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Abstract. A fast Fortran implementation of a variant of Gragg’s unitary Hessenberg QR algorithm is presented.

It is proved, moreover, that all QR- and QZ-like algorithms for the unitary eigenvalue problems are equivalent. The

algorithm is backward stable. Numerical experiments are presented that confirm the backward stability and compare

the speed and accuracy of this algorithm with other methods.
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1. Introduction. This project began with a request from Alan Edelman [14] for fast

code to compute the eigenvalues of a unitary matrix. We were able to fulfill this request by

taking our unitary-plus-rank-one code [4] and removing the hard parts. At the same time

we searched the web to find out what is already publicly available in Fortran or some other

compiled language. To our surprise, even though many papers on the unitary eigenvalue

problem have been written in the past thirty years (see Section 3), we found only one item, the

divide-and-conquer code of Ammar, Reichel, and Sorensen [2]. Because of this surprising

shortage of publicly available software, we decided to publish our codes.

We use Francis’s implicitly shifted QR algorithm, which is the most popular method for

solving dense medium-sized eigenvalue problems. A unitary upper Hessenberg matrix can be

described by O(n) parameters. Using this representation of the matrix, one can implement

the algorithm in a complexity of O(n2) instead of O(n3). This was first done by Gragg [21]

in 1986, and since then a number of improvements and variants have been suggested. For

example, instead of operating on the upper Hessenberg form, one can operate on the CMV

form or some other twisted factorization [35, 36], or one can transform the matrix to an

odd-even pencil and apply a QZ algorithm to the pencil [5]. In this paper we prove that all

of these variants are equivalent, that is, they are just different ways of looking at the same

algorithm.

We conclude the paper with numerical experiments that demonstrate the speed and

accuracy of our code. We compare against standard LAPACK 3.5.0 codes, which are O(n3),
and the divide-and-conquer code [2]. Our code is much faster than the LAPACK codes and just

as accurate. For most of the classes of test problems that we considered, the divide-and-conquer

code is faster than ours, but ours is much more accurate.
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The paper is organized as follows. Section 2 lists a few applications of the unitary

eigenvalue problem, and Section 3 provides an overview of previous work. Section 4 introduces

the parametrization and establishes the notation and terminology we will use. In Section 5 we

describe our version of the algorithm. In Section 6 we look at some of the variants and prove

that they are all equivalent. In Section 7 we present our numerical experiments.

The software associated with this paper has been packaged into a Fortran 90 library called

eiscor and can be found at https://github.com/eiscor/eiscor.

2. Some applications. Killip and Nenciu [26] describe an ensemble of n× n random

unitary matrices whose eigenvalues are distributed according to the Gibbs distribution for n
particles of the Coulomb gas on the unit circle. Edelman [14] wanted code to use for tests

involving large numbers of random matrices with large n from this ensemble.

Gauss-Szegő quadrature formulas [20, 22, 39] are formulas of maximal degree for esti-

mating integrals with respect to measures with support on the unit circle. The sample points

are the eigenvalues of a certain unitary matrix, and the weights are the squares of the absolute

values of the first components of the eigenvectors.

Pisarenko frequency estimates [30] can be computed by solving a unitary eigenvalue

problem as described by Cybenko [9].

3. Overview. A unitary Hessenberg matrix A is efficiently stored as a product of n
unitary factors

A = C1 · · ·Cn−1Cn,

where each Ci differs from the identity matrix only in the rows/columns i and i+1. Gragg [21]

developed the first unitary Hessenberg QR algorithm, updating the factors directly in each

QR step. Convergence had been proved earlier by Eberlein and Huang [13]. Wang and

Gragg [37,38] analyzed the relationship between convergence and shift choice. M. Stewart [32]

proved the original algorithm to be numerically unstable. Improvements and a proof of stability

are due to Gragg [23] and Stewart [33]. David and Watkins [10] presented a multishift version.

Ammar, Gragg, and Reichel [1] presented an approach for orthogonal matrices that

computes the singular values of the matrix’s real and imaginary parts in order to get eigenvalues

with accurate real and imaginary parts. Rutishauser [15] deduced a method relying on the LU

decomposition of the orthogonal matrix.

An approach that applies a QZ algorithm to a unitary pencil was described by Bunse-

Gerstner and Elsner [5], and convergence as a particular case of a more general setting was

proved later on by Vandebril and Watkins [35]. A bisection method, relying on a Sturm

sequence, was proposed by Bunse-Gerstner and He [6].

Divide-and-conquer approaches were developed originally by Gragg and Reichel [24] and

Ammar, Reichel, and Sorenson [2, 3], and later by Gu et al. [25].

Unitary matrices, their rank properties, and eigenvalue methods were analyzed in great

generality by Delvaux and Van Barel [11, 12]. An alternative interpretation of Gragg’s

algorithm [21] linking the transmission of shifts to the updating of the matrix factorization is

included.

The algorithm presented by Gemignani [18] differs significantly from the other methods.

A Möbius transformation is used to convert the unitary matrix to Hermitian diagonal-plus-

semiseparable form, after which the eigenvalues of this matrix are computed.

4. Unitary matrix factorization and properties. We assume the matrix A ∈ C
n×n to

be of unitary Hessenberg form already [11,19,34], thus Ai,j = 0 for all i > j+1. Each unitary

Hessenberg matrix can be factored into a product of n unitary matrices A = C1C2 · · ·Cn−1Cn,

where each Ci is equal to the identity except in the 2× 2 submatrix (i : i+ 1, i : i+ 1). Thus

https://github.com/eiscor/eiscor
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Cn differs from the identity only in the (n, n) position. Optionally we can absorb Cn into

Cn−1 so that the product has only n− 1 factors: A = C1C2 · · ·Cn−1. We call the matrices

Ci core transformations. The subscript i refers to the position of the active part, and it follows

that core transformations Ci and Cj commute whenever |i− j| > 1.

We will use a pictorial description to assist in the understanding of the algorithm. A core

transformation will be represented as �� with the tiny arrows pinpointing the active part. Our

unitary Hessenberg matrix A is now factored as a descending sequence of core transformations

(n = 8)

A = C1C2 · · ·Cn−1 =

��

��

��

��

��

��

��

.

There are two operations, the turnover and fusion, required to describe the algorithm. The

fusion stands for uniting two core transformations acting on the same rows by forming their

product. A 3× 3 unitary matrix can always be factored in two different ways as the product

of three core transformations; by computing the QL and QR decomposition, we obtain the

following equalities

U1V2W1 =
��

��
��

=
×
×
×

×
×
×

×
×
×

=
��
��

�� = U2V1W2.

A turnover is the transition from left to right, or vice versa, thereby changing the active

parts of the core transformations without changing their product.

We can use a turnover to pass a core transformation through a descending sequence as

follows:

��

��

��

��

��
=

��

��

��
��

��

=

��

��
��

��

��

=
��

��

��

��

��

.

For this operation we will use the shorthand

��

��

��

��

��

��
.

The arrow indicates that a core transformation disappears from the right (the core trans-

formation is in light orange), and a new one appears on the left. Exactly two of the core

transformations from the descending sequence participate in the turnover. We will also use an

analogous operation

��

��

��

��

��

��
.

which passes a core transformation from left to right through an ascending sequence.
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5. Unitary QR algorithm. We use Francis’s implicitly shifted QR algorithm [16, 17].

Each iteration consists of three steps: choose a suitable shift to enhance the convergence, apply

a similarity transformation to create a bulge, and chase the bulge until it disappears from the

bottom of the matrix. Repeated iterations lead to deflations, and eventually we find all of the

eigenvalues as explained in numerous textbooks, e.g., [40].

Choice of shifts. The shift µ is used to accelerate convergence. A good shift is one

that approximates an eigenvalue well. Since all eigenvalues of A have absolute value 1,

it seems reasonable to choose a shift that lies on the unit circle. We use a projected or

unimodular Wilkinson shift. Therefore we pick the eigenvalue µ̂ of the trailing 2×2 submatrix

Ak−1:k,k−1:k that is closer to Ak,k, with k the largest index of the undeflated part of A. The

shift µ is the projection µ̂/ |µ̂| of µ̂ on the unit circle. The projected or unimodular Wilkinson

shift strategy was investigated by Wang and Gragg in [38]. They proved global convergence

and showed by numerical experiments that the projected Wilkinson shift is superior to the

standard Wilkinson shift without projection and to the shift given in [13].

Initial similarity transformation: bulge generation. The initial similarity transforma-

tion introduces the bulge perturbing the Hessenberg structure. For a suitable shift µ, let

x = (A − µI)e1, with e1 the first standard basis vector. As A is Hessenberg, x has only

two nonzero elements. The core transformation B1 acting on rows one and two such that

BH
1 x = e1 determines the first similarity transformation BH

1 AB1. Pictorially we get

BH
1 AB1 = BH

1 C1C2 · · ·Cn−1 B1 =

��

��

��

��

��

��

��

�� ��

BH
1

B1

A = C1 · · ·Cn−1

=

��

��

��

��

��

��

��

�� ��

=

��

��

��

��

��

��

��

��

,

where we fused the two leftmost core transformations BH
1 C1 = C̃1, and only B1, the bulge,

disturbs the descending sequence of core transformations.

Bulge chasing. Chasing the bulge consists of performing two operations repeatedly until

the bottom of the matrix is reached: first execute a turnover moving the bulge to the left and

second do a similarity transformation bringing the bulge back to the right. Pictorially the first

two chasing steps look as follows; the black arrows indicate the bulge’s motion.
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��

����

Similarity
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This process is repeated until the bulge reaches the bottom, where it is absorbed via a

fusion. The next pictures show the final turnover, similarity, and fusion.
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Fusion

Deflation. After several iterations, one or more subdiagonal entries will become negligibly

small. In our factored form, this is signaled by a core transformation tending to become

diagonal. A detailed discussion can be found in Mach and Vandebril [28].

Further details. So far we have given a high-level description of the algorithm leaving

out certain details. For example, we have not specified how we implement turnovers.

Our code is derived from our implementation of a fast QR algorithm for companion

matrices [4], which can be applied to unitary-plus-rank-one matrices in general. In [4] we store

the unitary-plus-rank-one upper Hessenberg matrix A in QR-decomposed form: A = QR,

where Q is unitary and R is upper triangular. In addition, Q is upper Hessenberg and R is

unitary-plus-rank-one. The novel aspect of [4] is the efficient and stable storage scheme for R.

In our current setting, A is unitary, so in the QR decomposition we have Q = A and

R = I . To get our unitary code from the unitary-plus-rank-one code, we just took out R. This

is what we meant when we referred to “removing the hard parts” in the introduction.

See [4, Section 6] for the implementation of the turnover and other fine points. The

algorithm that we have described here is a single-shift algorithm. We also have a double-shift

algorithm for real orthogonal matrices that operates in real arithmetic. In the interest of brevity,

we have not described it here. It is detailed in [4], and the real orthogonal version can be

obtained from that description by ignoring the “R part”.

Data storage. In the implementation we choose the unitary core transformations to be

rotators of the form
[

c −s
s c

]

with |c |2 + s2 = 1. This is different from [21], where reflectors
[

c s
s −c

]

were used. This choice does not mean that rotators are superior to reflectors; we believe

that both are equally suited. We just had to choose one, and we stuck with the rotators we had

used before.

In the real double shift (RDS) code, c and s stay real throughout the iterations. Thus

roughly 2n reals are stored. In the complex single shift (CSS) code, we represent the rotators

by real variables for the real part of c, the imaginary part of c, and for s, which is always

kept real. To keep s real we have to add a diagonal matrix D containing phase factors, thus

A = C1C2 · · ·Cn−1D. Thus in the CSS code roughly 5n reals are stored.

Computing eigenvectors. The focus of this project is on eigenvalues, not eigenvectors.

However, our implementation does provide an option to compute the eigenvectors. We
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emphasize that this part of the code is not at all novel and certainly not fast. It computes

the eigenvectors by forming the product of all similarity transformations applied to A. Thus

O(n2) rotations are multiplied together, which costs O(n3) flops. We use the eigenvectors for

the residual computations in the numerical experiments in the next section. These serve as a

check on the backward stability and accuracy of the eigenvalue computations.

Our eigenvector routines would be useful to anyone who wants a complete set of eigenvec-

tors that is orthonormal to working precision and is not concerned with the high computational

cost. If just a few eigenvectors are wanted or numerical orthogonality is not a concern, then

inverse iteration is superior. We may provide an O(n2) eigenvector routine in the future.

Gauss-Szegő quadrature formulas. Our codes can be used to compute Gauss-Szegő

quadrature formulas [20, 22, 39] for estimating integrals with respect to measures on the unit

circle. The sample points are the eigenvalues of a certain unitary matrix, and the weights

are the squares of the absolute values of the first components of the eigenvectors. Thus the

weights can be obtained by accumulating just the first row of the eigenvector matrix, and this

can be done in O(n2) time. In practice the weight computation increases the computing time

by some 60% to 70%.

6. Twisted QR algorithms and pencil methods. In Section 4, the unitary matrix A was

assumed to be of Hessenberg form. By executing some similarity transformations on the

factored form, one can easily realize any factorization UHAU = Cp1
Cp2

· · ·Cpn−1
, where p

is a permutation of [1, 2, . . . , n− 1], thereby not changing the core transformations only their

relative positions. The core transformations are said to form a twisted pattern. Direct similarity

transformations to any twisted shape also exist [34], and the most well-known twisted ordering

is likely the CMV ordering (assume n even) C1C3C5 · · ·Cn−1 ·C2C4C6 · · ·Cn−2 [7,8,31,39].

Eigenvalues of such a twisted pattern can be obtained via twisted QR algorithms, where

the convergence is determined by rational functions instead of polynomials as in the classical

QR case [34, 36]. In general these are distinct algorithms, but in the unitary case they all

collapse to the same thing: there is no benefit of considering a particular pattern: all (twisted)

QR algorithms are independent of p and provide identical outcomes as we will prove in this

section.

6.1. The unitary twisted QR algorithm. The shift computation and deflation proce-

dures are the same as in the Hessenberg case, so we discuss only the initial similarity transfor-

mation and the bulge chase.

In [36] we developed twisted QR steps of arbitrary degree. Here we will restrict our

attention to single (degree-one) steps and rely on the fact that one step of degree m is equivalent

to m steps of degree one.

Initial similarity transformation. The form of the initial similarity transformation is

determined by the relative positions of C1 and C2. If C1 is positioned to the left of C2, the

initial core transformation is computed as in the Hessenberg case, that is, BH
1 transforms the

second entry of x = (A− µI)e1 = (C1 − µI)e1 to zero. If C1 is located to the right of C2,

we need to zero the second element of x = (I − µA−1)e1 = (I − µAH)e1 = (I − µCH
1 )e1

(see [36] for more details). One easily checks that the core transformation BH
1 C1 will do

the job. In either case we get the same outcome. In the first case, C1C2 is transformed to

BH
1 C1C2B1, while in the second case, C2C1 is transformed to BH

1 C1C2B1. After a fusion

this becomes a product of three core transformations in a vee shaped configuration. We

emphasize that the two different ways of initializing the iteration result in exactly the same

three core transformations. The first step of the bulge chase will be to turn them over.

Bulge chasing. The bulge chase consists again of repeatedly applying a turnover followed

by a similarity. But now the bulge can show up on either the left or the right. The bulge will be
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the core transformation Bj+1 that is not sandwiched between two core transformations Ĉj and

Cj+2, where Ĉj results from the turnover and Cj+2 is part of the original factorization. As a

consequence one can bring, via unitary similarity, the bulge to the other side, either right or left.

The flow of the algorithm is illustrated below for n = 8 on the pattern C7C6C5C3C4C2C1.

Pictorially this product looks like

A =

��

��

��

��

��

��

��

.

An initial similarity and fusion are performed. Then a turnover is executed creating a bulge

on the right. A unitary similarity transformation moves the bulge back to the left. The next

turnover creates a bulge on the left.

��
��
��
��

��
��
����

After initial similarity

��
��
��
��

��
��
��

��
��

Turnover

��
��
��
��

��
��
��

����

Similarity

��
��
��
��

��
��

��
��
��

Turnover

Another similarity transformation brings the bulge back to the right and the process is

continued.

��
��
��
��

��
��
��

�� ��

Similarity

��
��
��
��

��
��

��
����

Turnover

��
��
��
��
��

��
��

����

Similarity

Comparing the pattern of the intermediate factorizations with the original pattern, one can

observe that the pattern moves upward [34]. Once we get to the bottom, we have the freedom

to position the final core transformation to the left or to the right of the current pattern.
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��
��
��
��
��

��
��

��

Similarity to the left

��
��
��
��

��
��

�� ��

Similarity to the right

In the general matrix setting, this choice matters and can have a significant impact on the

convergence rate [36]. However, in the unitary case it makes no difference as we now show.

6.2. Equivalence of twisted QR steps. Suppose the result of a QR step on the factored

Hessenberg matrix equals Ĉ1Ĉ2 · · · Ĉn−1. Then we will prove that the result of a twisted

QR step executed on an arbitrary pattern equals Ĉp1
Ĉp2

· · · Ĉpn−1
, that is, the factors will be

identical. Only the pattern could differ. This proves that in the unitary case, the pattern is of

no importance: any (twisted) QR step, with identical shift, always results in identical core

transformations.

We will prove by induction that the turnover executed in each step always involves the

same three core transformations no matter what pattern of core transformations was considered

originally. To initiate the induction, recall the discussion of the initial similarity transformation.

There we noted that after the first fusion, the three core transformations at the top of the

configuration are always the same regardless of the original ordering. These are the core

transformations that participate in the first turnover operation.

Now we do the induction step. Studying our example above, we find that at each step we

have one of two configurations, either

��a
��b

��d

��c
or

��a
��b

��d

��c

.

In either case we do the turnover

��a
��b

��c
⇒ ��x

��y
��z

resulting in

��y
��z

��d
��x or ��z��x

��d

��y

.

In the left case we move ��x from the left to the right, and in the right case, we move ��z from

right to left, resulting in

��y
��z

��d
��x or ��z ��x

��d

��y

.

In both cases the next turnover will involve

��z
��d

��x
.

We note also that the transformation ��y will not participate in any subsequent turnovers in

this iteration. It will become one of the core transformations in the representation of the next

iterate, and it is the same in both cases. This completes the induction.
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After the final turnover and similarity, a single fusion concludes the chasing step. It is

easy to check that the flexibility allowing to execute the fusion left or right has no effect on the

contents of the final bottom core transformation.

6.3. QZ methods on unitary pencils. Let A = C1 · · ·Cn−1 be a factorization into core

transformations of a unitary Hessenberg matrix. The eigenvalues of A can be computed as

eigenvalues from any pencil (U, V H), where U is a unitary matrix constructed from some core

transformations Ci and V by the remaining core transformations in any ordering [35]. For any

such pencil there is a twisted QZ algorithm to compute the eigenvalues. In the unitary case, the

twisted QZ algorithm on (U, V H) is identical to a twisted QR algorithm on the product UV .

Since all twisted QR methods are identical, we can conclude that all twisted QZ algorithms are

essentially the same and no different from the Hessenberg QR algorithm in the unitary case.

The algorithm of Bunse-Gerstner and Elsner [5] falls into this category.

7. Numerical experiments. The computations were executed on an Intel Core i5-3570

CPU running at 3.40 GHz with 8 GB of memory. GFortran 4.6.3 was used to compile the

Fortran codes. We compared our codes with LAPACK 3.5.0’s ZHSEQR and DHSEQR codes

and Ammar, Reichel, and Sorensen’s unitary divide-and-conquer (D&C) code [2].

Our algorithm is backward stable. Therefore it should always produce results that have

a backward error that is a modest multiple of the machine precision. Since the eigenvalues

of a unitary matrix are perfectly conditioned, such a tiny backward error guarantees that the

computed eigenvalues are accurate to (nearly) machine precision. The following experiments

verify these expectations.

For most of our test matrices the exact eigenvalues are not known. Therefore we use the

maximum residual

(7.1) max
i

‖Avi − λivi ‖2,

with (λi, vi) the computed eigenpairs, as our measure of accuracy. This is a backward error,

and if it is small, it guarantees an equally small error in the eigenvalues. In one example,

Example 7.5, the eigenvalues are known exactly. In that example, and only in that example,

we used the maximum error in the computed eigenvalues as our measure of accuracy.

In the examples below, the times shown are for computing eigenvalues only. We also

computed eigenvectors in order to compute the residuals (7.1) and check our backward stability

claim. The unitary divide-and-conquer code also has the capability of computing eigenvectors.

That code is fast, much faster than ours if also eigenvectors are computed, but it is also much

less accurate.

We test both the complex single shift code and the real double shift code. For the double

shift code we make the examples real. Since divide-and-conquer is only available in a complex

version, we use that version in both the real and complex tests.

EXAMPLE 7.1. This example was taken from Nguyen, Nguyen, and Vu [29, Figure 1].

The rotators in the unitary Hessenberg’s factorization are determined by fixed numbers m and

p for all rotators as

Ck(k : k + 1, k) =





(−1)k−1p

√

1−m
2

βk

√

m
2

βk



 and Cn(n, n) = (−1)n−1,

where m is drawn from a uniform distribution in (0, 1) and p is taken randomly (uniformly

distributed) on the unit circle. Runtime and accuracy are displayed in Figure 7.1 (single shift

code) and in Figure 7.4 (double shift code). Our code is about three times faster than D&C
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and many times faster than LAPACK at large dimensions. Our accuracy is comparable to that

of LAPACK and much better than that of D&C.

EXAMPLE 7.2 (Type I). This example appeared in Ammar et al. [2], Gu et al. [25], and

Gemignani [18, Type I]. The rotations are defined for varying m and p drawn from a uniform

distribution in (0, 1) and on the unit circle, respectively,

Ck(k : k + 1, k) =

[

(−1)k−1mp
√
1−m2

]

and Cn(n, n) = 1.(7.2)

The results are presented in Figure 7.2 (single shift code) and in Figure 7.5 (double shift code).

On this class of problems, D&C is fastest for large problems and exhibits better than O(n2)
performance. However, it is not very accurate. The same trend is also observed in the next two

examples.

EXAMPLE 7.3 (Type II). This example originates from Gemignani [18, Type II]. The

rotations are real, and the angle θ is drawn from a uniform distribution in (0, π)

Ck(k : k + 1, k) =

[

cos(θ)
sin(θ)

]

and Cn(n, n) = 1.

In addition all rotations are normalized to ensure that the matrix is unitary. By choosing n odd

and Cn the identity, one eigenvalue is forced to be −1. The results are qualitatively similar to

those of Example 7.2. We therefore choose not to display them.

EXAMPLE 7.4 (Type III). This example can be found in Gu et al. [25, Type III] and

Gemignani [18, Type III] and is a block version of type I. All four blocks use the same matrix of

type I. These blocks are then coupled by a rotation (7.2) with small sine; we choose m = 0.001
and p randomly on the unit circle. The results are qualitatively similar to those of Example 7.2.

We therefore choose not to display them. In this class of problems we encountered one large

real example for which our code failed. It hit the iteration limit before it was able to resolve a

cluster of sixteen eigenvalues within 10−15 of −1.

EXAMPLE 7.5 (Known eigenvalues). The unitary Hessenberg matrices are obtained

from solving an inverse eigenvalue problem with the software from Mach, Van Barel, and

Vandebril [27], where the eigenvalues are uniformly distributed on the unit circle. Our measure

of error is the forward error, i.e., the maximum error in the computed eigenvalues. The results

are shown in Figure 7.3 (single shift code) and in Figure 7.6 (double shift code). In the complex

case this method of matrix generation is not sufficiently accurate for matrices of dimension

larger than 100, so only small dimensions are shown.

8. Conclusions. A fast and backward stable implementation of the implicitly shifted

QR algorithm for computing eigenvalues of unitary matrices was presented. Moreover, we

proved that all fast QR- and QZ-like methods for solving the unitary eigenvalue problem are

essentially the same.
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FIG. 7.1. Runtime and accuracy for Example 7.1, β = 2.
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FIG. 7.2. Runtime and accuracy for Example 7.2.
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FIG. 7.3. Runtime and accuracy for Example 7.5.
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FIG. 7.4. Runtime and accuracy for Example 7.1, β = 2, double shift code.
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FIG. 7.5. Runtime and accuracy for Example 7.2, double shift code.
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FIG. 7.6. Runtime and accuracy for Example 7.5, double shift code.
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