 0
with real or complex coefficients a, b, c can be computed in an element-wise mixed stable manner, measured in
a relative sense. We also show that this is a stronger property than norm-wise backward stability but weaker than
element-wise backward stability. We finally show that there does not exist any method that can compute the roots in
an element-wise backward stable sense, which is also illustrated by some numerical experiments.

Key words. quadratic polynomial, roots, numerical stability

AMS subject classifications. 65G30, 65G50, 65H04

1. Introduction. In this paper we consider the very simple problem of computing the
two roots of a quadratic polynomial

p(x) := ax2 + bx+ c,

where the coefficients a, b, c are either in R or in C, and where a 6= 0 in order for the equation
to have indeed two roots. This is a very classical problem for which the solution is well known,
namely

x1,2 =
−b±

√
b2 − 4ac

2a
·

But the straightforward implementation of the above formula is quite often numerically
unstable for special choices of the coefficients a, b, c. One would like, on the other hand, to
have a computational scheme that produces computed roots x̂1 and x̂2 which correspond to an
element-wise backward stable error, i.e., the relative backward errors are of the order of the
unit roundoff u for each individual coefficient a, b, and c. In fact, we can assume that a is not
perturbed in this process. We will call this Element-wise Backward Stability (EBS):

a(x− x̂1)(x− x̂2) = ax2 + b̂x+ ĉ

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u).

We will see that this cannot be proven in the general case, but instead, we can obtain the
slightly weaker result of Element-wise Mixed Stability (EMS), which implies that the computed
roots x̂1 and x̂2 satisfy

a(x− x̃1)(x− x̃2) = ax2 + b̂x+ ĉ

|x̂1 − x̃1| ≤ ∆|x̃1|, |x̂2 − x̃2| ≤ ∆|x̃2|,

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u),

∗Received September 29, 2014. Accepted November 13, 2014. Published online on February 6, 2015. Recom-
mended by W. B. Gragg. The work of the first author is partly supported by the GNCS INdAM project “Metodi di
regolarizzazione per problemi di ottimizzazione vincolata” and by MIUR Progetto Premiale 2012 “Mathtech”. The
work of the second author is partly supported by the Belgian Network DYSCO (Dynamical Systems, Control, and
Optimization), funded by the Interuniversity Attraction Poles Programme, initiated by the Belgian State, Science
Policy Office. The scientific responsibility rests with its authors.
†Istituto per le Applicazioni del Calcolo “M. Picone”, sede di Bari, Consiglio Nazionale delle Ricerche, Via G.

Amendola, 122/D, I-70126 Bari, Italy (n.mastronardi@ba.iac.cnr.it).
‡Catholic University of Louvain, Department of Mathematical Engineering, Avenue Georges Lemaitre 4, B-1348

Louvain-la-Neuve, Belgium (paul.vandooren@uclouvain.be).

73

ETNA
Kent State University

http://etna.math.kent.edu

74 N. MASTRONARDI AND P. VAN DOOREN

which means that the computed roots are close to roots of a nearby polynomial, all in a relative
element-wise sense.

This last property is also shown to be stronger than the so-called Norm-wise Backward
Stability (NBS), which only imposes that the vector of perturbed coefficients is close to the
original vector in a relative norm sense:

a(x− x̂1)(x− x̂2) = ax2 + b̂x+ ĉ∥∥∥[a b c
]
−
[
a b̂ ĉ

]∥∥∥ ≤ ∆
∥∥∥[a b̂ ĉ

]∥∥∥, ∆ = O(u).

This problem was studied already by several authors, but we could not find any conclusive
answer to the EBS for any of the proposed algorithms.

In this paper, we will first consider the case of real coefficients since it is more frequently
occurring and the results are slightly stronger. We then show how it extends to the case of
complex coefficients. We end with a section on numerical experiments, where we also show
that there does not exist a method that exhibits EBS for all quadratic polynomials.

2. Real coefficients. Before handling the general case where all three coefficients are
nonzero, we point out that when b and/or c are zero, then the proof of EBS is rather simple.

2.1. Case c = 0. If c = 0, then the roots can be computed as follows

x1 := −b/a, x2 = 0,

which is element-wise backward stable since under the IEEE floating point standard, we have
that the computed roots satisfy

x̂1 = −fl(b/a) = −b(1 + δ)/a = −b̂/a, x̂2 = 0, |δ| ≤ u,

where u is the unit round-off of the IEEE floating point standard; see [1]. The backward error
then indeed satisfies the relative element-wise bounds

|b̂− b| ≤ u|b|, |ĉ− c| = 0|c|.

2.2. Case b = 0. If b = 0, then the roots can be computed as follows

x1 =
√
−c/a, x2 := −x1,

which is also element-wise backward stable since under the IEEE floating point standard, we
have that the computed roots satisfy the element-wise bounds

x̂1 = fl
(√

fl(−c/a)
)

=
√
−c(1 + η)/a, x̂2 = −x̂1, |η| ≤ γ3 :=

3u

1− 3u
.

Notice that if sign(c) = sign(a), then the roots are purely imaginary. The backward error for
this computation satisfies the relative element-wise bounds

|b̂− b| ≤ 0|b|, |ĉ− c| ≤ γ3|c|.

We can thus assume now that all coefficients are nonzero. We start by reducing the
problem to a simpler “standardized" form in order to simplify the computational steps.

ETNA
Kent State University

http://etna.math.kent.edu

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 75

2.3. Scaling the polynomial p(x). We scale the coefficients so that the polynomial is
monic, b1 := b/a, c1 := c/a. This step can be performed in a backward and forward stable
way since we assumed a 6= 0. According to the IEEE floating point standard, we have that the
computed values b̂1 = fl(b1) and ĉ1 = fl(c1) satisfy the relative element-wise bounds

|b1 − b̂1| ≤ u|b1|, |c1 − ĉ1| ≤ u|c1|.

This implies that we can as well consider the monic polynomial

p1(x) := p(x)/a = x2 + b1x+ c1.

2.4. Scaling the variable x. We transform the variable x to y := −x/α, where
|α| :=

√
|c1| and sign(α) = sign(b1), and consider the polynomial p1(−αy)/α2 (denoted

as q(y)), which is now monic in y,

q(y) := y2 − 2βy + e = 0,

and where β ∈ R+ and e = ±1. The formulas to compute α, β, and e are

α := sign(b1)
√
|c1|, β := |b1|/(2

√
|c1|), e := sign(c1) · 1.

Since the sign function is exact under relative perturbations, e is computed exactly. It then
follows that α and β can be performed in a backward and forward stable way: the computed
values α̂ = fl(α) and β̂ = fl(β) satisfy the relative element-wise bounds

|α− α̂| ≤ u|α|, |β̂ − β| ≤ 2u|β|,

and e is computed exactly. This implies that we can as well consider the polynomial q(y). We
recapitulate this in a formal lemma.

LEMMA 2.1. The transformations

[α, β] = ga[b, c] and [b, c] = g−1
a [α, β]

between the polynomial p(x) = ax2 + bx + c, with a 6= 0, and the monic polynomial
p(−αy)/(aα2) = q(y) = y2 − 2βy + e defined by the forward and backward relations

α := sign(b/a)
√
|c/a|, β := |b/a|/(2

√
|c/a|),

and

b = −2aβα, c = aeα2,

where a and e = sign(c/a) · 1 are not perturbed, are both element-wise well-conditioned
maps.

Proof. If we define the perturbations for the forward map as

[α(1 + δα), β(1 + δβ)] = ga[b(1 + δb), c(1 + δc)],

then the above discussion reveals that the relative perturbations δα, δβ of the result are O(u) if
the relative perturbations of the data, δb, δc, are O(u). The same reasoning can be applied to
the perturbation of the backward map

[b(1 + δb), c(1 + δc)] = g−1
a [α(1 + δα), β(1 + δβ)],

which now states that δb, δc = O(u) provided that δα, δβ = O(u) since only multiplications
are involved in the backward relations.

This lemma implies that relative small perturbations in the coefficients of q(y) can be
mapped to relative small perturbations in the coefficients of p(x), both element-wise and
norm-wise.

ETNA
Kent State University

http://etna.math.kent.edu

76 N. MASTRONARDI AND P. VAN DOOREN

2.5. Calculating the roots. The roots of the polynomial q(y) := y2− 2βy+ e are given
by

y1 = β +
√
β2 − e, y2 = β −

√
β2 − e.

The way these roots are computed depends now on the values of β and e.
Case 1: e = −1 (real roots)

y1 = fl
(
β + fl

(√
fl(β2 + 1)

))
, y2 = −fl(1/y1).

Case 2: e = 1 and β ≥ 1 (real roots)

y1 = fl
(
β + fl

(√
fl(β + 1)(β − 1)

))
, y2 = fl(1/y1).

Case 3: e = 1 and β < 1 (complex conjugate roots)

y1 = β + fl
(√

fl(β + 1)(1− β)
)
, y2 = y1.

Let us now check that the roots are computed in a forward stable manner. The error
analysis for the operations performed in the IEEE floating point standard gives the following
bounds.
Case 1: e = −1 (real roots)

ŷ1 =
(
β +

√
(β2 + 1)

)
(1 + η3), ŷ2 = −(1/ŷ1)(1 + η1), |ηi| ≤ γi.

Case 2: e = 1 and β ≥ 1 (real roots)

ŷ1 =
(
β +

√
(β + 1)(β − 1)

)
(1 + η4), ŷ2 = (1/ŷ1)(1 + η1), |ηi| ≤ γi.

Case 3: e = 1 and β < 1 (complex conjugate roots)

ŷ1 = β +
(√

(β + 1)(1− β)
)

(1 + η3), ŷ2 = ŷ1, |ηi| ≤ γi.

Notice that these bounds imply forward stability for all these computations. Combining
this with Lemma 2.1, we have thus shown the following theorem.

THEOREM 2.2. The computed roots ŷi, i = 1, 2, of the polynomial q(y) satisfy the relative
forward bounds

|ŷ1 − y1| ≤ ∆|y1|, |ŷ2 − y2| ≤ ∆|y2|, ∆ = O(u),

and the transformed roots x̂i = fl(−αŷi), i = 1, 2, satisfy the mixed bounds

a(x− x̃1)(x− x̃2) = ax2 + b̂x+ ĉ

|x̂1 − x̃1| ≤ ∆|x̂1|, |x̂2 − x̃2| ≤ ∆|x̂2|,

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u).

We can therefore also evaluate the backward bound by recomputing the sum and product
of the computed roots. We first point out that the sum and product will be real because even
when the two computed roots ŷ1 and ŷ2 are complex, they will be exactly complex conjugate.

ETNA
Kent State University

http://etna.math.kent.edu

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 77

Since the product of the exact roots is e = ±1 and the computed roots are forward stable,
we obviously have that the product of the computed roots satisfies

ŷ1ŷ2 = e
(
1 +O(u)

)
,

which is element-wise backward stable in a relative sense.
For the sum of the computed roots, the situation is more problematic. Since |y1| ≥ |y2|

and both of these roots are computed in a forward stable way, we have that

(2.1) ŷ1 + ŷ2 = β +O(u)ŷ1,

but ŷ1 can be much larger than β, and the backward error will then be much larger than β ·O(u).
Let us analyze the three cases. For case 3, the sum of the computed roots is exactly 2β since
this is a representable number. In case 2, ŷ1 ≤ 2β, and (2.1) then implies backward stability
for the element β. But when β � 1, we can not obtain a sufficiently small backward error
for (2.1) since the recomputed sum has an error that is of the order of O(u)ŷ1 � O(u)β. It
happens in this special case that element-wise backward stability gets lost.

3. Complex coefficients. The cases when b and/or c are zero are again easy to handle,
but the relative error bounds are slightly larger. Since exact error bounds are more difficult to
describe, we prefer to just indicate their order of magnitude. Let us first treat the case of zero
values.

If c = 0, then the roots can be computed as follows

x1 := −b/a, x2 = 0,

which is element-wise backward stable since under the IEEE floating point standard, we have
that the computed roots satisfy (see [1])

x̂1 = −fl(b/a) = −b(1 + δ)/a = −b̂/a, x̂2 = 0, |δ| = O(u).

The backward error then indeed satisfies the relative element-wise bounds

|b̂− b| ≤ |δ||b|, |ĉ− c| ≤ 0|c|, |δ| = O(u).

If b = 0, then the roots can be computed as follows

x1 =
√
−c/a, x2 := −x1,

which is also element-wise backward stable since under the IEEE floating point standard, we
have that the computed roots satisfy (see [1])

x̂1 = fl
(√

fl(−c/a)
)

=
√
−c(1 + η)/a, x̂2 = −x̂1, |η| = O(u).

The backward error then satisfies the relative element-wise bounds

|b̂− b| ≤ 0|b|, |ĉ− c| ≤ |η|.|c|, |η| = O(u).

When there are no zero values, we again first apply a scaling of the problem.

3.1. Scaling the polynomial p(x). As in the real case, we scale the coefficients as
follows: b1 := b/a, c1 := c/a. This can be performed in a backward and forward stable way
since a 6= 0. According to the IEEE floating point standard, we have indeed that

|b− b1| ≤ |∆||b|, |c− c1| ≤ |∆||c|, |∆| = O(u).

This implies that we can as well look at the monic polynomial p(x)/a = p1(x) = x2+b1x+c1.

ETNA
Kent State University

http://etna.math.kent.edu

78 N. MASTRONARDI AND P. VAN DOOREN

3.2. Scaling the variable x. This becomes more complicated for the case of complex
coefficients. We now have that y := −x/α, where |α| :=

√
|c1| and arg(α) = arg(b1). This

implies that we can again consider the polynomial

(3.1) q(y) = y2 − 2βy + e = 0,

where β ∈ R+ and |e| = 1. The formulas to compute α, β, and e are

b1 = |b1|eb, c1 = |c1|ec, α := eb
√
|c1|, β := |b1|/(2

√
|c1|), e := ec/(eb)

2,

where eb := arg(b1) and ec := arg(c1). For computational reasons, we also compute the
square root f of e, i.e., f2 = e.

We have again a similar lemma describing the transformation between the coefficients of
the polynomials

LEMMA 3.1. The transformations

[α, β, f] = ha[b, c] and [b, c] = h−1
a [α, β, f]

between the polynomial p(x) = ax2 + bx + c, with a 6= 0, and the monic polynomial
p(−αy)/(aα2) = q(y) = y2 − 2βy + f2 defined by the forward and backward relations

α := arg(b/a)
√
|c/a|, β := |b/a|/(2

√
|c/a|), f =

√
arg(b/a)/ arg(c/a)

and

b = −2aβα, c = af2α2,

where a is not perturbed, are both element-wise well-conditioned maps.
Proof. The proof is very similar to that of Lemma 2.1 with the difference that all quantities

are complex except for β, which is real, and f, which can be parameterized by a real angle.

This lemma implies again that relative small perturbations in the coefficients of q(y) can
be mapped to relative small perturbations in the coefficients of p(x), both element-wise and
norm-wise.

3.3. Calculating the roots. The roots of the polynomial (3.1) are now given by

y1 = β +
√
β2 − f2, y2 = β −

√
β2 − f2.

But we only need to consider the case where e = f2 is not real since otherwise we can apply
the analysis of the previous section. The algorithm for calculating the two roots involves first
computing y1 as the root of largest module and then computing y2 using y2 = f2/y1. If we
compute the square root of the complex number β2 − f2 as

γ =
√

(β − f)(β + f),

then the roots of the polynomial are given by

y1 := β + sign(real(γ))γ, y2 = f2/y1.

The rounding errors can be written as follows

γ̂ =
√
β2 − f2(1 + δ1),

ŷ1 = (β + |real(γ̂)|) (1 + δ2) + sign(real(γ̂)) imag(γ̂) ,

ŷ2 = f2(1 + δ3)/ŷ1,

ETNA
Kent State University

http://etna.math.kent.edu

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 79

where all |δi|, i = 1, 2, 3, are of the order of the unit round-off u. These formulas yield that y1
and y2 can be computed in a forward stable way.

The backward error analysis of these operations will be a problem when β is much smaller
than |f |. This leads to the same conclusions as in the case of real coefficients: when the sum
of the roots is much smaller than the roots themselves, then the relative backward error of the
sum can be large despite the fact that the forward errors in the computation as a function of β
and f are small.

4. Comparing the different types of stability. In this section we compare the different
types of stability in terms of the constraints that they impose on the computed roots. First of
all, it is obvious that EBS implies EMS since EMS follows from EBS simply by choosing

x̃1 = x̂1, and x̃2 = x̂2.

We now prove that EBS implies NBS, which is slightly more involved.
LEMMA 4.1. Let the computed roots x̂1 and x̂2 of p(x) = ax2 + bx+ c satisfy

a(x− x̃1)(x− x̃2) = ax2 + b̂x+ ĉ,

|x̂1 − x̃1| ≤ ∆|x̃1|, |x̂2 − x̃2| ≤ ∆|x̃2|,

|b− b̂| ≤ ∆|b|, |c− ĉ| ≤ ∆|c|, ∆ = O(u).

Then they also satisfy the norm-wise bound

a(x− x̂1)(x− x̂2) = ax2 + ˆ̂bx+ ˆ̂c,∥∥∥[a b c
]
−
[
a ˆ̂b ˆ̂c

]∥∥∥ ≤ 3∆
∥∥∥[a b̂ ĉ

]∥∥∥, ∆ = O(u).

Proof. It follows from the EMS constraints that

ˆ̂b = b̂+ a(x̂1 − x̃1 + x̂2 − x̃2) and ˆ̂c = ĉ+ a(x̃1x̃2 − x̂1x̂2),

which yields the bounds

|b− ˆ̂b| ≤ |b− b̂|+ |a|
(
|x̂1 − x̃1|+ |x̂2 − x̃2|

)
,

|c− ˆ̂c| ≤ |c− ĉ|+ |a|
(
|x̃1x̃2 − x̂1x̂2|

)
.

Using the constraints of EMS, we then also obtain

|b− ˆ̂b| ≤ ∆|b|+ ∆|a|
(
|x̃1|+ |x̃2|

)
,

|c− ˆ̂c| ≤ ∆|c|+ ∆|a|
(
|x̃1||x̃2|

)
.

Switching to norms and using the triangle inequality then yields∥∥∥[0 |b− ˆ̂b| |c− ˆ̂c|
]∥∥∥

2
≤ ∆

∥∥∥[0 |b̂| |ĉ|
]∥∥∥

2
+ ∆|a|

∥∥∥[0 |x̃1|+ |x̃2| |x̃1x̃2|
]∥∥∥

2
.

Because of Lemma A.1 in Appendix A, we also have

∆|a|
∥∥∥[0 |x̃1|+ |x̃2| |x̃1x̃2|

]∥∥∥
2
≤
√

3∆
∥∥∥[a |b̂| |ĉ|

]∥∥∥
2
,

and we finally obtain the norm-wise bound∥∥∥[0 |b− ˆ̂b| |c− ˆ̂c|
]∥∥∥

2
≤ 3∆

∥∥∥[a b̂ ĉ
]∥∥∥

2
.

ETNA
Kent State University

http://etna.math.kent.edu

80 N. MASTRONARDI AND P. VAN DOOREN

FIG. 5.1. Backward errors for different cases.

We also show that in general, EBS cannot always be satisfied, i.e., there does not exist
any algorithm that achieves this. A counterexample is given by the polynomial

y2 − 2β − 1, where β = 2−t + 2−2t, 2−2t ≤ u/2, 2−t ≈
√
u.

One easily checks that β is a representable number and that the roots of the polynomial are
given by the expansion

y1 = 1 + β + β2/2− β4/8 + . . . , y2 = −1 + β − β2/2 + β4/8 + . . .

Their exactly rounded values are given by the representable numbers

ŷ1 = 1 + 2−t, ŷ2 = −1 + 2−t,

which gives a sum equal to the representable number

ŷ1 + ŷ2 = 2.2−t.

But this yields a relative error of the order of
√
u ! Moreover, all other representable numbers

in the neighborhood of y1 and y2 are on a grid of width u, and all possible combinations of
their sums will still have a comparable relative error. It is thus impossible to find representable
numbers that would satisfy the EBS property.

5. Numerical results. We tested the routine given in Appendix B for the relative back-
ward errors on three sets of 1000 random quadratic polynomials. We first took random real
polynomials, then random complex polynomials, and finally random real polynomials with a
very small sum of their roots (of the order of

√
ε). The test results are displayed in Figure 5.1.

ETNA
Kent State University

http://etna.math.kent.edu

STABILITY OF COMPUTING THE ROOTS OF A QUADRATIC POLYNOMIAL 81

The first plot clearly indicates EBS since the relative errors of the recomputed sums
and products of the roots is of the order of the unit round-off u. The second plot shows the
same results for polynomials with complex coefficients. The third plot shows that for real
polynomials q(y) with a very small (but non-zero) coefficient β, EBS cannot be ensured by
our algorithm. This is consistent with our analysis, which shows that there does not exist any
algorithm to ensure EBS for such polynomials.

Appendix A.

LEMMA A.1. For any real numbers a, b, and c, we have the inequality

(|a|+ |b|)2 + |ab|2 ≤ 2c2 + (a+ b)
2

+ (1 + 2/c2)(ab)2,

which also implies for c2 = 3/2 that∥∥∥[0 |a|+ |b| |ab|
]∥∥∥2

2
≤ 3
∥∥∥[1 a+ b ab

]∥∥∥2
2
.

Proof. The first inequality follows from

(|a|+ |b|)2 = (|a| − |b|)2 + 4|ab| ≤ (a+ b)2 + 4|ab|,

and

2(c− |ab|/c)2 ≥ 0 =⇒ 4|ab| ≤ 2c2 + 2(ab)2/c2.

Appendix B.
function [x1,x2,beta,e,scale] = quadroot(a,b,c)
% Function [x1,x2,beta,e] = quadroot(a,b,c) computes the
% two roots x1 and x2 of a quadratic polynomial
% ax^2+bx+c=0 in a stable manner

beta=[];e=[];scale=[];
% special cases of zero elements
if a==0, return, else b1=b/a;c1=c/a; end
if b==0, x1=sqrt(-c1);x2=-x1; return, end
if c==0, x1=-b1; x2=0; return, end
% generic case
if isreal([b1,c1]),

% with real coefficients
c1abs=abs(c1);
scale=sqrt(c1abs)*sign(b1);
beta=b1/(2*scale);
e=sign(c1);
% computing the roots
if e==-1, y1=beta+sqrt(beta^2+1);y2=-1/y1;
else,

if beta >= 1
y1=beta+sqrt((beta+1)*(beta-1));
y2=1/y1;

else

ETNA
Kent State University

http://etna.math.kent.edu

82 N. MASTRONARDI AND P. VAN DOOREN

im=sqrt((beta+1)*(1-beta));
y1=beta+j*im;y2=beta-j*im;

end
end

else,
% with complex coefficients
scale=sign(b1)*(sqrt(abs(c1)));
beta=abs(b1)/(2*sqrt(abs(c1)));
f=sqrt(sign(c1))/sign(b1);
gamma=sqrt((beta-f)*(beta+f));
y1=beta+sign(real(gamma))*gamma;
y2=f^2/y1;

end
x1=-y1*scale;x2=-y2*scale;

REFERENCES

[1] N. HIGHAM, Accuracy and Stability of Numerical Algorithms, 2nd. ed., SIAM, Philadelphia, 2002.

