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SELF-GENERATING AND EFFICIENT SHIFT PARAMETERS IN ADI METHOD S
FOR LARGE LYAPUNOV AND SYLVESTER EQUATIONS *

PETER BENNER, PATRICK KURSCHNER, AND JENS SAAK!

Abstract. Low-rank versions of the alternating direction implicit (ADteration are popular and well estab-
lished methods for the numerical solution of large-scale &stlr and Lyapunov equations. Probably the biggest
disadvantage of these methods is their dependence on a $éft pesameters that are crucial for fast convergence.
Here we firstly review existing shift generation strategiest compute a number of shifts before the actual itera-
tion. These approaches come with several disadvantagesasuety., expensive numerical computations and the
difficulty to obtain necessary spectral information or dateded to initially setup their generation. Secondly, we
propose two novel shift selection strategies with the matwvato resolve these issues at least partially. Both ap-
proaches generate shifts automatically in the course of Dieitarations. Extensive numerical tests show that one
of these new approaches, based on a Galerkin projectiortfempace spanned by the current ADI data, is superior
to other approaches in the majority of cases both in terms afezgence speed and required execution time.
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1. Introduction. The approximate numerical solution of large-scale algehraatrix
equations has attracted enormous attention in the lastéwad®s. In this work we consider
large-scale Sylvester matrix equations of the form

(1.1) AXG - EXF =R

with A, E € R"*" F G € R™™", E,G nonsingular, and?z € R™*". In particular, this
includes generalized Lyapunov equations, i.e., the ¢ase E7, F = AT, andR = R”.

It can be shown that when the rank of the right-hand didef these equations is much
lower than the dimension of the equations, irenk R < min(n, r), the solution often ex-
hibits a low numerical rankl], 19, 28, 29, 34]. Hence, it can be accurately approximated
by a low-rank factorization. This is the backbone for sevatamerical algorithms of dif-
ferent kinds that try to find such low-rank factors; séé, [33] for recent surveys. Here we
focus on low-rank versions of methods based on the altegatirections implicit (ADI)
iteration P, 10, 25, 28, 30, 40, 43]. Probably the largest disadvantage of ADI methods is
their dependence on shift parameters, which are crucialafsirconvergence. Optimal or
high-quality shifts are usually difficult to obtain for lagscale problems. Either, they rely
on spectral data which are hard to get for large problemsheir generation involves inef-
ficient and expensive computations. Thus, our emphasessinvtrk are new and efficient
strategies for computing shift parameters that also ledalstoconvergence but without these
drawbacks. We especially look for approaches that are aitoin the sense that they do not
require any special a priori knowledge or setup data. Theireder of our article is divided
into two main parts: Sectiofi is devoted to generalized Lyapunov equations. There, after
giving a concise derivation and overview of recent numégochancements of low-rank ADI
methods for Lyapunov equations, we discuss some populstirgxishift strategies and give
two novel approaches. These new strategies are tested anmhiced to the existing ones in
several numerical experiments. Then Secfias concerned with the low-rank ADI iteration
for the more difficult generalized Sylvester equations. Afobe we review existing shift
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strategies and propose new ones which solve some of thesie$tige existing approaches.
Numerical experiments illustrate their performance. lynae conclude and give possible
future research perspectives in Sectiion

We use the following notation in this papék:andC denote the real and complex num-
bers, andR_, C_ refer to the set of strictly negative real numbers and thendp& half
plane. In the matrix cas®"*™ C"*™ denoten x m real and complex matrices, respec-
tively. For any complex quantitX’ = Re (X) + yIm (X), Re (X), Im (X) are its real and
imaginary parts, ang denotes the imaginary unit. The complex conjugat&af denoted
by X = Re(X) — 7Im(X). The absolute value af € C is denoted byl¢|, and, if not
stated otherwise| - || is the Euclidean vector or subordinate matrix norm (speciam).

The matrixA” is the transpose of a realx m matrix, andA” = A" is the complex con-
jugate transpose of a complex matrix. The identity matrigiaiensionn is indicated byr,, .
The inverse of a nonsingular matrikis denoted byd—!, andA=—# = (A#)~1. The vector
(1,...,1)T of lengthm is expressed by,,,. For symmetric positive (negative) definite matri-
ces(d = AT ~ 0(= 0)), we use the abbreviation spd (snd). For a pair of two squiateices
A, E, the spectrum is given (A, E) := {z € C: det (A — zE) = 0}, wheredet is the
determinant. Moreover, the spectral radius is givep@y, F) := max{|\[, A € A(A, E)}.

If £ = I, the second argument is neglected.

2. Lyapunov equations. In this section we investigate, as an important special case
of (1.1), generalized Lyapunov equations

(2.1) AXET + EXAT = _BBT,

where B € R™™ with m < n. We employ the usual assumptid(A, E) ¢ C_ to
ensure the existence of a unique solution. In the followinlgsgction we give a concise
derivation of the low-rank alternating directions impti¢ADI) method for computing low-
rank solution factors of4.1). There we also include recent developments regarding some
efficiency improvements. After that, we review a number a$tmng strategies for generating
shift parameters, which are a crucial factor for convergeocthe ADI iteration. These
approaches come with some issues in a large-scale settigtleey are not numerically
feasible, they depend on, e.g., spectral datalof’ which are hard to get, or they involve
certain a priori setup parameters for which there are no knoptimal selection strategies.
We then investigate shift strategies which resolve all deast some of these issues. This
will lead to two new approaches where shifts are generat&aratically during the ADI
iteration. The treatment of special cases @fl) is also briefly discussed. Numerical tests
using a range of different examples show the often supegdiopmance of the new shift
strategies compared to the existing ones.

2.1. Low-rank ADI methods for Lyapunov equations. The alternating directions im-
plicit (ADI) iteration [40] for (2.1) is given by

EX;E" =(A-aE)(A+ a;E) 'EX; 1 ET(A+ o;E)" (A - E)"

(2:2) —2Re(a;) E(A+o;E) 'BBT (A + o, E) " ET

for j > 1, some shift parameter§a;,as,...,o;} C C_, and an initial guess
Xo = XTI € R"*". These shift parameters steer the convergence and are thefonas
of this paper. The above iteration operates on densen matrices and hence is not fea-
sible for large-scale problems. There are several expetah@8] and theoretical results
[1, 19, 29, 34, 37] showing that whenn < n, the numerical rank of the solutiak of (2.1)

is small, e.g., in the sense that the singular valueX afecay rapidly towards zero. This
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serves as motivation to approximatevia X ~ ZZ7, whereZ € R"*? is a low-rank factor
with rank (Z) = t < n. IntroducingX; = ZijH into (2.2), settingZ, = 0, applying some
basic algebraic manipulations, and reordering the shaftsld to the generalized low-rank
ADlI iteration (G-LR-ADI) [3, 9, 25, 28]

(2 3) Zl = ‘/Yl = (A+ OélE‘)_lB7 ZJ = |:Zj1, —2Re (aj)VJ 5

Vi=Vjo = (aj +a-0)(A+ o E) H(EVj—1), j>1.
Now in each iteration stepy new columns are added to the previous low-rank solutiomfact
The main computational costs result from the solution ofghiéted linear systems with

right-hand sides. We assume in the following that we are t@bddficiently solve these linear
systems. InT] it is shown that it holds for the Lyapunov residual at sjethat

L(X;):=L; = AZ;Z]'E" + EZ;2]' AT + BBT = W; W},

where
(2.4) Wi =W;1—2Re(a;) EV;,  Wo:=B,
such that||Z;|| = [[W/TW}| can be cheaply evaluated in the spectral or Frobenius norm.

Moreover, the iterates can be rewritten as
(25) V} = (A—i—oz.jE)_le_l,

which gives a reformulated version of G-LR-ADS][ where the residual factodd’; are an
integral part of the iteration. So far we have used complexriank factors since some of the
shift parameters might be complex. To ensure tkatis real, these complex shifts have to
occur in pairs of complex conjugate shifts, i.eqif € C_ \ R, thena; 1 = @;. Under this
assumption it is possible to prove, [7, 8] that the iterated’; ., and W, associated ta;
can be constructed from data available at gteja

(2.6) Vigr =V, + 28 1y (7)€ ¢,
J J J

Im(a;)

(27) Wiy = W1~ 4Re(a;) B (Re (V) + 1o Im (V) ) € R™™.

Hence, only one complex shifted linear system has to be ddiveeach pair of complex
conjugate shifts. Moreove; 1, is obtained by augmenting;_; by 2m real columns such
that the low-rank factor is a real matrix after terminatidrGeaLR-ADI. The complete refor-
mulated G-LR-ADI iteration §] including this handling of complex shifts is given in Algo-
rithm 2.1 This is the algorithm we shall use from now on for solving pyaov equations.
Note that this formulation is mathematically equivaleritie original low-rank iteration?.3),
although more efficient.

2.2. Existing strategies for precomputed shifts.The convergence speed of the ADI
iteration @.2) is strongly influenced by the spectral radii of

J
Aj =[] Aax, Ay = (A+arE)" (A - aGE)
k=1

(see P1, 31]), where A,,, are the iteration matrices o). Good shifts should therefore
make the radip(A,) as small as possible to ensure fast convergence. A welldkmesult
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Algorithm 2.1: Reformulated Real G-LR-ADI Iteration.

Input : MatricesA, E, B defining @.1), shift parameter$a, ..., q;, . .} C C_,
and tolerancé® < 7 < 1.
Output: Z € R™"*™imax such thatZ Z7 ~ X.

lVV():B7 ZOZH, ]21

2 while [WZ ,W;_,|| > | BT B| do

3 | Solve(A+o;E)V; =W;_y for V.

4 if Im (cr;) = 0 then

5 | | W;=W;_1—2Re(ay) BV, Zj =[Zj-1,\/~20;Vj].
6 else

7 7 =2y~ Rela;), & = e,

8 Wii1 =W 1+ E Re (V) 4 0; Im (V).

° Zjw = [Zj-1, 7 (Re(Vj) +6;Im (V) 7;,/(67 + 1) - Im (V;)].
10 j=7+1

n | j=j+1

for minimizing the spectral radii (see, e.g42[ 43]) is that the optimal shiftfay,...,as}
for J iteration steps ofZ.2) (and of its low-rank version in Algorithrd.1) are given by the
solution of the rational min—max problem

LAY
Hari-)\e

i=1

(2.8) min < ma

X
ag,...,ayCC_ \ 1<l<n

> , Ao € A(A,E)

One conceptual issue of relating the above optimizatiomblpro to ADI shift parameters

is that the derivation of2.8) does not embrace the low-rank structure of the right-hand
side BBT of the Lyapunov equation. However, the low-rank propertyhef right-hand side

is of tremendous significance for the existence of low-rasikt®ns. Apart from that,4.8)

has lead to a number of different shift strategies which maguUently and often also success-
fully applied in low-rank ADI methods. In the following we iefly describe two of these
strategies, which we are also going to employ in our numktésas.

2.2.1. Wachspress and approximate Wachspress shiftén [43] an analytic solution
for (2.8) is proposed which uses the values:= min; Re ()\;), b := max; Re()\;) and
¢ := max; arctan|§‘;8’:§ for \; € A(A, E) to estimate the shape of the spectriifd, E)
via an elliptic functions domain. The computation of optirsaifts (to achieve that the abso-
lute error of the approximate solution is smaller than artoleec) is then based on elliptic
integrals involving the toleranceand the above spectral datab, and¢. If the spectrum
A(A, E) is real or the imaginary parts of the complex eigenvaluesiaral compared to the
real parts, this approach always provides real shift pat@rmsieln the case of large imaginary
parts, there exists a modification that produces compldk phiameters. We refer to these
shifts as Wachspress shifts in the following. For largdescaatrices, the required spectral
data, especially the anglg for complex spectra, can be hard to obtain. An easy way to
get approximate Wachspress shiftd][(also called suboptimal shift8(, Section 4.3.2.]) is
to approximate\ (A, E') by a small number ok, Ritz andk_ harmonic Ritz values, i.e.,
Ritz values with respect t&/ ' A and A~'E. These Ritz values can be computed using
Arnoldi or Lanczos processes. One then computés¢ on the basis of this typically small
set of Ritz values and carries out the Wachspress compusadmbefore. This approach will
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be referred to as approximate Wachspress shifts for whidmplementation can be found
in [30, Algorithm 4.2]. The quality of these shifts depends on thality of the approxima-
tion of a, b, and¢ by the Ritz values. Hence, the prescribed numberst_, but alsoe, have

a certain influence. Moreover, the Arnoldi methods intradadditional computations which
are dominated by the, andk_ solves withE and A for generating the Ritz values. Note
that for symmetric systems, i.e4,snd andF spd, onlya, b need to be estimated, which can
be done less costly in one run of a Lanczos process using tiee product induced by..
The computability ofz, b, ¢ obtained from the Ritz values may be increased by usingeshift
matrices [L1].

2.2.2. The heuristic Penzl strategyAnother frequently used heuristic approach to ob-
tain ADI shifts was proposed by Penzl iag]. There,A(A, E) is again replaced by a much
smaller set consisting of Ritz values and reciprocals of Rilues with respect t&@—' A
and A~ E, respectively, also using, andk_ Arnoldi steps. The complete procedure for
the generation off shift parameters is given ir2g, Algorithm 5.1]. Although this strategy
has been used successfully in numerous cases, it comesewéhatdrawbacks. As for the
approximate Wachspress shifts, the procedure requireshihaaluest, , k_, and here ad-
ditionally .J, are provided by the user, but there is no known rule how toadlgt set these
values. Numerical experiments show that even small changgdeast one of these parame-
ters can lead to a significantly different performance of &ADI in the end. In some cases
the valued:, , k_ need to be so large that the cost for the Arnoldi processemisegligible.
The Arnoldi process requires a starting vector for whichiehig also no known result on how
to choose a suitable one. The authors8hysedB1,, in their numerical experiments, but
whether there are better choices, remains unclear. Of eptire quality of the Ritz values
influences the quality of the shifts in the end. If the Arnatdinvergence is slow and the
Ritz values are poor approximations of eigenvalues, thigssimay be of poor quality. The
computed Ritz values can have positive real part$if’’ + EA” is indefinite. These must
be neglected.

2.2.3. IRKA shifts. The Iterative Rational Krylov Algorithm (IRKA)Z(] is a promi-
nent method for computing reduced order models of large myced systems which are lo-
cally optimal in theHs-norm. In ] it is shown, by drawing connections to a Riemannian
optimization framework 39|, that IRKA can also be used for the computation of low-rank
solutions of large Lyapunov equations.Af= AT < 0 andE = E7 - 0, the obtained ap-
proximate solution satisfies an optimality condition wiéispect to a certain energy norm. For
the unsymmetric case, a similar optimality property hold wespect to the residual. L&t
U be rectangular, orthonormal matrices which sgagimensional rational Krylov subspaces
computed by IRKA, and denote the eigenvalues= {a;,...,a;} =AUTAQ,UTEQ).
Then the approximations to the Lyapunov equation computedRiKA and G-LR-ADI
with A as shifts are identicallp, 17]. We refer to these shifts as IRKA shifts, which have
attracted some attention recently. The main drawback aetlshifts is that their computa-
tion, i.e., running IRKA until a certain stopping criteriemmet, is very expensive. Assume
IRKA requiresh iterations until convergence. Thu&hJ shifted linear systems with, F
have to be solved, which makes these IRKA shifts a ratherétieal tool. Nevertheless, we
are going to use this shift approach in G-LR-ADI for compaunis in some of our numerical
examples. However, we point out that the IRKA shifts shouthe considered a competitive
alternative. On the other hand, their strong theoreticekgeound may help to improve the
strategies investigated later and serves as the initialvatmin for the method introduced in
Section2.3.2
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2.2.4. Other shift strategies. There exist a number of other shift parameter approaches.
For completeness we mention a few here. Eoe I,,, an approach based on Leja points is
given in [35], where the spectra df, AT andA” @ I,, are embedded into subsétsF c C.
For arbitrary values frond, F, shift parameters are recursively obtained by maximizirey t
rational function in 2.8). A related potential theory-based approach can be foufiilin For
real spectra and shifts, an improvement of Penzl's heassiiection strategy (Secti@n2.2),
which introduces marginal additional costs, is also prepds [31, Section 2.2.4]. In38] a
shift strategy is presented which uses the eigenvaluesrofli subblock ofA corresponding
to the nonzero block of the right-hand siB&”', which is present in certain applications. For
the case where the considered Lyapunov equation is relatetrtear, time-invariant control
system, dominant pole-based shifts are investigateddnSection 4.3.3]. The investigation
shows that these shifts can be beneficial for a subsequerdlrmater reduction process. A
number of related and further shift approaches can be faufiil].

2.3. Self-generating shifts.The previously mentioned shifts are computed before the
actual G-LR-ADI iteration. Here we investigate two appihoesto compute shift parameters
automatically during the iteration. The first of those slloith the current state, be regarded
as theoretically more sound but practically less relevaettd its rather high computational
costs. The second currently lacks a proper theoreticalibgdiut provides outstanding con-
vergence of the ADI iteration for some examples as reporethie numerical experiments
in Section2.5.

2.3.1. Residual norm-minimizing shifts. As shown in Sectior2.1, the residual in the
spectral or Frobenius norm is, combiniry4) and @.5), given by

ILi1 = W12 with W, = W1 — 2Re (o)) E (A + o B) " W;_a).

Assume that iteration step— 1 is completed and we look for the next shiff. Since apart
from that shift, every quantity in the above formula is knoafter iterationj — 1, an intuitive

idea is to find a shifty; that minimizes||W;|| because this will also minimizgL,||. Let

a; = v; + guy with v; < 0, and define the bivariate function

(2.9) £ 1) =Wt — 20E (A+ (v + 1) B) ' Wy1) |
Then the real and imaginary parts®f can be obtained as

(2.10) Vo] = argmin f; (v, ),
veR_ jueR

i.e., by solving a minimization problem. Complex shifts alternatively be produced by
using the relations6), (2.7) and minimizing the function

)

1) g = Wil = |[Wio1 = 4E [Re (V) + £ Im (V)]

whereV; = (A + (v + ju)E)~'W;_;. In that case the residual norm is minimized with
respect to two iteration steps associated with a pair of éexngonjugate shifts. Numerical
tests did not reveal a significant difference between usti@) 6r (2.11). The minimization
problems can in any case be solved by standard routines fotimiaation software packages
such as the MATLAB commandainsearch , fminunc , fminbnd , orfmincon . The
latter one can incorporate the constraint that Re («;) < 0. Such optimization algorithms
usually also require initial guesses, which might havea@nstinfluence on their performance.
One possibility is to set these initial guesses to the shifinél in the previous iterations.
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These norm-minimizing shifts are obviously a rather théoaé concept because they are
computationally not feasible. Running the optimizatiortimogls for their detection requires
solving several linear systems f&.{0. Hence, the computation of the shift itself will easily
become more expensive than carrying out the current iterati G-LR-ADI. Moreover,f;
and g; might have several local minima, and it is difficult to enstirat the global one is
found. In the form given above, both approaches will mostljikproduce a complex shift
every time. Real shifts can be obtained, e.g., by neglettiegmaginary parts which are too
small in magnitude although it is not clear how to define 'towal’. If it is known that the
spectrum ofd, E is real, the shifts should also be real, aBd) can be simplified by setting
w=0.

2.3.2. Shifts obtained from a Galerkin projection on spacespanned by LR-ADI
iterates. The heuristic shifts in Sectioh2.2are essentially Ritz values with respect4poF .
Here we propose a novel idea that also uses Ritz values whichemerated from different
spaces where the possibly expensive Krylov subspace oatistr is not needed. Before
G-LR-ADI is started, initial shifts are created as followst the columns of3 € R"*™
form an orthonormal basis fapan { B}. Then the first shifts are taken as the eigenvalues
of the projected matrices with respect to a Galerkin prayactf A, £ onto span{B}, ie.,
{on,...,am} = A(BTAB, BTEB) N C_. The intersection wittC_ ensures that possible
unstable eigenvalues ¢B3” AB, BT EB) are neglected such that < m. Alternatively,
unstable eigenvalues might just be reflected at the imagenés. In some cases this is not
required, e.g., wheh’' = [, and A is dissipative (i.e., its symmetric part is negative dediit
After LR-ADI has processed all of these initial shifts, thare two similar variants to get the
next set of shift parameters:

1. LetV}; be the G-LR-ADI iterate associated to the last processdtl [qriameter.
Compute an orthonormal matriX;, whose columns are an orthonormal basis for
span {Vy} or span {Re (V;;,) ,Im (V;;)} if the last shift was real or complex, re-
spectively. The next set of shifts is

{Oém+1, ey am+card<A)} =A:= A(f/;g;AVm, V#;E‘A/m) N C,,

wherecard(.A) is at most eithern or 2m depending ofV;, being a real or complex
iterate. In the following we call the shifts obtained in thaty V/-shifts.

2. LetWy, be the LR-ADI residual factor associated to the last shifapseter. Com-
pute an orthonormal matrii/,;, that spans an orthonormal basis forn {W, 1.
The next set of shifts is

m

{a7?z+1; ceey ar}L+card(A)} =A:= A(WTAWm, WT?H,—‘EWM) nC-.

Note thatl¥;, is, according to Algorithn2.1and @.7), always a reah x m matrix.

The so constructed shifts will be referred tol&sshifts in the remainder.
LR-ADI is then continued with these new shifts, and the abonezedure is repeated each
time the set of shifts has been fully processed. If it happkatall eigenvalues of the pro-
jected matrices are unstable, LR-ADI is continued with thevjpus set of shifts. The main
computational cost for this shift generation is the orthmgjization of ann x m orn x 2m
matrix whenever new shifts are required. This is not expensincem < n. It can occur
that the columns o¥/;, or W,;, have linear dependencies, which should be taken care of by
a clever orthogonalization routine. For instant¥;, can have less tham columns. The
solution of the at mos2m-dimensional eigenvalue problem introduces only negligéxtra
costs. The big advantage of both proposed variants is, cadpa the heuristic approach
in Section2.2.2 that no setup parameters suchjas., k_ are required, which makes this
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approach completely automatic and hence user-friendlylithshally, for several numerical
tests, these shifts even seem to outperform the heurisfis.s®ne disadvantage occurs for
problems with a rank-one right-hand side, i.e., wher= 1. Then the single shift computed
in both variants is actually a generalized Rayleigh quatiBnthat case th&/ -shift is given

by
WL AW,
o= —"—,
WﬁEWm

m

and hence it will always be a real number, which can be disadgaous for problems with a
complex spectrum. Another drawback of thieand1/-shifts is the lack of a deeper theoret-
ical foundation. It is also not clear which of the two vargig better although in most of our
numerical tests th& -shifts seem to be superior.

To complete this section we mention a third approach whigssisan {7} as projec-
tion basis. There, aftey shifts have been processefly: Ritz values are computed with
respect to the reduced matrix pair generated by an Galergjagiion ontaspan {Z}. These
may be taken as new shifts, or, optionally< Jm of them are selected. A number of pos-
sible choices can be used in this case. The simplest woultlebke Ritz values largest or
smallest in magnitude. Alternatively, one might exploi¢ fincreasingly better approxima-
tion of the entire spectrum of and use the computed Ritz values as inputs for the Penzl or
Wachspress shift strategies to perform a more educatectisele

Obviously, this third variant is significantly more experesthan thel/- and W -shifts
since computing an orthogonal space $pan {Z;} requires the orthogonalization of the
span ofV; for eachj = 1,. .., J against the previou&;_;. Also, the eigenvalue problem is
now of dimension/m and the cost for its solution might not be negligible anymahéhich
of the h values of A to select for optimal results is also not clear. We do not peithis
approach further but note that ihZ, 30], span {Z,} is used to perform a Galerkin projection
on the Lyapunov equatior2 (1) to gain a convergence boost in G-LR-ADI.

2.4. Special casesln this section we discuss the application of the self-getirey shift
strategies in some selected structure-exploiting vesiahG-LR-ADI.

2.4.1. Second-order ADI.Lyapunov equations such a& ) are often related to linear,
time-invariant dynamical systems of the form

(2.12) Ei(t) = Az(t) + Bu(t), A,E€R™"™ BecR™™,

with z(t) € R™ andu(t) € R™. Now consider the second-order, linear, time-invariant
dynamical system

M(t) + Dq(t) + Kq(t) = Byu(t), M,D,K € R™*"™ By € R™*™,

with ¢(¢t) € R™ andu(t) € R™, which can equivalently be written as a system of first
differential order 2.12), e.g., with

By
0

(2.13) E:[D M], A

-K 0
M 0

2n1 X2n1 _
0 M] eR , B= [

2
:| cR nl><m7

andz(t) = [¢(1)T, q(t)T]T; see B6]. There exist structure-exploiting variants of G-LR-ADI
called second-order LR-ADI (SO-LR-ADI)[ 13, 27, 30] which do not explicitly form the
augmented matricel, A, B in (2.13 and work with the original datd/, D, K, B, instead.
Of course, such a structure exploitation should also be sttt shift strategies of the pre-
vious sections. See, for instancé] for details on how to solve the linear systems which



ETNA
Kent State University
http://etna.math.kent.edu

150 P. BENNER, P. KIRSCHNER, AND J. SAAK

arise also in the computation of the norm-minimizing shifithe Galerkin projections of
Section2.3.2are implicitly carried out with the augmented matric@sl@), i.e., only ma-
trix vector products withM/, D, K, andn; x m matrices are required. The resulting small
eigenvalue problem does not inherit the block structurergin 2.13).

2.4.2. SLRCF-ADI for index-1 DAEs. Another class of dynamical systens12) are
differential algebraic equations (DAE) of indéxwvith

(2.14) 5 [E51 8], A— |:i11 ﬁ12:| ER™™, B = [Bli| e R ™.
21 Ao

whereFEy; € R" X" Ayy € R "X~ "¢ gre nonsingular and all the other blocks are of
appropriate sizes. Here; denotes the number of finite eigenvalued\im, £). Such DAEs
can be equivalently rewritten in state space form

En@i(t) = Az, (t) + Bu(t), AeRYX" BeRM*™,
with
A=Ay — ApAL} Ay, B =B — Ay As) Bo.

In [18] a specially tailored G-LR-ADI (SLRCF-ADI) is proposed vehi solves the Lya-
punov equationd X EY, + F;; XAT = —BB7” without forming the matricesi, B ex-
plicitly. The key ingredient is the observation that theusioin of the dense linear system
(A+ a;F1)V; = W,_, of sizen; can be equivalently and more efficiently obtained from
the sparse linear system

A+ ojEn A |V W;_1
2.15 J I = J

of sizen, where the right-hand side in the first iteration 8! , BI'17 andl" € Cn—"sxm
is an auxiliary variable. The same trick can be employed iwithe minimization algo-
rithms for the residual norm-minimizing shifts describedSection2.3.1 It also holds that
W; = W;_1 — 2Re(a;) E11V;. A straightforward application of the projection-baseiftsh
of Section2.3.2requires the computation of the matrices

VTAV = VT ALV — VT Ay, (A;; (A21V>) . VTELV

for the V-shifts and similarly withi¥” for the 1W-shifts. The initial shifts are obtained using
an orthonormal basis faB. This requires the solution of: linear systems of size — ny
with A55 at each time when new shifts are required, possibly leadi@gsignificant increase
in the computational cost.

As a modification of thé/-shifts, we propose to carry out the Galerkin projectiorhwit
the original matrices2.14 and the augmented iterate$ " := [V,;', 7] from (2.19. Let
V; be an orthonormal basis féf", and choose the shifts from(V]TAV ,VIEV;)nC_.
Additionally, possible infinite eigenvalues should alsoneglected. We refer to this modi-
fication asV@%shifts. Similarly, we can work with the augmented residfaators for the
W -shifts

W9 = W™ — 2Re (a;) EV"9= [mﬂ ., W9=n,
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TABLE 2.1
Dimensions: andm, desired residual norm,, maximum number of allowed ADI iteratiof¥'?*, structural
properties, and sources for the used Lyapunov test examigis®, OC and IFISS refer to the Oberwolfach Model
Reduction Benchmark Collection and the IFISS][FEM package.

Example n |m| ez |j™**|Properties Source

FDM1 | 3600 5|10~1° 250 |E = I, B random [22, B in Example 2]
railsk 5177710719 150 | A snd,E spd OC!, ID=38881
rail79k (79188 7|10~'°| 100 |A snd,E spd OC!, ID=38881
ifissl (16641 4|107°| 150 |E spd,B = A -rand (n,m) |IFISS [32] T-CD3
chain 9002 5| 10~® | 400 [structure .13, B random  |[3§]

bips 21128 4| 10~% | 400 |structure .14, n; = 3078 [18], bips07.307&

with an auxiliary matrixY’ € C*~"#>™_ A simple calculation using the structureBfshows
thatY = Bs. This yields thelV@'%shifts. For both thé 2% and IWa%shifts, the initial
shifts can be obtained by using an orthonormal basi® ofNote that there are also LR-
ADI approaches for handling DAE systems of higher indic&d,[e.g., the recent work?]
regarding the case of index 2 arising in optimal control ef (Navier)-Stokes equation. The
proposed shift approaches can be adapted to these casdsaiglatirward manner.

2.5. Numerical experiments. We are now going to evaluate and compare the perfor-
mance of the presented shift generation strategies. TetidsG-LR-ADI (Algorithm2.1)
is run until | £|| /|| B||?> < ez with 0 < ez < 1 is achieved or a maximum allowed number
jmax of iterations is reached. All experiments have been caoigdn MATLAB 7.11.0 on
an IntePXeor?W3503 execution with2.40 GHz andé GB RAM. We use a collection of test
examples whose dimensionsm, the required residual toleraneg, the maximum allowed
number of G-LR-ADI iterationg™*, as well as selected information regarding symmetry
properties, sources, and references of the examples ane igiable2.1. There, OC stands
for Oberwolfach Model Reduction Benchmark Collectipand the ID gives a unique iden-
tifier for obtaining the example. IFISS refers to the MATLARIfe-element packagey).
The examplegshainandbips’ belong to the special cases mentioned in Sedidrand are
handled by SO-LR-ADI and SLRCF-ADI, respectively. Fopswe used the shifted matrix
A — 0.05F as in [L8, Section V.A]. The complete identifier for this example igegi in the
last column.

The results for these examples and different shift strategie summarized in Talite2
There, the heuristic strategy and its settings are denogethdur(J, k;,k_)". Likewise,
“wachqe, k., k_)" stands for approximate Wachspress shifts obtained ftonk_ Ritz val-
ues and a tolerance The number of shifty/ is also given. For these two approaches, the
initial vector for the Arnoldi processes B1,,. Moreover, IRKA({) refers toJ shifts ob-
tained after IRKA, initialized with random data, convergesing a tolerance of0—2 and
the stopping criterion inJ0]. All of these precomputed shifts are used in a cyclic mariner
it occurs that the required number of G-LR-ADI iterationsigher than the number of the
available shifts. The computation of the orthonormal bades8, V;, or W; for the V- and
W -shifts was carried out using the MATLAB routireth . The residual-minimizing shifts
were obtained using the MATLAB routirfeninsearch  since the constrained optimization
routinefmincon did not converge for our examples. The initial guessffoinsearch
was always set to the previously computed shift. Due to tipersive nature of the IRKA-
and residual norm-minimizing shifts, both strategies anlg applied to the moderately sized

Ihttp://portal.uni-freiburg.de/imteksimulation/downl oads/benchmark
2pvailable athttp:/sites.google.com/site/rommes/software
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TABLE 2.2
Results for the examples using different shift strategiggi and tap; denote the times (in seconds) spent
for computing the shifts and executing G-LR-ADI, respetfjyand the total consumed timetigiy. The required
iterations;®®" and the final obtained residual norhfjner || are also given. The smallest valuestgfy and ;" for
each example are emphasized using bold letters.

Ex.| Shift strategy tshit|  tapr| o] 5| ||Ceer|
heur(10, 20, 20) 0.53 0.74 1.27 26/9.9110!!
. wachs(10'19, 10, 10),J = 13 0.23 0.75 0.98 26/1.7610!2
S |IRKA(30) 15.35 0.81 16.16 29/5.4010'2
2 |res.min 82.87 0.81] 83.67 24/2.6710~1!
V-shifts 0.03 0.98 1.00 30/3.9310~ !
W -shift 0.03 0.87 0.89 31/6.231013
heur(10, 20, 10) 0.50 3.31] 3.80 59/3.0310 !
wachs(10'19, 20, 10),J = 40 0.47] 2.79 3.26 40/5.8210~!!
5 |IRKA(60) 28.98 7.80 36.78122/6.9410 !
‘S |res.min 76.40 12.07] 88.47/150 7.0010~°
V-shifts 0.03 3.44 3.46| 57/9.8310!2
W -shifts 0.06/ 10.46 10.52150| 6.01102
 |heur(20, 40, 40) 44.87 85.96130.84 54/7.0010~!!
o |wachs(10, 20, 10),7 =47  |13.14111.10124.24 47/6.3610 !
T |V-shifts 0.78158.58159.35 85/2.8010 12
W -shifts 0.91/229.60230.51100| 3.19102
heur(20, 30, 20) 6.48 12.14 18.62 48/5.0910!!
§ wachs(10'19, 20, 10),J = 33 2.57| 22.66 25.23 97/8.9710!!
£ |V-shifts 0.11 15.11 15.22 62[2.6410~ !
W -shifts 0.21 34.37 34.58150(3.7010~10
heur(40, 50, 50) 1.85 4.82 6.67/3836.6010~°
£ |wachs(101°, 20, 10),J =130 | 1.63 2.73 4.37/309 8.2910~°
S |V-shifts 0.21 1.96 2.16147 6.0410°
W -shifts 1.35 3.85 5.20[400 5.0610°
heur(40, 50, 70) 11.79 35.87 47.66378 6.5510°
heur(60, 80, 80) 12.01 21.30 33.32226|5.9510°
» |wachs(10%, 20, 20),J = 35 2.46( 30.11 32.57268| 7.5610°
= |V-shifts 1.71 7.86 9.56 83|8.8810~°
W -shifts 1.73 9.79 11.52104]8.2310~°
Va4 ghifts 0.16f 7.95 8.11 84|4.4510°
Waldshifts 0.46| 37.11 37.57400| 2.8410°8

examplesFDM1 andrail5k. Because of the symmetry properties ab@d, F) C R_ in
rail5k, both approaches are further simplified such that only taétksare considered. In ad-
dition to the data collected in Tabk2, Figure3.1displays the scaled residual norm against
the ADI iteration number in the top plots and in the bottomtplthe scaled residual norm
against the cumulative execution time, i.e., the total oomed time so far, for the examples
FDM1 andrail5k.

For the heuristic shifts it is apparent that, compared topleén ADI computation
time tap), a signification portiortghii; of the total execution timeyy is spent for the in-
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FiG. 2.1.Scaled residual norm against iteration indgftop plots) and cumulative execution time at iteratjon
(bottom plots) of G-LR-ADI using different shift strategyier the FDM1 (left plots) and rail5k (right plots) examples

volved Arnoldi processes. They lead to the desired accuakilsgugh for each example there
was at least one other shift strategy which required lessitdbations. The number of used
Arnoldi steps,k, k_, influences the quality of the heuristic shifts as it is seethe bips
example, where we used two settings: the first one uses exbethvalues/, k., k_ as in
the original SLRCF-ADI paperl[8, Section V, Table V], while the second one was chosen
through extensive trial and error optimization. The difece in both execution time (47.3
against 33.3 seconds) as well as the ADI iteration numbéi8 &8ainst 226) is significant.
The approximate Wachspress shifts also rely on Arnoldigsses, but there usually smaller
numbers:,, k_ were sufficient to get accurate estimates of the requirectispelata. Hence,
tsnirt IS smaller for heuristic shifts. As expected, these shéesllto the best performance
both in terms of execution time and required iterations far symmetric examplesil5k,
rail79k. Their typical residual curves can be seen in Figuke(top right plot). They loose
this superiority for those examples where complex specittalarge imaginary parts are en-
countered. Especially fafiss], they can not compete with the heuristic shifts. In adddion
tests, the Wachspress shifts seemed to be less sensitiveegfiect to the valugs, , k_ than
the heuristic shifts. For the IRKA shifts, the computationdstgpi; exceedap, by far, and
hence the total execution time is also very large (also sedditom plots of Figure.1).
They lead to a fast convergence feDM1 but to a comparably slow convergence fail5k.
We observed that the settings férand the initial data for IRKA have a large influence on
its convergence. In other similar tests, different startiata lead to completely distinctive
IRKA shifts and thus to a different ADI convergence. Anywtheir expensive computation
makes this approach impractical as a source for good ADisshif
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Now we move on to the novel self-generating shifts propose8dctions?.3.1-2.3.2
It is no surprise that the generation tirhgi; for the residual-minimizing shifts is extremely
high, i.e., even higher than those of the IRKA shifts, whiciikes this approach the most ex-
pensive and time consuming one. They lead, however, to gtestaconvergence f&iviD1
(24 iterations), which is also nicely monotonic as it can bersin the top left plot of Fig-
ure2.1 Forrail5k, these shifts do not lead to a convergence beftfé iterations. There are
two possible reasons for this: on the one hand, the compuieichomm of (2.9) was not the
global one, and on the other hand, the computed shift was stakie one. Both situations
were also observed in other experiments. The computationgifble shifts is a more severe
problem but could be prevented if a constrained optimiratieethod was employed. Shifts
associated with non-global minima still lead to a reductibthe residual norm but delayed
the convergence. This can be observed in the top right ptaiiftbk in Figure2.1 In fur-
ther experiments not reported here, if the employed opétian routine managed to find the
global minimizer, the residual-minimizing shifts lead b@tsmallest number of required iter-
ations;"" compared to the other strategies. Because of the largeraotish time of these
shifts, this approach is at the current stage only of themaknhterest. Finding an analytic so-
lution of the minimization problem or a cheap approximatibereof is an interesting future
research topic.

The V- andWW-shifts required in all examples a very small constructiorettghist, which
is in most cases a negligible fraction &f,. However, except foFDM1 and bips only
the V-shifts lead to fast convergence. In all other examples,ithshifts did not achieve
the required accuracy befoj&** ADI iterations. For the examplil5k (see, e.g., the top
right plot in Figure2.1), a stagnation phase is encountered in the later iteraliecause the
computediV -shifts almost did not change anymore. We plan to investigdty this is the
case in the future. One promising tool for this appears tchberé¢cently established novel
relations of low-rank ADI and rational Krylov subspace nuath (4, 44, 45]. The V-shifts
lead to the smallest timingseta in all examples with nonsymmetric coefficient matrices.
This can also be observed in the plot of the residual normugettse consumed execution
time in Figure2.1 Forrail5k/79k the heuristic and Wachspress shifts are superior. Note
that in the nonsymmetric examples, the number of required ifdPations ;" for the V-
shifts is not always smaller than that of the heuristic shiftee, e.g., exampléssl), but
due to the exceptionally cheap generation of thehifts, their overall execution tim&g
is nonetheless smaller. They significantly outperform #iko shift approaches in trehain
andbipsexamples, where they lead to a drastically reduced numbreqaired iterations. In
fact, we never experienced a faster ADI convergence fobthesystem. There, thg&a'%
shifts are slightly better than thE-shifts, but the difference is negligible. Note that the
W -shifts converged, while thB/2"%-shifts did not. To conclude, thg-shifts appear to be a
very promising approach especially for Lyapunov equatiwita nonsymmetric coefficient
matrices where the spectrum contains complex eigenval\és.plan to investigate their
behavior deeper in subsequent work. Another big advantatieins, although not reflected
in the timings and iteration counts, is that they can be agptiompletely automatically in
the sense that they can be implemented without the userdaviake care of selecting ADI
shifts at all.

3. Sylvester equations.Now we consider generalized Sylvester equations of the form
(3.1) AXG - EXF = BCT

with AJF € R™™", G € R™", B € R*™™ C € R™™, and the sought solution
X € R™*". We assume thak and G are nonsingular and, in order to allow a unigue so-
lution X to exist,A(A4, E) N A(F,G) = 0.
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Algorithm 3.1: Generalized factored ADI iteration (G-fADI}] for (3.1).
Input : A, B, E,C, F,Gasin @.1), shift parameter§a:, ..., q;, ..}
{B1,...,Bjnu t» and toleranc® < 7 < 1.

Output: Z; . € C*Mmax Y, € CmXrimax D, € CMmaxXTimax sych that
ijax Djmax (}/jmax)H ~ X
lWOZB,T():C,ZO:DO:YQ:[],jil.
2 while ||Wj_1Tff1|| > 7||BCT|| do
3 Vi = ﬁj — Q.
4 | Vi=(A=BE)T W, Wy = Wiy + 7, EV;.
5 Sj = (F — Osz)_HTj_l, Tj = 1}'_1 —’}TjGTSj.
6 Update the low-rank solution factors
Zy =Zj-1, V3l Y5 = [Y;-1,85], Dj = diag(Dj—1,7;1r).
7 | j=J+1

3.1. The factored ADI for Sylvester equations.The ADI iteration for 8.1) (see BQ|
for £ = I,,, G = I,) is given by

EX;G =(A—a;E)(A—B;E) 'EX; 1G(F — o;G) " (F — B,;G)

3.2
(32) + (8 — aj)E(A — B;E)'BCT(F — ;G)"'G.

Here {a1,...,as}, {A1,...,Bs} are two sets of shift parameters with ¢ A(F,G),
B: ¢ AM(A,E), anda; # j;, for all i. Setting X, = 0 and using similar manipulations
as in the Lyapunov case leads to the low-rank Sylvester ADIfgotored ADI (fADI)),
cf. [10, Algorithm 1], [24, Algorithm 2.1], for computing low-rank solution factafse C™**f,

Y € C*/, D € C/*/, f < min(n,r) of (3.1) such thatZDY# ~ X. Using gener-
alizations of the techniques for Lyapunov equations7y the method can equivalently be
rewritten b, Algorithm 1] in the form illustrated in Algorithn3.1, where, in addition to the
iteratesV;, S; with respect to the matrix paif, E), (F, G), the low-rank residual factors
W;, T; are included. The modified Algorithi®.1 allows for a cheap computation of the
residual norm

IS = 1181l = |1AZ;D; Y} G — EZ;D;Y,F — BCT|| = |W; T} |}

see b, Theorem 4]. As in Algorithn®?.1 for Lyapunov equations, it is possible to take care
of complex shift parameters by a suitable reformulation fwfofithm 3.1 [5, Algorithm 2].
For applying this real version of G-fADI, both sets of shifi@ve to be in a certain pairwise
order, which can be achieved by a simple permutation. Foedlse of presentation, we stick
to the given complex formulation in the following but use tleal version in our numerical
examples.

3.2. Existing shift strategies. Similar to the Lyapunov case (Secti@r?), the conver-
gence behavior of3(2) and Algorithm3.1 depends critically on the spectral radii of

J
Aj HAakﬁkv Aay. By, = (A_ﬂkE)_l(A_akE)’
(3.3) =1

i
Fi=[] Forser Forpe = (F = G (F = BiG).
k=1
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For normal matrix pairs (i.e., the left and right eigenvestoincide) A, E), (F, G) in (3.1),
it can be shownl0, 24, 31, 41] that optimal shifts forJ iterations of Algorithm3.1 have to
satisfy the optimization problem

(Ae — a;)(uk — By)
(Ae = Bj) (s — ;)

1<k<r!=

J
(3.4) ajl,%%c (ﬁlg&g{n 1_[1 ), Ao € AMA,E), i € A(F,G).

The above rational optimization problem is also referredgdwo-variable ADI parameter
problem P1, 43] and is harder to solve than the optimization problehy8)(for Lyapunov
equations. In the following we review generalizations @& Wachspress, heuristic, and IRKA
shifts for the Sylvester ADI. After that we propose two stgies for self-generating shifts.

3.2.1. Optimal Sylvester ADI shifts. Analytic solutions for solving¥.4) are proposed
in [41], [43, Chapter 2 & 4] and are based on spectral alignment and, deihylapunov
case, elliptic integrals. They require the following knedgje of the smallest and largest
real partsa := min; Re (\;), b := max; Re ()\;), ¢ := min; Re (u;), d := max; Re (),
and the angles := max; arctan|§283 ;‘28;; for \; € A(A, F) and
wi € A(F,G). An implementation of this shift generation strategy isegivn theparsyl 3
routine provided in 43]. If the spectraA(A, E), A(F,G) are contained in real, disjoint
intervals|a, bl, [c, d], another similar approach for generating an equal nunibefr «- and
(-shifts is given in B1, Algorithm 2.1].

As in the Lyapunov case, one might use Arnoldi or Lanczos gsses to obtain ap-
proximations toa, b, ¢, d, ¢, % in the large-scale case for both approaches. We propose to
approximate\ (A, E) by a set consisting dfﬁ Ritz andk* inverse Ritz values with respect
to E~'A and A~'E. Likewise, A(F,G) is approximated by;_{ Ritz andk! inverse Ritz
values with respect t6; ' F' and F~1G. Approximations to the extremal eigenvalues and
the spectral angles df(A4, E) andA(F, G) can then be read of easily. However, as for the
approximate Wachspress shifts, the so obtained shifts easebsitive with respect to the
quality of the approximations of the extremal eigenvaldéss was numerically investigated
in [31, Section 2.2.2] for the optimal real shift parameters.

, ¥ := max; arctan |

3.2.2. Heuristic shifts. In [10, 24], a heuristic approach is proposed which generalizes
the Penzl shifts (Sectioh.2.2 to the solution of Sylvester equations. The spedtfd, £),
A(F, G) are approximated in the same way as for the optimal shiftseab@/ith these sets
of Ritz values, one solves3(4) in an approximate sense to gét(with J < kﬁ + k%)
a-shifts andL (with L < ki + kF) g-shifts. A detailed implementation can be found
in [10, Algorithm 2], [24, Algorithm 3.1]. Note that in%] only thek4 + &k andk’ + & Ritz
values are used as shifts, which worked sufficiently welisTieuristic approach suffers from
the same disadvantages as the heuristic approach for tipeihga equation in Sectioh 2.2
there is no known rule how to select the predefined numbers k4, k%, k¥, andk”’, and
the quality of the Ritz values (and hence of the shifts) ddpem the performance of the
Arnoldi processes, which also introduces additional cdsesto the required linear solves.
Moreover, there is no known strategy for choosing theiiahitectors suitably.

3.2.3. IRKA shifts. For symmetric Sylvester equations witly, —G, —A, —F spd,
a generalization of IRKA (symmetric Sylvester IRKA (S§RKA) is given in [4, Algo-
rithm 3]. The obtained approximate solutions again satasfyoptimality condition with
respect to their residual in a certain norm. The shifts olehifrom (SyJIRKA can also
be used within the G-fADI leading to equivalent approximsaéutions as discussed ifh7].

3Available athttp://extras.springer.com/2013/978-1-4614-5121-1
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(SyPIRKA can be easily modified to handle general nonsymmetritveyer equations.
Let @, U and H, N be rectangular, orthonormal matrices which spadimensional ra-
tional Krylov subspaces computed by a Sylvester IRKA metf®dRKA) with respect to
A, E, BandF, G, C, respectively. For the symmetric Sylvester equation noeeti be-
fore, it holds that) = U and H = N. Then the Sylvester IRKA shifts are given by
A= {a1,...,a;} = NQFAU, QP EU) andB := {B4,...,8;} = A(HEFN, HZGN).
This strategy has the same drawbacks as the similar one inyipinov case; especially
the high computational cost of SyIRKA makes it computatifyniess feasible. It is rather
theoretically motivated due to the interesting propeifiied 7] of the IRKA shifts, which we
use merely for reason of comparison in the numerical exasmple

3.3. Self-generating shifts.

3.3.1. Residual norm-minimizing shifts. Motivated by the Lyapunov residual horm-
minimizing shifts in Sectior?.3.1, one can derive a similar framework for Sylvester equa-
tions. For simplicity we consider here only the case of reand 5-shifts. The (spectral or
Frobenius) norm of the Sylvester residual massixcan be efficiently computed via

ISl = 1W; T || = \INT W WTT | = |[Ly - with L = W; R}

and a QR decompositidfi; = TjRj; see p]. According to Algorithm3.1, we have

Wj = W1+ (85 — aj)EV; = Wi + (8 — ) E (A — a; B) "' W),
Tj = Tj—l — (ﬂ] — Olj)GTSj = Tj—l — (Bj — O[j)GT ((F — BjG)iTTj_l) .

Since,W;_,T;_; are given at the beginning of iteratignthe only unknowns above are the
shiftsa;, 8;, and we may regar(iS; || as bivariate function. The next shifts can be obtained
by solving the optimization problem

(3:5)  [aj,8] = argmin hj(e, ), hi(e, B) = ||Sjl| = |[Wi(e, )T (e, B)]|-
acER,BER
The incorporation of complex shifts is straightforwarchaligh one has to take care of the
case when one computed shift is a complex and the other ameabp Of course, this
approach is again very expensive since each function ei@huim an optimization routine
alone requires to solve two shifted linear systems with ipleltright-hand sides. Also, it is
difficult to guarantee that a global minimum is found. Locahima might lead to a slower
convergence. Because of these severe drawbacks, thesemoimmizing shifts are at the
current stage only of theoretical interest.

3.3.2. Shifts obtained via projections with ADI iterates. It is easy to generalize the
V- andW-shifts for Lyapunov equations in Secti@rB.2to Sylvester equations. Assume we
have at iteratiory of Algorithm 3.1the iterated/;, S; andWW;, T; available. Then the nexi-
andS-shifts can be obtained via the following two approaches:

1. A= AVTAV, VTEV) andB = A(STAS,STES), whereV, S span orthonor-
mal bases oV}, S;. As in the Lyapunov case, one can work with orthonormal bases
of [Re (V;),Im (Vj)], [Re (S;),Im (S;)] whenV}, S; are complex iterates. We re-
fer to this strategy a®’-S-shifts.

2. A = AWTAW, WTEW) andB = A(TTAT,TTET), whereW,T span or-
thonormal bases ofi’;, T;. These quantities are always real matrices in the real
formulation B, Algorithm 2] of Algorithm 3.1 This strategy is calledil’-7"-shifts
from now on.
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TABLE 3.1
Dimensions:, f, andm, maximum number of allowed ADI iteratiof®'®*, structural properties, and sources
for the used Sylvester test examples. The desired toleeanfae the normalized residual norm i —19.

Exampld n | f [m[j™*|Properties | Source

FDM2 64003600 5| 50 |E =1,,G = If, B,C random |[22, Example 2]
rail5k/1k| 51771377/ 6| 150 |A, F snd,E, G spd OCt, ID=38881
ifiss2 166414225 4| 100 | F, —G spd,B, C random IFISS [32] T-CD3

For both variants, the initiak- and 5-shifts can be obtained similarly by using orthonormal
bases of3 andC, respectively. Due to the orthogonalization process itragppen that nearly
linearly dependent columns ¥;, S; or W;,T; are discarded and hence cgdd < m and
cardB) < m. Note that one should ensure that the new shifts satisfy 3. Also note that,
because the numbers of initial and g-shifts does not have to be equal, newand 3-shifts

do not need to be calculated at the same time, but we restriselves to this situation here
for simplicity.

3.4. Other shifts. An overview over several other approaches for generatiifts Sor
the Sylvester ADI, for instance, generalizations of thealgpint-based shifts, can be found
in [31]. For a generalized version of the iteratiohd), specialized shift strategies can be
found in [23]. Shifts for Sylvester equations occurring in image restion are proposed

in [15].

3.5. Related matrix equations. Several other linear matrix equations where the un-
known X appears twice are special classes of the just discussecatjeee Sylvester equa-
tion (3.1). Prominent examples are cross-Gramian Sylvester equsalib= F, F = —A),
discrete-time Sylvester equations (interchahgendG), and generalized discrete-time Lya-
punov equations@ = AT, F = ET, B = C), which are also known as Stein equations.
Of course, the generalized Lyapunov equatidhg)(discussed in Sectiod also belong to
this class. Exploiting the structure of these special casscially tailored low-rank ADI
methods can be formulate#, [Section 4], and consequently the shift strategies distliss
far can be adapted accordingly.

3.6. Numerical examples.In this section we test some of the proposed shift strategies
for the Sylvester ADI with the same hard- and software sgttis for the Lyapunov experi-
ments. The examples are given in TaBl& where we use similar notations and abbreviations
as for the Lyapunov examples (Taldlel). The factors of the right-hand side for the example
rail5k/1k were taken as the output matria@$ provided in the associated OC example. In all
examples, G-fADI was terminated whé§|| < es||BCT | with es = 1070 (or after j™ax
iterations).

The results are summarized in TaBl&. There, the entries “optimal(', k4, k%', k)"
and “heur(/, L, k%', k4, k', kT')" refer to the optimal and heuristic shift approaches as con
sidered in Section8.2.1-3.2.2 respectively. For the optimal shifts, the obtained number
J is also given. Theparsyl routine is used to compute optimal shifts for the examples
FDM2 andifiss2 where we modifiegarsyl such that (inverse) Arnoldi processed are used
to obtain the approximate spectral data. This was more @ffichan usingigs as it is
done in the originaparsyl implementation. For the examplail5k/1k, the approach given
in [31, Algorithm 2.1] is employed sincparsyl did not lead to good shifts for this ex-
amples. SylIRKA() and (Sy¥IRKA(.J) stands forJ shifts generated with the (symmetric)
Sylvester IRKA. These IRKA shifts and the similarly expesmsresidual norm-minimizing
shifts were only applied for the smaller exampk3M2 andrail5k/1k, where it was in both
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TABLE 3.2
Results for the Sylvester examples using different shéftesfies: tshirr and tap; denote the times spend for
computing the shifts and executing G-fADI, respectively, the total consumed timedigiy. The required iterations
jie" and the final obtained residual nOI’ﬂlSjiterH are also given. All timings are given in seconds. The smialles
values oftyye andj " are emphasized by bold letters.

Ex.| Shift strategy tonit| tapi|  tiotal| 5| || S]]
heur(20, 10, 10, 20, 10, 10) 0.73 2.80 3.53 34/9.87.10"!!
-, |optimal(10, 10, 10, 10)/ =10 0.97| 3.44 4.41 40/3.0810~11
S |SyIRKA(20) 186.87 2.60189.47 31/3.451011
2 Ires.min 343.03 2.52/345.55 28/5.9310~!1
V-S-shifts 0.42) 2.61 3.03 31(8.97.10!!
W -T-shifts 0.42| 2.95 3.37 34/1.7510" 1!
heur(40, 40, 20, 20, 20, 20) 1.27) 520 6.47 74/6.52101!
x |optimal(10, 5, 10, 5)J = 70 0.31 4.72 5.03 63[1.4310°11
< |SYIRKA(60) 37.24 6.48 43.72101|2.541012
= |res.min 183.62 8.89192.51111/8.0610~ !
= |V-S-shifts 0.04 3.45 3.50 50/6.4610 2
W -T-shifts 0.1010.41 10.51150 9.3210~°
heur(30, 30, 10, 20, 10, 20) 5.4929.68 35.18 89/8.57.10~ 11
@ optimal(10, 10, 10, 10) =15 3.65(29.78 33.43 98/7.6510 11
£ |V-S-shifts 0.16/25.41 25.57 76|5.7810!2
W -T-shifts 0.14/31.46 31.60 99/4.461011

examples sufficient to restrict the computation to realdwesi norm-minimizing shifts. The
construction of thd/-S- and W-T-shifts was carried out using theeth command. Fig-
ure 3.1shows the curves of the residual norm against the iteratiomber (top plots) as well
as the consumed iteration time (bottom plots) for these tvemoples.

To some extent, similar observations can be made as in theubgw examples. For
the heuristic shifts, the tim& needed for their generation is a significant portion of the
overall computational time,. They, however, manage to achieve the desired accuracy
within j™= jterations for all examples. Compared to the heuristictshihe optimal shifts
required smaller values @f, k4, kf k¥ to get the necessary spectral data. The top right
plot of Figure3.1 corresponding to exampiwil5k/1k reveals that they converge similarly
to the Wachspress shifts for Lyapunov equations with reattsp. However, the required
setup numbers seems to be highly influential for their peréorce. Different values than
the ones used here lead to a different, often slower, coemesgespecially for the examples
FMD?2 andifiss2 which involve complex spectra. In terms of the requirediitiens;"™", the
IRKA shifts only work well for exampld=DM2. In examplerail5k/1k they lead to a much
higher value ofj"®" as shown in the top right plot of FiguBel. Since their generation time is
much larger than the actual ADI iteration timg,,, they are not a reasonable choice, which
is also visible from the bottom plots in FiguBel Similar to the corresponding Lyapunov
examples we observed in further tests a strong dependeribe nitial data for SyIRKA and
(SyPIRKA. The residual-minimizing shifts require the longestgration time but lead to the
smallest numbej®" for FDM2, where they also show a monotonically decreasing residual
norm in Figure3.1(top left plot). Forail5k/1kthis is not the case for similar reasons as in the
Lyapunov exampleail5k: the detection of minima of3(5) which are not global minima. In
other tests, the number of iteratioff§” was always smaller than for the other shifts provided
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FiG. 3.1. Scaled residual norm against iteration indgxtop plots) and cumulative execution time at iteration
j (bottom plots) of G-fADI using different shift strategies FDM2 (left plots) and rail5k/1k (right plots) example.

that global minima of §.5) were used. Therefore, improving their computation andieng
that global minima are found is current research.

As before, the shifts obtained from projections to spacesispd by G-fADI iterates or
residual factors require only a very small generation tiggg. However, thdV -T-shifts do
not achieve convergence for exampd@5k/1k, which is somehow similar to the Lyapunov
case. Thé/-S-shifts lead to the smallest timégi, for FMD2, rail5k/1k; see also the bottom
plots in Figure3.1 The residual history of both tHeé-S- andW-T-shifts seems to be highly
oscillatory as itis clearly visible in the residual plot fail5k/1kin Figure3.1(top right plot).
There are very high spikes ifS;|| which appear to unnecessarily prolong the iteration. A
closer investigation of this phenomenon revealed thakgrims of 3.3), these peaks are the
result of shiftay, 85 with p(Aa, 8. )p(Fu,.8.) > 1. This indicates that the corresponding
computed shiftsy,, 85 are of no good quality. Avoiding these infeasible shiftsusrently
investigated and might lead to a further performance imgmuant. Due to the small execution
and generation times as well as the advantage that they mmguted in an entirely automatic
way, theV-S-shift are nevertheless competitive to the other appraache

4. Summary. We discussed shift parameter strategies for low-rank ADthods for
solving large-scale Lyapunov and Sylvester equationserAfiviewing some prominent ap-
proaches to compute shifts a priori, two novel strategie® lieen proposed which generate
shifts automatically during the ADI iteration without ragog any setup data. The first one
is intrinsically designed to compute the new shift such thatresidual norm is minimized
at each step, and the second one uses orthonormal spacesdgrthe current ADI iter-
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ates to obtain a small number of Ritz values as next shiftpeéally the latter one showed
impressive numerical results that outperformed the exgsshift strategies with respect to
the required execution time but in most cases also in terntseofequired ADI iterations.
To conclude, the proposed projection-bas$edand V/-S-shifts are definitely competitive to
existing shift parameter approaches especially for probleith complex spectra. However,
a sound theoretical explanation for their often outstaggirrformance is not known yet.
For Sylvester equations, the proposed dynamically updgtdts can also lead to a very os-
cillatory residual behavior which deteriorates the cogeaece. The (approximate) optimal
shifts appear to be the method of choice for real spectrahé\turrent stage, the newly pro-
posed residual norm-minimizing shifts are not competitegarding their computational per-
formance. Currently, we are investigating efficient waysdatve the occurring optimization
problems in an approximate and efficient way. We also pladaptthe proposed approaches
to low-rank Newton-ADI methods9] 11, 12, 14] for solving algebraic Riccati equations.
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