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ON THE DISCRETE EXTENSION OF MARKOV’S THEOREM ON

MONOTONICITY OF ZEROS∗

KENIER CASTILLO† AND FERNANDO R. RAFAELI‡

Abstract. Motivated by an open problem proposed by M. E. H. Ismail in his monograph “Classical and quantum
orthogonal polynomials in one variable" (Cambridge University Press, 2005), we study the behavior of zeros of
orthogonal polynomials associated with a positive measure on [a, b] ⊆ R which is modified by adding a mass at
c ∈ R \ (a, b). We prove that the zeros of the corresponding polynomials are strictly increasing functions of c.
Moreover, we establish their asymptotics when c tends to infinity or minus infinity, and it is shown that the rate of
convergence is of order 1/c.
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1. Introduction. In 1814, Gauss (Comm. Soc. Reg. Sci. Gott. Rec., vol. III, 1816)
developed the quadrature rule for Legendre polynomials and Jacobi (J. Reine Angew. Math.,
vol. I, 1826) extended it to Jacobi polynomials twelve years later. After this, the theory of
orthogonal polynomials on the real line (OPRL, in short) has attracted a lot of attention and
has become a major theme in classical analysis in the twentieth century. From a general point
of view, the pioneer works of Chebyshev, Darboux, Markov, Christoffel, and Stieltjes were
fundamental. We urge the reader to consult [1, 4, 10, 14, 15, 17], where a complete account of
the classical theory of OPRL can be found, for some background information.

Let dµ be a nontrivial measure on [a, b] ⊆ R such that

∫ b

a

|x|ndµ(x) < ∞, n ≥ 0.

The application of the Gram-Schmidt process to 1, x, x2, . . . (linearly independent in the
Hilbert space L2([a, b], dµ) with norm ‖ · ‖) yields a sequence of monic polynomials {Pn}n≥0

and a sequence of positive real numbers {γn}n≥0 such that

∫ b

a

Pn(x)Pm(x)dµ(x) = γnδn,m, m ≥ 0,

where δn,m is the Kronecker delta. These polynomials are formally the OPRL. It is important
to recall that the zeros of Pn, xn,k, 1 ≤ k ≤ n, are real and simple in (a, b) and that the zeros
of Pn and Pn+1 strictly interlace. Moreover, associated with {Pn}n≥0, there are sequences of
positive real numbers {an}n≥1 and of real numbers {bn}n≥0 such that

Pn+1(x) = (x− bn)Pn(x)− anPn−1(x),

with initial conditions P−1 := 0 and P0 := 1. The converse of this result is the Favard
Theorem or Spectral Theorem for OPRL.
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The behavior of the zeros plays a major role in OPRL theory. Markov [11] and Stielt-
jes [16] were the first who studied the monotonicity of zeros of a parameter-dependent
sequence of OPRL as functions of the involved parameter. Let us consider the OPRL, Pn(·; τ),
associated with the parametric measure

ω(x, τ)dx+ dωs(x),

where dωs is singular. A general result of Markov [10, 11, 17] states that under some additional
conditions on ω(·, τ), if ∂ lnω(x, τ)/∂τ is an increasing (respectively decreasing) function
of x, then the zeros of Pn(·; τ) are increasing (respectively decreasing) functions of τ . As the
reader may note, Markov’s theorem does not consider the cases of parameters in the singular
part of the measure. In this sense, a natural open problem was pointed out in [9, Problem 1]
and [10, Problem 24.9.1].

OPEN PROBLEM 1.1 (M. E. H. Ismail, 1989). Extend Markov’s theorem to the case when

the measure is given by

ω(x, τ)dx+ dν(x, τ),

where ν(·, τ) is a jump function or a step function.

This last problem provides the motivation for our research. The structure of the manuscript
is as follows: in Section 2, we present some preliminaries in order to fix the notation, and
our extension of Markov’s theorem is presented. In Section 3, our main result is proved.
Finally, in Section 4, two illustrative examples associated with Jacobi and Laguerre orthogonal
polynomials are shown.

2. Discrete extension of Markov’s theorem. For technical reasons, in what follows we
assume that either a or b can be infinity. Let us denote by {Pn(·;λ, c)}n≥0 the OPRL with
respect to a new measure formed by adding to dµ a positive mass λ at c ∈ R \ (a, b), that is,

dµ+ λ δc, λ > 0.(2.1)

This modification of the measure dµ is the so-called Uvarov transformation.
In the case when dµ is a classical measure, that is, one of those with respect to which

Jacobi, Laguerre, and Hermite polynomials are orthogonal, rather extensive literature provides
precise results on the behavior of zeros with respect to the parameter λ. General results about
interlacing, convergence, and monotonicity with respect to the parameter λ can be found
in [3, 8] and the references therein.

Define the polynomial Gn(·; c) by

Gn(x; c) := Pn(x)−
Pn(c)

Kn−1(c, c)
Kn−1(c, x) = (x− c)Qn−1(x; c),

where Kn−1(·, ·) is the kernel polynomial given by

Kn−1(x, y) =

n−1
∑

k=0

Pk(x)Pk(y)

‖Pk‖2
·

It is known [3, 8] that Qn−1(·; c) is the corresponding polynomial of degree n− 1 orthogonal
with respect to the measure

(x− c)2dµ(x).
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Denote by xn,k(λ, c) (respectively yn,k(c)), 1 ≤ k ≤ n, the zeros of Pn(·;λ, c) (respec-
tively Gn(·, c)).

THEOREM 2.1. [3, 8] The following statements hold:

(i) If −∞ < c ≤ a, then

c = yn,1(c) < xn,1(λ, c) < xn,1 < · · · < yn,n(c) < xn,n(λ, c) < xn,n.

Moreover, xn,k(λ, c) (for a fixed value of k and n > 0) is a strictly decreasing

function of λ.

(ii) If b ≤ c < ∞, then

xn,1 < xn,1(λ, c) < yn,1(c) < · · · < xn,n < xn,n(λ, c) < yn,n(c) = c.

Moreover, xn,k(λ, c) (for a fixed value of k and n > 0) is a strictly increasing

function of λ.

Furthermore,

lim
λ→∞

xn,k(λ, c) = yn,k(c),

and

lim
λ→∞

λ(yn,k(c)− xn,k(λ, c)) =
Pn(yn,k(c))

Kn−1(c, c)G′
n(yn,k(c); c)

·

The above limit relations show that xn,k(λ, c) converges to yn,k(c) when λ tends to
infinity with a rate of convergence of order 1/λ.

After Theorem 2.1 and in connection with the Open Problem 1.1, the natural questions are:
are the zeros Pn(·;λ, c) also monotonic functions with respect to c? Do these zeros converge
when c tends to infinity or minus infinity? If so, what is the rate of convergence? The answers
to these questions are given in the next theorem. Note that Theorem 2.1 can be proved easily.
For example, one way, but not the only way, is based on the behaviour of zeros of a linear
combination of polynomials with interlacing zeros [4, Ch. I, Ex. 5.4] (see also [2, Sec. 4.3]),
which is closely related to the Hermite-Kakeya theorem [13, Thm. 6.3.8].

It is well known [12, Ch. 7, Lem. 15] that

Pn(x;λ, c) = Pn(x)−
λPn(c)

1 + λKn−1(c, c)
Kn−1(x, c),(2.2)

or, after normalization,

pn(x;λ, c) = Pn(x) + λKn−1(c, c)Gn(x; c)

= Pn(x) + λKn−1(c, c)(x− c)Qn−1(x; c),
(2.3)

where pn(x;λ, c) = (1+λKn−1(c, c))Pn(x;λ, c). By simple inspection of [4, Ch. I, Ex. 5.4],
Theorem 2.1 follows from formula (2.3). However, to obtain the monotonicity of the zeros
xn,k(λ, c) with respect to c instead of λ, the above approach does not work because the
polynomial Qn−1(·, c) (or Gn(·; c)) depends on c. To the best of our knowledge, there are no
preceding works in the literature on monotonicity of zeros of OPRL with respect to the point
where a mass is located. Our main result reads as follows.
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THEOREM 2.2. Let c ∈ R \ (a, b). Then xn,k(λ, c) (for a fixed value of k and n > 0) is a

strictly increasing function of c. Moreover, the following statements hold:

(i) If −∞ < c ≤ a, then

c < xn,1(λ, c) < xn,1 < xn−1,1 < xn,2(λ, c) < xn,2 < xn−1,2 · · ·

· · ·xn,n−1(λ, c) < xn,n−1 < xn−1,n−1 < xn,n(λ, c) < xn,n.

Furthermore,

lim
c→−∞

xn,k(λ, c) = xn−1,k−1, 2 ≤ k ≤ n, lim
c→−∞

xn,1(λ, c) = −∞,

and

lim
c→−∞

c(xn,k(λ, c)− xn−1,k−1) =
Pn(xn−1,k−1)

P ′
n−1(xn−1,k−1)

, 2 ≤ k ≤ n.

(ii) If b ≤ c < ∞, then

xn,1 < xn,1(λ, c) < xn−1,1 < xn,2 < xn,2(λ, c) < xn−1,2 < · · ·

· · · < xn,n−1 < xn,n−1(λ, c) < xn−1,n−1 < xn,n < xn,n(λ, c) < c.

Furthermore,

lim
c→∞

xn,k(λ, c) = xn−1,k, 1 ≤ k ≤ n− 1, lim
c→∞

xn,n(λ, c) = ∞,

and

lim
c→∞

c(xn−1,k − xn,k(λ, c)) =
Pn(xn−1,k)

P ′
n−1(xn−1,k)

, 1 ≤ k ≤ n− 1.

Note that by combining Markov’s theorem, Theorem 2.1, and Theorem 2.2, we can give a
first answer to Ismail’s open problem. To be specific, we give an answer to a very particular
case of the open problem. It was also brought to our attention by one of the referees that after
the initial submission of the present work, the first part of the above theorem was proved in a
more elegant way in [5]. In this article, the author approximates the Dirac delta by the normal
distribution and applies the classical Markov’s theorem. Instead, our approach is based on the
well-developed theory of so-called spectral transformations of orthogonal polynomials. In any
case, we opted for our approach for two main reasons. First, we are interested in obtaining
more information than just the monotonicity of zeros, as we stated in Theorem 2.2. Therefore,
we need the explicit expression of the perturbed polynomials in terms of known polynomials.
This need is natural, as can be seen in other papers [3, 6, 7, 8]. Also, all the formulas involved
in our proof are very well known, and thus, the proof is just a clever combination of elementary
facts. Secondly, we are interested in the possibility of a numerical implementation of our ideas
bearing in mind future practical applications.

3. Proof of the main result and related questions. As the reader can note, we only
need to prove Theorem 2.2 for one case. In other words, if the theorem is true for b ≤ c < ∞,
then it will be true for −∞ < c ≤ a. Let us assume that b ≤ c < ∞ and consider the
following modification of the measure (2.1):

dµ+ λ δc+ǫ, ǫ > 0.

We need to prove that

xn,k(λ, c) < xn,k(λ, c+ ǫ), 1 ≤ k ≤ n.
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3.1. Proof of Theorem 2.2. Let us consider the following modification of the measure
dµ known as the Christoffel transformation:

(x− c)dµ(x).(3.1)

It is easy to verify [4, Ch. 1, Eq. 7.3] that the OPRL associated with (3.1), {Pn(·; c)}n≥0, are
given by

Pn(x; c) =
‖Pn‖

2

Pn(c)
Kn(x, c) =

1

x− c

(

Pn+1(x)−
Pn+1(c)

Pn(c)
Pn(x)

)

.(3.2)

Combining (2.2) with (3.2), we deduce that

‖Pn−1‖
2

λP 2
n(c)

(x− c)pn(x;λ, c) = Pn−1(x)− yc(x)Pn(x),(3.3)

where

yc(x) = m(λ, c)(x− c) +
Pn−1(c)

Pn(c)
and m(λ, c) = −

1 + λKn−1(c, c)

λP 2
n(c)

‖Pn−1‖
2 < 0.

If pn(x;λ, c) = 0, then (3.3) implies that

Pn−1(x)

Pn(x)
= yc(x).

Clearly, the zeros of pn(·;λ, c) are the intersection points of Pn−1/Pn and yc in (a, c), which
implies the interlacing properties stated in Theorem 2.2. We can also deduce this easily
from formula (3.3). Of course, the following decomposition into partial fractions holds [17,
Thm. 3.3.5]:

Pn−1(x)

Pn(x)
=

n
∑

k=1

lk
x− xn,k

, lk > 0.

Having arrived at this point, note that Pn−1/Pn has vertical asymptotes at xn,k, 1 ≤ k ≤ n,
and it is a monotonically decreasing function in the open intervals (−∞, xn,1), (xn,k−1, xn,k),
2 ≤ k ≤ n− 1, and (xn,n,∞); see Figure 3.1 where Pn−1/Pn (continuous line) is presented
for n = 5. Moreover, the lines yc (small–dashed line) and yc+ǫ (large–dashed line) have
negative slopes. On account of the previous ideas, all we need to prove is that

xn,n(λ, c) < xn,n(λ, c+ ǫ),(3.4)

and the result is true for the remaining zeros. Since the zeros of the OPRL lie in the convex hull
of the support of the orthogonality measure, if Pn(x;λ, c+ǫ) = 0 for some value of x ∈ [c, c+
ǫ), then (3.4) holds. Let us now prove the result for the case that Pn([c, c+ ǫ);λ, c+ ǫ) 6= 0.

We can write

Pn(·;λ, c+ ǫ) = Pn(·;λ, c) +

n−1
∑

k=0

αn,kPk(·;λ, c),



ETNA
Kent State University

http://etna.math.kent.edu

276 K. CASTILLO AND F. R. RAFAELI

Pn-1

Pn

a b c c+¶

yc+¶

yc

FIGURE 3.1. Graphs of
P
n−1

Pn

, yc, and yc+ǫ for n = 5.

where the coefficients αn,k are determined by

αn,k‖Pk(·;λ, c)‖
2
λ,c =

∫ b

a

Pn(x;λ, c+ ǫ)Pk(x;λ, c)dµ(x)

+ λPn(c;λ, c+ ǫ)Pk(c;λ, c).

(3.5)

Here ‖ · ‖λ,c is the L2–norm associated with the measure (2.1).
Taking into account that Pk([c, c+ ǫ);λ, c+ ǫ) 6= 0, for 1 ≤ k ≤ n− 1, we get

Pn(c+ ǫ;λ, c+ ǫ)Pk(c+ ǫ;λ, c) > Pn(c;λ, c+ ǫ)Pk(c;λ, c).(3.6)

Using (3.6) and the orthogonality conditions, (3.5) reduces to

αn,k‖Pk(·;λ, c)‖
2
λ,c = −λ(λk − 1)Pn(c;λ, c+ ǫ)Pk(c;λ, c)

for some λk > 1, which implies that

Pn(·;λ, c+ ǫ) = Pn(·;λ, c)

− λPn(c;λ, c+ ǫ)

n−1
∑

k=0

(λk − 1)
Pk(c;λ, c)

‖Pk(·;λ, c)‖2λ,c
Pk(·;λ, c).

(3.7)

Hence, (3.7) yields

Pn(xn,n(λ, c);λ, c+ ǫ) < 0,

and consequently, xn,n(λ, c+ ǫ) ∈ (xn,n(λ, c), c).
On the other hand, the fact limc→∞ m(λ, c) = 0 implies the asymptotic behaviour of the

zeros when c tends to infinity. It can also be observed directly from the first part of the theorem
or after a simple inspection of Figure 3.1.

Finally, in order to establish the rate of convergence stated in the theorem, we apply the
Mean Value Theorem to Pn−1 on the closed intervals [xn,k(λ, c), xn−1,k], 1 ≤ k ≤ n− 1. In
mathematical terms, we have

Pn−1(xn−1,k)− Pn−1(xn,k(λ, c))

xn−1,k − xn,k(λ, c)
= P ′

n−1(ζk(c)),
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where ζk(c) ∈ (xn,k(λ, c), xn−1,k). So multiplying the last equation by c and using (3.3), we
get

lim
c→∞

c(xn−1,k − xn,k(λ, c)) = lim
c→∞

−c
Pn−1(xn,k(λ, c))

P ′
n−1(ζk(c))

= lim
c→∞

−c yc(xn,k(λ, c))
Pn(xn,k(λ, c))

P ′
n−1(ζk(c))

=
Pn(xn−1,k)

P ′
n−1(xn−1,k)

.

This finishes the proof.

3.2. Alternative proof of Theorem 2.1. As we have mentioned in the introduction, the
part concerning the monotonicity in Theorem 2.2 cannot be proved using the ideas contained
in [3, 8]. On the other hand, using the approach developed in our manuscript, we can easily
prove the monotonicity behavior stated in Theorem 2.1. Let us only consider the case c ≤ a.
According to (2.3), pn(·;λ, c) = 0 if and only if

rc(x) := −
Pn(x)

Kn−1(c, c)Gn(x; c)
= λ.

The zeros of pn(·;λ, c) are the intersection points of rc and λ in (c, b). Note that rc has vertical
asymptotes at c = yn,1(c) < yn,2(c) < · · · < yn,n(c). Moreover, rc is a monotonically
decreasing function in the open intervals (−∞, yn,1(c)), (yn,k(c), yn,k+1(c)), 1 ≤ k ≤ n− 1,
and (yn,n(c),∞); see Figure 3.2 where rc (continuous line) is presented for n = 3. By the
same arguments as in the proof of Theorem 2.2, Theorem 2.1 follows. In this case, the result is
straightforward, and there is no need to consider (3.4). This shows that our approach unifies the
study of monotonicity when the parameter is in the discrete part of the measure. By comparing
Figure 3.1 and Figure 3.2, the differences between the cases considered in Theorem 2.1 and
Theorem 2.2 are evident.

a b

Λ + ¶

Λ

rc

c

FIGURE 3.2. Graphs of rc, λ, and λ+ ǫ for n = 3.

4. Two examples associated with classical OPRL. To illustrate the results obtained
in Theorem 2.2 for classical polynomials, we furnish figures with the aid of the functions
JacobiP[n, α, β,x] and LaguerreL[n, α,x] implemented in Wolfram Mathematicar 9.0.
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-1 -0.5 0.5 1

-0.2

0.2

FIGURE 4.1. Monotonicity of zeros in the Jacobi case for different values of c.

-3 -1 1 3
c

-1.5

-1

1

1.5

FIGURE 4.2. Convergence of zeros in the Jacobi case when c tends to −∞ or ∞.

EXAMPLE 4.1 (Jacobi–type polynomials). The Jacobi polynomials, {P (α,β)
n }n≥0, are

orthogonal on (−1, 1) with respect to the weight function

(1− x)α(1 + x)β , α, β > −1.(4.1)

Consider the polynomials P (0.5,1)
5 (·; 0.2, c) associated with a modification of (4.1) by adding

a mass λ = 0.2 at c ∈ R \ (−1, 1). Figure 4.1 displays the corresponding polynomials for
different values of c, namely c = 1.1 (continuous line), c = 1.2 (small–dashed line), and
c = 1.3 (large–dashed line). According to Figure 4.1, the zeros of these polynomials are strictly
increasing functions with respect to the parameter c. Figure 4.2 illustrates the convergence of
four zeros of P (0.5,1)

5 (·; 0.2, c) (continuous line) to the zeros of P (0.5,1)
4 (small–dashed line).

Observe that the extreme zeros behave in accordance with our result.
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-4 5

-200

100

FIGURE 4.3. Monotonicity of zeros in the Laguerre case for different values of c.

-3 -1
c

-2

5

10

FIGURE 4.4. Convergence of zeros in the Laguerre case when c tends to −∞.

EXAMPLE 4.2 (Laguerre–type polynomials). The Laguerre polynomials, {L(α)
n }n≥0, are

orthogonal on (0,∞) with respect to the weight function

xαe−x, α > −1.(4.2)

Consider the polynomials L(0.1)
4 (·; 2, c) associated with a modification of (4.2) by adding a

mass λ = 2 at c ∈ R \ (0,∞). Figure 4.3 displays the corresponding polynomials for different
values of c, namely c = −1 (continuous line), c = −2 (small–dashed line), and c = −3

(large–dashed line). Figure 4.4 illustrates the convergence of three zeros of L(0.1)
4 (·; 2, c)

(continuous line) to the zeros of L(0.1)
3 (small–dashed line). As in Example 4.1, all the zeros

behave in accordance with our result.
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