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ITERATIVE METHODS FOR SYMMETRIC OUTER PRODUCT
TENSOR DECOMPOSITION∗

NA LI†, CARMELIZA NAVASCA‡, AND CHRISTINA GLENN‡

Abstract. We study the symmetric outer product for tensors. Specifically, we look at decompositions of a
fully (partially) symmetric tensor into a sum of rank-one fully (partially) symmetric tensors. We present an iterative
technique for third-order partially symmetric tensors and fourth-order fully and partially symmetric tensors. We
include several numerical examples which indicate faster convergence for the new algorithms than for the standard
method of alternating least squares.
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1. Introduction. In 1927, Hitchcock [13, 14] proposed the idea of the polyadic form of
a tensor, that is, expressing a tensor as a sum of a finite number of rank-one tensors. Today,
this is called the canonical polyadic (CP) decomposition; it is also known as CANDECOMP
or PARAFAC. It has been extensively applied to many problems in various engineering and
science disciplines [1, 11, 16, 24, 25, 26]. Specifically, symmetric tensors are ubiquitous in
many signal processing applications [6, 7, 9]. In this paper, we look at the symmetric outer
product decomposition (SOPD), a summation of rank-one fully (partially) symmetric tensors.
More specifically, we provide some iterative methods for approximating a given symmetric
tensor by a sum of rank-one symmetric tensors.

SOPD is common in independent component analysis (ICA) [5, 15] or blind source
separation (BSS), which is used to separate the true signal from noise and interference in
signal processing [7, 9]. When the order of the tensor is three and the tensor is symmetric in
two modal dimensions, this is called the individual differences scaling (INDSCAL) model
introduced by Carrol and Chang [4, 27].

There are very few numerical methods for finding SOPDs. For unsymmetric tensors, a
well-known method for finding the sum of rank-one terms is the alternating least squares (ALS)
technique [4, 12]. Since SOPD is a special case of the CP decomposition, the ALS method
can be applied in this situation. However, this approach is not efficient and is not guaranteed
to work since all alternating least squares subproblems lead to the same equation. In addition,
the subproblems are now nonlinear least squares problems in the factor matrices. A different
method proposed by Comon [2] for SOPDs reduces the problem to the decomposition of
a linear form. For fourth-order fully symmetric tensors, De Lathauwer in [9] proposed the
fourth-order-only blind identification (FOOBI) algorithm. Schultz [23] numerically solves
SOPD problems using the best symmetric rank-one approximation of a symmetric tensor
through the maximum of the associated homogeneous form over the unit sphere. In this paper,
we study SOPDs for third-order partially symmetric tensors and fourth-order fully and partially
symmetric tensors and propose a new method called partial column-wise least squares (PCLS)
to compute the SOPD. It obviates the nonlinear least-squares subproblems through some tensor
unfoldings and a root finding technique for polynomials in estimating the factor matrices.
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2. Preliminaries. Throughout this paper, a tensor is understood as a multidimensional
array, i.e., an element of RI1×I2×···×IN , Ii ∈ N, i = 1, . . . , N . The number Ii is the i-th
modal dimension, and the integer N is called the order of the tensor. We denote scalars in R
by lower-case letters (a, b, . . .) and vectors by bold lower-case letters (a,b, . . .). Matrices are
written as bold upper-case letters (A,B, . . .), and the symbols for tensors are calligraphic
letters (A,B, . . .). Subscripts represent the following scalars: (A)ijk = aijk, (A)ij = aij ,
(a)i = ai. The r-th column of a matrix A is designated as ar.

DEFINITION 2.1 (Mode-n matricization). Matricization is the process of reordering
the elements of a tensor of N th order into a matrix. The mode-n matricization of a tensor
T ∈ RI1×I2×···×IN is denoted by T(n) and is obtained by arranging the mode-n fibers as
columns of the resulting matrix. The mode-n fiber, ti1···in−1:in+1···iN , is a vector obtained by
fixing every index with the exception of the nth index.

For example, a third-order tensor X ∈ RI×J×K has the following mode-1, mode-2, and
mode-3 matricizations of X (using Matlab-type colon notation):

X(1) = [x:11, . . . ,x:J1,x:12 . . . ,x:J2, . . . ,x:1K , . . . ,x:JK ] ∈ RI×JK ,
X(2) = [x1:1, . . . ,xI:1,x1:2 . . . ,xI:2, . . . ,x1:K , . . . ,xI:K ] ∈ RJ×IK ,
X(3) = [x11:, . . . ,xI1:,x12: . . . ,xI2:, . . . ,x1J:, . . . ,xIJ:] ∈ RK×IJ ,

(2.1)

respectively. These matricizations can be attained in Matlab by these commands:

X(1) = reshape(X, I, J*K),

X(2) = reshape(permute(X, [2 1 3]), J, K*I), and
X(3) = reshape(permute(X, [3 2 1]), K, J*I).

DEFINITION 2.2 (square matricization). For a fourth-order tensor T ∈ RI×J×K×L, the
square matricization is denoted by mat(T ) ∈ RIJ×KL and is defined as

T = mat(T ) ⇔ (T)(i−1)J+j,(k−1)L+l = Tijkl.

See [3] for a generalization of square matricization in terms of tensor blocks. In Matlab,
square matricization is obtained by the command T = reshape(T, I*J, K*L).

DEFINITION 2.3 (unvec). Given a vector v ∈ RI2 . Then unvec(v) = W is a square
matrix of size I × I obtained from matricizing v through its column vectors wj ∈ RI ,
j = 1, . . . , I , i.e., we have

wij = v(j−1)I+i, i, j = 1, . . . , I,

and

unvec(v) =
[
w1 w2 . . . wI

]
.

3. The symmetric outer product decomposition.
DEFINITION 3.1. Let x,y ∈ Rn. The outer product of x and y is

M =


x1y1 x1y2 · · · x1yn

x2y1

...
...

...
xny1 ynyn

 .
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If x = y, then we observe that M is a symmetric matrix. The outer product of the vectors
x,y, z ∈ Rn is the following:

(x⊗ y ⊗ z)ijk = xiyjzk.

The outer product of three nonzero vectors is a third-order rank-one tensor; the outer product
of k nonzero vectors is a kth-order rank-one tensor. Given T = x ⊗ y ⊗ z. If x = y = z,
then we say that T is a symmetric third-order rank-one tensor. We say that T is a partially
symmetric third-order rank-one tensor if either x = y, x = z, or y = z holds.

DEFINITION 3.2 (Rank-one tensor). A kth-order tensor T ∈ RI1×I2×···×Ik is called
rank-one if it can be written as an outer product of k vectors, i.e.,

Ti1i2···ik = a
(1)
i1
a

(2)
i2
· · · a(k)

ik
, for all 1 ≤ ir ≤ Ir.

Conveniently, a rank-one tensor is expressed as

T = a(1) ⊗ a(2) ⊗ · · · ⊗ a(k),

where a(r) ∈ RIr with 1 ≤ r ≤ k.
DEFINITION 3.3 (Partially symmetric rank-one tensor). A kth-order rank-one tensor

T ∈ RI1×I2×···×Ik is partially symmetric if it can be written as an outer product of k vectors
and if there exist modes l and m such that a(l) = a(m), where 1 ≤ l,m ≤ k and l 6= m in

T = a(1) ⊗ a(2) ⊗ . . .⊗ a(k),

where a(r) ∈ RIr .
Furthermore, the modal indices corresponding to symmetry can be arranged into equiv-

alence classes forming disjoint subsets Si of subindices, where
⋃k̄
i=1 Si = {1, 2, . . . , k}

and
⋂k̄
i=1 Si = ∅.

REMARK 3.4. If a third-order tensor T is a partially symmetric tensor with a(1) = a(2),
then Ti1i2i3 = Ti2i1i3 .

DEFINITION 3.5 (Symmetric rank-one tensor). A kth-order rank-one tensor
T ∈ RI×I×···×I is symmetric if it can be written as an outer product of k identical vectors,
i.e.,

T = a⊗ a⊗ · · · ⊗ a︸ ︷︷ ︸
k

,

where a ∈ RI .
A symmetric rank-one tensor is a special partially symmetric rank-one tensor, where for

any l ∈ {1, 2, . . . , k}, it holds that a = a(l).
REMARK 3.6. We say that a tensor is cubical if all modal dimensions are equal. Sym-

metric tensors are cubical. A fully symmetric tensor is invariant under all permutations
of its indices. Let a permutation σ be defined as σ(i1, i2, . . . , ik) = im(1)im(2) . . . im(k),
where m(j) ∈ {1, 2, . . . , k}. If T is a symmetric tensor, then

Ti1,i2,...,ik = Tim(1)im(2)...im(k)

for all permutations σ of the indices (i1, i2, . . . , ik).
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A kth-order tensor T can be decomposed into a sum of outer products of vectors if there
exists a positive number R such that

T =

R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(k)
r︸ ︷︷ ︸

k

.

This is called the canonical polyadic (CP) decomposition (also known as PARAFAC or
CANDECOM). This decomposition first appeared in the papers of Hitchcock [13, 14]. The
notion of tensor rank was also introduced by Hitchcock.

DEFINITION 3.7. The rank of T ∈ RI1×···×Ik is defined as

rank(T ) := min
R

{
R
∣∣∣ T =

R∑
r=1

a(1)
r ⊗ a(2)

r ⊗ · · · ⊗ a(k)
r

}
.

Define Tk(Rn) as the set of all order-k cubical tensors having modal dimensions equal
to n: Ii = n, i = 1, . . . , k. The set of symmetric tensors in T(Rn) is denoted as Sk(Rn).

DEFINITION 3.8. If T ∈ Sk(Rn), then the rank of a symmetric tensor T ∈ RI1×···×Ik is
defined as

rankS(T ) := min
S

{
S
∣∣∣ T =

S∑
s=1

as ⊗ as ⊗ · · · ⊗ as︸ ︷︷ ︸
k

}
.

LEMMA 3.9 ([6]). Let T ∈ Sk(Rn) have rankS(T ) = S. Then there exist linearly
independent vectors x1,x2, · · · ,xS ∈ Rn such that

T =

S∑
i=1

xi ⊗ xi ⊗ · · · ⊗ xi︸ ︷︷ ︸
k

.

Note that Sk(Rn) ⊂ Tk(Rn). We have that R(k, n) ≥ RS(k, n) where R(k, n) is the
maximally attainable rank in the space of order-k, modal dimension-n, cubical tensors Tk(Rn)
and RS(k, n) is the maximally attainable symmetric rank in the space of symmetric ten-
sors Sk(Rn). In [6, 17], numerous results on the symmetric rank over C can be found. For
example in [6], for all T , it holds that

rankS(T ) ≤
(
n+ k − 1

k

)
,

rank(T ) ≤ rankS(T ).

We also refer the readers to the book by Landsberg [17] for discussions on the partially
symmetric tensor rank and to the work of Stegeman [27] for uniqueness conditions for the
minimum rank of the symmetric outer product.

4. Alternating least squares. Our goal is to approximate a given symmetric tensor T
by minimum-rank sum of rank-one kth-order symmetric tensors. The unsymmetric general
problem is the following: given a kth-order tensor T ∈ RI1×I2×...×Ik , find the best minimum-
rank sum of rank-one kth-order tensor,

min
T̃
‖T − T̃ ‖2F ,



ETNA
Kent State University

http://etna.math.kent.edu

128 N. LI, C. NAVASCA, AND C. GLENN

where T̃ =
∑R
r=1 a

(1)
r ⊗ a

(2)
r ⊗ · · · ⊗ a

(k)
r . The ALS method is a popular procedure for

tackling this general problem.
ALS is a numerical method for approximating the canonical decomposition of a given

tensor. For simplicity, we describe ALS for third-order tensors. The ALS problem for a
third-order tensor is to solve

min
A,B,C

∥∥∥∥∥T −
R∑
r=1

ar ⊗ br ⊗ cr

∥∥∥∥∥
2

F

,

where T ∈ RI×J×K . Here the factor matrices A, B, and C are defined as the concate-
nation of the vectors ar, br, and cr, respectively, i.e., A = [a1 a2 . . . aR] ∈ RI×R,
B = [b1 b2 . . . bR] ∈ RJ×R, and C = [c1 c2 . . . cR] ∈ RK×R.

Matricizing the equation

T =

R∑
r=1

ar ⊗ br ⊗ cr

on both sides, we obtain three equivalent matrix equations:

T(1) = A(C�B)T ,

T(2) = B(C�A)T ,

T(3) = C(B�A)T ,

where T(1)
I×JK , T(2)

J×IK , and T(3)
K×IJ are the mode-1, mode-2, and mode-3 matriciza-

tions of the tensor T . The symbol � denotes the Khatri-Rao product [22]. Given matrices
A ∈ RI×R and B ∈ RJ×R, the Khatri-Rao product of A and B is the “matching column-
wise" Kronecker product, i.e.,

A�B = [a1 ⊗ b1 a2 ⊗ b2 . . .] ∈ RIJ×R.

By fixing two factor matrices alternately at each iteration, three coupled linear least squares
subproblems are then formulated to find each factor matrix:

Ak+1 = argmin
Â∈RI×R

∥∥∥T(1)
I×JK − Â(Ck �Bk)T

∥∥∥2

F
,

Bk+1 = argmin
B̂∈RJ×R

∥∥∥T(2)
J×IK − B̂(Ck �Ak+1)T

∥∥∥2

F
,

Ck+1 = argmin
Ĉ∈RK×R

∥∥∥T(3)
K×IJ − Ĉ(Bk+1 �Ak+1)T

∥∥∥2

F
,

(4.1)

where T(1), T(2), and T(3) are the standard tensor flattenings described in (2.1). To start the
iteration, the factor matrices are initialized with A0, B0, C0. In one step of an ALS iteration,
first B and C are fixed to solve for A, then A and C to solve for B, and then finally A and
B to solve for C. This Gauss-Seidel-type sweeping process continues iteratively until some
convergence criterion is satisfied. Thus, the original nonlinear optimization problem can be
solved with a sequence of three linear least squares problems.

Although ALS has been applied extensively across engineering and science disciplines,
it has some disadvantages. For non-degenerate problems, it may require a high number of
iterations until a stopping criterion is satisfied (see the ”swamp“ in Figure 4.1), which can
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FIG. 4.1. The long flat curve (swamp) in the ALS method. The error stays at 103 during the first 8000 iterations.

be attributed to the non-uniqueness in the solutions of the subproblems, collinearity of the
columns in the factor matrices, and initialization of the factor matrices; see, e.g., [8, 20, 21]. A
long flat curve in the residual plot is also an indication of a degeneracy problem.

The ALS algorithm can be applied to find symmetric and partially symmetric outer
product decompositions for third-order tensors by setting A = B = C and A = B or A = C,
respectively, in (4.1). The swamps are prevalent in these cases. Moreover, the factor matrices
obtained often do not reflect the symmetry of the tensor. In addition, when ALS is applied
to symmetric tensors, the least squares subproblems can be highly ill-conditioned, which
leads to non-unique solutions. Regularization methods [18, 19] do not drastically mitigate the
requirement for a high number of iterations.

5. Symmetric and partially symmetric tensor decompositions. Here are the problem
formulations: given an order-kth tensor T ∈ RI1×I2×...×Ik ,

• Problem 1: find a/the best minimum-rank sum of rank-one symmetric tensor

min
T̃
‖T − T̃ ‖2F ,

where T̃ =
∑R
r=1 ar ⊗ ar ⊗ · · · ⊗ ar,

• Problem 2: find a/the best minimum-rank sum of rank-one partially symmetric tensor

min
T̃
‖T − T̃ ‖2F ,

where T̃ =
∑R
r=1 a

(1)
r ⊗ a

(2)
r ⊗ . . .⊗ a

(k)
r for some modes a(j)

r = a
(l)
r with 1 ≤ j,

l ≤ k, and j 6= l.
We refer to these decomposition as symmetric outer product decompositions (SOPDs).

We describe the decomposition methods for third-order and fourth-order tensors with
partial and full symmetries. Later, we outline how these methods can be extended to the
general case in our future line of research.

5.1. SOPD for third-order partially symmetric tensor. Given a third-order tensor
T ∈ RI×I×K with tijk = tjik. Then Problem 2 becomes

min
A,C

∥∥∥∥∥∥T −
Rps∑
r=1

ar ⊗ ar ⊗ cr

∥∥∥∥∥∥
2

F

,(5.1)
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with Rps summands of rank-one partial symmetric tensors and T̂ =
∑Rps

r=1 ar ⊗ ar ⊗ cr.
The unknown vectors are arranged into two factor matrices A = [a1 a2 · · · aRps

] and
C = [c1 c2 · · · cRps ] in this case. Matricization of T̂ leads to

T̂(3) = C(A�A)T ,

where T̂(3) ∈ RK×I2 is the mode-3 matricization of the tensor T̂ . Thus, (5.1) becomes

min
A,C

∥∥T(3) −C(A�A)T
∥∥2

F
.

If we employ the ALS iteration, we are faced with the following subproblems:

Ak+1 = argmin
Â∈RI×Rps

∥∥∥T(3) −Ck(Â� Â)T
∥∥∥2

F
,(5.2)

Ck+1 = argmin
Ĉ∈RK×Rps

∥∥∥T(3) − Ĉ(Ak+1 �Ak+1)T
∥∥∥2

F
.

Directly applying the ALS method to (5.1) does not work. For symmetric problems, at least one
of the subproblems is a nonlinear least squares problem, e.g., here (5.2). The ALS approach
leads to factor matrices that do not satisfy tensor symmetries, and/or it needs a high number of
iterations (swamps can appear), if the procedure converges at all.

To obviate this problem, we find an alternative method to solve for the factor matrix A.
Note that once A is solved, then C can be handled by linear least squares methods. Recall
that T(3) = Ck(Â� Â)T can be solved for Â� Â, i.e.,

(5.3) Â� Â = ((Ck)†T(3))
T ,

where (·)† denotes the Moore-Penrose pseudoinverse. Equivalently, (5.3) can be written as

(5.4) âr ⊗ âr = ((Ck)†T(3))
T (:, r) ⇔ âr · âTr = unvec

(
((Ck)†T(3))

T (:, r)
)
,

where r = 1, . . . , Rps, âr is the rth column of the matrix Â, and unvec
(
((Ck)†T(3))

T (:, r)
)

is a matrix of size I × I obtained from the vector ((Ck)†T(3))
T (:, r) via column vector

stacking of size I . With (5.4), we can obtain Â by calculating each of its column âr at a time.
We call this approach the partial column-wise least squares method (PCLS), a Cholesky-like
factorization for a symmetric Khatri-Rao product.

In detail, let x ∈ RI = [x1 x2 · · · xI ]T denote the unknown vector âr, and let
Y = unvec

(
((Ck)†T(3))

T (:, r)
)
∈ RI×I . Then (5.4) becomes

x2
1 x1x2 · · · x1xI

x1x2 x2
2

...
. . .

x1xI x2
I

 = Y.

Notice that the unknown x1 is only involved in the first column and first row, so we only take
the first column and first row elements of Y. Thus, the least-squares formulation for these
elements is

x∗1 = argmin
x1

(y11 − x2
1)

2 +

I∑
i=2

[
(yi1 − xix1)

2 + (y1i − xix1)
2
]
.(5.5)
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This cost function in (5.5) is a fourth-order polynomial in one variable x1, and each compo-
nent xi is obtained in the same manner by minimizing a fourth-order polynomial.

Generally, for each m = 1, . . . , I , the least squares formulation at the (k + 1)st iteration
is

(x∗m)k+1 = argmin
xm

(ymm − (xkm)2)2 +

I∑
i=1
i 6=m

[
(yim − xki xkm)2 + (ymi − xki xkm)2

]
.

Thus, in each iteration we have to solve a system of fourth-order optimization problems as
outlined in Algorithm 5.1 below.

In practice, a fast root finding method is used to solve for the zeros of a cubic polynomial.
Specifically, roots in Matlab is used in the implementation of the numerical examples
discussed in Section 6. It is fast and more reliable than implementing singular value/eigenvalue
decompositions (SVD/EVD)s. The SVD/EVD approximations often lead to a high number of
iterations.

Here are the two subproblems with two initial factor matrices A0 and C0 for approximat-
ing A and C.

ak+1
r = argmin

âr∈RI

∥∥unvec (((Ck)†T(3))
T (:, r)

)
− âr · âTr

∥∥2

F
, r = 1, . . . , Rps,(5.6)

and

Ck+1 = argmin
Ĉ∈RK×Rps

∥∥∥T(3) − Ĉ(Ak+1 �Ak+1)T
∥∥∥2

F
.

Starting from the initial guesses, the first subproblem is solved for each column ar of A
while C is fixed; this method is called the iterative partial column-wise least squares (PCLS);
see Algorithm 5.1. Then in the second subproblem, we fixed A to solve for C. This process
continues iteratively until some convergence criterion, based on upper bounds for the residual
and the maximal number of iterations, is satisfied.

ALGORITHM 5.1 (Partial Column-wise Least-Squares Method (PCLS)).
Find A∗ = argminA‖T−C(A�A)T ‖2F
%Solve for A ∈ RI×R in A�A = Y, where Y = (C†T)T

INPUT: T ∈ RK×I2 , C ∈ RK×R.
FOR r=1:R

Matricize column equation: ar ⊗ ar = Y(:, r)→ ar · aTr = unvec(Y(:, r))

%Solve ak+1
r = argminâr∈RI ‖unvec(Y)(:, r))− ar · aTr ‖2F

FOR m=1:I
(ar)

∗
m = argmin(ar)m (ymm − ((ar)m)2)2 +

∑I
i=1,i6=m

[
(yim − (ar)i(ar)m)2

+(ymi − xi(ar)m)2
]

END

END

If the given tensors exhibits symmetries in other modes, the procedure is analogous. For
the cases tijk = tikj (B = C) and tijk = tjki (A = C), the optimization problems are

min
A,C

∥∥∥∥∥∥T −
Rps∑
r=1

ar ⊗ cr ⊗ cr

∥∥∥∥∥∥
2

F

⇐⇒ min
A,C

∥∥T(1) −A(C�C)T
∥∥2

F
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and

min
A,B

∥∥∥∥∥∥T −
Rps∑
r=1

br ⊗ ar ⊗ ar

∥∥∥∥∥∥
2

F

⇐⇒ min
A,B

∥∥T(2) −B(A�A)T
∥∥2

F
,

respectively. Here are the corresponding subproblems:

Ck+1 = argmin
Ĉ∈RK×Rps

∥∥∥T(1) −Ak(Ĉ� Ĉ)T
∥∥∥2

F
,

Ak+1 = argmin
Â∈RI×Rps

∥∥∥T(1) − Â(Ck+1 �Ck+1)T
∥∥∥2

F

and

Ak+1 = argmin
Â∈RJ×Rps

∥∥∥T(2) −Bk(Â� Â)T
∥∥∥2

F
,

Bk+1 = argmin
B̂∈RI×Rps

∥∥∥T(2) − B̂(Ak+1 �Ak+1)T
∥∥∥2

F
.

The advantage of our iterative PCLS over ALS is that it directly computes two factor
matrices. If the ALS method is applied to this problem, then one has to update three factor
matrices even though there are only two distinct factors in each iteration. In addition, a very
high number of iterations is required for this ALS problem to converge, and it is also not
guaranteed that the solution satisfies the symmetries. The ALS method solves three linear least
squares problems in each iteration, while PCLS solves in each iteration one linear least squares
problem and minimizes Rps quartic polynomials. The latter is equivalent to finding the roots
of cubic polynomials. The operational cost of running PCLS on a third-order tensor is less than
the requirement of ALS since in each iteration only one linear least squares problem is solved
with an operational count of O(n3) where n reflects the size of the system. A root-finding
solver for a cubic polynomial is implemented. Fast numerical methods like Newton’s method
could be implemented with a complexity of O(M(n)) where M(n) is the operational cost for
multiplication for n-digit precision.

5.2. SOPD for fourth-order partially symmetric tensors. We can apply PCLS on a
fourth-order partial symmetric tensor. Here we consider the following cases.

Case 1: two pairs of similar factor matrices. Let us consider the fourth-order partially
symmetric tensor X ∈ RI×I×J×J with xijkl = xjikl and xijkl = xijlk. With the given
symmetries, the unknown factor matrices are reduced to two, A and C, since A = B and
C = D. Then, the task is to find factor matrices A and C solving the following minimization
problem:

min
A,C

∥∥∥∥∥X −
R∑
r=1

ar ⊗ ar ⊗ cr ⊗ cr

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR] and C = [c1 c2 · · · cR]. By using square matricization, we
obtain

mat(X ) = (A�A)(C�C)T .(5.7)
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To solve equation (5.7) for A and C, we apply PCLS with respect to the optimality
conditions

ar ⊗ ar = mat(X )((C�C)T )†(:, r), r = 1, . . . , R,

cr ⊗ cr = mat(X )T ((A�A)T )†(:, r), r = 1, . . . , R,

iteratively. Again, we only need to solve for the global minima of two fourth-order polynomials.
Now consider the fourth-order partially symmetric tensor X ∈ RI×J×I×J with

xijkl = xkjil and xijkl = xilkj . The task is to find factor matrices A and B solving

min
A,B

∥∥∥∥∥X −
R∑
r=1

ar ⊗ br ⊗ ar ⊗ br

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR] and B = [b1 b2 · · · bR].
Before matricizing, we permute the indices of X where the modes are reordered from

1, 2, 3, 4 to 1, 3, 2, 4. Then, by using square matricization, we obtain

mat(X ) = (A�A)(B�B)T ,

which leads to

ar ⊗ ar = mat(X )((B�B)T )†(:, r), r = 1, . . . , R,

br ⊗ br = mat(X )T ((A�A)T )†(:, r), r = 1, . . . , R.

Similarly, in case of the symmetries xijkl = xljki and xijkl = xikjl, we minimize

min
A,B

∥∥∥∥∥X −
R∑
r=1

ar ⊗ br ⊗ br ⊗ ar

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR] and B = [b1 b2 · · · bR]. We permute the indices of X from
1, 2, 3, 4 to 1, 4, 2, 3 to achieve the matricization,

mat(X ) = (A�A)(B�B)T .

Case 2: one pair of similar factor matrices. Consider the fourth-order partially sym-
metric tensor X ∈ RI×J×I×K with xijkl = xkjil. Tensor X is partially symmetric in mode 1
and mode 3. We find factor matrices A, B, and C via

min
A,B,C

∥∥∥∥∥X −
R∑
r=1

ar ⊗ br ⊗ ar ⊗ cr

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aR], B = [b1 b2 · · · bR], and C = [c1 c2 · · · cR].
Before matricizing, we permute the indices of X where the modes are reordered from

1, 2, 3, 4 to 1, 3, 2, 4. Then by using square matricization, we obtain

mat(X ) = (A�A)(B�C)T .

From this matricized equation, we get two optimality conditions:

ar ⊗ ar = mat(X )((B�B)T )†(:, r), r = 1, . . . , R,(5.8)
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and

br ⊗ cr = mat(X )T ((A�A)T )†(:, r), r = 1, . . . , R.(5.9)

One can apply PCLS to extract ar from the symmetric Khatri-Rao product (5.8). A rank-one
SVD can be applied to find the decomposition of the asymmetric Khatri-Rao product (5.9),
while a rank-one EVD may be used for (5.8). In practice, these approximations lead to a high
number of outer loop iterations.

5.3. SOPD for fourth-order fully symmetric outer product decomposition. Given a
fourth-order fully symmetric tensor T ∈ RI×I×I×I with tijkl = tσ(i,j,k,l) for any permuta-
tion σ of the indices (i, j, k, l). We want to a find a factor matrix A ∈ RI×Rs solving

min
A

∥∥∥∥∥T −
Rs∑
r=1

ar ⊗ ar ⊗ ar ⊗ ar

∥∥∥∥∥
2

F

,

where A = [a1 a2 · · · aRs
].

By using square matricization, we have

T = (A�A)(A�A)T .(5.10)

Since T is symmetric, T is a symmetric matrix. It follows that there exists a matrix E such
that

T = EET .(5.11)

Comparing equations (5.10) and (5.11), we know that there exists an orthogonal matrix Q
such that

E = (A�A)Q,(5.12)

where Q ∈ RRs×Rs . In equation (5.12), the unknowns are A and Q while E is known.
Therefore, given the the initial guess matrix A0 and any starting orthogonal matrix Q0,

we can update the factor matrix according to the following subproblems:

Ak+1 = argmin
Â∈RI×Rs

∥∥∥E− (Â� Â)Qk
∥∥∥2

F
,(5.13)

and

P = argmin
Q̂∈RRs×Rs

∥∥∥E− (Ak+1 �Ak+1)Q̂
∥∥∥2

F
.(5.14)

Since the solution in (5.14) is not guaranteed to be orthogonal, we perform a QR factorization
of P to obtain an orthogonal matrix O. Let

Qk+1 = O,

where P = OR and R is an upper triangular matrix. To solve equation (5.13), we apply
PCLS (5.6) to compute A column by column,

ak+1
r = argmin

âr∈RI

∥∥unvec (E(Qk)T (:, r)
)
− âr · âTr

∥∥2

F
, r = 1, . . . , Rs.
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We summarize the iterative method via PCLS for a fourth-order fully symmetric tensor.
Given the tensor T ∈ RI×I×I×I , we first calculate the matrix E ∈ RI2×Rs through T,
the matricization of T . Then starting from the initial guesses, we fix Q to solve for each
column ar of A. Then A is fixed to compute a temporary matrix P. In order to make sure
that the updated Q is orthogonal, we apply a QR factorization of P to obtain an orthogonal
matrix and set it to be the updated Q. This process continues iteratively until the absolute
residual ‖T − Test‖F drops below a given tolerance.

6. Numerical examples. In this section, we compare the performance of ALS against
our iterative method via PCLS for third-order partially symmetric tensors and fourth-order fully
symmetric tensors. According to these numerical examples, our iterative method outperformed
ALS in terms of the number of iterations until convergence and the CPU time.

We prepared three types of examples: I) third-order partially symmetric tensors, II) fourth-
order fully symmetric tensors, and III) a fourth-order cumulant tensor in a blind source
separation problem. In the all the experiments, the iteration is stopped using the toler-
ance ε = 10−10 for the absolute residual in the criterion ‖X − Xest‖2F < ε.

We generate our tensor examples satisfying the symmetric constraints by randomly gener-
ating factor matrices accordingly. For example, we create a third-order tensor T ∈ RI×I×K
with partial symmetry tijk= tjik by randomly generating matrices A ∈ RI×R and C ∈ RK×R
with i.i.d. Gaussian entries in

(T )ijk =

R∑
r=1

(A)ir(A)jr(C)kr.

The random matrices are generated in Matlab via A =randn(I,R) and C =randn(K,R).

6.1. Example I: third-order partially symmetric tensors. We generate a partially
symmetric tensor X ∈ R17×17×18 by random data for which xijk = xjik. For the results in
Figures 6.1–6.2, we consider a SOPD for X with Rps = 17 with two different factor matrices
A ∈ R17×17 and C ∈ R18×17 and the decomposition

X =

Rps∑
r=1

ar ⊗ ar ⊗ cr.

For the computations, we used the stopping criterion mentioned above with ε = 10−10.
Moreover, ALS needs three initial guesses, so we set B0 = A0.

Figure 6.1 indicates that both algorithms work well with a particular initial guesses, but
our iterative method performs better than the ALS algorithm. It takes only 120 iterations in
comparison to the 1129 ALS iterations. Moreover, our method is faster than ALS since the
CPU time is 3.9919s while ALS took 6.4126s. Figure 6.2 shows that our method did not enter
a swamp regime and converged after 205 iterations with a residual less than 10−10. ALS did
not converge after 20000 iterations saturating at a constant residual of the order of 1.

We furthermore tested the algorithms with 50 different random initial starters given the
same tensor X , performing a decomposition with a rank Rps = 17. The average results in
terms of the number of iterations and CPU time are shown in Table 6.1.

Considering the performance of the algorithms with respect to the number of variables,
we apply the ALS method and our iterative PCLS method to third-order partially symmetric
tensors of varying sizes as follows: X1 ∈ R10×10×10 with Rps = 10, X2 ∈ R20×20×20 with
Rps = 20, and continuing this pattern up to X9 ∈ R90×90×90 with Rps = 90. We compare
the CPU times of both methods for the same tensor size. For each tensor Xi, we calculated
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FIG. 6.1. Example I: good initial guess.
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FIG. 6.2. Example I: random initial guess.

TABLE 6.1
ALS and iterative PCLS: mean of the CPU time and the number of iterations of 50 random initial starters.

ALS Iterative PCLS
average CPU time 17.1546s 6.1413s
average number of iterations 3445.0 258.7

the mean average of the CPU times and the number of iterations for each method as in the
previous experiments. Figure 6.3 shows that as the tensor size increases, the average CPU
time of ALS grows faster than that of PCLS as the dimension increases.

6.2. Example II: fourth-order fully symmetric tensor. For this example, the first test
case corresponds to a given fully symmetric fourth-order tensor X ∈ R10×10×10×10 with
R = 10. With the given initial guess A0, both ALS and iterative PCLS are applied to solve
the SOPD for this fourth-order tensor. The graphs in Figure 6.4 indicate that swamps occur for
the ALS method, while the iterative PCLS converges very fast.

In a second test case, a fully symmetric fourth-order tensor X ∈ R15×15×15×15 with
R = 10 is used. Given the initial guess A0, both ALS and iterative PCLS are applied to solve
the SOPD for this fourth-order tensor. Figure 6.5 shows that both method works well. The
CPU time of the ALS method is 27.2149s while that of the iterative PCLS method is 4.2763s.
The iterative PCLS is superior to ALS both in terms of CPU time and the number of iterations.

6.3. Example III: blind source separation problem. From a given mixture of sig-
nals Z(t) displayed in Figure 6.6, we would like to recover the two original source signals
X(t) (cf. [10]),

x1(t) =
√
2 sin t,

x2(t) =

{
1 if t ∈ [kπ, kπ + π

2 ), k ∈ Z,
−1 if t ∈ [kπ + π

2 , (k + 1)π), k ∈ Z.

The goal is to find a matrix V so that VZ(t) = X(t). The matrix V ∈ R2×2 can be obtained
from

(6.1) CZ =

2∑
r=1

(CX)rrrrvr ⊗ vr ⊗ vr ⊗ vr,

where CZ and CX are fourth-order cumulant tensors of size 2× 2× 2× 2 with respect to Z
and X, respectively, and vr is a column of V. Note that CX and V are the unknowns. The
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FIG. 6.3. Graph of the mean CPU times versus tensor dimensions.
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FIG. 6.4. Example II (dimension n = 10).
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FIG. 6.5. Example II (dimension n = 15).

entries of CZ are as follows:

(CZ)1111 = −39

32
,

(CZ)1112 = (CZ)2111 = (CZ)1211 = (CZ)1121 = −9
√
3

32
,

(CZ)1122 = (CZ)2121 = (CZ)1221 = (CZ)2211 = (CZ)1212 = (CZ)1122 = −21

32
,

(CZ)1222 = (CZ)2122 = (CZ)2212 = (CZ)2221 =
5
√
3

32
,

(CZ)2222 = −31

32
.

In Figure 6.6 we display the results when applying our iterative PCLS and ALS to find the
decomposition (6.1). Using the iterative PCLS, we were able to find the factor matrix V and to
unmix the source signals, in contrast to ALS, which converged, but the factor matrix solution
did not unmix the signals.
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FIG. 6.6. Top row: original source signals. 2nd row: mixed signals. 3rd row: source signals separated via
PCLS. Bottom row: source signals separated via ALS.

7. Conclusion. We presented an iterative algorithm which implements the partially
column-wise least squares method (PCLS) for the SOPD for third-order partially symmetric
tensors and fourth-order fully and partially symmetric tensors. PCLS is a column-wise
approach for factorizing a symmetric Khatri-Rao product into two similar factor matrices.
For symmetric third-order and fourth-order tensors, these symmetric Khatri-Rao products are
prevalent. With the PCLS method, the nonlinear least squares subproblems which are present
in the ALS formulation for symmetric tensors are avoided. We also provide several numerical
examples to compare the performance of the iterative PCLS method with the ALS approach. In
these examples, swamps are not common for the iterative PCLS in contrast to some instances
where the ALS method was applied. Future work will focus on the generalization of SOPD to
even-order and odd-order partially and fully symmetric tensors as well as on increasing the
speed and efficiency of the current methods.
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