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SVD OF HANKEL MATRICES IN VANDERMONDE-CAUCHY PRODUCT FORM∗

ZLATKO DRMAČ†

Abstract. Structured matrices of Cauchy, Vandermonde, Hankel, Toeplitz, and other types arise in a variety of
applications, and their SVD decomposition provides key information, e.g., in various rational approximation tasks.
In particular, Hankel matrices play an important role in the Adamyan-Arov-Krein and Carathéodory-Feyér rational
approximation theories as well as in various applications in signal processing and control theory. This paper proposes
new algorithms to compute the SVD of a Hankel matrix given implicitly as the product VTDV , where V is a complex
Vandermonde matrix andD is a diagonal matrix. The key steps are the discrete Fourier transform and the computation
of the SVD of CT D̃C, where C is a Cauchy matrix and D̃ is diagonal. This SVD is computed by a specially tailored
version of the Jacobi SVD for products of matrices. Error and perturbation analysis and numerical experiments
confirm the robustness of the proposed algorithms, capable of computing to high relative accuracy all singular values
in the full range of machine numbers.
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1. Introduction. Cauchy, Vandermonde, Toeplitz, and Hankel matrices with various
generalizations are the key objects in many areas of numerical mathematics and computational
and engineering sciences, e.g., in signal processing and in particular in the Adamyan-Arov-
Krein and Carathéodory-Feyér rational approximation theories. In a host of approximation
methods, the coefficients of the approximants are taken from the singular vectors corresponding
to small singular values of certain matrices of these kinds; see e.g., [29, 32, 33]. The fact
that these structured matrices are extremely ill-conditioned is often the main obstacle that
precludes turning powerful theoretical results into practical numerical procedures.

In this paper, we study the possibility of computing to high accuracy the SVD of Hankel
matrices H(h)ij = hi+j−1, h ∈ C2n−1 \ {0}. As an illustration of the ill-conditioning,
it suffices to mention that, e.g., the spectral condition number κ2(H) = ‖H‖2‖H−1‖2 of
a real positive definite n × n Hankel matrix H is bounded from below by 3 · 2n−6 (such
that, for instance, κ2(H) > 7.5 · 1058); see, e.g., [48]. This means that an accurate finite-
precision (floating-point) computation of the SVD of a Hankel matrix by a standard norm-wise
backward stable algorithms is numerically feasible at best only for small dimensions. Indeed,
if an algorithm computes the singular values σ1 ≥ · · · ≥ σn > 0 ofH as σ̃1 ≥ · · · ≥ σ̃n ≥ 0,
then the computed values σ̃i correspond to a backward perturbed matrix H + ∆H with
‖∆H‖2 ≤ ε‖H‖2, where ε is, up to a moderate factor of the dimension, of the order of
machine precision ε̂. In general,H+ ∆H has no Hankel structure. Perturbation theory yields
|σ̃i − σi| ≤ εσ1 for all i, and the relative error in each computed singular value is bounded by

|σ̃i − σi|
σi

≤ εσ1

σi
≤ εκ2(H), where, e.g., ε ≈ O(10−16) and κ2(H) > 1050, n = 200.

Hence, for those singular values σi that are much smaller than σ1, no accurate digit will be
revealed. Also, in this setting, the singular vector corresponding to any, say, simple singular

∗Received May 4, 2015. Accepted September 10, 2015. Published online on November 19, 2015. Recommended
by D. Potts. This work is supported by the grant HRZZ–9345 (Mathematical modeling, analysis and computing with
applications to complex mechanical systems) from the Croatian Science Foundation. Part of this work was done
while the author was a visiting professor at the Department of Mathematics and a visiting scientis supported by the
Interdisciplinary Center for Applied Mathematics (ICAM) at the Virginia Polytechnic Institute and State University,
Blacksburg, VA 24060.
†Faculty of Science, Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
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value σi will be badly approximated, in particular, if the gap γ(σi) ≡ minσj 6=σi
|σj − σi|/σ1

is small. Is an accuracy better than this possible?
Unfortunately, an accurate SVD of H as a function of h (i.e., of Hij = hi+j−1) is a

mission impossible. Namely, computing the singular values of H to high accuracy for any
input vector h (and thus computing its determinant to high accuracy for any h) is out of
question because it is always impossible to compute the determinant det(H) accurately as
a function of h. This is a corollary of the analogous claim proved for Toeplitz matrices
[14, Section 2.6] simply because T = PH is Toeplitz with a permutation matrix P with
det(P ) = (−1)n−1. The difficulties in computing det(T ) have nontrivial origins, specifically
for a complex Toeplitz matrix T by the irreducibility of det(T ) over any field or for a real one
because∇det(T ) has all nonzero entries on a Zariski-open set. For a full theoretical analysis,
we refer to the fundamental work of Demmel, Dumitriu, and Holtz [14].

However, in some cases, the Hankel matrix can be given implicitly parametrized in terms
of a new set of variables. For instance, the Hilbert matrix is a Hankel matrix, but it is also a
Cauchy matrix parametrized by two integer vectors, and the SVD of the Hilbert matrixH (or
any other Cauchy matrix) of size say n = 100 and with κ2(H) > 10150 can be computed to
nearly full machine precision; see [13]. Following this line of reasoning, we recall the well-
known connection between the Hankel and the Vandermonde matrices. For any Vandermonde
matrix V and any diagonal matrix D, the matrix H = VTDV is Hankel. Furthermore, any
nonsingular Hankel matrix H can be written as H = VTDV with a suitable Vandermonde
matrix V and a diagonal one D:




h1 h2 h3 · hn
h2 h3 · hn hn+1

h3 · · hn+1 ·
· hn hn+1 · h2n−2

hn hn+1 · h2n−2 h2n−1




=




1 1 · 1 1
x1 x2 · xn−1 xn
x2

1 x2
2 · x2

n−1 x2
n

· · · · ·
xn−1

1 xn−1
2 · xn−1

n−1 x
n−1
n







d1

d2

·
dn−1

dn







1 x1 x2
1 · xn−1

1

1 x2 x2
2 · xn−1

2

· · · · ·
1 xn−1 x

2
n−1 · xn−1

n−1

1 xn x2
n · xn−1

n



.

(1.1)

This decomposition naturally arises if the underlying finite-rank Hankel operator H : `2 −→ `2

is defined by its rational symbol that is represented in pole-residue form χ(z) =
∑n
j=1

dj
z−xj

.
In that case, V is replaced by the infinite matrix V∞ = (V, DnV, D2nV, . . .), and VTDV is
the leading n× n submatrix of H ≡ VT∞DV∞; see [30]. For theoretical implications of (1.1)
and an extension to block Hankel matrices factored using confluent Vandermonde matrices,
see [26]. In signal processing (Prony’s method for frequency analysis), this corresponds to a
signal given as a sum of exponentials, hj =

∑r
k=1 dkx

j
k, and V(x) is r × n. For a given H,

revealing the modes that generated the signal (which is contaminated by noise) requires
computing the Vandermonde decomposition (of a low-rank Hankel approximation toH), and
for that task, algorithms based on the nonsymmetric Lanczos method have been constructed;
see [7]. We do not consider the difficult problem of computing the decomposition (1.1) of a
given matrixH. Instead, the starting point for the development of this paper is the assumption
thatH is given implicitly by the vectors x, d ∈ Cn as in (1.1).

From now on, we assume thatH has been constructed from the entries of V=V(x) and
D = diag(d) with x and d given as raw data. Then, we take up the challenge of computing
the SVD ofH = VTDV as a function of x and d. We allow V(x) to be an r × n matrix with
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an r× r diagonal matrix D, and we do not assume any particular structure of x and d although
in practice they might satisfy certain conditions. For instance: (i) an equivalent condition for
the boundedness of H is maxi |xi| < 1, or (ii) in system modeling, the data xi, di may appear
in complex conjugate pairs, which opens the possibility of computing only in real arithmetic.

Due to the potentially severe ill-conditioning of V and arbitrarily high condition number
of D, an accurate SVD of the product VTDV is a nontrivial task. For example, the spectral
condition number κ2(V) of an arbitrary real n× n Vandermonde matrix exceeds 2n−2/

√
n

(for instance, for n = 200, κ2(V) > 2.8 · 1058); see, e.g., [6, 48]. On the other hand,
from the representationH = V(x)Tdiag(d)V(x) ≡ H(x, d), we can compute the determinant
det(H) = (

∏n
i=1 di)

∏
1≤i<j≤n(xj−xi)2 and |det(H)|with a small forward relative error for

any input x, d. Hence, the necessary condition of being able to compute |det(H)| ≡ σ1 · · ·σn
accurately is satisfied, and trying to construct an accurate algorithm for computing σ1, . . . , σn
is not necessarily a futile effort.

Our main contribution in this work is the development of new algorithms and an intro-
duction of a general technique to compute the SVD of the products VTDV and CT D̃C (with
Vandermonde V , Cauchy C, and arbitrary diagonal matrices D, D̃) to high relative accuracy
and with reliable and computable error bounds. In fact, we can compute the singular values
in the whole range of positive floating-point numbers, even the tiniest ones at the level of
the underflow threshold, to nearly machine precision in double-precision (16 digits) IEEE
arithmetic and even for a condition number as high as 10616 (i.e., the smallest singular values
nearly underflow, while the largest ones nearly overflow). It will not always be possible to
guarantee high accuracy a priori, but it will be possible to give reliable error estimates based
on the computed condition numbers at the cost of at most O(n3). This situation is similar
to the SVD of Cauchy matrices [13], where the accuracy of the algorithm depends on the
condition numbers of the unit triangular factors from the LDU decomposition with complete
pivoting—those numbers are well behaved in practice, but proving it is an open problem.

The rest of the paper is organized as follows. In order to make this presentation self-
contained and to facilitate an easier introduction and analysis of new algorithms, in Section 2
we first give a brief review of relevant issues related to an accurate computation of the SVD. In
Section 3 we review the symmetric structure of the SVD of Hankel matrices. In Section 4 we
first show how the discrete Fourier transform can be used to reduce the problem to computing
the SVD of the Cauchy product CT D̃C, and then we introduce two algorithms for the SVD
ofH. Section 5 offers a detailed error and perturbation analysis that provides reliable estimates
of the accuracy of the computed decomposition. Numerical experiments in Section 4.3.1 and
Section 5.4 show a perfect match with the theory. In Section 6 we discuss some generalizations
and provide examples that show the importance of the conditions identified in the analysis in
Section 5. Final remarks and further research challenges, motivated by Section 6, are given in
Section 7.

2. Preliminaries: computing an accurate SVD. If σ̃1 ≥ · · · ≥ σ̃n ≥ 0 are the com-
puted approximations of the singular values σ1 ≥ · · · ≥ σn > 0 of a full-rank matrix
A ∈ Cm×n, m ≥ n, we need information on the errors δσi = σ̃i − σi. In this section we
discuss the key elements of bounding the relative error maxi |δσi|/σi. For the sake of brevity,
the corresponding analysis of the computed singular vectors is omitted.

2.1. Accurate SVDs. One of the key observations in the development of accurate SVD
algorithms is that the condition number1 κ2(A) = ‖A‖2‖A†‖2 = σmax(A)/σmin(A) is not
always the true measure of sensitivity of the computed SVD, at least not for all algorithms

1Here A†, σmax(A), σmin(A) denote the pseudo-inverse, the largest, and the smallest singular value of A,
respectively.
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and not for all input data. The structure and the magnitude of the initial uncertainty in
A and the backward error generated by the algorithm will determine what condition num-
ber will influence the computed result. For example, the bidiagonalization-based QR and
the divide and conquer algorithms compute the SVD with a backward error ∆A such that
‖∆A‖2/‖A‖2 is small. The relative error in the computed singular values is at best bounded
by maxi |δσi|/σi ≤ κ2(A)‖∆A‖2/‖A‖2. If the initial uncertainty ∆0A in A is also such that
only ‖∆0A‖2/‖A‖2 is small (i.e., the best we can say is that A is somewhere in a ‖ · ‖2-ball
around the true data matrix), then we can expect that κ2(A) will correctly estimate the accuracy
of the computed SVD, and better results are not warranted by the data—one cannot and should
not expect better accuracy.

In some applications, A ∈ Cm×n can be written as A = XD, where X has full column
rank and is well-conditioned in the traditional sense (κ2(X) is moderate), D is diagonal, possi-
bly very ill-conditioned, and only X is subject to perturbations. For instance, X can represent
a discretized kernel function of a Fredholm integral operator, and D carries the quadrature
weights. Or, in some other situation, the column scaling D can simply be a consequence of
changing the physical units used to express the data, and it certainly cannot and should not make
the problem ill-conditioned. In that case, A+ ∆A = (X + ∆X)D = (I + ∆XX†)XD, and
the perturbation theory [25] implies that the induced perturbation in the singular values is
bounded by the size of the perturbation ∆XX† of the identity I:

(2.1) max
i
|δσi|/σi ≤ κ2(X)‖∆X‖2/‖X‖2, X = AD−1, ∆X = ∆AD−1.

Let the diagonal entries of D be the Euclidean lengths of the corresponding columns of
A, and thus X has unit columns. In that case, a result of van der Sluis [49] implies that
κ2(X) ≤ √nmin∆=diag κ2(A∆), and thus κ2(X) ≤ √nκ2(A). Since it is possible that
κ2(X)� κ2(A), the bound (2.1) is never much worse, and it is potentially much better than
the traditional bounds based on κ2(A). In this situation, a high condition number κ2(A) is
considered as an artificial ill-conditioning, and we ought to compute the singular values with
the error bound (2.1). This is possible by using the Jacobi SVD algorithm [17, 23, 24], which
we briefly review in Section 2.2.

2.2. One sided Jacobi SVD: column-scaling invariant condition number. A key dif-
ference between various SVD algorithms lies in the structure of the backward errors they
generate, and for that reason the Jacobi SVD is more accurate than the bidiagonalization-based
QR or the divide and conquer algorithm [17]. This difference is in particular important if
A ∈ Cm×n can be written as A = XD, as we have discussed in Section 2.1 above. We
now give the key points in the analysis of the Jacobi SVD algorithm and highlight the main
principles of avoiding the effects of the artificial ill-conditioning caused by a diagonal scaling.
We use a simple version of the Jacobi SVD algorithm outlined in Algorithm 1 below. (For full
details, we refer to [23, 24].)

Consider the backward errors in Algorithm 1. To ease notation, let A be pre-permuted,
A := AΠ, Π := I. Then, in the first step, we have

A+ δA = Q̃
[
R̃
0

]
, where ‖δA(:, i)‖2 ≤ εQR‖A(:, i)‖2, i = 1, . . . , n,

and Q̃ is numerically orthogonal. Hence, the backward error in each column of A is small
with respect to that column. This is a consequence of the fact that in the QR factorization,
the columns of A are individually multiplied by nearly unitary transformations. In the second
step, we have (R̃∗ + δR̃∗)J̃ = Ṽ Σ̃, where J̃ and Ṽ are numerically unitary, Σ̃ is diagonal
with the computed singular values σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n on its diagonal. Since the post-
multiplications by Jacobi rotations that form J̃ are independent transformations of the rows
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Algorithm 1 (Σ, U, V ) = SVD(A)
(SVD of A ∈ Cm×n, m ≥ n).

1: AΠ = Q

[
R
0

]
;

{Givens or Householder QR factorization with the Businger-Golub column pivoting [9].}
2: R∗J = V Σ;

{One-sided Jacobi SVD algorithm [24, 50]; J is the product of Jacobi rotations.}

3: The SVD of A is : A = Q

[
J 0
0 I

] [
Σ
0

]
(ΠV )∗.

of R̃∗, the backward error can be estimated as ‖δR̃∗(i, :)‖2 ≤ εJ‖R̃∗(i, :)‖2. Here both εQR
and εJ are O(n)ε̂. Altogether, the computed matrices Q̃, Ṽ , J̃ , Σ̃ form a backward perturbed
numerical SVD

A+ ∆A = Q̃

[
J̃−∗ 0

0 I

] [
Σ̃
0

]
Ṽ ∗, ∆A = δA+ Q̃

[
δR̃
0

]
,

‖∆A(:, i)‖2 ≤ (εQR + εJ(1 + εQR))‖A(:, i)‖2,

where in practice J̃ replaces J̃−∗ with a small error because J̃ is numerically orthogonal. Note
thatA = XD (withD = diag(‖A(:, i)‖2)ni=1) is perturbed toXD+∆A = (X+∆AD−1)D,
where ∆X ≡ ∆AD−1 is small in norm relative to X , and the bound (2.1) applies.

As a summary, the following basic facts will be taken to the next step in our development:
(i) The initial matrix is transformed as A AΠ Q∗(AΠ) 

[
J∗ 0
0 I
]

(Q∗(AΠ)) , that
is, all the time the (permuted) columns are being multiplied from the left independently. The
only transformation from the right is a reordering of the columns of A, which is error-free.
There has been no mixing of large and small columns. Such mixing of large and small columns
carries the risk of losing information on the small singular values. (This is what can happen
during the reduction to bidiagonal form.)

(ii) The pivoting using Π (following any suitable pivot strategy) is not essential for the
point made in (i) above. However, pivoting has a strong preconditioning effect: R can be
written as R = ST , where S is diagonal and T is usually much better conditioned than X .
This greatly reduces the number of Jacobi rotations needed to reach numerical convergence.
On the other hand, in Algorithm 2 in Section 2.4 below, the pivoting will be essential. The
effect of Π on the structure of R is further discussed in Section 5.2.4.

REMARK 2.1. In practice, very often nearly the same accuracy is attained if, in line 2 of
Algorithm 1, we compute the SVD of R∗ using Matlab’s svd(R∗) (instead of the one-sided
Jacobi SVD). This can be partly explained using the results of Jesse Barlow [4].

2.3. Rank-revealing decompositions. Many classes of matrices are ill-conditioned with-
out well-conditioned A = XD representations, but it is possible to decompose them as
A = XDY ∗ (e.g., using LDU with complete pivoting), where X and Y are of full column
rank, well-conditioned, and D is a possibly very ill-conditioned diagonal nonsingular matrix.
Such a decomposition is called rank-revealing (RRD) [15].

Suppose that we know how to compute this decomposition in a forward stable way in
the following sense: the computed matrices X̃ = X + δX , Ỹ = Y + δY, and D̃ = D + δD
satisfy

(2.2)
‖δX‖2
‖X‖2

≤ ε, ‖δY ‖2
‖Y ‖2

≤ ε, max
i

∣∣∣∣
δDii

Dii

∣∣∣∣ ≤ ε.
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Then, with a suitable ∆X , we can write

(2.3) X̃D̃Ỹ ∗ = (I + ∆XX†)XDY ∗(I + δY Y †)∗, ‖∆X‖2/‖X‖2 ≤ 2ε+ ε2.

For sufficiently small ∆X , ∆Y , the perturbation estimate [25, Theorem 3.1] applied to (2.3)
yields for each singular value σi and its computed approximation σ̃i,

σi

(
1− κ2(X)

‖∆X‖2
‖X‖2

)(
1− κ2(Y )

‖∆Y ‖2
‖Y ‖2

)

≤ σ̃i ≤ σi
(

1 + κ2(X)
‖∆X‖2
‖X‖2

)(
1 + κ2(Y )

‖∆Y ‖2
‖Y ‖2

)
.

(2.4)

The key observation here is that a forward stable decomposition avoids κ2(A) and replaces
it essentially with max(κ2(X), κ2(Y )) independent of the ill-conditioning in D. For special
classes of matrices such a decomposition is provided by Gaussian eliminations with complete
pivoting. The "DGESVD paper" [15] shows that under certain algebraic and combinatorial
conditions, the pivoted LDU can be computed in a forward stable way so that (2.2) holds true
with well-conditioned matrices X , Y . To illustrate this, let A = C, where Cij = 1/(αi + βj)
is a Cauchy matrix. In that case, an entry-wise forward stable pivoted LDU decompo-
sition P1CP2 = LDU can be computed using the parameters (αi) ∈ Cm, (βj) ∈ Cn;
see [13, 15]. The RRD C = (PT1 L)D(UPT2 ) ≡ XDY ∗ is computed as C ≈ X̃D̃Ỹ ∗ with
|Xij − X̃ij | ≤ ε|Xij |, |Dii−D̃ii| ≤ ε|Dii|, |Yij− Ỹij | ≤ ε|Yij |, for all i, j, and ε of the order
of O(n)ε̂. Hence, by virtue of (2.4), it remains to compute the SVD of the product X̃D̃Ỹ ∗

with an accuracy governed by max(κ2(X̃), κ2(Ỹ )).

2.4. The PSVD. This approach of first decomposing A via the LDU and then computing
its SVD from the product of the LDU factors [19, Section 3.6], [15, Section 2, 3] relies
on the ability to compute the SVD of the RRD A = XDY ∗ to high relative accuracy,
determined by max(κ2(X), κ2(Y )) and independent of κ2(D) or κ2(XDY ∗). This task can
be accomplished with the following algorithm [19]:

Algorithm 2 (Σ, U, V ) = PSVD(X,D, Y )
(SVD of XDY ∗; X ∈ Cm×n, Y ∈ Cp×n).

1: DX = diag(‖X(:, i)‖2)ni=1; Xc = XD−1
X ; Y1 = Y D∗D∗X ;

{Internal scaling; XDY ∗ = XcY
∗
1 .}

2: Y1Π = Q [R0 ];
{Givens or Householder QR factorization with the Businger-Golub column pivoting [9].}

3: Compute the matrix Z = XcΠR
∗; {Explicit matrix multiplication.}

4: Compute the SVD of Z: Z = UΣV ∗z ; {SVD using the Jacobi SVD algorithm [23, 24].}
5: The SVD of XDY ∗ is : XDY ∗ = U

[
Σ 0

] (
Q
[
Vz 0
0 I
])∗

.

The pivoting in line 2 is essential—the resulting R can be factored as R = ST with a
diagonal matrix S and a well-conditioned one T , where we can choose T to have a unit
diagonal or all rows of unit Euclidean norm. This allows an explicit computation of the
matrix Z in line 3 and an accurate SVD computation of Z in line 4. It should be noted
that Z = (XcΠ)R∗ must be computed with the standard O(mn2) matrix multiplication
algorithm. Fast matrix multiplication methods [44] do not meet the criteria for high accuracy.
Also, Z ≡ (XcΠ)T ∗S∗ has the structure well-conditioned × diagonal, and the computed
singular values obey an error bound analogous to (2.4). The theoretical condition number of
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Algorithm 2 is κ2(S) max(κ2(X), κ2(Y )), where κ2(S) is small (see Section 5.2.4), and its
influence is never experienced in numerical experiments. It can be removed at the price of more
computations (see [15, Algorithm 3.2]) but with no practical advantage over Algorithm 2. In
addition, it can be easily shown that the accuracy of Algorithm 2 is determined (up to a factor
of
√
n) by the condition number κ2(S) max(minD=diag κ2(XD),minD=diag κ2(Y D)).

3. Hankel matrices and symmetric (Autonne-Takagi) SVDs. The seemingly simple
and aesthetically pleasing definition of Hankel matrices hides a rather rich structure with
implications in matrix theory, rational approximation theory, signal processing, control theory,
computational geometry, and algebraic coding theory. Various relations connect them to
Toeplitz, Vandermonde, Bernstein, Cauchy, Pascal, Krylov, companion, and other structured
matrices. Their inverses are Bezoutiants of certain polynomial pairs [28]. Hankel matrices
of dimension n × n form a 2n − 1 dimensional linear subspace of Cn×n which, together
with Toeplitz matrices, has the unique property (among all subspaces of Cn×n of dimension
2n− 1) that any n× n matrix can be expressed as a product of 4r + 1 Hankel matrices with
r = bn/2c+ 1. For a nonsingular matrix, only 2r factors suffice; for a generic matrix (with
exceptions on a proper subvariety), r factors are enough; see [53].

In addition, the symmetry H = HT implies that the SVD H = UΣV∗ has a special
structure shared by all complex symmetric matrices: any A = AT ∈ Cn×n can be written in
the form A = WΣWT with a unitary matrix W, and this is called the Takagi factorization [45]
of A. It also appears in a work of Schur [42]. The next theorem provides the details of how an
SVD of A = AT can be turned into the symmetric SVD, and it is included for the reader’s
convenience. It also serves as a tribute to the work of Léon Autonne, who introduced this
decomposition in his 1915 paper [3, Chapitre VIII. Theoréme 92◦, page 65].

THEOREM 3.1 (Autonne-Takagi factorization). Let A be a complex symmetric matrix.
Then its SVD can be written as A=WΣWT, where W is unitary and Σ is a diagonal matrix
carrying the singular values of A.

Proof. Here we follow [37, Section 3.1, Problem 33], which is based on the approach of
Autonne [3, VIII]. From2 A = UΣVT = VΣUT = AT , it follows that VTUΣ = Σ(VTU)T ,
which implies that VTU is block diagonal with unitary symmetric blocks along the diago-
nal of sizes corresponding to the multiplicities of the singular values. More precisely, let
Σ = ⊕pi=1σ

]
i Imi

, where σ]1 > · · · > σ]p ≥ 0 are all different singular values with multiplic-
ities m1, . . . ,mp, respectively. Then VTU = ⊕pi=1Ki, where K∗iKi = I and Ki = KT

i

for σ]i 6= 0. For each Ki, we can use its Schur form and construct a unitary square root Si
such that S2

i = Ki. If we represent Si using the Lagrange interpolating polynomial, we see
that Si = STi if Ki = KT

i . Now, the unitary matrix S = ⊕pi=1Si satisfies S2 = VTU and
SΣ = ΣS = ΣST ; cf. [3, 91◦, page 65; Lemme 39◦, page 36]. Finally, we can write

UΣV∗ = UΣVT = VVTUΣVT = VSSΣVT = VSΣSTVT = WΣWT , W ≡ VS.

It should be noted that an SVD of A = AT ∈ Cn×n is not automatically its Autonne-
Takagi factorization, and that the recipe given in the proof of Theorem 3.1 is very simple
in the case of simple singular values. For the sake of simplicity, we consider only the SVD.
Note that AW = WΣ solves the con-eigenvalue problem for A. In fact, this con-(eigenvalue,
eigenvector) property led Takagi [45] to discover the symmetric SVD as an algebraic tool for
constructing rational approximations on the unit disk. It is also worth mentioning that the

2Here V denotes entry-wise complex conjugation, so that V∗ = VT .
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singular values of A have a variational characterization in terms of the bilinear form vTAv,
v ∈ Cn [11] (in addition to the min-max characterization as the roots of the eigenvalues of
A∗A).

The Hankel structure allows computing the (symmetric) SVD ofH(h) with anO(n2 log n)
complexity; see [52]. However, since our primary goal is guaranteed high numerical accuracy
in all singular values and singular vectors, we are willing to trade efficiency for accuracy and
to accept the standard O(n3) complexity of an algorithm if it is capable of delivering even the
tiniest singular values to nearly full machine precision.

4. Algorithms for an accurate SVD ofH ≡ VTDV . We now describe an algorithm
to compute the SVD of the product H = VTDV ∈ Cn×n, where V is Vandermonde and D
is diagonal given by the vectors x, d ∈ Cn, respectively. The key step is a reparametrization
of the product VTDV by replacing the Vandermonde matrix V by a Cauchy matrix, and it is
motivated by the availability of an RRD for Cauchy matrices.

4.1. A prelude: the DFT of the Vandermonde product form. It is well known that
any Vandermonde matrix Vn(x) = V = (xj−1

i )ni,j=1 can be written as V = D1CD2F∗, where
F is the unitary n × n FFT matrix (Fij = ω(i−1)(j−1)/

√
n, ω = e2πi/n), D1 and D2 are

diagonal, and C is a Cauchy matrix. More precisely,

(4.1) (VF)ij =

[
1− xni√

n

] [
1

ω1−j − xi

] [
1

ωj−1

]
≡ (D1)ii Cij (D2)jj , 1 ≤ i, j ≤ n.

This is turned into an accurate SVD of Vn(x), but, with quite a few fine details, tuned to
perfection in [13, 16]. In particular, a possible singularity at xi equal to a floating-point value
of an nth root of unity is removable.

In our setting, this gives FTHF = D2CTD1DD1CD2. Since F and D2 are unitary,
it remains to compute the SVD of the complex symmetric matrix M = CTD3C, where
D3 = D2

1D. Note that M is given implicitly and its factors C (given implicitly in (4.1))
and D3 are given with full accuracy. (For details, see [13].)

4.2. The SVD of the Cauchy product form and the GRRD. We now focus on the
SVD of M = CTD3C. Let

√
D3 be a square root such that

√
D3

√
D3 = D3, and let√

D3C=XD4Y
T be an RRD of

√
D3C, computed, e.g., from the LU decomposition of

Π1

√
D3CΠ2 = LD4U . Let X = ΠT

1 L and Y = Π2U
T . Then

(4.2) M = CT (
√
D3)2C = Y D4X

TXD4Y
T = Π2NΠT

2 , N = UTD4L
TLD4U,

and the problem reduces to calculating the SVD of N . Note that in floating-point arithmetic,
all three factors L, U, and D4 are computed to high relative accuracy (they are entry-wise
forward stable functions of x and d), and that L and U are unit triangular with off-diagonal
entries less than one in modulus and expected to be well-conditioned, thus both κ2(L) and
κ2(U) will be moderate [13]. We postpone the discussion on condition numbers to Section 5.1.
Let us for a moment assume that Z ≡ LTL is well-conditioned to allow for an accurate LDU
decomposition and that the diagonal entries of D4 are monotonically decreasing in absolute
values. Then, the product N = UT (D4ZD4)U is a generalization of the RRD. Instead of the
decomposition well-conditioned × diagonal × well-conditioned, we have well-conditioned ×
matrix with accurate RRD × well-conditioned, which is reduced to RRD by a pivoted LDU
(or pivoted QR factorization) of the middle matrix D4ZD4 in the product. This more general
RRD (GRRD) has been introduced and analyzed in detail in [20].
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4.3. New algorithms. So far, we have D∗2FTHFD∗2 = Π2NΠT
2 , and it remains to

compute the SVD of N = UT (D4L
TLD4)U . Based on the previous considerations, we

can expect that the LDU decomposition with complete pivoting of A = D4ZD4 will be an
accurate RRD, A = XADAY

∗
A , and N in (4.2) can be written as N = (UTXA)DA(Y ∗AU).

The SVD in this form can be computed by Algorithm 2. Hence, putting all this together, we
can formulate Algorithm 3.

Algorithm 3 (Σ,U,V) = SVD_VTDV0(x, d)
(SVD ofH(x, d) ≡ V(x)Tdiag(d)V(x), x, d ∈ Cn).

1: ω = e2πi/n; ~ω = (ω1−i)ni=1 ; d1 = (1− x.n)/
√
n ; d2 = (ωj−1)nj=1 ;

2: [L, d4, U, π1, π2] = CauchyLDU(−x, ~ω, d1. ∗
√
d, ones(n, 1));

{LDU of (4.1), following [13, 16].}
3: A = (Ldiag(d4))TL(diag(d4)); {Diagonal scaling and cross-product.}
4: [XA, dA, YA, π3, π4] = XDY∗(A) ; {Here A = XAdiag(dA)Y ∗A .}
5: [Q,R, π5] = qr(UTYAdiag(dA));

{QR factorization with the Businger-Golub column pivoting.}
6: S = UTXA(:, π5)RT ; {Lines 5–7 are from Algorithm 2.}
7: Compute the SVD of S: S = UsΣW

∗
s ; {SVD using the Jacobi SVD algorithm [23, 24].}

8: Assemble the singular vectors: U = Fdiag(d2)Π2Us; V = Fdiag(d2)Π2QWs.

It is instructive to state another algorithm as an illustration of the power of this technique
and as a case study to point out some fine details as well as for some practical reasons; see
Section 4.3.1. Algorithm 4 is based on the capability of the QR factorization with complete
pivoting [41] to almost reach the stability of the LDU with complete pivoting [10, 21, 36]
when applied to graded matrices, i.e., matrices of the form of A = D4ZD4. The key is a
pre-sorting of the rows of the input matrix in the vector `∞-norm denoted throughout the paper
by ‖ · ‖∞.

Algorithm 4 (Σ,U,V) = SVD_VTDV1(x, d)
(SVD ofH(x, d) ≡ V(x)Tdiag(d)V(x), x, d ∈ Cn).

1: ω = e2πi/n; ~ω = (ω1−i)ni=1 ; d1 = (1− x.n)/
√
n ; d2 = (ωj−1)nj=1 ;

2: [L, d4, U, π1, π2] = CauchyLDU(−x, ~ω, d1. ∗
√
d, ones(n, 1));

{LDU of (4.1), following [13, 16].}
3: [Q1, R1, π3] = qr(UTdiag(d4)) ;

{QR factorization with the Businger-Golub column pivoting.}
4: G0 = L(:, π3)RT1 ; G = GT0 G0 ; {Triangular matrix multiply and cross-product.}
5: π4 is a sorting permutation such that ‖G(π4(1), :)‖∞ ≥ ‖G(π4(2), :)‖∞ ≥ · · ·
≥‖G(π4(n), :)‖∞;

6: [Q2, R2, π5] = qr(G(π4, :)) ;
{QR factorization with the Businger-Golub column pivoting.}

7: Compute the SVD ofR∗2: R∗2 =UrΣW
∗
r ; {SVD using the Jacobi SVD algorithm [23, 24].}

8: Singular vectors:
U = F−1diag(d2)Q1(π−1

2 , :)Q2(π−1
4 , :)Wr; V = Fdiag(d2)Q1(π−1

2 , :)Ur(π
−1
5 , :).

REMARK 4.1. Both Algorithm 3 and Algorithm 4 can be easily adapted to work with
rectangular fat V with essentially the same accuracy properties. For the sake of brevity, we
discuss only the square case and refer to [19, 20] for the details needed for the rectangular
case.
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4.3.1. Numerical examples. Let us now take the above developed algorithms for a test
drive.3 Clearly, there is a technical difficulty in obtaining reference values if the condition
number of the matrix is as big as, say, 10500. In that case, we can resort to special toolboxes
with variable precision arithmetic and take as many digits of precision as necessary to com-
pensate the high condition number. Another, indirect way to check the accuracy of the results
is by comparing the outputs of two different algorithms that compute highly ill-conditioned
decomposition—if they agree to almost full machine precision, a kind of Ockham’s razor
would deem them both accurate. A numerical analyst’s way is to compute all relevant condition
numbers and plug them into the state of the art error analysis and perturbation theory. For the
sake of better understanding and demonstration of the robustness of the new algorithms, we
combine all three methods.

EXAMPLE 4.2. With n = 160, we generate random complex vectors x, d ∈ Cn
with normally distributed real and imaginary parts. The implicitly defined Hankel matrices
H = V(x)Tdiag(d)V(x) in these experiments have, with varying x and d, spectral condition
numbers of the orders of magnitude 10260 to 10280. Hence, 300-digit arithmetic would be
necessary to guarantee standard double-precision (16 digits) accuracy in a conventional SVD
computation. Let us show the results of one concrete example with a condition number
estimated as κ2(H) ≈ 1.4095e+260.

For starters, let us compare in Figure 4.1 the singular values computed by Algorithm 3
(σ(0)

1 ≥ · · · ≥ σ(0)
n are shown as blue circles) with those obtained by Algorithm 4

(σ(1)
1 ≥ · · · ≥ σ(1)

n are shown as red ×’s, each scoring a bull’s-eye on the blue circle). We
observe perfect matches from the largest all the way down to the tiniest singular values. The

computed relative differences ε(0,1)
j = |σ(0)

j − σ
(1)
j |/

√
σ

(0)
j σ

(1)
j are all below 1.0403e-013,

which is almost n · eps ≈ 3.5527e-014. This is indicative but not a proof that the two algo-
rithms have delivered the singular values correct to almost full machine precision.4 To verify
the high accuracy of both algorithms, we computed the SVD ofH in 300-digit arithmetic using
the Advanpix Multiprecision Computing Toolbox for Matlab [1]. The computed singular values
σ1 ≥ · · · ≥ σn are used as reference values to calculate the errors ε(k)

j = |σj − σ(k)
j |/σj ,

k = 0, 1. We obtained maxj ε
(0)
j ≤ 4.4405e-013 and maxj ε

(1)
j ≤ 4.6522e-013. It is re-

markable that both Algorithm 3 and Algorithm 4 succeeded to compute all singular values
ranging from σ1 ≈ 5.9126e+139 to σn ≈ 4.1949e-121 to 13 digits of accuracy in ordinary
double-precision computation with ε̂ ≡ eps ≈ 2.2204e-016. The run times of the two al-
gorithms5 to find the full SVD (including singular vectors) were 1.80 (Algorithm 3) and
5.49 seconds (Algorithm 4), while computing with the toolbox in 300-digit arithmetic took
2.43 · 104 seconds.6

REMARK 4.3. We should note that, in the case whenH is computed explicitly in floating-
point arithmetic as H̃, it is possible that all singular values are computed with no accurate digit
(i.e., all are wrong as compared to the true eigenvalues ofH) even if they are computed exactly
from H̃. In Figure 4.1, we also display the computed singular values when Matlab’s function

3Beware of bugs in the above code; I have only proved it correct, not tried it. – Donald Knuth
4Two different computational algorithms are obtaining nearly the same result of a highly ill-conditioned computa-

tion. See Example 6.2 for two algorithms getting almost identical and wrong result.
5On a Intel (R) Core (TM) 2 Duo CPU T6670 @ 2.20Ghz 2.20 Ghz based Laptop with 8GB RAM running

Matlab under MS Windows 7. The algorithms are written as simple m-files without any attempt to optimize the run
time.

6We have learned recently that new releases of the Advanpix toolbox provide improved SVD methods that
reduce the run time considerably, with a factor as large as thousand. However, no matter how optimized, extended
(300-digit) arithmetic is necessarily more expensive than the standard double-precision computation capable of
delivering working-precision accuracy of the SVD.
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svd() and a Jacobi SVD algorithm are applied to H̃, where H̃ is obtained by rounding to
double precision the matrixH computed explicitly in 300-digit arithmetic.

Let us check the singular vectors U (0) = (u
(0)
1 , . . . , u

(0)
n ) and V (0) = (v

(0)
1 , . . . , v

(0)
n )

found by Algorithm 3. Figure 4.2 displays the differences ‖ui − u(0)
i ‖2, ‖vi − v(0)

i ‖2, where
the reference values ui, vi are computed in 300-digits arithmetics. Note that the measured
errors perfectly match the dependence on the relative gaps in the spectrum as predicted by the
perturbation theory [38]. Almost identical results for the left and the right singular vectors are
the consequence of the structure described in Theorem 3.1. Although the matrices U (0) and
V (0) are computed independently using different formulas, an a posteriori check shows that
(U (0))TV (0) is a diagonal unitary matrix with an error less than 6.6569e-014; cf. the proof of
Theorem 3.1.
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1:n

Comparison of σj (SVD VTDV0) and σ̃j (SVD VTDV1) as
|σj−σ̃j |√

σj σ̃j

 

 

σ
j
 by SVD_VTDV

0

σ
j
 by SVD_VTDV

1

σ
j
 by svd(H)

σ
j
 by Jacobi_SVD(H)

Rel. differ. (o−x)/sqrt(ox)

n*eps

FIG. 4.1. The singular values of H = VTDV ∈ C160×160 computed by Algorithm 3 (σj ) and Algo-
rithm 4 (σ̃j ). The relative differences |σj − σ̃j |/

√
σj σ̃j are all at the level ofn·eps, where ε̂ ≡ eps ≈ 2.2204e-016.

Here κ2(H) ≈ 1.4095e+260.

For the accuracy of the individual entries of the singular vectors, there is one a priori
limiting factor—-the final FFT in line 8. Namely, if the FFT matrix F is applied to a vector x,
then the result computed in floating-point arithmetic with the roundoff ε̂ reads 7

fl(Fx) = Fx+ ε,

|ε| ≤ ξ|F||x| = ξ
‖x‖1√
n




1
...
1


 ≤ ξ‖x‖2




1
...
1


, where ξ ≤ nε̂

1− nε̂ .
(4.3)

Since the final step in the assembling of the singular vectors is the FFT of numerically unitary
matrices, the bound (4.3) implies that we can expect a flat O(nε̂)-error over all entries of U (0)

and V (0). Hence, the singular vector entries below O(nε̂) will not be computed accurately.
This is illustrated in Figure 4.3. The problem is not resolved by applying Fdiag(d2)Π2 and

7The absolute values and inequalities involving vectors and matrices are understood entry-wise.
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FIG. 4.2. The accuracy of the singular vectors u(0)i , v(0)i of H = VTDV ∈ C160×160 computed
by Algorithm 3. The reference values are computed in 300-digits arithmetic. The plot on the right-hand side
shows the relative gaps in the singular spectrum, gapi = minj 6=i

|σi−σj |√
σiσj

. Note that the measured errors com-

ply with the perturbation theory. It holds that ‖u(0)i − ui‖2 · gapi/(nε̂) ∈ (1.54 · 10−1, 5.57 · 103) and

‖v(0)i − vi‖2 · gapi/(nε̂) ∈ (1.55 · 10−1, 6.08 · 103). The O(103) right boundary of this interval hides the
condition number; see Remark 5.1.

Fdiag(d2)Π2 immediately to the RRD factors of C instead of applying them in the final
assembly of the singular vectors.

5. Error and perturbation analysis. We now give some details on the error and pertur-
bation analysis. For brevity, we consider only Algorithm 3. Clearly, proving backward stability
in terms of the input data x and d is out of question. Similarly, constructing a backward
error δH with a Hankel structure is not feasible, and even if it was, it would be of little use
because the matrixH is extremely ill-conditioned and no useful error bound would follow. So,
the complete finite-precision computation will not be represented by the classical commutative
diagram of a backward stable computational process.

Instead, we go ahead with a mixed forward/backward error analysis relying on the fact that
particular steps of the algorithm have preconditioning effects. To illustrate this, in Section 5.1
we make a guided tour through the algorithm and identify the key condition numbers for each
particular step. Then, in Section 5.2, we analyze the effects of finite-precision arithmetic. One
of the key feature that will become apparent is that all extreme ill-conditioning is revealed
in the diagonal scaling matrices diag(d4), diag(dA) and that the condition numbers of those
diagonal matrices never enter the forward error bounds, thus this will be experienced by the
algorithm as artificial ill-conditioning. This section can be considered as a detailed proof of a
theorem that gives forward error bounds for the computed singular values.

5.1. On condition numbers. Let us discuss the condition numbers of the intermediate
matrices computed in Algorithm 3. Since we aim at a small forward error, it is of vital
importance that those numbers are moderate. For some of them we can derive theoretical
bounds; sometimes overwhelming numerical evidence and heuristics imply that they are
expected to be moderate. In any case, we can estimate them and have computable error bounds.
If we want high accuracy to some pre-specified level, those numbers will provide information
on how many extra digits are needed in a particular step to guarantee the required accuracy.
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FIG. 4.3. The accuracy of the singular vectors u(0)11 , u(0)121 (entries plotted using "·") computed by Algorithm 3.
The reference values ("◦") are computed in 300-digits arithmetic. Accurately computed singular vectors’ components
are recognized as ◦·. The (blue) curve represents the relative errors in the singular vectors’ components. The first two
plots clearly show the effect of averaging of the FFT (4.3) and smearing the roundoff over the small components.

5.1.1. Lines 2 and 3. The FFT of V is performed implicitly by defining the resulting
Cauchy matrix D1CD2. The first and the key step of removing the ill-conditioning is the
pivoted LDU of

√
D3C. The resulting unit triangular matrices L and U can be considered

well-conditioned, which is the case in all numerical experiments; see also [13, 15, 16]. For
instance, in Example 4.2 we have κ2(L) u 6.6122e+001, κ2(U) u 1.7342e+002, and
κ2(D4) u 4.5508e+128. From the perturbation theory for singular values it follows that
D4 = diag(d4) = L−1Π1

√
D3CΠ2U

−1 must be ill-conditioned. If σi(
√
D3C), i = 1, . . . , n,

are decreasingly ordered singular values of
√
D3C, then, with certain permutation ς , the results

in [25] yield

σi(
√
D3C)

‖L‖2‖U‖2
≤ |d4|ς(i) ≤ σi(

√
D3C)‖L−1‖2‖U−1‖2, i = 1, . . . , n.

It should be noted that moderate values of κ2(L) and κ2(U) are not just simple consequences
of the fact that both are unit triangular matrices and that the remaining entries in their nontrivial
triangles are bounded by one in modulus. The reasons are much deeper and beyond our full
understanding at this moment; see [47, 51] for an in-depth analysis and discussion of the
phenomena related to condition numbers of triangular matrices. Intuition indicates that Cauchy
matrices are well separated from the apparently thin set of matrices with badly conditioned
normalized triangular (pivoted) LDU factors. However, a thorough mathematical explanation
of this observed phenomenon remains a challenging open problem. The best we can do in
practical computation is to compute those condition numbers a posteriori and confirm that
both matrices are well-conditioned. This can be done with an (acceptable) O(n2) complexity,
and it should be included in a software implementation.
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The same observation on the condition numbers holds true for the matrices XA and YA,
which are just permuted triangular matrices from the LDU decomposition with complete
pivoting of A = D4L

TLD4: A(π3, π4) = LADAUA, XA = LA(π−1
3 , :), YA = UA(:, π−1

4 ).
For the data of Example 4.2, we have κ2(XA) u 4.1430e+000, κ2(YA) u 4.1365e+000, and
κ2(DA) u 2.7626e+257.

5.1.2. Line 4. The computation of the LDU decomposition of A = D4L
TLD4 in line 4

requires a more detailed discussion. The diagonal matrix D4 can be very ill-conditioned with
diagonal entries spanning over many orders of magnitude, expected to decrease in modulus
from very large to very small (see the lower plot in Figure 5.1 for an example), although
the strict monotonicity cannot be guaranteed. Typically, if the monotonicity is violated, the
two positions where it happens are nearly of the same order of magnitude. This means that
A = D4ZD4 has a graded structure, which is in favor of an accurate LDU decomposition
provided that the matrix Z = LTL is appropriately well-conditioned for the LDU computation;
for a detailed discussion, see [15, Section 4]. It is immediate that κ2(Z) ≤ κ2(L)2 is
expected to be small, but that is not enough—we need all leading submatrices of Z to be
well-conditioned.

In our example, the upper plot on Figure 5.1 displays the values of κ2(Z(1 : i, 1 : i)),
i = 1, . . . , n. They are all bounded by κ2(L)2 u 4.3721e+003. The permutations π3, π4 are
equal and close to identity with only a few swaps of neighboring indices and do not change
the structure illustrated in Figure 5.1. For the sake of experiment, we permuted the rows and
the columns of Z with two random permutations and then recomputed the condition numbers
of the leading submatrices. They were almost all above 1015 with some values even above
1020. In another experiment, inspired by [47], we randomly changed the signs of the real
and imaginary parts of L, which resulted in an increase of some values of κ2(Z(1 : i, 1 : i))
above 108.

Apparently, the key for this well-behaved condition numbers lies in the fact that L has
been computed by completely pivoted Gaussian eliminations of a Cauchy matrix; recall the
discussion in Section 5.1.1. Unfortunately, making this theoretically more precise and proving
the type of boundedness observed in numerical experiments does not seem to be simple.
However, some useful facts about the condition numbers of certain submatrices of Z can be
proved. Take some index i and partition the matrix Z as

Z =

[ i n− i
i Z[11] Z[12]

n− i Z[21] Z[22]

]
=

[
LT[11] LT[21]

0 LT[22]

] [ i n− i
L[11] 0
L[21] L[22]

]
.

Since Z[22] = LT[22]L[22], it follows that κ2(Z[22]) ≤ κ2(L[22])
2 ≤ κ2(L)2. Hence, all trailing

submatrices of Z are expected to be well-conditioned. Further, by the interlacing theorem for

singular values, we know that the condition numbers of Z[1] =

[
Z[11]

Z[21]

]
and Z[2] =

[
Z[12]

Z[22]

]

are bounded above by κ2(Z)(≤ κ2(L)2). We are in fact interested in the condition number of
the leading submatrix Z[11], but, unfortunately, the expression

Z[11] = LT[11]L[11] + LT[21]L[21] = LT[11](I + L−T[11]L
T
[21]L[21]L

−1
[11])L[11]

does not imply a similar conclusion except in the case of a real matrix L (which we do
not have here). The problem is that, in the case of complex data, LT[11]L[11] + LT[21]L[21]

behaves quite differently from L∗[11]L[11] + L∗[21]L[21]. For the first summand, we have
κ2(LT[11]L[11]) ≤ κ2(L)2, but bounding the influence of the second term is not easy. An
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FIG. 5.1. The condition numbers of the leading submatrices of the matrix Z = LTL and the diagonal scaling
matrixD4 for the Hankel matrixH from Example 4.2. The dashed line on the upper plot shows the condition numbers
of the leading submatrices of L∗L; those numbers are, of course, provably non-decreasing.

extremely ill-behaved (though contrived) example is
[
I iI
0 I

] [
I 0
iI I

]
=

[
0 iI
iI I

]
. However,

in our case the matrix L is particularly structured and such an example is unlikely. We leave
the further theoretical analysis as an open problem and point to the work of Higham [35]
that provides additional insight into the structure of completely pivoted LU decomposition of
complex symmetric matrices.8

5.1.3. Line 5. As a consequence of the results in Section 5.1.1 and Section 5.1.2, the
matrix B = UTY TA DA satisfies

min
∆=diag

κ2(B∆) ≤ κ2(U)κ2(YA),

κ2(Bc) ≤
√
nκ2(U)κ2(YA), where Bc = Bdiag(1/‖B(:, i)‖2).

The upper triangular matrix R computed by the pivoted QR factorization B(:, π5) = QR in
step 5 also deserves our attention. As a consequence of pivoting [9], the matrix R satisfies

(5.1) |Rii| ≥

√√√√
j∑

k=i

|Rkj |2, for all 1 ≤ i ≤ j ≤ n.

8Higham considered complex symmetric matrices with positive definite real and imaginary parts—a structure
that our matrix Z does not have.
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Although originally devised to reveal the numerical rank, in our setting the pivoting and
the resulting structure (5.1) are understood and exploited as strong preconditioners. Let
∆r = diag(1/‖R(i, :)‖2)ni=1, Rr = ∆rR, ∆c = diag(1/‖R(:, i)‖2)ni=1, and Rc = R∆c.
Then it can be shown that κ2(Rr) ≤ n3/2κ2(Rc) = n3/2κ2(Bc). We can easily understand
this mechanism if we note that (5.1) implies

|(R−1
r )ij | ≤

√
n− j + 1

∣∣∣∣
Rjj
Rii

∣∣∣∣ |(R−1
c )ij |, i.e., |R−1

r | ≤
√
n|R−1

c |,

where in the case of an ill-conditioned matrix B, it is possible that κ2(Rr) � κ2(Rc). In
our concrete example, κ2(Rr) u 2.5989e+000, κ2(Rc) = κ2(Bc) u 1.6051e+002, and
with ∆d = diag(1/|Rii|), we have κ2(∆d) u 6.2400e+258 and κ2(∆dR) u 2.6852e+000.
Compare this with κ2(B) > 10258.

5.1.4. Line 6. Finally, the matrix S = UTXA(:, π5)RT = UTXA(:, π5)RTr ∆−1
r satis-

fies

κ2(S∆s) ≤
√
nκ2(UTXA(:, π5)RTr ) ≤ √nκ2(U)κ2(XA)κ2(Rr),

∆s = diag(1/‖S(:, i)‖2).
(5.2)

In our example, κ2(S∆s) u 1.4481e+002 and κ2(S) > 10260. In such a situation, the Jacobi
SVD algorithm can compute the SVD decomposition of S to nearly machine precision.

REMARK 5.1. Before going to the error analysis, note that in Example 4.2 the condition
numbers of column- or row-scaled matrices that we pointed out were at most of the order
of 103, which is in perfect accordance with the measured errors in the singular values and in
the singular vectors reported in Figure 4.2. The key of the accuracy of the proposed algorithms
that will become apparent in Section 5.2 is that at no point they generate floating-point errors
that can trigger high condition numbers of V(x), C, A, B, or S.

REMARK 5.2. The condition number is a function of a matrix that has its own condition
number, and one should be careful when computing and using computed condition numbers.
In fact, up to certain multiplicative constants, the condition number of the condition number
is the condition number [12, 34]. So, for instance, in Matlab cond(hilb(100)) gives
the answer 6.9789e+19, while the true condition number is above 10150. This severe
underestimate can be partially understood by combining the backward error framework of the
numerical SVD (used by cond()) and the analysis of the condition number under random
perturbations [43, 46]. The condition numbers we reported in this section are computed
accurately enough to give the true estimate of the sensitivity.

5.2. Error analysis. The floating-point error analysis of an elaborate numerical algo-
rithm is usually technically involved, but at some point it has to be done. Such an analysis,
combined with the corresponding perturbation theory, is the only way to provide mathemati-
cally rigorous statements about the numerical properties of an algorithm. We follow the lines of
Algorithm 3 and use the well-established and understood error bounds for the basic operations
such as matrix multiplication, LU decomposition, QR factorization, and the Jacobi SVD
computation as outlined in Section 2.2 but without going into the unnecessary technical details.
Instead, we identify the key moments and discuss how we contrived to curb the ill-conditioning
throughout the algorithm. We use fl(expression) to denote the value of expression computed
in floating-point arithmetic. ε̂ is the machine roundoff unit. Occasionally, we use the following
notation: for an entry-wise nonnegative matrix B, we denote a matrix A by dBe, or write
A ∈ dBe if, entry-wise, |A| ≤ B.
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5.2.1. Line 2. To ease the notation, assume that the input is so ordered that the permu-
tations π1, π2 are identities. Since the LDU of the scaled Cauchy matrix

√
D3C in line 2

is computed in an entry-wise forward stable way, the computed matrices L̃ = L + δL,
Ũ = U + δU , D̃4 = D4 + δD4 satisfy

(5.3) |δL| ≤ ε1|L|, |δU | ≤ ε1|U |, |δD4| ≤ ε1|D4|, where ε1 ≤ O(n)ε̂.

We stress that this computation is rather subtle and that in extreme cases it may require the
complex roots of unity tabulated in triple precision. The reader is referred to [13, Section 5]
for all the fine and nontrivial details.

5.2.2. Line 3. The effect of δL, δU, and δD4 on the computed values of the matrix
A = D4L

TLD4 is estimated next. The exact product Ǎ = D̃4L̃
T L̃D̃4 of the computed

factors satisfies

Ǎ = D4(I + δD4D
−1
4 )L̃T L̃(I + δD4D

−1
4 )D4 = D4Ľ

T ĽD4,

Ľ = L+ ∆L, |∆L| ≤ (2ε1 + ε21)|L|.
(5.4)

But Ǎ must be computed in floating-point arithmetic. The resulting matrix Ã= fl(D̃4L̃
T L̃D̃4)

is obtained in two steps. First, apply a diagonal scaling with D̃4 = D4 + dε1D4e to get

fl(L̃D̃4) = (L+ dε1|L|e+ dε̂|L+ dε1|L|e |e)(I + dε1Ie)D4

= (L+ δ̃L)D4, δ̃L ∈ dηL|L|e, ηL ≤ ε1(2 + 2ε̂ + ε1) + ε̂(1 + ε21),

and then compute the cross-product Ã = A+ δA as

Ã = fl(fl(L̃D̃4)T fl(L̃D̃4))

= D4(L+ δ̃L)T (L+ δ̃L)D4 +
⌈
ε2|D4||L+ δ̃L|T |L+ δ̃L||D4|

⌉

= D4

(
(L+ δ̃L)T (L+ δ̃L) +

⌈
ε2|L+ δ̃L|T |L+ δ̃L|

⌉)
D4 = D4(Z + δZ)D4,

(5.5)

where

|δZ| ≤ θ|L|T |L|, θ ≤ ((2ηL + η2
L)(1 + ε2) + ε2), ε2 ≤ O(n)ε̂, and(5.6)

‖δZ‖2 ≤ ζ‖Z‖2, with ζ = θ‖|L−1||L−T ||L|T |L|‖2 ≤ θn2κ2(L)2.(5.7)

We stress that the matrices Z and Z̃ = Z + δZ are introduced here only for the purpose of the
analysis. They are not computed in the algorithm, that is, A and Ã are not explicitly scaled
with D−1

4 .

5.2.3. Line 4. This is the defining moment of the algorithm. Instead of the matrix
A = D4ZD4, we have an explicitly computed Ã = D4(Z + δZ)D4 with a small matrix δZ
that can be estimated using (5.6), (5.7). The key question is whether Ã contains accurate
information on the SVD of A. If Z = LZUZ is the LU decomposition of Z, then

Ã = D4(LZUZ + δZ)D4 = D4LZ(I + L−1
Z δZU−1

Z )UZD4

= D4LZL̂ÛUZD4 = D4LZL̂L
−1
Z D−1

4 AD−1
4 U−1

Z ÛUZD4,
(5.8)

where I + L−1
Z δZU−1

Z = L̂Û is the LU decomposition of a perturbation of the identity. If we
set EZ = L−1

Z δZU−1
Z , then, using (5.6), ‖EZ‖F ≤ θ‖L−1

Z ‖2‖U−1
Z ‖2‖L‖2F . If ‖EZ‖F < 1,
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then we can apply a perturbation result from [5] and write L̂ = I + EL, Û = I + EU with a
strictly lower triangular matrix EL, ‖EL‖F ≤ ‖EZ‖F /(1− ‖EZ‖F ) and an upper triangular
one EU , ‖EU‖F ≤ ‖EZ‖F /(1− ‖EZ‖F ). Hence,

(5.9) Ã = (I +D4LZELL
−1
Z D−1

4 )A(I +D−1
4 U−1

Z EUUZD4) ≡ (I + Ξ1)A(I + Ξ2).

A careful reading of (5.9) reveals that the diagonal matrix D4, no matter how ill-conditioned,
cannot inflate the error terms provided that the diagonal entries of D4 are monotonically
decreasing in modulus or if the ratio τ = maxj>i |(D4)jj |/|(D4)ii| is not too much
larger than one. This is due to the structure of the products D4(lower triangular)D−1

4

and D−1
4 (upper triangular)D4. Interestingly, if τ < 1, then the ill-conditioning revealed

in D4 actually curbs the error. At this point, it is instructive to recall Figure 5.1.
REMARK 5.3. Note that in this analysis we can even assume that, on entry to these

formulas, the matrix Ã in (5.8) has been permuted according to a complete pivoting strategy
for its LU decomposition. If π3, π4 are the actually computed permutations, we can repeat
the above with A, Ã, Z, δZ, D4 replaced with, respectively, A(π3, π4), Ã(π3, π4), Z(π3, π4),
δZ(π3, π4), D4(π3, π3), or D4(π4, π4). Then, an analogous relation to (5.9) holds with these
permuted matrices and appropriately redefined matrices LZ , UZ , EL, and EU . If the complete
pivoting performs well, then the value of τ will be below or at least not much larger than one.

Now, an application of [25, Theorem 3.1] to (5.9) (cf. (2.3), (2.4)) yields the key factors
that determine the accuracy of the SVD,9

ξ1 = ‖Ξ1‖2 ≡ ‖D4LZELL
−1
Z D−1

4 ‖2 ≤ τκ2(LZ)‖EL‖F
≤ τκ2(LZ)‖EZ‖F /(1− ‖EZ‖F ),

(5.10)

ξ2 = ‖Ξ2‖2 ≡ ‖D−1
4 U−1

Z EUUZD4‖2 ≤ τκ2(UZ)‖EU‖F
≤ τκ2(UZ)‖EZ‖F /(1− ‖EZ‖F ).

(5.11)

Hence, if Z allows for an accurate LU decomposition under the perturbation δZ, then ξ1, ξ2
are small and an accurate approximation of the SVD of A is contained in Ã with each singular
value determined up to a relative error of order of ξ1 + ξ2 at most. How to extract such an
approximation is another question.

To that end, consider the LU decomposition with complete pivoting of Ã = D4Z̃D4, the
one that is actually computed in the algorithm. To ease the notation, we temporarily denote the
pivoted matrix Ã(π3, π4) with Â and write Â = D̂4ẐD̂4, where D̂4 is the pivoted diagonal
matrix D4 and Ẑ is the corresponding permuted matrix Z̃ = Z + δZ. The computed LU
decomposition L̃ÂŨÂ of Â satisfies the residual (backward error) relation Â+ δÂ = L̃ÂŨÂ,
where the backward error satisfies |δÂ| ≤ εLU |L̃Â||ŨÂ|, εLU ≤ O(n)ε̂. With the uniqueness
theorem for the LU decomposition in mind, write

Â+ δÂ = D̂4(Ẑ + δẐ)D̂4, where δẐ = D̂4

−1
δÂD̂4

−1
,

to conclude that Ẑ + δẐ =
(
D̂4

−1
L̃ÂD̂4

)(
D̂4

−1
ŨÂD̂4

−1
)
≡ L̃ẐŨẐ is the LU decomposi-

tion of Ẑ + δẐ. Note that here |δẐ| ≤ εLU |L̃Ẑ ||ŨẐ |. Now write

Ẑ = L̃ẐŨẐ − δẐ = L̃Ẑ(I− L̃−1

Ẑ
δẐŨ−1

Ẑ
)ŨẐ = L̃ẐL̆Ŭ ŨẐ ,

9Here we carefully combine the properties of the spectral and the Frobenius norms.
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where L̆Ŭ is the LU decomposition of a perturbation of the identity, L̆ = I+EL̆, Ŭ = I+EŬ .
Hence,

Â = D̂4L̃ẐL̆L̃
−1

Ẑ
D̂4

−1
(Â+ δÂ)D̂4

−1
Ũ−1

Ẑ
Ŭ ŨẐD̂4(5.12)

= (I + D̂4L̃ẐEL̆L̃
−1

Ẑ
D̂4

−1
)(L̃ÂŨÂ)(I + D̂4

−1
Ũ−1

Ẑ
EŬ ŨẐD̂4)

≡ (I + Ξ̂1)L̃ÂŨÂ(I + Ξ̂2) = (I + Ξ1)A(π3, π4)(I + Ξ2) (using Remark 5.3).(5.13)

It is immediate that the values of ξ̂1 =‖D̂4L̃ẐEL̆L̃
−1

Ẑ
D̂4

−1‖2 and ξ̂2 =‖D̂4

−1
Ũ−1

Ẑ
EŬ ŨẐD̂4‖2

can be bounded analogously to ξ1 and ξ2 in (5.10) and (5.11). If these four numbers are
small, then the computed pivoted LU decomposition of Ã is accurate. Furthermore, if
A(π3, π4) = LAUA is the exact LU decomposition and if we repeat the analysis in (5.8)–(5.9)
with an appropriately permuted A and Ã as explained in Remark 5.3, then by the triangular
structure of the multiplicative perturbations and by the uniqueness of the LU decomposition,

L̃Â = (I+Ξ̂1)−1(I+Ξ1)LA = (I+Ξ3)LA, ŨÂ = UA(I+Ξ2)(I+Ξ̂2)−1 = UA(I+Ξ4).

This implies

‖L̃Â − LA‖2
‖LA‖2

≤ O(ξ1 + ξ̂1), max
i=1:n

|(ŨÂ)ii − (UA)ii|
|(UA)ii|

≤ O(ξ2 + ξ̂2),

‖ŨÂ − UA‖2
‖UA‖2

≤ O(ξ2 + ξ̂2).

Let now D̃A = diag(ŨÂ), and consider the scaling fl(D̃−1
A ŨÂ).

T̃A ≡ fl(D̃−1
A ŨÂ) = D̃−1

A (ŨÂ +
⌈
ε̂|ŨÂ|

⌉
)

= (I + F )D−1
A (UA + UAΞ4 + dε̂|UA + UAΞ4|e)

= (I + F )(TA + TAΞ4 + dε̂(|TA|+ |TAΞ4|)e = TA + δTA, TA = D−1
A UA,(5.14)

where the terms that form δTA are TA multiplied from the right by an error matrix of small
norm or/and scaled from the left by the small diagonal error matrix F or/and multiplied by the
roundoff ε̂. From this we conclude that ‖δTA(i, :)‖2 ≤ ϑ‖TA(i, :)‖2 for all i, where 0 ≤ ϑ ≤
O(‖Ξ4‖2) +O(ξ2 + ξ̂2) +O(ε̂). If we write these decompositions in the form of the RRDs,
we have A = (Π3LA)DA(TAΠT

4 ) ≡ XADAY
∗
A with XA = Π3LA, YA = Π4T

∗
A. For the

computed decomposition, we have Ã+ δÃ = X̃AD̃AỸ
∗
A with X̃A = Π3L̃Â and ỸA = Π4T̃

∗
A.

The important thing is now that in the next step we use the computed decomposition

Ã+ δÃ = X̃AD̃AỸ
∗
A = (XA + δXA)(DA + δDA)(YA + δYA)∗

= (XA + δXA)DA(YA + ∆YA)∗,

where δÃ is the backward error and the errors in the factors (as compared to the corresponding
exact RRD of the exact matrix A) are bounded by

(5.15)
‖δXA‖2
‖XA‖2

≤ ξA,
‖δYA‖2
‖YA‖2

≤ ηA,
|(δDA)ii|
|(DA)ii|

≤ δA.

From the previous analysis, it is evident that

ξA ≤ O(ξ1 + ξ̂1), ηA ≤ O(‖Ξ4‖2) +O(ξ2 + ξ̂2) +O(ε̂), and δA ≤ O(ξ1 + ξ̂1).
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Note that we have avoided making any statement about the backward error δÃ. Instead, the
multiplicative form of the perturbation (5.12)–(5.13) has been used to derive the perturbation
estimate (5.15) for the RRD ofA. (Also, we could have taken D̃A = I and ỸA = Π4Ũ

∗
Â

, which
would then require some minor technical changes in Section 5.2.4 below without significantly
changing the final estimates.)

We should point out that an RRD can be computed by other means, for instance, by using
the SVD of Ã and thus giving other bounds for (5.15). In that case the condition number of ỸA
is approximately one, which improves the theoretical error bound in Section 5.2.4. However,
it seems that such an extra computational effort is not necessary in practice as the completely
pivoted LDU performs very well; cf. the last paragraph in Section 5.1.1.

5.2.4. Line 5. On input to line 5, the data are U + δU , YA + δYA, and DA + δDA.
Consider first

Υ̃A ≡ fl((Y ∗A + δY ∗A)T (DA + δDA)) = (Y ∗A + δ̃YA
∗
)TDA,

where ‖δ̃YA‖2 ≤ η̃A‖YA‖2 and η̃A ≤ ηA + (δA + ε̂
√
n(1 + δA))(1 + ηA). In the next step,

we have

B̃ = fl(ŨT Υ̃A) = ŨT Υ̃A +
⌈
O(n)ε̂|ŨT ||Υ̃A|

⌉

= (I + δUTU−T︸ ︷︷ ︸
Ω1

)


I + UT δ̃YA

∗T
Y −∗TA U−T + UT Ũ−T

⌈
O(n)ε̂|ŨT ||Υ̃A|

⌉
D−1
A Y −∗TA U−T

︸ ︷︷ ︸
Ω2


U

TY ∗TA DA

= (I + ΩB)B, where ΩB = Ω1 + Ω2 + Ω1Ω2 and

‖Ω1‖2 = ‖U−1δU‖2 ≤ κ2(U)
‖δU‖2
‖U‖2

(or, e.g., ‖Ω1‖2 ≤ ε‖|U−1||U |‖2),(5.16)

‖Ω2‖2 ≤ κ2(U)κ2(YA)(η̃A +O(n2)ε̂(1 + ‖Ũ−1δU‖2)(1 +
‖δU‖2
‖U‖2

)(1 + η̃A)).

Let now B̃π5 ≈ Q̃R̃ be the computed QR factorization. By the backward error analysis,
there exist a matrix δB̃ and a unitary matrix Q̂ ≈ Q̃ such that (B̃ + δB̃)π5 = Q̂R̃ and
‖δB̃(:, i)‖2 ≤ βQR‖B̃(:, i)‖2 with βQR ≤ O(n)ε̂ for all i. Thus, with some ∆B,

(B̃ + δB̃)π5 ≡ (B + ∆B)π5 = Q̂R̃, ‖∆B(:, i)‖2 ≤ ηB‖B(:, i)‖2,
ηB = ‖ΩB‖2 + βQR(1 + ‖ΩB‖2).

The permutation π5 ensures that R̃ has the structure (5.1). Next, we need to know how much
the computed R̃ differs from the true triangular factor R = R̃ + δR̃. For our targeted high
accuracy, the standard bound on ‖δR̃‖2/‖R‖2 is not good enough. We need more structured
information, and we use the results of [22, Section 6.1], which states that δR̃ = ΓR̃, where Γ
is upper triangular with the Frobenius norm bound

‖Γ‖F ≤
√

8nηB‖R̃−1
c ‖2

1− ηB
+
√

2
n(ηB‖R̃−1

c ‖2)2

(1− ηB)2
, R̃c = R̃diag(1/‖R̃(:, i)‖2)ni=1.
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From this, we not only have multiplicative perturbationsR = (I+Γ)R̃, with R̃ = (I + Γ)−1R

≈ (I − Γ)R, but also small column-wise error bounds ‖δR̃(:, i)‖2 ≤ ‖Γ‖2‖R̃(:, i)‖2 and
also favorable row-wise bounds10 ‖δR̃(i, :)‖∞ ≤ ‖Γ(i, :)‖2‖R̃(i, :)‖∞. For our purposes, we
rewrite this as R̃ = R+ δR with

‖δR(i, :)‖∞ ≤
‖Γ(i, :)‖2

1− ‖Γ(i, :)‖2
‖R(i, :)‖∞, and thus

‖δR(i, :)‖2 ≤
√
nγ‖R(i, :)‖2, i = 1, . . . n,

(5.17)

where γ = maxi
‖Γ(i,:)‖2

1−‖Γ(i,:)‖2 . Here we use the reasonable assumption that ‖Γ‖F < 1. (See the
condition numbers in Section 5.1.3.)

5.2.5. Line 6. Let S̃ = fl(fl(ŨT X̃A)R̃T ) be the computed value of S. We have

S̃ = ŨT X̃AR̃
T +

⌈
ε1|ŨT ||X̃A|

⌉
R̃T +

⌈
ε2

∣∣∣ŨT X̃A +
⌈
ε1|ŨT ||X̃A|

⌉∣∣∣ |R̃T |
⌉

= (I + δUTU−T )(I + UT δXAX
−1
A U−T )(I + UTXAδR

TR−TX−1
A U−T )UTXAR

T

+
⌈
ε|ŨT ||X̃A||R̃T |

⌉
(R−TX−1

A U−T )UTXAR
T

= ((I + Ψ1)(I + Ψ2)(I + Ψ3) + Ψ4)S = (I + ΨS)S,

where S = UTXAR
T , ε = ε1 + ε2 + ε1ε2, and ε1, ε2 ≤ O(n)ε̂. Further, Ψ1 = Ω1 is bounded

as in (5.16), and for the remaining Ψi’s, we use Section 5.1.3 and (5.17) to obtain

‖Ψ2‖2 ≤ κ2(U)κ2(XA)ξA,

‖Ψ3‖2 ≤ κ2(U)κ2(XA)‖R−1δR‖2 ≤ nκ2(U)κ2(XA)‖R−1
r ‖2γ,

‖Ψ4‖2 ≤
∥∥∥|ŨT ||X̃A||R̃T∆−1

r |
∥∥∥

2

∥∥R−1
r X−1

A U−T
∥∥

2
ε . n3/2κ2(U)κ2(XA)κ2(Rr)ε,

where the last inequality holds up to a factor of

(1 + ‖U−1δU‖2)(1 + ‖δXAX
−1
A ‖2)(1 + ‖R−1δR‖2).

5.2.6. Line 7. Finally, the Jacobi SVD computes the SVD of S̃ = S + δS with
δS = ΨSS. We know from Section 2.2 that this SVD corresponds to the exact SVD of
S̃+∆S̃, where ‖∆S̃(:, i)‖2 ≤ ξJ‖S̃(:, i)‖2. Altogether, we have computed the SVD ŨsΣ̃W̃

∗
s

of S + ∆S ≡ S + (δS + ∆S̃), i.e.,

S + ∆S = ÛsΣ̃Ŵ
∗
s , ‖∆S(:, i)‖2 ≤ ζS‖S(:, i)‖2, i = 1, . . . , n;

ζS ≤ ‖ΨS‖2 + ξJ(1 + ‖ΨS‖2).

Finally, calling to the discussion in Section 2 (in particular (2.1)), Section 5.1, and the
condition number estimate (5.2), we obtain a theoretical forward error bound and a match with
the measured errors in numerical experiments. For a detailed statement on the accuracy of the
computed singular values and vectors we refer to [23, Section 5.4, Section 5.5].

10Note that |δR̃ij | = |
∑j
k=i ΓikR̃kj | ≤ ‖Γ(i, :)‖2‖R̃(i :j, j)‖2 ≤ ‖Γ(i, :)‖2|R̃ii|, where the last inequality

follows from (5.1).
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5.3. Perturbation theory. The preceding analysis provides an error bound for the com-
puted SVD that corresponds to the input vectors x, d ∈ Cn stored in computer memory in
working-precision format. We can use it to algorithmically derive a perturbation estimate,
i.e., to bound the sensitivity of the SVD to the changes x  x̃ = x + δx, d  d̃ = d + δd.
Note that the accuracy of the computed SVD and the sensitivity of the SVD to the noise in
the input data are fundamentally different issues. In the case of ill-conditioned matrices, it
is possible that we can compute to full machine precision the singular values of the matrix
that corresponds to the stored parameters and that at the same time those values are highly
sensitive even to the tiniest changes in the parameters. The key to estimate this sensitivity
is (5.3), where the value of ε1 can be bounded in terms of maxi |δxi/xi|, maxi |δdi/di|, the
relative gap between the xi’s, and the roots of unity similarly as in [16, Theorem 5.1]. Then
we follow the steps of Section 5.2 but ignore the floating-point errors (i.e., set ε̂ = 0) and let
only ε1 propagate throughout the algorithm. So, for instance, we use (5.4) instead of (5.5) and
in the final two steps Ψ4 = 0, ξJ = 0. We leave the details out for the sake of brevity.

5.4. Robust computations in the full range of machine numbers. Since the condition
number ofH ∈ Cn×n grows exponentially with n, a robust software implementation of the
new algorithms faces more problems related to finite precision: the singular values spread very
quickly over the range of positive machine numbers and reach its boundaries, the underflow and
overflow thresholds. If we use Matlab with IEEE double-precision floating-point arithmetic,
then the underflow threshold is α = 2.225073858507201e–308, and the overflow threshold is
ω = 1.797693134862316e+308. Numerical procedures for computing the SVD such as, e.g.,
XGESVD(), XGESDD() from LAPACK [2], are equipped with a safeguard mechanism to
prevent overflow that scales the matrix so that during the computation, the largest singular
value remains below

√
ω and on exit, the computed singular values are rescaled. In the case

of an extremely large quotient σ1/σn, this scaling may irreparably damage the information
on the smallest singular values. A particularly interesting illustration of the robustness of our
software implementation is that it computes the singular values to high relative accuracy in
the full range [α, ω] of the working precision without ever having to resort to higher precision.
We will not go into all technical details because they can be rather involved. Instead, we only
illustrate one, and we provide references to detailed analyses.

Assume that the matrix S in line 6 of Algorithm 3 is computed without underflow/over-
flow, and consider computing its SVD. The problem here is that the Jacobi SVD algorithm is
implicit and the Jacobi rotations are designed to orthogonalize pivot columns. In the extreme
cases, the tangent of the Jacobi angle underflows—it either gets denormalized or flushed to
zero, meaning that the rotation is inaccurate and without orthogonalizing effect. Also, the
Gram matrix of the pair of pivot columns, used to determine the rotation, may not have a finite
representation in working precision. Other methods such as the QR decomposition are also
helpless because they also implicitly work on S∗S. This is easily illustrated (and explained in
detail, see [24]) in Matlab:

A =

[
1.0e308 0

0 1.0e-150

]
, svd(A) =

[
1.000000000000000e+308
1.000036332667081e-150

]
,

B =

[
1.0e308 0

0 1.0e-155

]
, svd(B) =

[
1.000000000000000e+308

0

]
.

The solution is a special implementation of Jacobi rotations in extremely ill-conditioned cases.
The modified real Jacobi rotation from [18] can be adapted for complex matrices using the
standard procedure [40], and the resulting Jacobi SVD algorithm computes the SVD with
an accuracy described in Section 2.1 even for σmax/σmin ≈ 10616 with the 64-bit IEEE
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double-precision arithmetic. In fact, even if the smallest singular values get denormalized,
the algorithm will compute them with the relative accuracy degrading as they get deeper into
the denormalized domain between zero and α. A sketch of the modified rotation is given in
Algorithm 5. For more details, we refer to [18] and to the source code of the LAPACK routine
XGESVJ().11

Algorithm 5 (si, sj , γi, γj ,J ) = JROTX(si, sj , γi, γj , γij)
(Jacobi rotation (si, sj), si, sj ∈ Cn).

1: {On input: γi = ‖si‖2, γj = ‖sj‖2, γij = s∗i sj/γi/γj ; assumed γi ≥ γj and |γij | > ε̂}

2: extreme = (γj/γi) > α/ε̂
{For a safe implementation of this line see XGESVJ() in LAPACK.}

3: if ¬extreme then
4: ζ = (γj/γi − γi/γj)/(2|γij |) ; ϕ = γij/|γij |
5: if |ζ| ≤ 1/

√
ε̂ then

6: τ = sign(ζ)/(|ζ|+
√

1 + ζ2) ; {τ is the tangent of the (smaller) Jacobi angle.}
7: else
8: τ = 0.5/ζ ; {This is in particular important if ζ2 overflows.}
9: end if

10: cs = 1/
√

1 + τ2 ; sn = τ · cs; J =

[
ϕ · cs ϕ · sn
−sn cs

]
; (si, sj) = (si, sj)J ;

11: γ
(c)
j = γj ; γj = γj

√
1 + τ · (γi/γj) · |γij |; γi = γi

√
1− τ · (γ(c)

j /γi) · |γij | ;
12: else
13: sj = (

sj
γj
− γij(

si
γi

))γj ; γj = γj
√

1− |γij |2.

{(Re)scaled Gram-Schmidt orthogonalization.}
14: end if

EXAMPLE 5.4. As a demonstration of the numerical robustness of the algorithm and its
implementation, we set12 n = 39 and generate (implicitly)H = VTDV such that σmax ≈ ω,
σmin ≈ α, hence with a condition number close to ω/α ≈ 8 · 10615. The condition number is
σ1/σ39 u 0.28 · 10615, and the results are presented in Figure 5.2. To our best knowledge, this
is the highest reported condition number of a matrix whose all singular values and singular
vectors are computed (to nearly 13 digits of accuracy!) using only the standard 16-digit IEEE
double-precision arithmetic.

5.4.1. A comment on multiple-precision arithmetic. Suppose the input is given in,
e.g., the standard IEEE double-precision with roundoff ε̂, and we need all singular values
computed with small relative errors, roughly of the order of ε̂. If the singular values spread a
large range of values, say κ2(A) ≡ σmax/σmin > 10500, and if multiple-precision arithmetic
is available, then conventional SVD algorithms would require more than log2(κ2(A)/ε̂)
bits long mantissa to guarantee nearly working-precision accuracy of the computed singular
values. Such multiple-precision arithmetic may exponentially increase the complexity of
the computation, and, since it is software emulated, the run time increases by huge factors.
Better algorithms should, ideally, be capable of delivering the required accuracy running in

11To our best knowledge, our Jacobi SVD is the only published algorithm capable of computing the singular
values in the full range [α, ω] of machine numbers.

12Here we take a moderate n because the reference values are computed in 640-digit arithmetic and experiments
take a long time for large n.
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0 5 10 15 20 25 30 35 40

10
−300

10
−200

10
−100

10
0

10
100

10
200

10
300

 

 

σ
j
 by svd_640

σ
j
 by SVD_VTDV

0

Rel. differ. (o−x)/sqrt(ox)

n*eps

FIG. 5.2. The singular values of the product H = VTDV computed by Algorithm 3 in 16-digit
arithmetic and the reference values computed in 640-digit arithmetic. The extreme singular values were
σ1 u 1.659563214356268e+306, σ39 u 5.752792768736278e-309. The maximal measured relative error was
8.632997535220512e-013.

the same working precision or at least to identify critical parts that require higher accuracy,
not necessarily as high as dictated by κ2(A). This is a more economical way of using multi-
precision arithmetic: instead of giving the number of digits that defines the arithmetic, the input
is the required number of correct digits in the result. Then, the algorithm should determine
what part of the code requires higher precision and what is the minimal higher precision that
will suffice to deliver the result to the required accuracy. For example, in order to compute
to ten decimal places all singular values of a matrix with the spectral condition number in
the range of 10600, it may be enough (using a robust algorithm) to run in the standard IEEE
16-digits arithmetic with the exception of a small non-iterative part of the computation that
requires 32 or maybe 64 digits. This is obviously more efficient than having to run the whole
algorithm with more than 600 digits. And, of course, the true challenge tackled in this paper
is to have nearly working precision of accuracy without having to resort to higher-precision
arithmetic.

6. Generalizations and limitations. Following the principles outlined in Section 2, the
concept of RRD-based accurate SVD can be generalized to various product representations.
For example, if C is an arbitrary Cauchy matrix, D1, D2 diagonal, and X , Y well-conditioned,
then the SVD of XD1CD2Y

∗ uses a RRD D1CD2 = XcDcY
∗
c and then applies Algorithm 2

to compute the SVD of (XXc)Dc(Y Yc)
∗. This also applies if, instead of C, we have CT , C∗,

or C−1. Also, if V is a Vandermonde matrix, then for the SVD of XD1VY ∗, we just apply
the FFT to get XD1(VF)(Y F)∗ = X((D1D̃1)CD̃2)(Y F)∗. The cases of D1CTD3CD2,
D1C−1D3C−TD2, D1C−TD3C−1D2, and alike are also included (with D1, D2, D3 arbitrary
diagonal matrices).

For each of those cases, an analysis such as the one of Algorithm 3 in Section 5 must
be performed to determine whether they are capable of delivering high accuracy. For the
sake of brevity, we skip the details and provide in Section 6.1 below a nontrivial case study
example to illustrate several interesting phenomena that could arise in a SVD computation
of matrices given in product form. We use certain triangular Hankel matrices to study other
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factored representations, different from (1.1), and to stress the importance of the conditions
we identified in Section 5 as crucial for getting an accurate SVD.

6.1. A case study: triangular Hankel matrices in Cauchy-Vandermonde product
form. Triangular Hankel matrices are the key objects in the Carathéodory-Fejér and the
Takagi rational approximation theories. They are given by the Chebyshev (Fourier) coefficients
(hi)

n
i=1 ∈ Cn,

(6.1) H(h) =




h1 h2 h3 · hn
h2 h3 · hn 0
h3 · · 0 ·
· hn 0 · 0
hn 0 · 0 0



,

n∑

i=1

|hi| > 0.

(Note that |det(H(h))| = |hn|n.) Takagi (re)discovered the symmetric SVD of complex
symmetric matrices as a tool for generalizing the Carathéodory-Fejér results and showed
how every singular vector of H(h) can be used to construct certain minimal meromorphic
extensions of a polynomial on the unit disk [31, 45].

If only h ∈ Cn is given in (6.1), then H(h) can be represented via Cauchy and Vander-
monde matrices using the relation (see [27, 39])

C(x, y) ≡
(

1

xi − yj

)n

i,j=1

= D−1
xy V(x)H(h)V(y)T ,

Dxy = diag(
∏

k

(xi − yk))ni=1,
(6.2)

where xi 6= yj for all i, j, and χn(z) ≡ zn +
∑n
i=1 hiz

i−1 =
∏n
i=1(z − yi), i.e., the yi’s are

the zeros of the polynomial χn(z) defined by h. (The constraints xi 6= yj can be removed by
a proper reformulation using the matrix DxyC(x, y); for simplicity let them be satisfied.)

Now take V(x) to be the Vandermonde matrix composed of the roots of unity, i.e.,
x = (1, ω, . . . , ωn−1) with ω = e2πi/n. Then, multiply the relation (6.2) by 1/

√
n, set

F = V(x)/
√
n, and pre-multiply by Dxy and then by F∗ to obtain the identity

(1/
√
n)F∗DxyC(x, y) = H(h)V(y)T , where, using the formulas (4.1) for the DFT of a

Vandermonde matrix,

V(y)T = F∗TDcC(−y,−x∗T )TDr,

Dr = diag((1− yni )/
√
n)ni=1, Dc = diag(1/ωj−1)nj=1.

This gives us two representations forH(h) using Cauchy and Vandermonde matrices,

H(h) = (1/
√
n)F∗DxyC(x, y)V(y)−T

= (1/
√
n)F∗DxyC(x, y)D−1

r C(−y,−x∗T )−TD−1
c FT .

(6.3)

From now on, we consider only the right-hand sides of the equality signs in (6.3) and consider
the problem of computing their SVD’s as functions of x and y. Implicitly, this is the SVD of the
matrixH(h) that is given by the zeros yi of the polynomial χn(z), where, by our simplifying
assumption, none of the yi is a root of unity. (For a given h, the yi’s can be computed, e.g., by
a polynomial root finder in extended precision and then rounding to working precision, thus
implicitly changing h to h+ δh; see Remark 4.3.)
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6.1.1. Algorithms based on the Cauchy–Vandermonde product in (6.3). Consider
the first product representation in (6.3). Compute the RRD DxyC(x, y) = X∆Y ∗ and then,
using the accurate Vandermonde SVD algorithm of Demmel [13], the SVD V(y) = UΣW ∗

to obtain

H(h) =
1√
n

(F∗X)∆(Y ∗U∗T )Σ−1WT =
1√
n
F(X∆)Y1Σ−1WT , Y1 = Y ∗U∗T .

Since F and W are unitary and the factor 1/
√
n only scales the singular values, the problem

reduces to computing the SVD of A = X∆Y1Σ−1. Note that here the SVD of V(y) can
be ordered so that diag(Σ−1) is non-increasing and that any reordering permutation of the
singular values also permutes the columns of U and thus the columns of Y1. We will try two
different approaches to compute the SVD of A. In both cases, the SVD of the productH(h)
is obtained by scaling the singular values and a straightforward assembling of the singular
vectors. We will not go into the details of the error analysis; instead we will briefly discuss the
key issues, illustrate them using numerical examples that show both, successes and failures,
and leave the full analysis as a challenge for future work.

(CV1). (i) Use the LDU decomposition with full pivoting to compute the RRDXBDBY
∗
B

of B = ∆Y1Σ−1. (ii) Then, apply Algorithm 2 and compute the SVD of the product
(XXB)DBY

∗
B .

What can we expect from this procedure? Looking back at the analysis of the pivoted
LDU of A = D4ZD4 in Section 5.1.2 and Section 5.2.3, where the matrix Z = LTL had
certain cross-product structure reinforced by the structure of L and where the scaling by D4

was symmetric with decreasing diagonal entries (in absolute values), here we have very little
to start with. Here, for a successful RRD of ∆Y1Σ−1, we hope (cf. [15, Section 4]) for both,
well-conditioned leading minors of YA and

τ(∆,Σ−1) = max{max
i<j
|∆jj/∆ii|,max

i<j
|(Σ−1)jj/(Σ

−1)ii|}

not much bigger than one, and that the complete pivoting will automatically and implicitly
reorder B into such a structure (possibly implicitly defining better diagonal scaling matrices).
Whether these conditions will be satisfied, at least nearly, is uncertain as well as is then
the accuracy of the computed SVD. In the examples in Section 6.1.3, it frequently happens
(depending on the distribution of y) that only one of these conditions is fulfilled while the
other one is violated causing disappointingly bad results.

(CV2). The following procedure involves more computation and is not practical, but it
is included for the sake of an experiment. (i) Let (X∆)P = QR be a rank-revealing QR
factorization (e.g., with Businger-Golub column pivoting). (ii) Then the problem reduces to
the SVD of M ≡ RPTY1Σ−1 ≡ S(TPTY1)Σ−1, where13 R = ST with a diagonal S and a
well-conditioned T . The SVD of M is obtained by first computing its RRD M = XMDMY

∗
M

and then invoking Algorithm 2.

6.1.2. Algorithms based on the Cauchy-Cauchy product in (6.3). To exploit the sec-
ond relation algorithmically, we use [27] to write C(−y,−x∗T )−1 = −D1C(−y,−x∗T )TD2,
where

D1 = diag



∏n
j=1(yj − xi)∏n
j=1

j 6=i
(xj − xi)



n

i=1

, D2 = diag



∏n
j=1(xj − yi)∏n
j=1

j 6=i
(yj − yi)



n

i=1

,

13Here, by R = ST, we only indicate that R has a certain structure. The matrices S and T are not computed in
the algorithm.
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and thenH(h)=−(1/
√
n)FDxyC(x, y)D−1

r D2C(−y,−x∗T )D1D
−1
c FT .As in Section 6.1.1,

the problem can be reduced to the SVD of DxyC(x, y)D−1
r D2C(−y,−x∗T )D1. Now we can

proceed as follows:

(CC1). (i) Compute the RRD’s (based on the LDU [13])

M ≡ DxyC(x, y)

√
D−1
r D2 = XMDMY

∗
M ,

N ≡
√
D−1
r D2C(−y,−x∗T )D1 = XNDNY

∗
N .

(ii) Then, compute a RRD XZDZY
∗
Z of DMY

∗
MXNDN . (iii) Compute the SVD of

(XMXZ)DZ(YNYZ)∗.

(CC2). Follow the same path as in (CC1) but with

M = DxyC(x, y)D−1
r , N = D2C(−y,−x∗T )D1.

Note that further variations of the above procedures are possible. The reader is invited to
formulate and test them in numerical experiments as described below.

6.1.3. Numerical examples. Only error and perturbation analysis can give an estimate
of the numerical accuracy of a proposed algorithm. And, as we indicated in the discussion
following the description of (CV1), which applies to all algorithms described in this section,
such an analysis does not seem feasible. It is, however, clear that in each particular case, the
distribution of the vector y will play an important role. In the following two examples, we
illustrate this dependence and, at the same time, we show different phenomena that leave many
open questions for future work. The interested reader will repeat the experiments and perform
a diagnostic research to explain some of the results. We leave this as a research problem.

EXAMPLE 6.1. In the first numerical test, we generated with n = 50 a complex vector of
the yi’s as y = 20yre + 20iyim, where the entries of yre, yim are chosen randomly from the
normal distribution N (0, 1). The results of all four algorithms are displayed in the first plot in
Figure 6.1. Only (CC2) has failed to compute all singular values to high relative accuracy, and
the problem can be traced to the known critical part—the RRD of DMY

∗
MXNDN . If only

that part of the algorithm is computed in extended precision (to compensate ill-conditioning of
the leading minors of Y ∗MXN ) and the RRD is rounded back to working precision, then the
final result is as accurate as in the remaining three algorithms. If the entries of yre, yim are
chosen randomly from the uniform U(0, 1) distribution, then the outcome is less satisfactory.
As shown in the second plot in Figure 6.1, not even the dominant singular values are computed
with an relative error below 0.1. As much as this is disappointing, it is instructive because it
shows that all singular values, including the largest, may be lost. We refer the reader to [15,
Section 4] for a more detailed discussion on this nontrivial issue.

EXAMPLE 6.2. In this example, we set n = 136, and the yi’s are taken to be the Fekete
points for the square [−1, 1] × [−1, 1] and then the Lebesgue points for the unit disk both
generated using [8]. The results are given in Figure 6.2. In the first plot (Fekete points),
interestingly, the smallest singular values are better approximated than the largest ones. The
corresponding Hankel matrix is in this case not severely ill-conditioned (as compared to our
previous examples) with κ2(H) u 8.6308e+31. The second plot (Lebesgue points) shows
another interesting phenomenon. The underlying Hankel matrix (the product in (6.3)) is
well-conditioned, κ2(H) u 7.1172e+01, and yet none of the four methods could capture five
digits of accuracy in any singular value. At the same time, the results computed by (CV1)
and (CV2) coincide to fourteen decimal digits. (Recall the discussion in the first paragraph of
Section 4.3.1.)
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FIG. 6.1. Measured relative errors of the algorithms described in Section 6.1.1 and Section 6.1.2 with input data
as explained in Example 6.1. The dimension is set to n = 50, and the reference values are computed in 330-digits
arithmetic. In the first plot (top), κ2(H) u 1.3251e+155 (σ1 ≈ 1.0754e+67, σ50 ≈ 8.1159e-89). In the second
plot (bottom), κ2(H) u 4.9210e+144 (σ1 ≈ 5.8855e+58, σ50 ≈ 1.1960e-86).

7. Concluding remarks. The key for developing an accurate SVD algorithm for certain
ill-conditioned but structured matrices is to consider matrix representations in a wider sense
than a mere two-dimensional array. In some cases, the most important step is not to form
the matrix at all. For, computing and storing the entries of an ill-conditioned matrix will
inevitably introduce rounding errors which, no matter how tiny, may irreparably destroy
information on the smallest singular values or eigenvalues. Instead, such as, e.g., in the case
of Cauchy and Vandermonde matrices, a natural parametrization is used to compute—in a
forward stable way—their rank revealing decomposition (RRD) as a product of factors that are
either (i) well-conditioned, generally dense, and non-structured, or (ii) diagonal and arbitrarily
ill-conditioned. Then, a Jacobi-type SVD procedure is deployed to compute an accurate SVD
of such a product independent of the ill-conditioning carried by the diagonal factors.

In this paper, we have explored possibilities to compute to high accuracy all singular
values and vectors of a Hankel matrix that is given in a factored formH = V(x)Tdiag(d)V(x),
where V(x), diag(d) are the Vandermonde and the diagonal matrix defined by the vectors x
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FIG. 6.2. Measured relative errors of the algorithms described in Section 6.1.1 and Section 6.1.2 with input
data as explained in Example 6.2. The reference values are computed in 330-digits arithmetic. In the top plot (Fekete
points), κ2(H) u 8.6308e+31 (σ1 ≈ 2.0360e+07, σ136 ≈ 2.3590e-25). Note that the smallest singular values
are computed to high accuracy and more accurately than the largest ones. In the second plot (Lebesgue points),
κ2(H) u 7.1172e+01 (σ1 ≈ 6.4283e+00, σ136 ≈ 9.0321e-02). Note that (CV1) and (CV2) agree to nearly
fourteen digits but only up to five digits are actually correct. Let us finally mention that for, e.g., n = 55, all methods
were very accurate and that for n = 91 all of them computed nearly eight accurate digits in every singular value.

and d, respectively. The proposed algorithms follow the ideas introduced in [13, 15]. We have
shown how to accurately reduce an RRD with several factors to a well-conditioned × diagonal
matrix product by using certain scaling-invariance properties of the QR factorization and the
LU decomposition. This is the key for the final step of computing the SVD by the Jacobi SVD
algorithm, whose accuracy is independent of the diagonal scaling. Also, we have provided
detailed error and perturbation analyses with computable relevant condition numbers which
allow a reliable estimate of the accuracy of the computed SVD. The numerical experiments
match the theoretical predictions.

Altogether, we believe that, in addition to the new core numerical algebra algorithms,
we have provided a new tool for computational rational approximations and an instructive
case study with all the details of the development of a robust numerical algorithm and its
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software implementation. The limitations of the proposed approach, illustrated in Section 6,
pose several interesting research challenges for the future work.
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