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IMPROVED PERTURBATION BOUNDS FOR THE CONTINUOUS-TIME
H∞-CONTROL PROBLEM ∗

NICOLAI D. CHRISTOV†, MIHAIL M. KONSTANTINOV ‡, AND PETKO HR. PETKOV§

Abstract. New local perturbation bounds for the continuous-timeH∞-control problem are obtained, which are
nonlinear functions of the data perturbations and are tighter than the existing condition number-based local bounds.
These nonlinear local bounds are then incorporated into nonlocal perturbation bounds which are less conservative
than the existing nonlocal perturbation estimates for theH∞-control problem.
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1. Introduction. In this paper we present a complete perturbation analysis ofthe
H∞-control problem for continuous-time linear multivariable systems. Nonlinear local per-
turbation bounds are first obtained for the matrix equationsdetermining the problem solution.
These local bounds are tighter than the condition number-based perturbation bounds.

Using the nonlocal perturbation analysis techniques developed in [8, 9], nonlocal per-
turbation bounds are then derived. The new nonlocal bounds are less conservative than the
existing nonlocal perturbation estimates for theH∞-control problem and are rigorously valid
in contrast to the local bounds.

The following notations are used:Rm×n denotes the space of realm × n matrices,
R

n = R
n×1, In the unitn× n matrix,AT the transpose ofA, ‖A‖2 = σmax(A) the spectral

norm ofA, whereσmax(A) denotes the largest singular value ofA, ‖A‖F =
√

tr(ATA)
is the Frobenius norm ofA, ‖ . ‖ is any of the above norms,vec(A) ∈ R

mn denotes the
column-wise vector representation ofA ∈ R

m×n, Π ∈ R
n2×n2

the vec-permutation matrix
so thatvec(AT ) = Πvec(A) for A ∈ R

n×n, andA ⊗ B denotes the Kronecker product of
the matricesA andB. The notation “:=” stands for “equal by definition”.

2. Statement of the problem. Consider the linear multivariable continuous-time sys-
tem

ẋ(t) = Ax(t) +Bu(t) + Ev(t),

y(t) = Cx(t) + w(t),

z(t) =

[

Dx(t)
u(t)

]

,

(2.1)

wherex(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
r, and z(t) ∈ R

p are the system state, input,
output, and performance vectors, respectively,v(t) ∈ R

l andw(t) ∈ R
r are disturbances,

andA,B,C,D,E are constant matrices of compatible dimensions.
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TheH∞-control problem is stated as follows: given the system (2.1) and a constant
λ > 0, find a stabilizing controller

u(t) = −Kx̂(t),

˙̂x(t) = Âx̂+ L(y(t)− Cx̂(t)),

which satisfies

‖H‖∞ := sup
Re s≥0

‖H(s)‖2 < λ,

whereH(s) is the closed-loop transfer matrix fromv, w to z.
If such a controller exists, then it holds that [10]

K = BTX0,

Â = A− Y0(C
TC −DTD/λ2),

L = Z0Y0C
T ,

whereX0 ≥ 0 andY0 ≥ 0 are the stabilizing solutions to the Riccati equations

ATX +XA−X(BBT − EET /λ2)X +DTD = 0,

AY + Y AT − Y (CTC −DTD/λ2)Y + EET = 0,
(2.2)

and the matrixZ0 is defined by

(2.3) Z0 = (I − Y0X0/λ
2)−1

under the assumption‖Y0X0‖2 < λ2.
In the sequel we shall write equations (2.2) as

ATX +XA−XSX +Q = 0,(2.4)

AY + Y AT − Y RY + T = 0,(2.5)

whereQ = DTD, T = EET , S = BBT − T/λ2, R = CTC −Q/λ2.
Suppose that the matricesA, . . . , E in (2.1) are subject to perturbations∆A, . . . , ∆E.

Then we have the perturbed equations

(A+∆A)TX +X(A+∆A)−X(S +∆S)X +Q+∆Q = 0,(2.6)

(A+∆A)Y + Y (A+∆A)T − Y (R+∆R)Y + T +∆T = 0,(2.7)

Z = (I − Y X/λ2)−1,(2.8)

where

∆Q = ∆DTD +DT∆D +∆DT∆D,

∆T = ∆EET + E∆ET +∆E∆ET ,

∆S = ∆BBT +B∆BT +∆B∆BT −∆T/λ2,

∆R = ∆CTC + CT∆C +∆CT∆C −∆Q/λ2.

Denote by∆M = ‖∆M‖ the absolute perturbation of a matrixM . It is natural to
use the Frobenius norm‖ . ‖F identifying the matrix perturbations with their vector-wise
representations.
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Since the Fŕechet derivatives of the left-hand sides of (2.4), (2.5) in X andY atX = X0

andY = Y0 are invertible (see the next section), then, according to the implicit function
theorem [3], the perturbed equations (2.6), (2.7) have unique solutionsX = X0 + ∆X
andY = Y0 +∆Y in a neighborhood ofX0 andY0, respectively. Assume that‖Y X‖ < λ2,
and denote byZ = Z0 +∆Z the corresponding solution of the perturbed equation (2.8).

The sensitivity analysis of theH∞-control problem aims at determining perturbation
bounds for the solutionsX,Y, andZ of equations (2.4), (2.5), and (2.3) as functions of the
perturbations in the dataA,S,Q,R, T .

Using the approach developed in [4, 6], local perturbation bounds for theH∞-control
problem have been obtained in [1] based on the condition numbers of equations (2.4), (2.5),
and (2.3). However, using condition numbers for those local estimates may eventually pro-
duce too pessimistic results. At the same time it is possibleto derive local, first order homo-
geneous estimates which are tighter in general [9]. In this paper, we use the local perturbation
analysis technique developed in [9] to establish such bound that are tighter than those in [1].

Local perturbation bounds have a serious drawback: they arevalid in a usually small
neighborhood of the dataA, . . . , T , i.e., for∆ = [∆A, . . . ,∆T ]

T asymptotically small. In
practice, however, the perturbations in the data are alwaysfinite. Hence, the use of local
estimates remains (at least theoretically) unjustified unless an additional analysis of the ne-
glected terms is done, which in most cases is a difficult task.In fact, obtaining bounds for the
neglected nonlinear terms means getting a nonlocal perturbation bound.

Nonlocal perturbation bounds for the continuous-timeH∞-control problem have been
first obtained in [1] using the Banach fixed point principle. In this paper, applying the method
of nonlinear perturbation analysis [8, 9], we derive new nonlocal perturbation bounds for the
problem considered which are less conservative than those in [1].

3. Local perturbation analysis. Consider first the local sensitivity analysis of the Ric-
cati equation (2.4). Denote by

F (X,Σ) = F (X,A, S,Q)

the left-hand side of (2.4), where

Σ = (A,S,Q) ∈ R
n.n × R

n.n × R
n.n.

ThenF (X0,Σ) = 0.
SettingX = X0 +∆X, the perturbed equation (2.6) may be written as

F (X0 +∆X,Σ+∆Σ)

= F (X0,Σ) + FX(∆X) + FA(∆A) + FS(∆S) + FQ(∆Q)

+ G(∆X,∆Σ) = 0,

(3.1)

whereFX(.), FA(.), FS(.), andFQ(.) are the Fŕechet derivatives ofF (X,Σ) in the corre-
sponding matrix arguments evaluated atX = X0, andG(∆X,∆Σ) contains the second and
higher order terms in∆X, ∆Σ. A straightforward calculation leads to

FX(M) = AT
c M +MAc,

FA(M) = X0M +MTX0,

FS(M) = −X0MX0,

FQ(M) =M,
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where

Ac = A− (BBT − EET /λ2)X0 .

Denote byMX ∈ R
n2×n2

,MA ∈ R
n2×n2

,MS ∈ R
n2×n2

the matrix representations of the
operatorsFX(.), FA(.), FS(.),

MX = AT
c ⊗ In + In ⊗AT

c ,

MA = In ⊗X0 + (X0 ⊗ In)Π,

MS = −X0 ⊗X0,

(3.2)

whereΠ ∈ R
n2×n2

is the permutation matrix such thatvec(MT ) = Πvec(M) for each
M ∈ R

n×n, andvec(M) ∈ R
n2

is the column-wise vector representation ofM .
It follows from (3.1) that

FX(∆X) = −FA(∆A)− FS(∆S)−∆Q−G(∆X,∆Σ).(3.3)

SinceAc is stable, the operatorFX(.) is invertible, and (3.3) yields

∆X = −F−1

X ◦ FA(∆A)− F−1

X ◦ FS(∆S)− F−1

X (∆Q)− F−1

X (G(∆X,∆Σ)).(3.4)

The operator equation (3.4) may be written in vector form as

vec(∆X) = N1vec(∆A) +N2vec(∆S) +N3vec(∆Q)

−M−1

X vec(G(∆X,∆Σ)),
(3.5)

whereN1 = −M−1

X MA, N2 = −M−1

X MS , N3 = −M−1

X .
It is easy to show that the well-known condition number-based perturbation bound [1] is

a corollary of (3.5). Indeed, it follows from (3.5) that

‖vec(∆X)‖2 ≤ ‖N1‖2‖vec(∆A)‖2 + ‖N2‖2‖vec(∆S)‖2 + ‖N3‖2‖vec(∆Q)‖2

+ O(‖∆̃‖2).

Having in mind that‖vec(∆M)‖2 = ‖∆M‖F = ∆M and denoting

KX
A = ‖N1‖2, KX

S = ‖N2‖2, KX
Q = ‖N3‖2,

we obtain

(3.6) ∆X ≤ KX
A ∆A +KX

S ∆S +KX
Q∆Q + O(‖∆̃‖2) ,

whereKX
A ,KX

S ,KX
Q are the individual condition numbers of (2.4) and

∆̃ = [∆A,∆S ,∆Q]
T .

Denoting∆max = max{∆A,∆S ,∆Q} and taking into account the inequalities

KX
A ≤ 2KX

Q ‖X0‖ ,

KX
S ≤ KX

Q ‖X0‖
2,
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we get

(3.7) ∆X ≤ KX
Q (1 + ‖X0‖)

2∆max ,

whereKX
Q (1 + ‖X0‖)

2 is the overall condition number of (2.4). Relation (3.5) also gives

(3.8) ∆X ≤ ‖Ñ‖2‖∆̃‖2 + O(‖∆̃‖2) ,

whereÑ = [N1, N2, N3]. Depending of the value of̃∆, the bound in (3.8) can be larger or
smaller than that in (3.6).

There is also a third bound, which is always smaller or equal to the bound in (3.6). We
have

∆X ≤

√

∆̃TU(Ñ)∆̃ + O(‖∆̃‖2),

whereU(Ñ) is the3× 3 matrix with elementsuij(Ñ) = ‖NT
i Nj‖2. Since

∥

∥NT
i Nj

∥

∥

2
≤ ‖Ni‖2‖Nj‖2,

we get
√

∆̃TU(Ñ)∆̃ ≤ ‖N1‖2∆A + ‖N2‖2∆S + ‖N3‖2∆Q.

Hence, we have the overall estimate

(3.9) ∆X ≤ f(∆̃) + O(‖∆̃‖2), ∆̃ → 0,

where

f(∆̃) = min

{

‖Ñ‖2‖∆̃‖2,

√

∆̃TU(Ñ)∆̃

}

is a first order homogeneous and piecewise real analytic function in ∆̃.
The local sensitivity of the Riccati equation (2.5) may be determined using the duality

of (2.4) and (2.5). For the estimate of∆Y , we have

(3.10) ∆Y ≤ g(∆̂) + O(‖∆̂‖2), ∆̂ → 0,

where

g(∆̂) = min

{

‖N̂‖2‖∆̂‖2,

√

∆̂TU(N̂)∆̂

}

,

∆̂ = [∆A,∆R,∆T ]
T , andN̂ is determined by replacing in (3.2) Ac andX0 by ÂT andY0,

respectively.
Consider finally the local sensitivity analysis of equation(2.3). In view of (2.8), we have

∆Z = [In − (Y0 +∆Y )(X0 +∆X)/λ2]−1 − Z0

= Z0WZ0 + O(‖W‖2),
(3.11)

whereW = (Y0∆X +∆Y X0 +∆Y∆X)/λ2. It follows form (3.11) that

∆Z ≤ ‖ZT
0 ⊗ Z0‖2‖W‖F + O(‖W‖2),

and denotingζ0 = ‖ZT
0 ⊗ Z0‖2, we get

∆Z ≤ ζ0(‖Y0‖2∆X + ‖X0‖2∆Y )/λ
2 + O(‖(∆X,∆Y )‖2)

≤ ζ0(‖Y0‖2f(∆̃) + ‖X0‖2g(∆̂))/λ2 + O(‖∆‖2).
(3.12)

The relations (3.9), (3.10), and (3.12) give local first order perturbation bounds for the
continuous-timeH∞-control problem.
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4. Nonlocal perturbation analysis. The local perturbation bounds are obtained by ne-
glecting terms of order O(‖∆‖2), i.e., they are valid only asymptotically for∆ → 0. That
is why their application for possibly small but nevertheless finite perturbations∆ requires
additional justification. This disadvantage may be overcome using the methods of nonlin-
ear perturbation analysis [7, 12]. As a result, we obtain nonlocal (and in general nonlinear)
perturbation bounds, which guarantee that the perturbed problem still has a solution, and are
valid rigorously unlike the local bounds [5, 9]. However, in some cases the nonlocal bounds
may not exist or may be too pessimistic.

Consider first the nonlocal perturbation analysis of the Riccati equation (2.4). The per-
turbed equation (3.4) can be rewritten in the form

(4.1) ∆X = Ψ(∆X),

whereΨ : Rn×n → R
n×n is determined by the right-hand side of (3.4). Forρ > 0, denote

byB(ρ) ⊂ R
n×n the set of all matricesM ∈ R

n×n satisfying‖M‖F ≤ ρ. ForU, V ∈ B(ρ),
we have

‖Ψ(U)‖F ≤ a0(∆̃) + a1(∆̃)ρ+ a2(∆̃)ρ2

and

‖Ψ(U)−Ψ(V )‖F ≤ (a1(∆̃) + 2a2(∆̃)ρ)‖U − V ‖F ,

where

a0(∆̃) := f(∆̃),

a1(∆̃) := 2‖M−1

X ‖2∆A + (‖M−1

X (X0 ⊗ In)‖2 + ‖M−1

X (In ⊗X0)‖2)∆S ,

a2(∆̃) := ‖M−1

X ‖2(‖S‖2 +∆S).

Hence, the function

h(ρ, ∆̃) = a0(∆̃) + a1(∆̃)ρ+ a2(∆̃)ρ2

is a Lyapunov majorant [2] for equation (4.1), and the majorant equation for determining a
nonlocal boundρ = ρ(∆̃) for ∆X is

(4.2) a2(∆̃)ρ2 − (1− a1(∆̃))ρ+ a0(∆̃) = 0.

Suppose that̃∆ ∈ Ω̃, where

Ω̃ =

{

∆̃ � 0 : a1(∆̃) + 2

√

a0(∆̃)a2(∆̃) ≤ 1

}

.

Then, equation (4.2) has nonnegative roots [5] ρ1 ≤ ρ2 with

(4.3) ρ1 = φ(∆̃) :=
2a0(∆̃)

1− a1(∆̃) +
√

(1− a1(∆̃))2 − 4a0(∆̃)a2(∆̃)
.

The operatorΨ maps the closed convex set

B(∆̃) =
{

M ∈ R
n×n : ‖M‖F ≤ φ(∆̃)

}

⊂ R
n×n
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into itself, and according to the Schauder fixed point principle, there exists a solution
∆X ∈ B(∆̃) of equation (4.1) for which

(4.4) ∆X ≤ φ(∆̃), ∆̃ ∈ Ω̃ .

The elements of∆X are continuous functions of the elements of∆Σ.
If ∆̃ ∈ Ω̃1, where

Ω̃1 =

{

∆̃ � 0 : a1(∆̃) + 2

√

a0(∆̃)a2(∆̃) < 1

}

⊂ Ω̃,

thenρ1 < ρ2, and the operatorΨ is a contraction onB(∆̃). Hence, according to the Banach
fixed point principle, the solution∆X for which the estimate (4.4) holds true is unique. This
means that the perturbed equation has an isolated solutionX = X0 +∆X. In this case, the
elements of∆X are analytic functions of the elements of∆Σ.

In a similar way, replacingAc with ÂT , S with R,Q with T , andX0 with Y0, we obtain
a nonlocal perturbation bound for∆Y . Suppose that̂∆ ∈ Ω̂, where

Ω̂ =

{

∆̂ : b1(∆̂) + 2

√

b0(∆̂)b2(∆̂) ≤ 1

}

⊂ R
3
+

and

b0(∆̂) = g(∆̂),

b1(∆̂) = 2‖M−1

Y ‖2∆Â +
(

‖M−1

Y ((Y0 ⊗ In))‖2 + ‖M−1

Y ((In ⊗ Y0))‖2
)

∆R,

b2(∆̂) = ‖M−1

Y ‖2 (‖R‖2 +∆R) .

Then,

(4.5) ∆Y ≤ ψ(∆̂), ∆̂ ∈ Ω̂,

where

ψ(∆̂) =
2b0(∆̂)

1− b1(∆̂) +

√

(1− b1(∆̂))2 − 4b0(∆̂)b2(∆̂)
.

Finally, the nonlinear perturbation bound for∆Z is obtained by using (3.5) and (4.3),
(4.4). If 1 /∈ spect(WZ0), then we have

∆Z = Z0WZ0(In −WZ0)
−1.

Hence,

∆Z ≤ ζ0‖W‖F ‖(In −WZ0)
−1‖2.

If ‖W‖2 < 1/‖Z0‖2, then we have

∆Z ≤
ζ0‖W‖F

1− ‖Z0‖2‖W‖2
.

It is realistic to estimate‖W‖ when∆X,∆Y vary independently. In this case, one has
to assume that

‖Y0‖2φ(∆̃) + ‖X0‖2ψ(∆̂) + φ(∆̃)ψ(∆̂) < λ2/‖Z0‖2
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and

(4.6) ∆Z ≤
ζ0λ

2ξ0
λ2 − ‖Z0‖2ξ0

,

where

ξ0 = ‖Y0‖2φ(∆̃) + ‖X0‖2ψ(∆̂) + φ(∆̃)ψ(∆̂).

Relations (4.4), (4.5), and (4.6) give nonlocal perturbation bounds for the continuous-
timeH∞-control problem.

Note finally that one has to ensure the inequality

(4.7) ‖Y X‖2 < λ2.

Since the unperturbed inequality‖Y0X0‖2 < λ2 holds true, a sufficient condition for (4.7) to
be valid is

‖Y0‖2φ(∆̃) + ‖X0‖2ψ(∆̂) + φ(∆̃)ψ(∆̂) < λ2 − ‖Y0X0‖2 .

Note that∆̃, ∆̂ depend onλ2 through∆S ,∆R.

5. Numerical example. Consider a third order Riccati equation of type (2.4) with ma-
trices

A = V A∗V, S = V S∗V Q = V Q∗V,

where

V = I3 − 2vvT /3, v = [1, 1, 1]T ,

and

A∗ = diag(1,−0.1,−1), S∗ = diag(0.2, 1, 10), Q∗ = diag(0.1, 0.1, 0.1).

The solution is given by

X = V X∗V, X∗ = diag(x1, x2, x3),

where

xi =
ai +

√

a2i + siqi
si

andai, si, andqi are the corresponding diagonal elements ofA∗, S∗, andQ∗.
The perturbations considered in the data satisfy

∆A = V∆A∗V, ∆S = V∆S∗V, ∆Q = V∆Q∗V,

where

∆F ∗ =





3 −1 0
−1 2 −9
0 −9 5



× 10−i,

∆S∗ =





10 −5 7
−5 1 3
7 3 10



× 10−i−1,

∆Q∗ =





1 −1 2
−1 5 −1
2 −1 10



× 10−i, for i = 12, 11, . . . , 4.
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The perturbed solutionX + ∆X of the Riccati equation is computed by the Schur
method [11, 13] with relative arithmetic precisionε = 2−52 ≈ 2.22× 10−16.

The perturbations∆X = ‖∆X‖F in the solution are estimated by the well-known linear
bound (3.7), the new nonlinear homogeneous bound (3.9), and the nonlocal bound (4.4). The
results obtained for different values ofi are shown in Table5.1. The actual variations in the
solution are close to the quantities predicted by the improved sensitivity analysis. The case
when the conditions for existence of a nonlocal estimate areviolated is denoted by an asterisk.

TABLE 5.1

i ∆X Est. (3.7) Est. (3.9) Est. (4.4)

12 2.1 10−11 2.6 10−9 2.5 10−10 2.5 10−10

11 2.1 10−10 2.6 10−8 2.5 10−9 2.5 10−9

10 2.1 10−9 2.6 10−7 2.5 10−8 2.5 10−8

9 2.1 10−8 2.6 10−6 2.5 10−7 2.5 10−7

8 2.1 10−7 2.6 10−5 2.5 10−6 2.5 10−6

7 2.1 10−6 2.6 10−4 2.5 10−5 2.5 10−5

6 2.1 10−5 2.6 10−3 2.5 10−4 2.5 10−4

5 2.1 10−4 2.6 10−2 2.5 10−3 2.6 10−3

4 2.1 10−3 2.6 10−1 2.5 10−2 ∗

6. Conclusions.A complete perturbation analysis of theH∞-control problem for con-
tinuous-time linear systems has been presented. First, newlocal and nonlocal perturbation
bounds have been obtained for the matrix equations determining the solution of the problem.
The new local bounds are nonlinear functions of the data perturbations and are tighter than
the existing condition number-based local bounds. Then, using the nonlinear perturbation
analysis technique developed by the authors, nonlocal perturbation bounds have been derived.
These bounds guarantee—unlike the local perturbation bounds—that the perturbed problem
still has a solution. The new nonlocal bounds are less conservative than the existing nonlocal
perturbation bounds for theH∞-control problem.
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