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MONOTONE-COMONOTONE APPROXIMATION BY FRACTAL CUBIC
SPLINES AND POLYNOMIALS∗

PUTHAN VEEDU VISWANATHAN† AND ARYA KUMAR BEDABRATA CHAND†

Abstract. We develop cubic fractal interpolation functionsHα as continuously differentiable α-fractal functions
corresponding to the traditional piecewise cubic interpolant H . The elements of the iterated function system are
identified so that the class of α-fractal functions fα reflects the monotonicity and C1-continuity of the source function
f . We use this monotonicity preserving fractal perturbation to: (i) prove the existence of piecewise defined fractal
polynomials that are comonotone with a continuous function, (ii) obtain some estimates for monotone and comonotone
approximation by fractal polynomials. Drawing on the Fritsch-Carlson theory of monotone cubic interpolation and
the developed monotonicity preserving fractal perturbation, we describe an algorithm that constructs a class of
monotone cubic fractal interpolation functions Hα for a prescribed set of monotone data. This new class of monotone
interpolants provides a large flexibility in the choice of a differentiable monotone interpolant. Furthermore, the
proposed class outperforms its traditional non-recursive counterpart in approximation of monotone functions whose
first derivatives have varying irregularity/fractality (smooth to nowhere differentiable).

Key words. Fractal function, cubic Hermite fractal interpolation function, fractal polynomial, Fritsch-Carlson
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1. Introduction. Fractal interpolation functions (FIFs) defined through an iterated func-
tion system (IFS) [2, 3] is an advancement to the classical interpolation techniques in numerical
analysis. A traditional interpolating spline can be generalized with a family of differentiable
FIFs (fractal splines) [4]. In this way, the fractal methodology provides more flexibility and
versatility in the choice of an interpolant. Consequently, this function class can be useful for
mathematical and engineering problems wherein the classical spline interpolation approach
may not work satisfactorily, for instance, when an interpolation/approximation problem com-
bined with optimization is to be approached. Since the cubic Hermite interpolants and the cubic
splines have proved to be authoritative tools in fields such as applied mathematics, computer
aided geometric design (CAGD), tomography, reverse engineering, and signal processing,
efforts have been taken to study their fractal analogues; see, for instance, [11, 13, 30].

In addition to providing a good approximant to a given function, scientists and engineers
usually demand that interpolation/approximation methods should represent the physical reality
as far as possible. In practice, it is desirable that the shape of the interpolant/approximant
is compatible with the given data or function to be approximated. A typical demand in the
interpolation problem is that of producing a monotone function to fit a prescribed set of
monotone data. In this regard, the traditional monotone cubic spline interpolation has been
extensively researched. Fritsch and Carlson [21] proposed a necessary and sufficient condition
for a cubic polynomial to be monotone in an interval and used it to develop a two pass
algorithm for constructing a monotone cubic interpolant to a given set of monotone data. The
algorithm discussed by Eisenstat et al. [18] provides an improvement to the Fritsch-Carlson
(FC) algorithm. Fritsch and Butland [20] recommended a modified technique to simplify
the FC algorithm. Subsequently, many variants and improvements to the FC algorithm were
proposed; see, for instance, [22, 41].
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There has always been a need for advancement in the methods developed earlier so that
new techniques incorporate some additional features of interest and can be utilized for more
accurate results; a fractal interpolant is not an exception. In this respect, as the cubic Hermite
FIFs that generalize the traditional piecewise cubic interpolant have been studied earlier, a
natural question of interest is whether the requirement of monotonicity preservation can be
incorporated into the cubic fractal interpolation scheme. This paper is devoted to answer this
question in the affirmative. Consequently, it is a sequel to [13], which treats cubic Hermite
FIFs and certain constrained interpolation aspects, and it can be viewed as a contribution to
unify two methodologies, fractal interpolation and shape preserving interpolation, that seem to
be developing independently and in parallel; see also [36, 37]. In this way, the paper is aimed
at one of the trending topics among the fractal community, namely, the demonstration that
fractals are everywhere [3], through a basic problem in numerical analysis.

In Section 2, we recall some of the requisite basic tools, and we obtain cubic FIFs
as α-fractal functions corresponding to the traditional cubic interpolant. For blending the
requirement of monotonicity with the cubic FIF, we shall adapt a slightly more general
approach in Section 3. We identify the elements of the IFS so that the fractal functions fα,
which are regarded as the fractal perturbation of a given function f , retain the C1-continuity
and monotonicity of the germ f . In particular, if we start with a monotone cubic interpolant
H , then this procedure culminates with the construction of the monotone cubic FIFs Hα. The
advantage is that one may adapt the most suitable method to construct monotone cubic splines
(though, in this paper, we use the classical method by Fritsch and Carlson) which can be then
perturbed to obtain monotone cubic FIFs.

The derivative of the traditional C1-continuous monotone cubic interpolant H has dis-
continuities only at interior knots corresponding to the partition of the interpolation interval.
In contrast to this, its fractal generalization Hα may have a derivative (Hα)(1) which is
nondifferentiable on a finite or dense set of points in the interpolation interval. Here we note
that conditions on the scaling factors for which a fractal interpolation function is k-times
differentiable and some special conditions under which a fractal function is nondifferentiable
in a dense subset of the interpolation interval are known [4, 23, 28]. However, the most general
conditions on the parameters of the IFS so that the corresponding FIF is nondifferentiable
in a dense subset of the interpolation interval still remains an open question. Further, the
irregularity in a FIF can be quantified by using the fractal dimension, a quantifier (index)
that provides a geometric characterization of the measured variable. Let us note here that
various kinds of fractal dimensions, such as Hausdorff dimension and Minkowski dimension
of FIFs, are reported repeatedly in the literature; see, for instance, [2, 3, 15, 19, 39]. On the
other hand, Besicovitch and Ursell, in the reference [8], proved that the graph of a smooth
function has fractal dimension one. In this case, this parameter cannot be used as an index
for the complexity of the signal. As a consequence, nonsmoothness is a required condition
in order to obtain an approximation of the geometrical complexity of arbitrary signals. For
a particular example, we refer the reader to [32], wherein fractal dimension is used to study
the complexity of electroencephalographic signals and to discriminate an attention disorder.
For many real-world phenomena, fractal dimension has been estimated from the sampled
data using different techniques as described in [3, 19]. The Matlab package “boxcount” may
be used to estimate the fractal dimension of 1D, 2D, or 3D sets, using the box counting
method [25].

There are many practical situations wherein a prescribed data set is to be modeled with a
shape preserving interpolant and, at the same time, a data set representing a certain derivative
is to be modeled with an irregular curve. Let us cite a particular example in the following. A
sphere falling through a fluid is a classical problem in fluid dynamics, which is used to study
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the viscoelastic properties of the fluid. A sphere falling in a viscous Newtonian fluid reaches a
steady terminal velocity; the approach to this terminal velocity can be shown to be monotonic.
A falling sphere in a polymeric fluid approaches a terminal velocity, though sometimes with
an oscillating transient. On the other hand, a sphere falling in a wormlike micellar solution
does not approach a steady terminal velocity, instead, undergoes continual oscillations or
even chaotic motion as it falls [33]. Hence, to simulate the displacement and velocity profiles
of such motions, monotonicity/positive interpolants with varying irregularity (which can be
quantified using a suitable index) in the derivatives may be advantageous. Similarly, monotone
data with varying irregularity in the variable representing the derivative arise naturally and
abundantly in electromechanical systems, e.g., a pendulum-cart system [34]. Therefore, in
addition to be of theoretical interest, the proposed method possesses potential applications in
various nonlinear and nonequilibrium phenomena.

As far as the recursive construction of the smooth shape preserving interpolants and the
ability to generate fractality in the derivatives of the constructed interpolants are concerned,
the fractal interpolation schemes present significant similarities with the subdivision schemes.
A brief comparison of the two methodologies, the fractal interpolation schemes and the
subdivision schemes, is given in [13].

Our approach to finding suitable elements of the IFS so that the α-fractal function fα

preserves the monotonicity of f paves the way to establish the existence of piecewise defined
fractal polynomials that are comonotone with a given function. We deduce inequalities of
Jackson’s type for monotone and comonotone fractal polynomial approximations in Section 4.

2. Background and preliminaries. To make our presentation fairly self-contained, the
basic tools needed in the course of the exposition are reviewed here. Our sources for this
material are [2, 3, 4, 21, 29].

2.1. Classical piecewise cubic interpolation. Given a partition ∆∗ = {x1, x2, . . . , xN}
of an interval I = [x1, xN ] satisfying x1 < x2 < · · · < xN and a set of values {yi}Ni=1, a uni-
variate interpolation problem deals with the construction of a continuous function H : I → R
fulfilling H(xi) = yi, i = 1, 2, . . . , N . A piecewise cubic function H ∈ C1(I) is uniquely
determined by {yi}Ni=1 and {di}Ni=1, where di = H(1)(xi), i = 1, 2, . . . , N . From the Tay-
lor representation for an interpolation polynomial, the i-th polynomial curve Hi = H|Ii ,
i ∈ J = {1, 2, . . . , N − 1}, defined over the subinterval Ii = [xi, xi+1], has the form:

(2.1) Hi(x) =
di + di+1 − 2∆i

h2
i

(x−xi)3+
−2di − di+1 + 3∆i

hi
(x−xi)2+di(x−xi)+yi,

where ∆i denotes the secant slope given by ∆i = yi+1−yi
hi

and hi = xi+1 − xi.

2.2. Monotone piecewise cubic interpolation. For brevity and simplicity, we assume
that the data to be interpolated is monotone increasing throughout the remainder of the
paper, unless specifically stated otherwise. Given a set of monotone increasing data (i.e.,
yi ≤ yi+1 for all i ∈ J), Fritsch and Carlson [21] developed an algorithm which ensures
that the corresponding cubic interpolant H is monotone. The basis of this algorithm is to
check whether a cubic polynomial H defined on an interval [u, v] is monotone on that interval,
and it is given in the following lemma. Thanks to Schmidt-Heß conditions for the positivity
(nonnegativity) of a quadratic polynomial [35], a proof of this lemma that is relatively simpler
than that appearing in [21] can be obtained, and it is supplied in the Appendix.
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LEMMA 2.1. Let H be a cubic polynomial on [u, v] given by

H(x) =
H(1)(u) +H(1)(v)− 2∆

(v − u)2
(x− u)3 +

−2H(1)(u)−H(1)(v) + 3∆

(v − u)
(x− u)2

+H(1)(u)(x− u) +H(u),

where ∆ = H(v)−H(u)
v−u . When ∆ 6= 0, let β = H(1)(u)

∆ , γ = H(1)(v)
∆ . Then H is monotone

on [u, v] if and only if: (i) H(1)(u) = H(1)(v) = 0 if ∆ = 0, or (ii) (β, γ) ∈ M if
∆ 6= 0, whereM is the closed region bounded by the axes and the “upper half” of the ellipse
x2 + y2 + xy − 6x− 6y + 9 = 0 shown in Figure 2.1.
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FIG. 2.1. Fritsch-Carlson monotone region.

Starting with a given set of data and approximate derivative values {di} at knots, we
construct the cubic Hermite interpolant (cf. (2.1)) for these values, and use the aforementioned
region to check whether the interpolant is monotone in each subinterval Ii = [xi, xi+1], i ∈ J .
The cubic polynomial Hi is monotone on [xi, xi+1] if and only if (di, di+1) lies in the closed
regionMi, whereMi =M·∆i = {(x∆i, y∆i) : (x, y) ∈M}, ∆i = yi+1−yi

hi
, i ∈ J . If it

is not monotone in Ii, then this condition provides a modification rule to make it monotone.

Algorithm (Fritsch-Carlson):
(i) Initialize the derivatives di, i = 1, 2, . . . , N , so that sgn(di) = sgn(di+1) = sgn(∆i). If

∆i = 0, set di = di+1 = 0.
(ii) For each interval Ii = [xi, xi+1] in which (di, di+1) /∈ Mi, modify di and di+1 to d∗i

and d∗i+1 such that (d∗i , d
∗
i+1) ∈Mi.

This kind of algorithm is known as a fit and modify type algorithm. Fritsch and Carl-
son observed that decreasing the magnitude of di in moving (di, di+1) intoMi may force
(di−1, di) out ofMi−1 and vice versa. Due to this reason, they suggested to work with a
subregion S ofM enjoying the property that if (x, y) ∈ S and 0 ≤ x̃ ≤ x, 0 ≤ ỹ ≤ y, then
(x̃, ỹ) ∈ S. The recommended regions are (see Figure 2.2):

(i) S1: region bounded by the lines x = 0, x = 3, y = 0, and y = 3.
(ii) S2: region bounded by x = 0, y = 0, and the circle x2 + y2 = 32.

(iii) S3: triangular region determined by the lines x = 0, y = 0, and x+ y − 3 = 0.
(iv) S4: region bounded by x = 0, y = 0, 2x+ y − 3 = 0, and x+ 2y − 3 = 0.
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(a): S1
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(b): S2
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(c): S3
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(d): S4

FIG. 2.2. Fritsch-Carlson subregions Si, i = 1, 2, 3, 4, for monotone cubic interpolants.

2.3. Fractal interpolation and α-fractal functions. We begin with the following:
DEFINITION 2.2. Let (X, dX) be a complete metric space and M ∈ N, M > 1. If

wm : X → X , m = 1, 2, . . . ,M , are continuous mappings, then I = {X;w1, w2, . . . , wM}
is called an iterated function system (IFS). If, in addition, there exist constants cm, 0 ≤ cm < 1
such that

dX
(
wm(x), wm(y)

)
≤ cm dX(x, y)

for all x, y ∈ X and m = 1, 2, . . . ,M , then I is called a hyperbolic IFS. The constant
c = max{cm : m = 1, 2, . . . ,M} is referred to as the contractivity factor of the IFS I.

Associated with the IFS I, there is a set-valued mapping W from the hyperspaceH(X)
of nonempty compact subsets of (X, dX) into itself. More precisely,

W : H(X)→ H(X), W (E) :=

M⋃
m=1

wm(E).

The map W is referred to as the collage map to alert that W (E) is a union or collage of sets.
The Hausdorff metric hH(X) completesH(X). When I is a hyperbolic IFS with contractivity
factor c, it is well-known thatW is a contraction on the complete metric space

(
H(X), hH(X)

)
with the same contractivity factor c. A basic result in the theory of IFS is the following:

THEOREM 2.3 (Barnsley [2]). Given a hyperbolic IFS I on a complete metric space
(X, dX) and any set A0 ∈ H(X), there exists a unique set A, called the attractor of the
hyperbolic IFS, such that A = lim

n→∞
W on(A0) and W (A) = A. Here the limit is taken with

respect to the Hausdorff metric and W on denotes the n-fold composition of W with itself.
Note that the term attractor is chosen to suggest the convergence of A0 to A under

successive applications of W . Next we shall address the question of how to obtain functions
whose graphs are attractors of suitable IFSs. For N ∈ N, N > 2, suppose a set of data points
{(xi, yi) ∈ R2 : i = 1, 2, . . . , N} is given, where x1 < x2 < · · · < xN . Let I = [x1, xN ],
and for i ∈ J = {1, 2, . . . , N − 1}, let Ii = [xi, xi+1]. Suppose Li : I −→ Ii, i ∈ J are
contraction homeomorphisms satisfying

(2.2) Li(x1) = xi, Li(xN ) = xi+1.

Further, let Fi : I × R −→ R be continuous functions satisfying the conditions

(2.3) |Fi(x, y)− Fi(x, y∗)| ≤ ri|y − y∗|, Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1,

where x ∈ I , y, y∗ ∈ R, and 0 ≤ ri < 1 for all i ∈ J . Define, wi(x, y) =
(
Li(x), Fi(x, y)

)
.

PROPOSITION 2.4 (Barnsley [2]). The IFS {I × R;wi, i ∈ J} admits a unique attractor
G, and G is the graph of a continuous function g : I → R which obeys g(xi) = yi for
i = 1, 2, . . . , N.

The function g occurring in Proposition 2.4 is called a fractal interpolation function (FIF)
corresponding to the IFS {I × R;wi, i ∈ J}. Let G := {g∗ ∈ C(I) : g∗(x1) = y1, g

∗(xN ) =
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yN} be endowed with the uniform metric. Define the Read-Bajraktarević operator T : G → G
by Tg∗(x) = Fi

(
L−1
i (x), g∗ ◦ L−1

i (x)
)

for x ∈ Ii, i ∈ J . Then g is the unique function
satisfying the functional equation:

(2.4) g(x) = Fi
(
L−1
i (x), g ◦ L−1

i (x)
)
, x ∈ Ii, i ∈ J.

Though this section is not intended to get into the specifics of particular flavors of fractal
interpolation, we shall mention a few for the benefit of the reader. Apart from this recursive
functional equation, the FIF g possesses an explicit representation in terms of an infinite series
which depends on (N − 1)-adic expansion of points on [0, 1]; see [14]. Further, g can be
expressed using the technique of operator approximation [12]. As with wavelets and many
other new function types, “closed form” expressions for FIFs generally take the form of one
of the two types of algorithms, chaos game (a Markov chain Monte Carlo algorithm) and
deterministic iteration; both approaches are highly accurate and have been reported in many
places in the literature; see, e.g., [2, 5, 10, 24]. In many cases, evaluation of a FIF at a specific
point can be achieved by summing a rapidly convergent series. For instance, the attractor of
the IFS{

I × R : w1(x, y) =
(x

2
, αy + sin(πx)

)
, w2(x, y) =

(
x+ 1

2
, αy − sin(πx)

)}
,

where |α| < 1 and I = [0, 1] is the graph of the function
∞∑
n=0

αn sin(2n+1πx) [6]. The main

step in the computation of fractal functions relates in a way or other to the evaluation of the
Read-Bajraktarević (RB) operator. Reference [7] proposes discretization of the RB operator
to deliver values of the full RB operator applied to a function and demonstrates that fractal
functions defined by IFSs or local IFSs can be used for easy, cheap, and accurate computations.

Notice that the functional equation for the FIF (2.4) provides a rule to predict the values of
the interpolant at refined mesh points, and thus reminds of a subdivision scheme. With a simple
example, let us note here that an FIF, in fact, provides a subdivision scheme [7]. However,
the fact that it arises from an IFS makes the mathematical treatments such as convergence,
smoothness, etc. relatively easier to handle. Let I = [0, 1], and L1(x) = x

2 , L2(x) = x+1
2 .

Further, let Fi(x, y) be continuous for i = 1, 2, satisfying conditions prescribed as above.
One obtains a subdivision scheme with meshes Nk = 2−kN2k , where N2k = {0, 1, . . . , 2k},
k = 0, 1, . . . by choosing the refinement rules Rk : RNk → RNk+1 to be

(Rkg)(ξ) =

{{
F1

(
2ξ, g(2ξ)

)
, if ξ ∈ [0, 1

2 ) ∩Nk+1,

F2

(
2ξ − 1, g(2ξ − 1)

)
, if ξ ∈ [ 1

2 , 1] ∩Nk+1.

By a similar analysis, we can write a more general FIF defined on [x1, xN ] (cf. (2.4)) emerging
from an IFS with N − 1 maps Li and Fi, i ∈ J as a subdivision scheme.

The most popular structure of IFS for the study of FIFs is:

(2.5) Li(x) = aix+ bi, Fi(x, y) = αiy + qi(x),

where −1 < αi < 1 and qi : I → R are suitable continuous functions satisfying (2.3). The
multiplier αi is called a scaling factor of the map wi and α = (α1, α2, . . . , αN−1) is the
scale vector in I for the IFS. For a detailed exposition of the smoothness analysis of the
corresponding FIF g

(
Li(x)

)
= αig(x) + qi(x) the reader may consult [12, 40]. However, let

us recall here that the Hölder exponent of the FIF g is controlled by the scaling factors. The
following result assures the existence of a differentiable FIF (fractal spline) and provides a
method for its construction.
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PROPOSITION 2.5 (Barnsley and Harrington [4]). Let {(xi, yi) : i = 1, 2, . . . , N} be a
prescribed set of interpolation data satisfying x1 < x2 < · · · < xN and Li(x) = aix + bi,
i ∈ J , be affine functions satisfying conditions in (2.2). Let ai = L′i(x) = xi+1−xi

xN−x1
and

Fi(x, y) = αiy + qi(x), i ∈ J, satisfy (2.3). Suppose that for some integer r ≥ 0, |αi| < ari ,
and qi ∈ Cr(I), i ∈ J . For k = 1, 2, . . . , r, let

Fi,k(x, y) =
αiy + q

(k)
i (x)

aki
, y1,k =

q
(k)
1 (x1)

ak1 − α1
, yN,k =

q
(k)
N−1(xN )

akN−1 − αN−1
.

If Fi−1,k(xN , yN,k) = Fi,k(x1, y1,k) for i = 2, 3, . . . , N − 1 and k = 1, 2, . . . , r, then
the IFS {I × R;

(
Li(x), Fi(x, y)

)
, i ∈ J} determines a FIF g ∈ Cr(I), and g(k) is the FIF

determined by {I × R;
(
Li(x), Fi,k(x, y)

)
, i ∈ J} for k = 1, 2, . . . , r.

Next we show that any continuous function defined on a compact interval can be regarded
as a special case of a class of fractal functions. Let f ∈ C(I) and consider the case:

(2.6) qi(x) = f ◦ Li(x)− αib(x),

where b is a continuous real valued function such that

b 6= f, b(x1) = f(x1), b(xN ) = f(xN ).

Here the interpolation data set is {(xi, f(xi)) : i = 1, 2, . . . , N}. We define the α-fractal
function corresponding to f in the following:

DEFINITION 2.6. The continuous function fα defined by the IFS (2.5)–(2.6) is the
α-fractal function associated with f with respect to the base function b and the partition
∆∗ = {x1, x2, . . . , xN}.

According to (2.4), fα satisfies the functional equation:

(2.7) fα(x) = f(x) + αi[(f
α − b) ◦ L−1

i (x)], x ∈ Ii, i ∈ J.

Since α ∈ (−1, 1)N−1 is arbitrary and f 0 = f , the above process endows an entire class
of continuous fractal functions fα parameterized by α ∈ RN−1 with f as its germ. Each
function fα interpolates f at data points, and fα may have noninteger Hausdorff-Besicovitch
dimension. Therefore, the function fα is also referred to as the fractal perturbation of f , and
the following map is called the α-fractal operator

Fα : C(I)→ C(I), Fα(f) = fα.

If p ∈ C(I) is a polynomial, then pα = Fα(p) is termed a fractal polynomial. For various
properties of this fractal operator, we refer the interested reader to [29]. It is worthwhile to
note that the α-fractal function fα corresponding to a differentiable function f may not be
differentiable, unless the elements of the IFS are appropriately chosen. Conditions for fα to be
nondifferentiable in a dense subset of I can be found in [23]. From functional equation (2.7),
we can easily infer that by taking corresponding scaling factors equal to zero, fα agrees with
f in specified subintervals. Therefore, the irregularity (fractality) can be confined to a small
portion of the domain if the corresponding signal shows some complex irregular structure
therein.

2.4. Cubic FIFs as α-fractal functions corresponding to a classical piecewise cubic
interpolant. First we shall note that the classical C1-cubic Hermite interpolant is also a fixed
point of a suitable IFS, and hence satisfies its own functional equation; for details see [13].
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Let a set of data points {(xi, yi) : i = 1, 2, . . . , N} be given. We let αi = 0 for all
i ∈ J , and define the IFS {I × R; wi(x, y), i ∈ J} through the maps Li(x) = aix + bi,
Fi(x, y) = qi(x), where qi(x) are cubic polynomials.

Assuming the conditions Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1, Fi,1(x1, d1) = di, and
Fi,1(x1, d1) = di+1 (see Proposition 2.5), the corresponding FIF H obeys:

H
(
Li(x)

)
= [hi(di + di+1)− 2(yi+1 − yi)]

(
x− x1

xN − x1

)3

+ [−hi(2di + di+1) + 3(yi+1 − yi)]
(
x− x1

xN − x1

)2

+ hidi

(
x− x1

xN − x1

)
+ yi.

(2.8)

For x ∈ Ii, using L−1
i (x)−x1

xN−x1
= x−xi

hi
, one can see that the above expression coincides with

the classical piecewise C1-cubic Hermite interpolant; cf. (2.1). Following the same procedure
but with a scaling vector α = (α1, α2, . . . , αN−1), 0 6= α ∈ RN−1, we obtain cubic Hermite
FIFs; see [13]. Here we shall approach the cubic Hermite FIFs through differentiable α-fractal
function technique.

Given the cubic Hermite interpolant H ∈ C1(I) (cf. (2.8)) corresponding to the data set
{(xi, yi) : i = 1, 2, . . . , N}, consider the IFS defined through (2.5)–(2.6). Our goal is to
obtain the α-fractal function Hα ∈ C1(I) corresponding to this cubic Hermite interpolant H
via a suitable base function b and a scale vector α.

According to Proposition 2.5, we take the scaling factors such that |αi| < ai for all i ∈ J .
Next we identify appropriate function b so that the functions

Fi(x, y) = αiy +H ◦ Li(x)− αib(x), i ∈ J,

satisfy the conditions prescribed in Proposition 2.5 for k = 1. Our analysis is patterned
after [31]. However, we avoid the following restrictions imposed therein: (i) the partition
should be uniformally spaced, and (ii) the scaling factors in each interval should be the same.
For the chosen maps Fi, we have

Fi,1(x, y) =
αiy + aiH

(1)
(
Li(x)

)
− αib(1)(x)

ai
.

Therefore, the conditions Fi−1,1(xN , yN,1) = Fi,1(x1, y1,1), for i = 2, 3, . . . , N−1, become:

H(1)(xi) +
αi−1

ai−1(aN−1 − αN−1)
[aN−1H

(1)(xN )− αN−1b
(1)(xN )]− αi−1

ai−1
b(1)(xN )

= H(1)(xi) +
αi

ai(a1 − α1)
[a1H

(1)(x1)− α1b
(1)(x1)]− αi

ai
b(1)(x1).(2.9)

It can be readily seen that the following conditions ensure (2.9):

b(1)(x1) = H(1)(x1), b(1)(xN ) = H(1)(xN ).

The preceding analysis demonstrates that we can generate α-fractal functions Hα ∈ C1(I)
(more generally, fα ∈ C1(I)) corresponding to the cubic Hermite interpolant H

(
or, for any

f ∈ C1(I)
)

through the IFS (2.5)–(2.6), provided the scaling factors satisfy |αi| < ai for
all i ∈ J , and b ∈ C(1)(I) agrees with H (with f ) at the ends of the interval up to the first
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derivative. An obvious choice for b is the two-point cubic Hermite interpolant for H (for f )
with knots at x1 and xN . That is,

(2.10)

b(x) = [(xN − x1)(d1 + dN )− 2(yN − y1)]

(
x− x1

xN − x1

)3

+ [−(xN − x1)(2d1 + dN ) + 3(yN − y1)]

(
x− x1

xN − x1

)2

+ d1(x− x1) + y1.

From (2.7), (2.8), and (2.10), we infer that the desired cubic FIFs obey the functional equation:

(2.11)

Hα (Li(x)) =αiH
α(x) +H (Li(x))− αib(x),

=αiH
α(x) +

{
hi(di + di+1)− 2(yi+1 − yi)

− αi[(xN − x1)(d1 + dN )− 2(yN − y1)]
}( x− x1

xN − x1

)3

+
{
− hi(2di + di+1) + 3(yi+1 − yi)

− αi[−(xN − x1)(2d1 + dN ) + 3(yN − y1)]
}( x− x1

xN − x1

)2

+ {hidi − αid1(xN − x1)}
(
x− x1

xN − x1

)
+ yi − αiy1,

for x ∈ I and i ∈ J .

3. Monotone/comonotone α-fractal functions and comonotone cubic FIFs. The cu-
bic FIFs established in the previous section may not preserve the monotonicity property hidden
in a given set of data. In this section, we develop sufficient conditions for the cubic FIFs to
retain the monotonicity inherent in the prescribed data set. Our approach will be more general
in the sense that we find sufficient conditions for fα to be monotone whenever f is so, and
particularize this to the traditional monotone cubic interpolant H . We extend this to cover the
case of changing monotonicity.

3.1. Monotone α-fractal function. We record the following theorem which identifies
a suitable IFS so that the α-fractal function fα preserves smoothness and monotonicity of
f ∈ C1(I). The proof can be found in [38].

THEOREM 3.1. Let f ∈ C1(I) be a monotone increasing function. Let ∆∗ = {x1, x2, . . . ,
xN} be a partition of I such that x1 < x2 < · · · < xN , and b ∈ C1(I) be a monotone in-
creasing function satisfying the conditions

b(x1) = f(x1), b(xN ) = f(xN ), b(1)(x1) = f (1)(x1), b(1)(xN ) = f (1)(xN ).

Then, the fractal function fα corresponding to the IFS defined via (2.5)–(2.6) is C1-continuous
and, for M large enough, fα satisfies 0 ≤ (fα)(1)(x) ≤ M (hence, in particular, fα is
monotone), provided the scaling factors obey |αi| < ai and

max
{
− aimi

M −m∗
,−ai(M −Mi)

M∗

}
≤ αi ≤ min

{aimi

M∗
,
ai(M −Mi)

M −m∗

}
, i ∈ J,

where

m∗ = min
x∈I

b(1)(x), M∗ = max
x∈I

b(1)(x), mi = min
x∈Ii

f (1)(x), Mi = max
x∈Ii

f (1)(x).



ETNA
Kent State University

http://etna.math.kent.edu

648 COMONOTONE APPROXIMATION BY FRACTAL SPLINES

REMARK 3.2. Though the monotonicity of fα does not demand an upper bound for
(fα)(1), the constant M plays a crucial role in admitting negative values for the scaling
factors whilst maintaining the positivity of (fα)(1). However, if we do not want to bound
(fα)(1) from above in exchange for the slightly increased generality of negative scaling factors,
we can certainly work with (fα)(1)(x) ≥ 0 instead. Conditions on the scaling factors for
(fα)(1)(x) ≥ 0 are given by 0 ≤ αi < min

{
ai,

aimi

M∗

}
. We note that the monotonicity

condition on b is not claimed to be essential, but it will be desirable later for developing some
approximation results.

REMARK 3.3. Suppose the first derivative of f vanishes on I in the preceding theorem.
Then f is constant, say f(x) = κ for all x ∈ I and, consequently, the interpolatory condition
on the monotonic function b implies b(x) = κ for all x ∈ I . Recall that the α-fractal function
fα corresponding to this f and b satisfies the functional equation (fixed point equation)

fα
(
Li(x)

)
= f

(
Li(x)

)
+ αi(f

α − b)(x), x ∈ I, i ∈ J.

Substituting f(x) = b(x) = κ for all x ∈ I we obtain

fα(Li(x)) = κ+ αi(f
α(x)− κ), x ∈ I, i ∈ J.

Since the above equation is satisfied by fα ≡ κ and the fixed point is unique, we infer that
fα ≡ f ≡ κ. That is, in this case no fractal perturbation is provided. Further, if di = 0
for i ∈ J , then the previous theorem prescribes αi = 0 for a monotonic fα, and hence fα

coincides with f on the subinterval Ii.
REMARK 3.4 (Monotone decreasing α-fractal function). On lines similar to that of

Theorem 3.1, it can be proved that an α-fractal function fα ∈ C1(I) corresponding to f
retains the C1-continuity and monotone decreasing nature of f , if the base function b is a
monotone decreasing two-point Hermite interpolant to f , the scaling factors are chosen so that
|αi| < ai, and

max
{
− aiMi

m−M∗
,−ai(m−mi)

m∗

}
≤ αi ≤ min

{aiMi

m∗
,
ai(m−mi)

m−M∗

}
, i ∈ J.

Here m is a real number strictly smaller than M∗ and mi, for any i ∈ J .
REMARK 3.5 (Handling functions of changing monotonicity). The proposed fractal

scheme can be modified and extended to produce a piecewise defined α-fractal function which
is comonotone with a given function f ∈ C1(I), where f changes its monotonicity a finite
number of times. For doing this, the interval I has to be partitioned into subintervals, say
Ij , j = 1, 2, . . . , r, in such a way that in a typical subinterval Ij the function f is monotone
increasing or decreasing throughout. In each of these subintervals Ij , we take a partition
∆∗j , a base function bj , and a scaling vector α(j) = (α

(j)
1 , α

(j)
2 , . . . , α

(j)
mj ), where mj is the

number of subintervals in Ij determined by the partition ∆∗j , so as to meet the specifications

in Theorem 3.1 or Remark 3.4. Consequently, we can produce fractal functions fα
(j)

j that
retain the monotonicity of the functions fj = f |Ij , j = 1, 2, . . . , r. With a slight abuse of
notation, let us denote by α, the block matrix consisting of the scaling vectors α(j), i.e.,
α = [α(1) α(2) · · · α(r)]. We define a function denoted by f [α] in a piecewise manner as
follows: f [α]|Ij = fα

(j)

j . Since the fractal function fα
(j)

j and its derivative, respectively,
interpolate f and its derivative at the knots of the partition ∆∗j , it is evident that f [α] ∈ C1(I).
The piecewise defined fractal function f [α] is comonotone with f (i.e., f [α](x)f(x) ≥ 0 for
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all x ∈ I). In particular, if f is an algebraic polynomial that is comonotone with an original
function Φ, then f [α] gives a piecewise defined fractal polynomial that is comonotone with
f and hence with Φ. Thus, we can deduce the existence of comonotone piecewise defined
fractal polynomials from the existence of comonotone algebraic polynomials. We may denote
|α(j)|∞ = max{|α(j)

i | : i = 1, 2, . . . ,mj} and |[α]|∞ = max{|α(j)|∞ : j = 1, 2, . . . , r}.

3.2. Algorithm for monotone cubic FIFs. Combining the Fritsch-Carlson method that
produces a monotone cubic interpolant with the monotone α-fractal function discussed in the
foregoing subsection, we can design an algorithm that produces monotone cubic FIFs for a
given set of monotone data. To do this, we shall first calculate the constants mi, Mi, m∗, and
M∗, occurring in the above theorem, where f = H is the cubic interpolant (cf. (2.8)) for the
data {(xi, yi) : i = 1, 2, . . . , N} and b (cf. (2.10)) is the two-point cubic Hermite interpolant
corresponding to H .

Considering Li : R→ R, it can be verified that H(1)
(
Li(x)

)
has a unique extremum at

x∗ = x1 +
(xN − x1)(2di + di+1 − 3∆i)

3(di + di+1 − 2∆i)

with the corresponding extremal value

H(1)
(
Li(x

∗)
)

= di −
(2di + di+1 − 3∆i)

2

3(di + di+1 − 2∆i)
.

Therefore,

Mi =

max

{
di, di+1, di −

(2di + di+1 − 3∆i)
2

3(di + di+1 − 2∆i)

}
, if x∗ ∈ [x1, xN ],

max{di, di+1}, if x∗ /∈ [x1, xN ],

and

mi =

min

{
di, di+1, di −

(2di + di+1 − 3∆i)
2

3(di + di+1 − 2∆i)

}
, if x∗ ∈ [x1, xN ],

min{di, di+1}, if x∗ /∈ [x1, xN ].

Similarly, b(1) has a unique extremum at

x∗ = x1 +
(xN − x1)2(2d1 + dN )− 3(yN − y1)(xN − x1)

3[(xN − x1)(d1 + dN )− 2(yN − y1)]
,

and the extremal value is

b(1)(x∗) = d1 −

[
2d1 + dN − 3 yN−y1xN−x1

]2
3
[
d1 + dN − 2 yN−y1xN−x1

] .
Hence, we have

M∗ =


max

d1, dN , d1 −

[
2d1 + dN − 3 yN−y1xN−x1

]2
3
[
d1 + dN − 2 yN−y1xN−x1

]
 , if x∗ ∈ [x1, xN ],

max{d1, dN}, if x∗ /∈ [x1, xN ],
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and

m∗ =


min

d1, dN , d1 −

[
2d1 + dN − 3 yN−y1xN−x1

]2
3
[
d1 + dN − 2 yN−y1xN−x1

]
 , if x∗ ∈ [x1, xN ],

min{d1, dN}, if x∗ /∈ [x1, xN ].

Letting δ = d1(xN−x1)
yN−y1 and ρ = dN (xN−x1)

yN−y1 , we note that the two-point Hermite interpolant b
is monotone if δ and ρ lie in any of the regions given in Section 2.2.

Algorithm: The above discussion suggests the following procedure for constructing monotone
increasing cubic FIFs corresponding to a given set of monotone increasing data.

Step 1 Initialization. Compute the initial approximate derivative values di, i = 1, 2, . . . , N .
Ensure that each di ≥ 0. If ∆i = 0, let di = di+1 = 0.

Step 2 FC-algorithm for the monotone cubic interpolant H . For each interval Ii for which
(βi, γi) = ( di∆i

, di+1

∆i
) /∈ S, modify di and di+1 to d∗i and d∗i+1 such that (β∗i , γ

∗
i ) =

(
d∗i
∆i
,
d∗i+1

∆i
) ∈ S. Denote by di the derivatives at the knots so obtained, satisfying FC

conditions; see Section 2.2.
Step 3 Filtering end derivatives for a monotone b. For δ = d1(xN−x1)

yN−y1 and ρ = dN (xN−x1)
yN−y1 ,

check whether (δ, ρ) ∈ S, where S is one of the regions suggested by Fritsch and
Carlson; see Section 2.2. If not, modify d1 and dN .

Step 4 Scaling parameters for monotonicity preserving fractal perturbation. Denoting by
di, i = 1, 2, . . . , N , the derivative values obtained at the end of Step 3, calculate
the constants Mi, mi, m∗, and M∗, and select a suitable constant M . Calculate the
scaling parameters αi according to the prescription in Theorem 3.1.

Step 5 Monotone cubic FIF Hα. Use these derivative values and scaling factors as input for
the functional equation (2.11) to recursively generate new points obtaining a cubic
FIF Hα. The elements in the IFS generating this cubic FIF Hα satisfy the sufficient
conditions in Theorem 3.1, and hence Hα is monotone.

To get an initial approximation for the derivative values at the knots, one may use various
approximation methods, such as the arithmetic mean method, the geometric mean method, etc.;
see [16]. For the di values obtained in Step 2, the corresponding traditional cubic interpolantH
is monotone. Step 3 suggests to modify the end derivatives in the monotone cubic interpolant
H obtained from the FC-algorithm, so as to assure the monotonicity of b as required by
Theorem 3.1. It is to be noted that, due to the property of the chosen region S, the new end
derivatives will not affect the monotonicity of H obtained in Step 2.

3.3. Numerical examples. We consider the following subset of the Akima data (see [1]):
{(8, 10), (9, 10.5), (11, 15), (12, 50), (14, 60), (15, 85)}. The derivative values at the data
points are estimated using the following arithmetic mean method [16]. At the interior point
xi; i = 2, 3, . . . , N − 1, set

di =

{
0, if ∆i = 0 or ∆i−1 = 0,
hi∆i−1+hi−1∆i

hi+hi−1
, otherwise.

At the end points x1 and xN a noncentered version of the above formula is used, that is

d1 =

{
0, if ∆1 = 0 or sgn(d∗1) 6= sgn(∆1),

d∗1 = ∆1 + (∆1−∆2)h1

h1+h2
, otherwise.
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and

dN =

{
0, if ∆N−1 = 0 or sgn(d∗N ) 6= sgn(∆N−1),

d∗N = ∆N−1 + (∆N−1−∆N−2)hN−1

hN−1+hN−2
, otherwise.
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FIG. 3.1. Traditional piecewise cubic interpolants and cubic FIFs.

For the present data set, we have d1 = 0, d2 = 1.0833, d3 = 24.0833, d4 = 25, d5 =
18.3333, and d6 = 31.6667. Figure 3.1(a) shows the traditional piecewise cubic interpolant
corresponding to this initial choice of derivative values. Note that this cubic interpolant is
not monotone. To obtain a monotone cubic interpolant H , we apply the FC-algorithm with
monotonicity region S2, that is, the disc β2 + γ2 ≤ 9. The mapping (β, γ)→ (β∗, γ∗) is the
most subtle issue in the FC-algorithm. To ‘project’ a point (β, γ) /∈ S2 onto (β∗, γ∗) ∈ S2,
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we use ‘homothetic projection’, i.e., (β∗, γ∗) is the point of intersection of the line joining
the origin and (β, γ) with the boundary of the disc S2. This procedure modifies the initial
derivative values to d1 = 0, d2 = 0.3033, d3 = 6.7432, d4 = 12.0961, d5 = 8.8705,
and d6 = 31.6667. The corresponding monotone cubic spline interpolant H is plotted in
Figure 3.1(b).

Recall that for the C1- continuity of the FIF, we need |αi| < ai for all i = 1, 2, . . . , 5. The
calculated values of ai for the present data are 0.1428, 0.2857, 0.1428, 0.2857 and 0.1428.
We let α = (−0.12, 0.25, 0.1, 0.25,−0.12), whose components αi are chosen at random,
close in magnitude to ai, while b is the two-point cubic Hermite interpolant corresponding to
H; cf. Figure 3.1(b). Iterating the functional equation (2.11), we obtain the α-fractal function
Hα preserving the regularity of H . However, the cubic FIF Hα depicted in Figure 3.1(c) does
not reflect the monotonicity of H . Next, to obtain a monotone cubic FIF Hα we apply Steps
3 and 4 of our monotone cubic FIF algorithm. Observe that the end derivatives d1 = 0 and
d5 = 8.8705, obtained through the FC-algorithm, satisfy the condition prescribed in Step 3 and
hence there is no need to modify their value, where we take S to be the disc specified earlier.
We calculate the numerical lower and upper bounds for the scaling factors according to the
prescription in Theorem 3.1. Taking the scale vector α = (0,−0.0007, 0.03, 0.0196, 0.04),
whose random components lie within the calculated bounds, the corresponding fractal per-
turbation Hα that retains the monotonicity of H is plotted in Figure 3.1(d). By applying the
FC-algorithm with subregion S3, where the transformation (β, γ)→ (β∗, γ∗) is performed
via the projection method indicated earlier, and taking α = (0, 0.0007,−0.001, 0.009, 0.004),
we obtain the monotone cubic FIF Hα plotted in Figure 3.1(e). Due to the fact that the scaling
factors αi are close to zero, changes in the shape of the monotonic FIFs, given in Figures 3.1(d)
and (e), with respect to the traditional monotonic cubic interpolant in Figure 3.1(b), may not
be apparently visible. Note that since α1 = 0, the monotonic cubic FIFs Hα depicted in
Figures 3.1 (d) and (e) exactly coincide with the traditional monotonic cubic interpolant H
given in Figure 3.1(b) on the subinterval I1 = [8, 9].

Even though we have chosen the scaling factors arbitrarily, the following points may be
noted for “ad-hoc” selection strategies for these multipliers, apart from ensuring the desired
shape preservation. As mentioned earlier in the introductory section, the Hölder exponent of
(Hα)(1) is controlled by the scaling factors αi and hence their selection may be catered so as
to have a specified Hölder exponent for (Hα)(1). Following [23], the conditions under which
(Hα)(1) is nondifferentiable in a dense subset of I = [8, 15] can be obtained, and α may be
selected to satisfy this condition along with the desired monotonicity, assuming compatibility
of these conditions. Recently, we have proved in [36] that finding a FIF Hα close to a function
Φ ∈ C1(I) is a nonlinear convex optimization problem, which we may couple with the
proposed monotonicity conditions to obtain a monotonic cubic FIF Hα close to a prescribed
monotonic function. Overall, various tools available in the literature that provide selection
strategies for an “optimal” scale vector may be coupled with the monotonicity conditions
derived herein to find an “optimal” monotonic cubic FIF Hα, which deserves further research.

Next consider the data {(4, 4), (5, 6), (6, 7), (8, 5), (10, 0)} which is monotone on I1 =
[4, 6] and I2 = [6, 10]. Let the derivatives at knots be 2.5, 1.5, 0,−1.75,−3.25. We visit
each of these intervals and determine which monotone constraint is to be applied, based on
whether the data is increasing or decreasing. The FC-algorithm applied on I1 with region S1

does not demand a change in the derivative parameters. Further, the end derivatives are such
that the two-point Hermite interpolant b is monotone increasing. Using α(1) = (0.15, 0), we
obtain a monotone increasing cubic FIF Hα(1)

on I1. Similarly, our monotonic cubic FIF
algorithm with α(2) = (0, 0.13) yields a monotone decreasing cubic FIF Hα(2)

on I2. For
the block matrix α = [α(1) α(2)], the FIF H[α] ∈ C1(I) defined in a piecewise manner by
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H[α]|Ii = Hα(i)

, i = 1, 2, is comonotone with the given data set. If the subinterval Ii in
which the given function has a uniform monotonicity property contains only two node points,
then we have to introduce an additional node to apply the fractal interpolation scheme. Let
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Figure 3.1(b).
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8 9 10 11 12 13 14 15
0

5

10

15

20

25

30

35

40

45

50

 

 
Slopes

Derivative function

(d): Derivative of monotone cubic FIF
Hα in Figure 3.1(e).

FIG. 3.2. Derivatives of traditional piecewise cubic interpolant and cubic FIFs.

us remark here that the strategy of dividing the interval into smaller intervals, applying the
FIF scheme in each subinterval separately, and defining the desired interpolant in a piecewise
manner can render locality to the FIF scheme. Another problem related to locality is the study
of the influence of the scaling factors in the FIF. For the sensitivity analysis of FIFs with
respect to perturbations in the scaling factors, the reader may refer [40]. It is to be noted that
due to the global nature of FIF, in general, predicting which part of Hα is influenced by a
perturbation in a particular scaling factor αi is difficult. On the other hand, the problem is
almost trivial once the locality is addressed.

The derivatives of the traditional monotone cubic interpolant H , cubic FIF Hα, and
monotone cubic FIFs Hα, are given in Figures 3.2(a)-(d). The function H(1) is smooth except
possibly at the knots whereas (Hα)(1) shows irregularity. Further, the irregularity can be
quantified using the notion of fractal dimension [2, 39]. It is also known [2] that as |αi|
increases from zero, the dimension of the FIF increases. In geometric modeling and CAGD,
in addition to having methods for monotone interpolation, it is desirable to have one or more
parameters that can influence the shape of the interpolant and/or its derivative. In this regard,
the scaling parameters embedded in the structure of the cubic FIF can be exploited to construct
an interpolant satisfying chosen properties such as locality, monotonicity, fractality in the
derivative, and convergence order; see the next section.
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4. Approximation and convergence results. This section is devoted to shed some light
on the approximation properties of α-fractal functions, the convergence order of the monotone
cubic FIF, and the fractal analogues of Jackson-type estimates for the approximation of
functions by monotone/comonotone polynomials. Our results are in fact derived by using the
corresponding classical counterparts and the following lemma whose proof follows directly
from the functional equation for fα; see [27] for details.

LEMMA 4.1. Let fα be the α-fractal function corresponding to the function f ∈ C(I)
(cf. (2.7)) and |α|∞ := max{|αi| : i ∈ J}. Then

‖fα − f‖∞ ≤
|α|∞

1− |α|∞
‖f − b‖∞.

REMARK 4.2. Let Φ be the original function and f be a traditional non-recursive
approximant for Φ. Then, in view of the triangle inequality

‖Φ− fα‖∞ ≤ ‖Φ− f‖∞ + ‖f − fα‖∞,

the previous lemma asserts that for a suitable scale vector α the FIF fα has the same order
of convergence as that of its classical counterpart f . To be precise, if f has an order of
convergence r, say, then for the scale vector α satisfying |αi| < ari =

hr
i

(xN−x1)r , for all i ∈ J ,
the fractal function fα also possesses the r-th order convergence.

The next result points to the order of convergence of the monotone cubic FIF scheme.
THEOREM 4.3. Assume that Φ ∈ C3(I) is monotone increasing. Let the initial derivative

approximations di satisfy |Φ(1)(xi) − di| ≤ ch2, for all i ∈ J and some constant c, where
h = max{hi : i ∈ J}. Further, let the closed triangle with vertices (0, 0), (2, 0), (0, 2), be
contained in the subregion S, the projection of (βi, γi) onto S satisfy β∗i + γ∗i ≥ 2, and the
scale vector be such that |αi| < a3

i for all i ∈ J . Then the associated monotone cubic FIF
Hα is a third order approximation to Φ.

Proof. Under the stated assumptions, we know [18] that the Fritsch-Carlson algorithm is
third order accurate, that is, ‖Φ−H‖∞ = O(h3). From the triangle inequality, Lemma 4.1,
and the monotonicity of b, we have

‖Φ−Hα‖∞ ≤ ‖Φ−H‖∞ + ‖Hα −H‖∞

≤ ‖Φ−H‖∞ +
|α|∞

1− |α|∞
‖H − b‖∞

≤ ‖Φ−H‖∞ +
2|α|∞

1− |α|∞
‖H‖∞.

To obtain the last inequality we have also used ‖b‖∞ = ‖H‖∞, which follows from the
monotonicity of b and the fact that b coincides with H at the ends of the interval. For the

scaling factors satisfying |αi| < a3
i =

(
hi

xN−x1

)3

, we get

|α|∞
1− |α|∞

<
h3

(xN − x1)3 − h3
,

and hence the result follows.
REMARK 4.4. Assume that Φ ∈ C4(I) is monotone increasing and the initial derivative

approximations are third order accurate, i.e., |Φ(1)(xi)−di| < ch3 for i = 1, 2, . . . , N and for
some constant c. A modification of the FC-algorithm, called extended two-sweep algorithm,
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that yields fourth-order accuracy is suggested in reference [18]. Let H be the monotone
cubic interpolant corresponding to a data generated by Φ obtained by this algorithm. Now
we choose scale vectors such that apart from the conditions of monotonicity, |αi| < a4

i for
i = 1, 2, . . . , N holds. Then following the proof of the preceding theorem, we can infer that
the corresponding monotone cubic FIF Hα provides fourth order accuracy.

Let us represent the modulus of continuity of f by

ω(f, ε) = sup
|h|≤ε
{|f(x+ h)− f(x)|, x ∈ I}.

The following theorem supplements the fractal analogue of the Weierstrass theorem; see [26].
First let us fix some notation. For each n ∈ N, choose a partition of I = [−1, 1] with Nn > 2

points, namely, ∆∗n := {x(n)
1 , x

(n)
2 , . . . , x

(n)
Nn
}, such that−1 = x

(n)
1 < x

(n)
2 < · · · < x

(n)
Nn

= 1.

For i ∈ Jn := {1, 2, . . . , Nn−1}, let h(n)
i := x

(n)
i+1−x

(n)
i . Then h(n) = max{h(n)

i : i ∈ Jn}
is the norm of the partition ∆∗n. For each n ∈ N, let α(n) = (α

(n)
1 , α

(n)
2 , . . . , α

(n)
Nn−1) ∈

RNn−1 be a scale vector corresponding to the partition ∆∗n of I = [−1, 1], such that |α(n)
i | <

a
(n)
i :=

h
(n)
i

2 . Define |α(n)|∞ = max{|α(n)
i | : i ∈ Jn}.

THEOREM 4.5. For each k ≥ 0 and every monotone increasing f ∈ Ck[−1, 1], there are
monotone increasing fractal polynomials pα

(n)

n , where the degree of pn is less than or equal to
n, such that

‖f − pα
(n)

n ‖∞ ≤ c
1 + |α(n)|∞
1− |α(n)|∞

n−kω
(
f (k),

1

n

)
+

2|α(n)|∞
1− |α(n)|∞

‖f‖∞,

where c is an absolute constant independent of f and n.
Proof. Jackson-type estimates for the approximation of monotone functions f ∈ Ck[−1, 1]

by monotone polynomials are well known in traditional approximation theory. To be specific,
we have the following result (see [17]): for each k ≥ 0 and every monotone increasing
f ∈ Ck[−1, 1], there are increasing polynomials pn of degree n such that

(4.1) ‖f − pn‖∞ ≤ c n−kω
(
f (k),

1

n

)
,

where c is an absolute constant independent of f and n. By Theorem 3.1, for each of these
polynomials pn, we can select a scale vector α(n) and a monotone base function bn so that the
fractal polynomial pα

(n)

n retains the monotonicity of pn. We have,

‖pn − pα
(n)

n ‖∞ ≤
|α(n)|∞

1− |α(n)|∞
‖pn − bn‖∞

≤ |α(n)|∞
1− |α(n)|∞

(‖pn‖∞ + ‖bn‖∞)

≤ 2|α(n)|∞
1− |α(n)|∞

‖pn‖∞.

Lemma 4.1 was utilized in the first step of the preceding analysis, the second step involved
the triangle inequality, while the final step can be justified as follows: since bn is monotone
increasing on I = [−1, 1] and matches pn at the end points of I , ‖bn‖∞ = |bn(1)| =
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|pn(1)| ≤ ‖pn‖∞. Therefore,

‖f − pα
(n)

‖∞ ≤ ‖f − pn‖∞ + ‖pn − pα
(n)

n ‖∞,

≤ ‖f − pn‖∞ +
2|α(n)|∞

1− |α(n)|∞
‖pn‖∞,

≤ ‖f − pn‖∞ +
2|α(n)|∞

1− |α(n)|∞
(‖f − pn‖∞ + ‖f‖∞),

=
1 + |α(n)|∞
1− |α(n)|∞

‖f − pn‖∞ +
2|α(n)|∞

1− |α(n)|∞
‖f‖∞.

Combining this with (4.1), we obtain the desired conclusion.
REMARK 4.6. By noting that |α(n)|∞ < h(n)

2 we obtain

‖f − pα
(n)

n ‖∞ ≤ c
2 + h(n)

2− h(n)
n−kω

(
f (k),

1

n

)
+

h(n)

2− h(n)
‖f‖∞,

where c is an absolute constant independent of f and n.
We conclude this section with the fractal analogue of a result on comonotone approxima-

tion. The reader may recall the notation used in Remark 3.5.
THEOREM 4.7. Let f be a continuously differentiable function in [−1, 1], which changes

monotonicity a finite number of times, say s, in that interval. Then, for each n ≥ 1 there exists
a piecewise defined fractal polynomial denoted by pn[α(n)], where [α(n)] is a suitable block
matrix, the corresponding classical counterpart pn has degree less than or equal to n, and
pn[α(n)] is comonotone with f on [−1, 1], such that:∥∥f − pn[α(n)]

∥∥
∞ ≤

1 + |[αn]|∞
1− |[αn]|∞

c(s)

n
ω
(
f (1),

1

n

)
+

2|[αn]|∞
1− |[αn]|∞

‖f‖∞,

where c(s) is a constant depending only on s.
Proof. Assume that f changes monotonicity at Xs = {x1, x2, . . . , xs}, and −1 = x0 <

x1 < · · · < xs < xs+1 = 1. Let Ii, i = 1, 2, . . . , s+ 1 be the subintervals of I wherein f has
the same monotonicity throughout. With the stated assumptions, we know [9] that for each n
there exists a polynomial pn of degree n which is comonotone with f and which satisfies:

‖f − pn‖∞ ≤
c(s)

n
ω
(
f (1),

1

n

)
.

Following Remark 3.5, in each Ij , j = 1, 2, . . . , s + 1, we select a partition ∆∗n,j , a scale

vector α(n,j), and a base function bn,j , so that the corresponding fractal function pα
(n,j)

n

is comonotone with pn. For a block matrix α(n) = [α(n,1) α(n,2) · · ·α(n,s+1)], define the
fractal polynomial pn[α(n)] in a piecewise manner as pn[α(n)]|In,j

= pα
(n,j)

n . Using the
triangle inequality, Lemma 4.1, and the monotonicity of bn,j , we obtain:∥∥pn[α(n)]− pn

∥∥
∞ = max{|pn[α(n)](x)− pn(x)| : x ∈ I},

= max
1≤j≤s+1

max{|pα
(n,j)

n (x)− pn(x)| : x ∈ In,j},

= max
1≤j≤s+1

‖pα
(n,j)

n − pn‖In,j
,

≤ max
1≤j≤s+1

|α(n,j)|∞
1− |α(n,j)|∞

‖pn − bn,j‖∞,

≤ 2|[αn]|∞
1− |[αn]|∞

‖pn‖∞,
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where |[α(n)]|∞ = max{|α(n,j)|∞ : j = 1, 2, . . . , s + 1}. The rest of the proof follows
exactly as in Theorem 4.5.

5. Conclusions. In this paper, a class of cubic FIFs Hα is obtained as differentiable
α-fractal functions (fractal perturbation) corresponding to the traditional piecewise cubic
interpolant H . The advantage of such an approach is that the perturbation may be designed so
as to reflect the monotonicity of the cubic interpolant. Suitable algorithms (Fritsch-Carlson,
Fritsch-Butland, or any other variant of these) can be applied to obtain a monotone cubic
interpolant H , and subsequently a suitable scale vector α can be selected so that Hα retains
the monotonicity of H . This two-step procedure culminates with the construction of monotone
cubic FIFs. In practice, there are many instances where we desire a monotonic approximant
with its derivative receiving varying irregularity, and the introduction of monotonicity to
cubic FIFs Hα accomplishes this. The flexibility offered by the scaling factors, the ability
to preserve the approximation order of the traditional monotonic interpolation algorithm,
and the strength to provide monotone interpolants with fractality in the derivative, outweigh
the cost of a few extra lines of code needed for the monotone fractal perturbation Hα of a
monotone H . Further, the present approach of obtaining a monotonicity preserving fractal
function corresponding to a continuously differentiable monotone function paves the way to
fractal analogues of some theorems on monotone and comonotone polynomial approximation.
Thus, in conclusion, the fractal methodology can be exploited in the field of shape preserving
interpolation/approximation for providing more diverse and flexible shape preserving curves.

Appendix. Here we provide a simple proof for Lemma 2.1. Consider the cubic polyno-
mial H(x) = H(1)(u)+H(1)(v)−2∆

(v−u)2 (x− u)3 + −2H(1)(u)−H(1)(v)+3∆
(v−u) (x− u)2 +H(1)(u)(x−

u) + H(u) defined on I = [u, v], where ∆ = H(v)−H(u)
v−u . It is clear that the necessary

condition for monotonicity is: sgn(H(1)(u)) = sgn(H(1)(v)) = sgn(∆).
If ∆ = 0 then H is monotone (i.e., constant) on I if and only if H(1)(u) = H(1)(v) = 0.

Let us assume ∆ 6= 0 and set β = H(1)(u)
∆ ,γ = H(1)(v)

∆ . We have H(1)(x) = 3(H(1)(u) +

H(1)(v)−2∆)(x−uv−u )2 + 2(−2H(1)(u)−H(1)(v) + 3∆)(x−uv−u ) +H(1)(u). Letting θ = x−u
v−u

and H(1)(x) ≡ g(θ), the monotonicity constraint on H reduces to the nonnegativity condition:
g(θ) ≥ 0 for all θ ∈ [0, 1].

We know [35] that the quadratic polynomial ρ∗(s) = As2 + Bs + C ≥ 0 for all
s ≥ 0 if and only if one of the following conditions holds: (i) A ≥ 0, B ≥ 0, and C ≥
0, or (ii) C ≥ 0 and 4AC ≥ B2. To put our problem in this framework, we use the
substitution θ = s

s+1 . Consequently, the desired condition g(θ) ≥ 0 for all θ ∈ [0, 1]

is transformed into ρ∗(s) = As2 + Bs + C ≥ 0 for all s ≥ 0, where A = H(1)(v),
B = −2H(1)(u)−2H(1)(v) + 6∆, and C = H(1)(u). Applying the Schmidt-Heß conditions
for the positivity of a quadratic polynomial, we infer that ρ∗(s) is nonnegative if and only
if: (i) H(1)(u) ≥ 0, H(1)(v) ≥ 0, and H(1)(u) + H(1)(v) ≤ 3∆, or (ii) H(1)(u) ≥ 0 and
H(1)(u)2 +H(1)(v)2 + 9∆2 +H(1)(u)H(1)(v)− 6H(1)(u)∆− 6H(1)(v)∆ ≤ 0. Therefore,
the cubic polynomial H is monotone on [u, v] if and only if (β, γ) ∈ A1 ∪ A2, where A1

is the region bounded by x ≥ 0, y ≥ 0, x + y ≤ 3, and A2 is the region bounded by
x ≥ 0, y ≥ 0, (x−3)2 + (y−3)2 +xy−9 ≤ 0. It can be readily seen thatA1∪A2 coincides
with the FC monotone region given in Section 2.2.
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