
Electronic Transactions on Numerical Analysis.
Volume 43, pp. 142-162, 2014.
Copyright  2014, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University 

http://etna.math.kent.edu

SELF-GENERATING AND EFFICIENT SHIFT PARAMETERS IN ADI METHOD S
FOR LARGE LYAPUNOV AND SYLVESTER EQUATIONS ∗

PETER BENNER†, PATRICK KÜRSCHNER†, AND JENS SAAK†

Abstract. Low-rank versions of the alternating direction implicit (ADI) iteration are popular and well estab-
lished methods for the numerical solution of large-scale Sylvester and Lyapunov equations. Probably the biggest
disadvantage of these methods is their dependence on a set of shift parameters that are crucial for fast convergence.
Here we firstly review existing shift generation strategiesthat compute a number of shifts before the actual itera-
tion. These approaches come with several disadvantages suchas, e.g., expensive numerical computations and the
difficulty to obtain necessary spectral information or data needed to initially setup their generation. Secondly, we
propose two novel shift selection strategies with the motivation to resolve these issues at least partially. Both ap-
proaches generate shifts automatically in the course of the ADI iterations. Extensive numerical tests show that one
of these new approaches, based on a Galerkin projection ontothe space spanned by the current ADI data, is superior
to other approaches in the majority of cases both in terms of convergence speed and required execution time.
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1. Introduction. The approximate numerical solution of large-scale algebraic matrix
equations has attracted enormous attention in the last two decades. In this work we consider
large-scale Sylvester matrix equations of the form

AXG− EXF = R(1.1)

with A,E ∈ R
n×n, F,G ∈ R

r×r, E,G nonsingular, andR ∈ R
n×r. In particular, this

includes generalized Lyapunov equations, i.e., the caseG = ET , F = AT , andR = RT .
It can be shown that when the rank of the right-hand sideR of these equations is much
lower than the dimension of the equations, i.e.,rankR ≪ min(n, r), the solution often ex-
hibits a low numerical rank [1, 19, 28, 29, 34]. Hence, it can be accurately approximated
by a low-rank factorization. This is the backbone for several numerical algorithms of dif-
ferent kinds that try to find such low-rank factors; see [14, 33] for recent surveys. Here we
focus on low-rank versions of methods based on the alternating directions implicit (ADI)
iteration [9, 10, 25, 28, 30, 40, 43]. Probably the largest disadvantage of ADI methods is
their dependence on shift parameters, which are crucial forfast convergence. Optimal or
high-quality shifts are usually difficult to obtain for large-scale problems. Either, they rely
on spectral data which are hard to get for large problems, or their generation involves inef-
ficient and expensive computations. Thus, our emphases in this work are new and efficient
strategies for computing shift parameters that also lead tofast convergence but without these
drawbacks. We especially look for approaches that are automatic in the sense that they do not
require any special a priori knowledge or setup data. The remainder of our article is divided
into two main parts: Section2 is devoted to generalized Lyapunov equations. There, after
giving a concise derivation and overview of recent numerical enhancements of low-rank ADI
methods for Lyapunov equations, we discuss some popular existing shift strategies and give
two novel approaches. These new strategies are tested and compared to the existing ones in
several numerical experiments. Then Section3 is concerned with the low-rank ADI iteration
for the more difficult generalized Sylvester equations. As before we review existing shift
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strategies and propose new ones which solve some of the issues of the existing approaches.
Numerical experiments illustrate their performance. Finally, we conclude and give possible
future research perspectives in Section4.

We use the following notation in this paper:R andC denote the real and complex num-
bers, andR−,C− refer to the set of strictly negative real numbers and the open left half
plane. In the matrix case,Rn×m,Cn×m denoten × m real and complex matrices, respec-
tively. For any complex quantityX = Re (X) +  Im (X), Re (X), Im (X) are its real and
imaginary parts, and denotes the imaginary unit. The complex conjugate ofX is denoted
by X = Re (X) −  Im (X). The absolute value ofξ ∈ C is denoted by|ξ|, and, if not
stated otherwise,‖ · ‖ is the Euclidean vector or subordinate matrix norm (spectral norm).

The matrixAT is the transpose of a realn ×m matrix, andAH = A
T

is the complex con-
jugate transpose of a complex matrix. The identity matrix ofdimensionn is indicated byIn.
The inverse of a nonsingular matrixA is denoted byA−1, andA−H = (AH)−1. The vector
(1, . . . , 1)T of lengthm is expressed by1m. For symmetric positive (negative) definite matri-
ces (A = AT ≻ 0 (≺ 0)), we use the abbreviation spd (snd). For a pair of two squarematrices
A,E, the spectrum is given byΛ(A,E) := {z ∈ C : det (A− zE) = 0}, wheredet is the
determinant. Moreover, the spectral radius is given byρ(A,E) := max{|λ|, λ ∈ Λ(A,E)}.
If E = I, the second argument is neglected.

2. Lyapunov equations. In this section we investigate, as an important special case
of (1.1), generalized Lyapunov equations

AXET + EXAT = −BBT ,(2.1)

whereB ∈ R
n×m with m ≪ n. We employ the usual assumptionΛ(A,E) ⊂ C− to

ensure the existence of a unique solution. In the following subsection we give a concise
derivation of the low-rank alternating directions implicit (ADI) method for computing low-
rank solution factors of (2.1). There we also include recent developments regarding some
efficiency improvements. After that, we review a number of existing strategies for generating
shift parameters, which are a crucial factor for convergence of the ADI iteration. These
approaches come with some issues in a large-scale setting, e.g., they are not numerically
feasible, they depend on, e.g., spectral data ofA,E which are hard to get, or they involve
certain a priori setup parameters for which there are no known optimal selection strategies.
We then investigate shift strategies which resolve all or atleast some of these issues. This
will lead to two new approaches where shifts are generated automatically during the ADI
iteration. The treatment of special cases of (2.1) is also briefly discussed. Numerical tests
using a range of different examples show the often superior performance of the new shift
strategies compared to the existing ones.

2.1. Low-rank ADI methods for Lyapunov equations. The alternating directions im-
plicit (ADI) iteration [40] for (2.1) is given by

EXjE
T =(A− αjE)(A+ αjE)−1EXj−1E

T (A+ αjE)−H(A− αjE)H

− 2Re (αj)E(A+ αjE)−1BBT (A+ αjE)−HET
(2.2)

for j ≥ 1, some shift parameters{α1, α2, . . . , αj} ⊂ C−, and an initial guess
X0 = XT

0 ∈ R
n×n. These shift parameters steer the convergence and are the main focus

of this paper. The above iteration operates on densen × n matrices and hence is not fea-
sible for large-scale problems. There are several experimental [28] and theoretical results
[1, 19, 29, 34, 37] showing that whenm ≪ n, the numerical rank of the solutionX of (2.1)
is small, e.g., in the sense that the singular values ofX decay rapidly towards zero. This
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serves as motivation to approximateX viaX ≈ ZZT , whereZ ∈ R
n×t is a low-rank factor

with rank (Z) = t≪ n. IntroducingXj = ZjZ
H
j into (2.2), settingZ0 = 0, applying some

basic algebraic manipulations, and reordering the shifts leads to the generalized low-rank
ADI iteration (G-LR-ADI) [3, 9, 25, 28]

Z1 = V1 = (A+ α1E)−1B, Zj =

[

Zj−1,
√

−2Re (αj)Vj

]

,

Vj = Vj−1 − (αj + αj−1)(A+ αjE)−1(EVj−1), j > 1.

(2.3)

Now in each iteration step,m new columns are added to the previous low-rank solution factor.
The main computational costs result from the solution of theshifted linear systems withm
right-hand sides. We assume in the following that we are ableto efficiently solve these linear
systems. In [7] it is shown that it holds for the Lyapunov residual at stepj that

L(Xj) := Lj = AZjZ
H
j E

T + EZjZ
H
j A

T +BBT =WjW
T
j ,

where

Wj =Wj−1 − 2Re (αj)EVj , W0 := B,(2.4)

such that‖Lj‖ = ‖WH
j Wj‖ can be cheaply evaluated in the spectral or Frobenius norm.

Moreover, the iterates can be rewritten as

Vj = (A+ αjE)−1Wj−1,(2.5)

which gives a reformulated version of G-LR-ADI [6], where the residual factorsWj are an
integral part of the iteration. So far we have used complex low-rank factors since some of the
shift parameters might be complex. To ensure thatXj is real, these complex shifts have to
occur in pairs of complex conjugate shifts, i.e., ifαj ∈ C− \ R, thenαj+1 = αj . Under this
assumption it is possible to prove [6, 7, 8] that the iteratesVj+1 andWj+1 associated toαj

can be constructed from data available at stepj via

Vj+1 = Vj + 2
Re(αj)
Im(αj)

Im (Vj) ∈ C
n×m,(2.6)

Wj+1 =Wj−1 − 4Re (αj)E
(

Re (Vj) +
Re(αj)
Im(αj)

Im (Vj)
)

∈ R
n×m.(2.7)

Hence, only one complex shifted linear system has to be solved for each pair of complex
conjugate shifts. Moreover,Zj+1 is obtained by augmentingZj−1 by 2m real columns such
that the low-rank factor is a real matrix after termination of G-LR-ADI. The complete refor-
mulated G-LR-ADI iteration [6] including this handling of complex shifts is given in Algo-
rithm 2.1. This is the algorithm we shall use from now on for solving Lyapunov equations.
Note that this formulation is mathematically equivalent tothe original low-rank iteration (2.3),
although more efficient.

2.2. Existing strategies for precomputed shifts.The convergence speed of the ADI
iteration (2.2) is strongly influenced by the spectral radii of

Aj :=

j
∏

k=1

Aαk
, Aαk

:= (A+ αkE)−1(A− αkE)

(see [21, 31]), whereAαk
are the iteration matrices of (2.2). Good shifts should therefore

make the radiiρ(Aj) as small as possible to ensure fast convergence. A well-known result
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Algorithm 2.1: Reformulated Real G-LR-ADI Iteration.

Input : MatricesA,E,B defining (2.1), shift parameters{α1, . . . , αjmax
} ⊂ C−,

and tolerance0 < τ ≪ 1.
Output : Z ∈ R

n×mjmax such thatZZT ≈ X.
1 W0 = B, Z0 = [ ], j = 1.
2 while ‖WT

j−1Wj−1‖ ≥ τ‖BTB‖ do
3 Solve(A+ αjE)Vj =Wj−1 for Vj .
4 if Im (αj) = 0 then
5 Wj =Wj−1 − 2Re (αj)EVj , Zj = [Zj−1,

√

−2αjVj ].

6 else
7 γj = 2

√

−Re (αj), δj =
Re(αj)
Im(αj)

.

8 Wj+1 =Wj−1 + γ2jE (Re (Vj) + δj Im (Vj)).

9 Zj+1 = [Zj−1, γj (Re (Vj) + δj Im (Vj)) , γj
√

(δ2j + 1) · Im (Vj)].

10 j = j + 1

11 j = j + 1

for minimizing the spectral radii (see, e.g., [42, 43]) is that the optimal shifts{α1, . . . , αJ}
for J iteration steps of (2.2) (and of its low-rank version in Algorithm2.1) are given by the
solution of the rational min–max problem

min
α1,...,αJ⊂C

−

(

max
1≤ℓ≤n

∣

∣

∣

∣

∣

J
∏

i=1

αi − λℓ
αi + λℓ

∣

∣

∣

∣

∣

)

, λℓ ∈ Λ(A,E).(2.8)

One conceptual issue of relating the above optimization problem to ADI shift parameters
is that the derivation of (2.8) does not embrace the low-rank structure of the right-hand
sideBBT of the Lyapunov equation. However, the low-rank property ofthe right-hand side
is of tremendous significance for the existence of low-rank solutions. Apart from that, (2.8)
has lead to a number of different shift strategies which are frequently and often also success-
fully applied in low-rank ADI methods. In the following we briefly describe two of these
strategies, which we are also going to employ in our numerical tests.

2.2.1. Wachspress and approximate Wachspress shifts.In [43] an analytic solution
for (2.8) is proposed which uses the valuesa := mini Re (λi), b := maxi Re (λi) and
φ := maxi arctan |

Im(λi)
Re(λi)

| for λi ∈ Λ(A,E) to estimate the shape of the spectrumΛ(A,E)

via an elliptic functions domain. The computation of optimal shifts (to achieve that the abso-
lute error of the approximate solution is smaller than a toleranceǫ) is then based on elliptic
integrals involving the toleranceǫ and the above spectral dataa, b, andφ. If the spectrum
Λ(A,E) is real or the imaginary parts of the complex eigenvalues aresmall compared to the
real parts, this approach always provides real shift parameters. In the case of large imaginary
parts, there exists a modification that produces complex shift parameters. We refer to these
shifts as Wachspress shifts in the following. For large-scale matrices, the required spectral
data, especially the angleφ for complex spectra, can be hard to obtain. An easy way to
get approximate Wachspress shifts [11] (also called suboptimal shifts [30, Section 4.3.2.]) is
to approximateΛ(A,E) by a small number ofk+ Ritz andk− harmonic Ritz values, i.e.,
Ritz values with respect toE−1A andA−1E. These Ritz values can be computed using
Arnoldi or Lanczos processes. One then computesa, b, φ on the basis of this typically small
set of Ritz values and carries out the Wachspress computations as before. This approach will
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be referred to as approximate Wachspress shifts for which animplementation can be found
in [30, Algorithm 4.2]. The quality of these shifts depends on the quality of the approxima-
tion of a, b, andφ by the Ritz values. Hence, the prescribed numbersk+, k−, but alsoǫ, have
a certain influence. Moreover, the Arnoldi methods introduce additional computations which
are dominated by thek+ andk− solves withE andA for generating the Ritz values. Note
that for symmetric systems, i.e.,A snd andE spd, onlya, b need to be estimated, which can
be done less costly in one run of a Lanczos process using the inner product induced byE.
The computability ofa, b, φ obtained from the Ritz values may be increased by using shifted
matrices [11].

2.2.2. The heuristic Penzl strategy.Another frequently used heuristic approach to ob-
tain ADI shifts was proposed by Penzl in [28]. There,Λ(A,E) is again replaced by a much
smaller set consisting of Ritz values and reciprocals of Ritz values with respect toE−1A
andA−1E, respectively, also usingk+ andk− Arnoldi steps. The complete procedure for
the generation ofJ shift parameters is given in [28, Algorithm 5.1]. Although this strategy
has been used successfully in numerous cases, it comes with several drawbacks. As for the
approximate Wachspress shifts, the procedure requires that the valuesk+, k−, and here ad-
ditionally J , are provided by the user, but there is no known rule how to actually set these
values. Numerical experiments show that even small changesin at least one of these parame-
ters can lead to a significantly different performance of G-LR-ADI in the end. In some cases
the valuesk+, k− need to be so large that the cost for the Arnoldi processes is non-negligible.
The Arnoldi process requires a starting vector for which there is also no known result on how
to choose a suitable one. The authors in [8] usedB1m in their numerical experiments, but
whether there are better choices, remains unclear. Of course, the quality of the Ritz values
influences the quality of the shifts in the end. If the Arnoldiconvergence is slow and the
Ritz values are poor approximations of eigenvalues, the shifts may be of poor quality. The
computed Ritz values can have positive real parts ifAET + EAT is indefinite. These must
be neglected.

2.2.3. IRKA shifts. The Iterative Rational Krylov Algorithm (IRKA) [20] is a promi-
nent method for computing reduced order models of large dynamical systems which are lo-
cally optimal in theH2-norm. In [4] it is shown, by drawing connections to a Riemannian
optimization framework [39], that IRKA can also be used for the computation of low-rank
solutions of large Lyapunov equations. IfA = AT ≺ 0 andE = ET ≻ 0, the obtained ap-
proximate solution satisfies an optimality condition with respect to a certain energy norm. For
the unsymmetric case, a similar optimality property holds with respect to the residual. LetQ,
U be rectangular, orthonormal matrices which spanJ-dimensional rational Krylov subspaces
computed by IRKA, and denote the eigenvaluesA := {α1, . . . , αJ}=Λ(UTAQ,UTEQ).
Then the approximations to the Lyapunov equation computed by IRKA and G-LR-ADI
with A as shifts are identical [16, 17]. We refer to these shifts as IRKA shifts, which have
attracted some attention recently. The main drawback of these shifts is that their computa-
tion, i.e., running IRKA until a certain stopping criterionis met, is very expensive. Assume
IRKA requiresh iterations until convergence. Thus,2hJ shifted linear systems withA,E
have to be solved, which makes these IRKA shifts a rather theoretical tool. Nevertheless, we
are going to use this shift approach in G-LR-ADI for comparisons in some of our numerical
examples. However, we point out that the IRKA shifts should not be considered a competitive
alternative. On the other hand, their strong theoretical background may help to improve the
strategies investigated later and serves as the initial motivation for the method introduced in
Section2.3.2.
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2.2.4. Other shift strategies.There exist a number of other shift parameter approaches.
For completeness we mention a few here. ForE = In, an approach based on Leja points is
given in [35], where the spectra ofIn⊗AT andAT ⊗In are embedded into subsetsE ,F ⊂ C.
For arbitrary values fromE ,F , shift parameters are recursively obtained by maximizing the
rational function in (2.8). A related potential theory-based approach can be found in[31]. For
real spectra and shifts, an improvement of Penzl’s heuristic selection strategy (Section2.2.2),
which introduces marginal additional costs, is also proposed in [31, Section 2.2.4]. In [38] a
shift strategy is presented which uses the eigenvalues of a small subblock ofA corresponding
to the nonzero block of the right-hand sideBBT ,which is present in certain applications. For
the case where the considered Lyapunov equation is related to a linear, time-invariant control
system, dominant pole-based shifts are investigated in [30, Section 4.3.3]. The investigation
shows that these shifts can be beneficial for a subsequent model order reduction process. A
number of related and further shift approaches can be found in [31].

2.3. Self-generating shifts.The previously mentioned shifts are computed before the
actual G-LR-ADI iteration. Here we investigate two approaches to compute shift parameters
automatically during the iteration. The first of those should, in the current state, be regarded
as theoretically more sound but practically less relevant due to its rather high computational
costs. The second currently lacks a proper theoretical backing but provides outstanding con-
vergence of the ADI iteration for some examples as reported for the numerical experiments
in Section2.5.

2.3.1. Residual norm-minimizing shifts. As shown in Section2.1, the residual in the
spectral or Frobenius norm is, combining (2.4) and (2.5), given by

‖Lj‖ = ‖Wj‖
2 with Wj =Wj−1 − 2Re (αj)E

(

(A+ αjE)−1Wj−1

)

.

Assume that iteration stepj − 1 is completed and we look for the next shiftαj . Since apart
from that shift, every quantity in the above formula is knownafter iterationj− 1, an intuitive
idea is to find a shiftαj that minimizes‖Wj‖ because this will also minimize‖Lj‖. Let
αj = νj + µj with νj < 0, and define the bivariate function

fj(ν, µ) := ‖Wj−1 − 2νE
(

(A+ (ν + µ)E)−1Wj−1

)

‖.(2.9)

Then the real and imaginary parts ofαj can be obtained as

[νj , µj ] = argmin
ν∈R

−
,µ∈R

fj(ν, µ),(2.10)

i.e., by solving a minimization problem. Complex shifts canalternatively be produced by
using the relations (2.6), (2.7) and minimizing the function

gj(ν, µ) := ‖Wj+1‖ =
∥

∥

∥
Wj−1 − 4νE

[

Re (Vj) +
ν
µ
Im (Vj)

]∥

∥

∥
,(2.11)

whereVj = (A + (ν + µ)E)−1Wj−1. In that case the residual norm is minimized with
respect to two iteration steps associated with a pair of complex conjugate shifts. Numerical
tests did not reveal a significant difference between using (2.9) or (2.11). The minimization
problems can in any case be solved by standard routines from optimization software packages
such as the MATLAB commandsfminsearch , fminunc , fminbnd , or fmincon . The
latter one can incorporate the constraint thatνj = Re (αj) < 0. Such optimization algorithms
usually also require initial guesses, which might have a strong influence on their performance.
One possibility is to set these initial guesses to the shift found in the previous iterations.
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These norm-minimizing shifts are obviously a rather theoretical concept because they are
computationally not feasible. Running the optimization methods for their detection requires
solving several linear systems for (2.10). Hence, the computation of the shift itself will easily
become more expensive than carrying out the current iteration of G-LR-ADI. Moreover,fj
andgj might have several local minima, and it is difficult to ensurethat the global one is
found. In the form given above, both approaches will most likely produce a complex shift
every time. Real shifts can be obtained, e.g., by neglectingthe imaginary parts which are too
small in magnitude although it is not clear how to define ’too small’. If it is known that the
spectrum ofA,E is real, the shifts should also be real, and (2.9) can be simplified by setting
µ = 0.

2.3.2. Shifts obtained from a Galerkin projection on spacesspanned by LR-ADI
iterates. The heuristic shifts in Section2.2.2are essentially Ritz values with respect toA,E.
Here we propose a novel idea that also uses Ritz values which are generated from different
spaces where the possibly expensive Krylov subspace construction is not needed. Before
G-LR-ADI is started, initial shifts are created as follows:let the columns ofB̂ ∈ R

n×m

form an orthonormal basis forspan {B}. Then the first shifts are taken as the eigenvalues
of the projected matrices with respect to a Galerkin projection of A,E onto span{B̂}, i.e.,
{α1, . . . , αm̂} = Λ(B̂TAB̂, B̂TEB̂) ∩ C−. The intersection withC− ensures that possible
unstable eigenvalues of(B̂TAB̂, B̂TEB̂) are neglected such that̂m ≤ m. Alternatively,
unstable eigenvalues might just be reflected at the imaginary axis. In some cases this is not
required, e.g., whenE = In andA is dissipative (i.e., its symmetric part is negative definite).
After LR-ADI has processed all of these initial shifts, there are two similar variants to get the
next set of shift parameters:

1. Let Vm̂ be the G-LR-ADI iterate associated to the last processed shift parameter.
Compute an orthonormal matrix̂Vm̂ whose columns are an orthonormal basis for
span {Vm̂} or span {Re (Vm̂) , Im (Vm̂)} if the last shift was real or complex, re-
spectively. The next set of shifts is

{αm̂+1, . . . , αm̂+card(A)} = A := Λ(V̂ T
m̂AV̂m̂, V̂

T
m̂EV̂m̂) ∩ C−,

wherecard(A) is at most eitherm or 2m depending onVm̂ being a real or complex
iterate. In the following we call the shifts obtained in thatwayV -shifts.

2. LetWm̂ be the LR-ADI residual factor associated to the last shift parameter. Com-
pute an orthonormal matrix̂Wm̂ that spans an orthonormal basis forspan {Wm̂}.
The next set of shifts is

{αm̂+1, . . . , αm̂+card(A)} = A := Λ(ŴT
m̂AŴm̂, Ŵ

T
m̂EŴm̂) ∩ C−.

Note thatWm̂ is, according to Algorithm2.1and (2.7), always a realn×m matrix.
The so constructed shifts will be referred to asW -shifts in the remainder.

LR-ADI is then continued with these new shifts, and the aboveprocedure is repeated each
time the set of shifts has been fully processed. If it happensthat all eigenvalues of the pro-
jected matrices are unstable, LR-ADI is continued with the previous set of shifts. The main
computational cost for this shift generation is the orthogonalization of ann ×m or n × 2m
matrix whenever new shifts are required. This is not expensive sincem ≪ n. It can occur
that the columns ofVm̂ or Wm̂ have linear dependencies, which should be taken care of by
a clever orthogonalization routine. For instance,Ŵm̂ can have less thanm columns. The
solution of the at most2m-dimensional eigenvalue problem introduces only negligible extra
costs. The big advantage of both proposed variants is, compared to the heuristic approach
in Section2.2.2, that no setup parameters such asJ , k+, k− are required, which makes this
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approach completely automatic and hence user-friendly. Additionally, for several numerical
tests, these shifts even seem to outperform the heuristic shifts. One disadvantage occurs for
problems with a rank-one right-hand side, i.e., whenm = 1. Then the single shift computed
in both variants is actually a generalized Rayleigh quotient. In that case theW -shift is given
by

α =
ŴT

m̂AWm̂

ŴH
m̂EWm̂

,

and hence it will always be a real number, which can be disadvantageous for problems with a
complex spectrum. Another drawback of theV - andW -shifts is the lack of a deeper theoret-
ical foundation. It is also not clear which of the two variants is better although in most of our
numerical tests theV -shifts seem to be superior.

To complete this section we mention a third approach which usesspan {ZJ} as projec-
tion basis. There, afterJ shifts have been processed,Jm Ritz values are computed with
respect to the reduced matrix pair generated by an Galerkin projection ontospan {Z}. These
may be taken as new shifts, or, optionally,h ≤ Jm of them are selected. A number of pos-
sible choices can be used in this case. The simplest would be theh Ritz values largest or
smallest in magnitude. Alternatively, one might exploit the increasingly better approxima-
tion of the entire spectrum ofA and use the computed Ritz values as inputs for the Penzl or
Wachspress shift strategies to perform a more educated selection.

Obviously, this third variant is significantly more expensive than theV - andW -shifts
since computing an orthogonal space forspan {ZJ} requires the orthogonalization of the
span ofVj for eachj = 1, . . . , J against the previousZj−1. Also, the eigenvalue problem is
now of dimensionJm and the cost for its solution might not be negligible anymore. Which
of the h values ofÂ to select for optimal results is also not clear. We do not pursue this
approach further but note that in [12, 30], span {ZJ} is used to perform a Galerkin projection
on the Lyapunov equation (2.1) to gain a convergence boost in G-LR-ADI.

2.4. Special cases.In this section we discuss the application of the self-generating shift
strategies in some selected structure-exploiting variants of G-LR-ADI.

2.4.1. Second-order ADI.Lyapunov equations such as (2.1) are often related to linear,
time-invariant dynamical systems of the form

Eẋ(t) = Ax(t) +Bu(t), A,E ∈ R
n×n, B ∈ R

n×m,(2.12)

with x(t) ∈ R
n andu(t) ∈ R

m. Now consider the second-order, linear, time-invariant
dynamical system

Mq̈(t) +Dq̇(t) +Kq(t) = B1u(t), M,D,K ∈ R
n1×n1 , B1 ∈ R

n1×m,

with q(t) ∈ R
n1 andu(t) ∈ R

m, which can equivalently be written as a system of first
differential order (2.12), e.g., with

E =

[

D M
M 0

]

, A =

[

−K 0
0 M

]

∈ R
2n1×2n1 , B =

[

B1

0

]

∈ R
2n1×m ,(2.13)

andx(t) = [q(t)T , q̇(t)T ]T ; see [36]. There exist structure-exploiting variants of G-LR-ADI
called second-order LR-ADI (SO-LR-ADI) [7, 13, 27, 30] which do not explicitly form the
augmented matricesE,A,B in (2.13) and work with the original dataM,D,K,B1 instead.
Of course, such a structure exploitation should also be usedin the shift strategies of the pre-
vious sections. See, for instance, [7] for details on how to solve the linear systems which
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arise also in the computation of the norm-minimizing shifts. The Galerkin projections of
Section2.3.2are implicitly carried out with the augmented matrices (2.13), i.e., only ma-
trix vector products withM,D,K, andn1 × m matrices are required. The resulting small
eigenvalue problem does not inherit the block structure given in (2.13).

2.4.2. SLRCF-ADI for index-1 DAEs. Another class of dynamical systems (2.12) are
differential algebraic equations (DAE) of index1 with

E =

[

E11 0
0 0

]

, A =

[

A11 A12

A21 A22

]

∈ R
n×n, B =

[

B1

B2

]

∈ R
n×m,(2.14)

whereE11 ∈ R
nf×nf , A22 ∈ R

n−nf×n−nf are nonsingular and all the other blocks are of
appropriate sizes. Here,nf denotes the number of finite eigenvalues inΛ(A,E). Such DAEs
can be equivalently rewritten in state space form

E11ẋ1(t) = Ãx1(t) + B̃u(t), Ã ∈ R
nf×nf , B̃ ∈ R

nf×m,

with

Ã = A11 −A12A
−1
22 A21, B̃ = B1 −A12A

−1
22 B2.

In [18] a specially tailored G-LR-ADI (SLRCF-ADI) is proposed which solves the Lya-
punov equationÃXET

11 + E11XÃ
T = −B̃B̃T without forming the matrices̃A, B̃ ex-

plicitly. The key ingredient is the observation that the solution of the dense linear system
(Ã+ αjE11)Vj =Wj−1 of sizenf can be equivalently and more efficiently obtained from
the sparse linear system

[

A11 + αjE11 A12

A21 A22

] [

Vj
Γ

]

=

[

Wj−1

0

]

(2.15)

of sizen, where the right-hand side in the first iteration is[BT
1 , B

T
2 ]

T andΓ ∈ C
n−nf×m

is an auxiliary variable. The same trick can be employed within the minimization algo-
rithms for the residual norm-minimizing shifts described in Section2.3.1. It also holds that
Wj =Wj−1 − 2Re (αj)E11Vj . A straightforward application of the projection-based shifts
of Section2.3.2requires the computation of the matrices

V̂ T ÃV̂ = V̂ TA11V̂ − V̂ TA12

(

A−1
22

(

A21V̂
))

, V̂ TE11V̂

for theV -shifts and similarly withŴ for theW -shifts. The initial shifts are obtained using
an orthonormal basis for̃B. This requires the solution ofm linear systems of sizen − nf
with A22 at each time when new shifts are required, possibly leading to a significant increase
in the computational cost.

As a modification of theV -shifts, we propose to carry out the Galerkin projection with
the original matrices (2.14) and the augmented iteratesV aug

j := [V T
j ,Γ

T ]T from (2.15). Let

V̌j be an orthonormal basis forV aug
j , and choose the shifts fromΛ(V̌ T

j AV̌j , V̌
T
j EV̌j) ∩ C−.

Additionally, possible infinite eigenvalues should also beneglected. We refer to this modi-
fication asV aug-shifts. Similarly, we can work with the augmented residualfactors for the
W -shifts

W aug
j =W aug

j−1 − 2Re (αj)EV
aug
j =

[

Wj

Υ

]

, W aug
0 = B,
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TABLE 2.1
Dimensionsn andm, desired residual normǫL, maximum number of allowed ADI iterationsjmax, structural

properties, and sources for the used Lyapunov test examples. Here, OC and IFISS refer to the Oberwolfach Model
Reduction Benchmark Collection and the IFISS [32] FEM package.

Example n m ǫL jmax Properties Source
FDM1 3 600 5 10−10 250 E = I,B random [22,B in Example 2]
rail5k 5 177 7 10−10 150 A snd,E spd OC1, ID=38881
rail79k 79 188 7 10−10 100 A snd,E spd OC1, ID=38881
ifiss1 16 641 4 10−10 150 E spd,B = A · rand (n,m) IFISS [32] T-CD3
chain 9 002 5 10−8 400 structure (2.13),B random [38]
bips 21 128 4 10−8 400 structure (2.14), nf = 3078 [18], bips0730782

with an auxiliary matrixΥ ∈ C
n−nf×m. A simple calculation using the structure ofE shows

thatΥ = B2. This yields theW aug-shifts. For both theV aug- andW aug-shifts, the initial
shifts can be obtained by using an orthonormal basis ofB. Note that there are also LR-
ADI approaches for handling DAE systems of higher indices [26], e.g., the recent work [2]
regarding the case of index 2 arising in optimal control of the (Navier)-Stokes equation. The
proposed shift approaches can be adapted to these cases in a straightforward manner.

2.5. Numerical experiments.We are now going to evaluate and compare the perfor-
mance of the presented shift generation strategies. To thisend, G-LR-ADI (Algorithm2.1)
is run until‖L‖/‖B‖2 ≤ ǫL with 0 < ǫL ≪ 1 is achieved or a maximum allowed number
jmax of iterations is reached. All experiments have been carriedout in MATLAB 7.11.0 on
an Intel®Xeon®W3503 execution with2.40 GHz and6 GB RAM. We use a collection of test
examples whose dimensionsn,m, the required residual toleranceǫL, the maximum allowed
number of G-LR-ADI iterationsjmax, as well as selected information regarding symmetry
properties, sources, and references of the examples are given in Table2.1. There, OC stands
for Oberwolfach Model Reduction Benchmark Collection1, and the ID gives a unique iden-
tifier for obtaining the example. IFISS refers to the MATLAB finite-element package [32].
The exampleschainandbips2 belong to the special cases mentioned in Section2.4 and are
handled by SO-LR-ADI and SLRCF-ADI, respectively. Forbipswe used the shifted matrix
A − 0.05E as in [18, Section V.A]. The complete identifier for this example is given in the
last column.

The results for these examples and different shift strategies are summarized in Table2.2.
There, the heuristic strategy and its settings are denoted by “heur(J, k+, k−)”. Likewise,
“wachs(ǫ, k+, k−)” stands for approximate Wachspress shifts obtained fromk+, k− Ritz val-
ues and a toleranceǫ. The number of shiftsJ is also given. For these two approaches, the
initial vector for the Arnoldi processes isB1m. Moreover, IRKA(J) refers toJ shifts ob-
tained after IRKA, initialized with random data, convergedusing a tolerance of10−3 and
the stopping criterion in [20]. All of these precomputed shifts are used in a cyclic mannerif
it occurs that the required number of G-LR-ADI iterations ishigher than the number of the
available shifts. The computation of the orthonormal basesof B, Vj , orWj for theV - and
W -shifts was carried out using the MATLAB routineorth . The residual-minimizing shifts
were obtained using the MATLAB routinefminsearch since the constrained optimization
routine fmincon did not converge for our examples. The initial guess forfminsearch
was always set to the previously computed shift. Due to the expensive nature of the IRKA-
and residual norm-minimizing shifts, both strategies are only applied to the moderately sized

1http://portal.uni-freiburg.de/imteksimulation/downl oads/benchmark .
2Available athttp://sites.google.com/site/rommes/software .

http://portal.uni-freiburg.de/imteksimulation/downloads/benchmark
http://sites.google.com/site/rommes/software
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TABLE 2.2
Results for the examples using different shift strategies:tshift and tADI denote the times (in seconds) spent

for computing the shifts and executing G-LR-ADI, respectively, and the total consumed time isttotal. The required
iterationsj iter and the final obtained residual norm‖Lj iter‖ are also given. The smallest values ofttotal andj iter for
each example are emphasized using bold letters.

Ex. Shift strategy tshift tADI ttotal j
iter ‖Lj iter‖

F
D

M
1

heur(10, 20, 20) 0.53 0.74 1.27 26 9.91·10−11

wachs(10−10, 10, 10),J = 13 0.23 0.75 0.98 26 1.76·10−12

IRKA(30) 15.35 0.81 16.16 29 5.40·10−12

res.min 82.87 0.81 83.67 24 2.67·10−11

V -shifts 0.03 0.98 1.00 30 3.93·10−11

W -shift 0.03 0.87 0.89 31 6.23·10−13

ra
il5

k

heur(10, 20, 10) 0.50 3.31 3.80 59 3.03·10−11

wachs(10−10, 20, 10),J = 40 0.47 2.79 3.26 40 5.82·10−11

IRKA(60) 28.98 7.80 36.78 122 6.94·10−11

res.min 76.40 12.07 88.47 150 7.00·10−9

V -shifts 0.03 3.44 3.46 57 9.83·10−12

W -shifts 0.06 10.46 10.52 150 6.01·10−2

ra
il7

9
k

heur(20, 40, 40) 44.87 85.96 130.84 54 7.00·10−11

wachs(10−10, 20, 10),J = 47 13.14 111.10124.24 47 6.36·10−11

V -shifts 0.78 158.58159.35 85 2.80·10−12

W -shifts 0.91 229.60230.51100 3.19·10−2

ifi
ss

1

heur(20, 30, 20) 6.48 12.14 18.62 48 5.09·10−11

wachs(10−10, 20, 10),J = 33 2.57 22.66 25.23 97 8.97·10−11

V -shifts 0.11 15.11 15.22 62 2.64·10−11

W -shifts 0.21 34.37 34.58 150 3.70·10−10

ch
a

in

heur(40, 50, 50) 1.85 4.82 6.67 383 6.60·10−9

wachs(10−10, 20, 10),J = 130 1.63 2.73 4.37 309 8.29·10−9

V -shifts 0.21 1.96 2.16 147 6.04·10−9

W -shifts 1.35 3.85 5.20 400 5.06·100

b
ip

s

heur(40, 50, 70) 11.79 35.87 47.66 378 6.55·10−9

heur(60, 80, 80) 12.01 21.30 33.32 226 5.95·10−9

wachs(10−8, 20, 20),J = 35 2.46 30.11 32.57 268 7.56·10−9

V -shifts 1.71 7.86 9.56 83 8.88·10−9

W -shifts 1.73 9.79 11.52 104 8.23·10−9

V aug-shifts 0.16 7.95 8.11 84 4.45·10−9

W aug-shifts 0.46 37.11 37.57 400 2.84·10−8

examplesFDM1 and rail5k. Because of the symmetry properties andΛ(A,E) ⊂ R− in
rail5k, both approaches are further simplified such that only real shifts are considered. In ad-
dition to the data collected in Table2.2, Figure3.1displays the scaled residual norm against
the ADI iteration number in the top plots and in the bottom plots the scaled residual norm
against the cumulative execution time, i.e., the total consumed time so far, for the examples
FDM1 andrail5k.

For the heuristic shifts it is apparent that, compared to theplain ADI computation
time tADI , a signification portiontshift of the total execution timettotal is spent for the in-
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FIG. 2.1.Scaled residual norm against iteration indexj (top plots) and cumulative execution time at iterationj

(bottom plots) of G-LR-ADI using different shift strategies for the FDM1 (left plots) and rail5k (right plots) examples.

volved Arnoldi processes. They lead to the desired accuracyalthough for each example there
was at least one other shift strategy which required less ADIiterations. The number of used
Arnoldi steps,k+, k−, influences the quality of the heuristic shifts as it is seen in thebips
example, where we used two settings: the first one uses exactly the valuesJ , k+, k− as in
the original SLRCF-ADI paper [18, Section V, Table V], while the second one was chosen
through extensive trial and error optimization. The difference in both execution time (47.3
against 33.3 seconds) as well as the ADI iteration numbers (378 against 226) is significant.
The approximate Wachspress shifts also rely on Arnoldi processes, but there usually smaller
numbersk+, k− were sufficient to get accurate estimates of the required spectral data. Hence,
tshift is smaller for heuristic shifts. As expected, these shifts lead to the best performance
both in terms of execution time and required iterations for the symmetric examplesrail5k,
rail79k. Their typical residual curves can be seen in Figure2.1 (top right plot). They loose
this superiority for those examples where complex spectra with large imaginary parts are en-
countered. Especially forifiss1, they can not compete with the heuristic shifts. In additional
tests, the Wachspress shifts seemed to be less sensitive with respect to the valuesk+, k− than
the heuristic shifts. For the IRKA shifts, the computation timestshift exceedtADI by far, and
hence the total execution time is also very large (also see the bottom plots of Figure2.1).
They lead to a fast convergence forFDM1 but to a comparably slow convergence forrail5k.
We observed that the settings forJ and the initial data for IRKA have a large influence on
its convergence. In other similar tests, different starting data lead to completely distinctive
IRKA shifts and thus to a different ADI convergence. Anyway,their expensive computation
makes this approach impractical as a source for good ADI shifts.
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Now we move on to the novel self-generating shifts proposed in Sections2.3.1–2.3.2.
It is no surprise that the generation timetshift for the residual-minimizing shifts is extremely
high, i.e., even higher than those of the IRKA shifts, which makes this approach the most ex-
pensive and time consuming one. They lead, however, to the fastest convergence forFMD1
(24 iterations), which is also nicely monotonic as it can be seen in the top left plot of Fig-
ure2.1. Forrail5k, these shifts do not lead to a convergence beforejmax iterations. There are
two possible reasons for this: on the one hand, the computed minimum of (2.9) was not the
global one, and on the other hand, the computed shift was an unstable one. Both situations
were also observed in other experiments. The computation ofunstable shifts is a more severe
problem but could be prevented if a constrained optimization method was employed. Shifts
associated with non-global minima still lead to a reductionof the residual norm but delayed
the convergence. This can be observed in the top right plot for rail5k in Figure2.1. In fur-
ther experiments not reported here, if the employed optimization routine managed to find the
global minimizer, the residual-minimizing shifts lead to the smallest number of required iter-
ationsj iter compared to the other strategies. Because of the large construction time of these
shifts, this approach is at the current stage only of theoretical interest. Finding an analytic so-
lution of the minimization problem or a cheap approximationthereof is an interesting future
research topic.

TheV - andW -shifts required in all examples a very small construction time tshift, which
is in most cases a negligible fraction ofttotal. However, except forFDM1 and bips, only
the V -shifts lead to fast convergence. In all other examples, theW -shifts did not achieve
the required accuracy beforejmax ADI iterations. For the examplerail5k (see, e.g., the top
right plot in Figure2.1), a stagnation phase is encountered in the later iterationsbecause the
computedW -shifts almost did not change anymore. We plan to investigate why this is the
case in the future. One promising tool for this appears to be the recently established novel
relations of low-rank ADI and rational Krylov subspace methods [4, 44, 45]. The V -shifts
lead to the smallest timingsttotal in all examples with nonsymmetric coefficient matrices.
This can also be observed in the plot of the residual norm versus the consumed execution
time in Figure2.1. For rail5k/79k, the heuristic and Wachspress shifts are superior. Note
that in the nonsymmetric examples, the number of required ADI iterationsj iter for the V -
shifts is not always smaller than that of the heuristic shifts (see, e.g., exampleifiss1), but
due to the exceptionally cheap generation of theV -shifts, their overall execution timettotal

is nonetheless smaller. They significantly outperform all other shift approaches in thechain
andbipsexamples, where they lead to a drastically reduced number ofrequired iterations. In
fact, we never experienced a faster ADI convergence for thebips system. There, theV aug-
shifts are slightly better than theV -shifts, but the difference is negligible. Note that the
W -shifts converged, while theW aug-shifts did not. To conclude, theV -shifts appear to be a
very promising approach especially for Lyapunov equationswith nonsymmetric coefficient
matrices where the spectrum contains complex eigenvalues.We plan to investigate their
behavior deeper in subsequent work. Another big advantage of theirs, although not reflected
in the timings and iteration counts, is that they can be applied completely automatically in
the sense that they can be implemented without the user having to take care of selecting ADI
shifts at all.

3. Sylvester equations.Now we consider generalized Sylvester equations of the form

AXG− EXF = BCT(3.1)

with A,E ∈ R
n×n, F,G ∈ R

r×r, B ∈ R
n×m, C ∈ R

r×m, and the sought solution
X ∈ R

n×r. We assume thatE andG are nonsingular and, in order to allow a unique so-
lutionX to exist,Λ(A,E) ∩ Λ(F,G) = ∅.
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Algorithm 3.1: Generalized factored ADI iteration (G-fADI) [5] for (3.1).

Input : A,B,E,C, F,G as in (3.1), shift parameters{α1, . . . , αjmax
},

{β1, . . . , βjmax
}, and tolerance0 < τ ≪ 1.

Output : Zjmax
∈ C

n×rjmax , Yjmax
∈ C

m×rjmax ,Djmax
∈ C

rjmax×rjmax such that
Zjmax

Djmax
(Yjmax

)H ≈ X.
1 W0 = B, T0 = C, Z0 = D0 = Y0 = [ ], j = 1.
2 while ‖Wj−1T

H
j−1‖ ≥ τ‖BCT ‖ do

3 γj = βj − αj .
4 Vj = (A− βjE)−1Wj−1,Wj =Wj−1 + γjEVj .
5 Sj = (F − αjG)

−HTj−1, Tj = Tj−1 − γjG
TSj .

6 Update the low-rank solution factors

Zj = [Zj−1, Vj ], Yj = [Yj−1, Sj ], Dj = diag(Dj−1, γjIr).

7 j = j + 1.

3.1. The factored ADI for Sylvester equations.The ADI iteration for (3.1) (see [40]
for E = In,G = Ir) is given by

EXjG =(A− αjE)(A− βjE)−1EXj−1G(F − αjG)
−1(F − βjG)

+ (βj − αj)E(A− βjE)−1BCT (F − αjG)
−1G.

(3.2)

Here {α1, . . . , αJ}, {β1, . . . , βJ} are two sets of shift parameters withαi /∈ Λ(F,G),
βi /∈ Λ(A,E), andαi 6= βi, for all i. SettingX0 = 0 and using similar manipulations
as in the Lyapunov case leads to the low-rank Sylvester ADI (or factored ADI (fADI)),
cf. [10, Algorithm 1], [24, Algorithm 2.1], for computing low-rank solution factorsZ∈C

n×f ,
Y ∈ C

r×f , D ∈ C
f×f , f ≪ min(n, r) of (3.1) such thatZDY H ≈ X. Using gener-

alizations of the techniques for Lyapunov equations in [7], the method can equivalently be
rewritten [5, Algorithm 1] in the form illustrated in Algorithm3.1, where, in addition to the
iteratesVj , Sj with respect to the matrix pairs(A,E), (F,G), the low-rank residual factors
Wj , Tj are included. The modified Algorithm3.1 allows for a cheap computation of the
residual norm

‖S(Xj)‖ := ‖Sj‖ = ‖AZjDjY
H
j G− EZjDjY

H
j F −BCT ‖ = ‖WjT

H
j ‖;

see [5, Theorem 4]. As in Algorithm2.1 for Lyapunov equations, it is possible to take care
of complex shift parameters by a suitable reformulation of Algorithm 3.1 [5, Algorithm 2].
For applying this real version of G-fADI, both sets of shiftshave to be in a certain pairwise
order, which can be achieved by a simple permutation. For theease of presentation, we stick
to the given complex formulation in the following but use thereal version in our numerical
examples.

3.2. Existing shift strategies.Similar to the Lyapunov case (Section2.2), the conver-
gence behavior of (3.2) and Algorithm3.1depends critically on the spectral radii of

Aj :=

j
∏

k=1

Aαk,βk
, Aαk,βk

:= (A− βkE)−1(A− αkE),

Fj :=

j
∏

k=1

Fαk,βk
, Fαk,βk

:= (F − αkG)
−1(F − βkG).

(3.3)
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For normal matrix pairs (i.e., the left and right eigenvectors coincide)(A,E), (F,G) in (3.1),
it can be shown [10, 24, 31, 41] that optimal shifts forJ iterations of Algorithm3.1have to
satisfy the optimization problem

min
αj ,βj∈C

(

max
1≤ℓ≤n

1≤k≤r

J
∏

j=1

∣

∣

∣

∣

(λℓ − αj)(µk − βj)

(λℓ − βj)(µk − αj)

∣

∣

∣

∣

)

, λℓ ∈ Λ(A,E), µk ∈ Λ(F,G).(3.4)

The above rational optimization problem is also referred toas two-variable ADI parameter
problem [41, 43] and is harder to solve than the optimization problem (2.8) for Lyapunov
equations. In the following we review generalizations of the Wachspress, heuristic, and IRKA
shifts for the Sylvester ADI. After that we propose two strategies for self-generating shifts.

3.2.1. Optimal Sylvester ADI shifts. Analytic solutions for solving (3.4) are proposed
in [41], [43, Chapter 2 & 4] and are based on spectral alignment and, as in the Lyapunov
case, elliptic integrals. They require the following knowledge of the smallest and largest
real partsa := mini Re (λi), b := maxi Re (λi), c := mini Re (µi), d := maxi Re (µi) ,

and the anglesφ := maxi arctan |
Im(λi)
Re(λi)

|, ψ := maxi arctan |
Im(µi)
Re(µi)

| for λi ∈ Λ(A,E) and

µi ∈ Λ(F,G). An implementation of this shift generation strategy is given in theparsyl 3

routine provided in [43]. If the spectraΛ(A,E), Λ(F,G) are contained in real, disjoint
intervals[a, b], [c, d], another similar approach for generating an equal numberJ of α- and
β-shifts is given in [31, Algorithm 2.1].

As in the Lyapunov case, one might use Arnoldi or Lanczos processes to obtain ap-
proximations toa, b, c, d, φ, ψ in the large-scale case for both approaches. We propose to
approximateΛ(A,E) by a set consisting ofkA+ Ritz andkA− inverse Ritz values with respect
to E−1A andA−1E. Likewise,Λ(F,G) is approximated bykF+ Ritz andkF− inverse Ritz
values with respect toG−1F andF−1G. Approximations to the extremal eigenvalues and
the spectral angles ofΛ(A,E) andΛ(F,G) can then be read of easily. However, as for the
approximate Wachspress shifts, the so obtained shifts can be sensitive with respect to the
quality of the approximations of the extremal eigenvalues.This was numerically investigated
in [31, Section 2.2.2] for the optimal real shift parameters.

3.2.2. Heuristic shifts. In [10, 24], a heuristic approach is proposed which generalizes
the Penzl shifts (Section2.2.2) to the solution of Sylvester equations. The spectraΛ(A,E),
Λ(F,G) are approximated in the same way as for the optimal shifts above. With these sets
of Ritz values, one solves (3.4) in an approximate sense to getJ (with J ≤ kA+ + kA−)
α-shifts andL (with L ≤ kF+ + kF−) β-shifts. A detailed implementation can be found
in [10, Algorithm 2], [24, Algorithm 3.1]. Note that in [5] only thekA++kA− andkF++kF− Ritz
values are used as shifts, which worked sufficiently well. This heuristic approach suffers from
the same disadvantages as the heuristic approach for the Lyapunov equation in Section2.2.2:
there is no known rule how to select the predefined numbersJ , L, kA+, kA−, kF+, andkF−, and
the quality of the Ritz values (and hence of the shifts) depends on the performance of the
Arnoldi processes, which also introduces additional costsdue to the required linear solves.
Moreover, there is no known strategy for choosing their initial vectors suitably.

3.2.3. IRKA shifts. For symmetric Sylvester equations withE, −G, −A, −F spd,
a generalization of IRKA (symmetric Sylvester IRKA (Sy)2IRKA) is given in [4, Algo-
rithm 3]. The obtained approximate solutions again satisfyan optimality condition with
respect to their residual in a certain norm. The shifts obtained from (Sy)2IRKA can also
be used within the G-fADI leading to equivalent approximatesolutions as discussed in [17].

3Available athttp://extras.springer.com/2013/978-1-4614-5121-1 .

http://extras.springer.com/2013/978-1-4614-5121-1
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(Sy)2IRKA can be easily modified to handle general nonsymmetric Sylvester equations.
Let Q, U andH, N be rectangular, orthonormal matrices which spanJ-dimensional ra-
tional Krylov subspaces computed by a Sylvester IRKA method(SyIRKA) with respect to
A, E, B andF , G, C, respectively. For the symmetric Sylvester equation mentioned be-
fore, it holds thatQ = U andH = N . Then the Sylvester IRKA shifts are given by
A := {α1, . . . , αJ} = Λ(QHAU,QHEU) andB := {β1, . . . , βJ} = Λ(HHFN,HHGN).
This strategy has the same drawbacks as the similar one in theLyapunov case; especially
the high computational cost of SyIRKA makes it computationally less feasible. It is rather
theoretically motivated due to the interesting properties[4, 17] of the IRKA shifts, which we
use merely for reason of comparison in the numerical examples.

3.3. Self-generating shifts.

3.3.1. Residual norm-minimizing shifts. Motivated by the Lyapunov residual norm-
minimizing shifts in Section2.3.1, one can derive a similar framework for Sylvester equa-
tions. For simplicity we consider here only the case of realα- andβ-shifts. The (spectral or
Frobenius) norm of the Sylvester residual matrixSj can be efficiently computed via

‖Sj‖ = ‖WjT
T
j ‖ =

√

‖TjWT
j WjTT

j ‖ = ‖Lj‖ with Lj =WjR
T
j

and a QR decompositionTj = T̂jRj ; see [5]. According to Algorithm3.1, we have

Wj =Wj−1 + (βj − αj)EVj =Wj−1 + (βj − αj)E
(

(A− αjE)−1Wj−1

)

,

Tj = Tj−1 − (βj − αj)G
TSj = Tj−1 − (βj − αj)G

T
(

(F − βjG)
−TTj−1

)

.

Since,Wj−1, Tj−1 are given at the beginning of iterationj, the only unknowns above are the
shiftsαj , βj , and we may regard‖Sj‖ as bivariate function. The next shifts can be obtained
by solving the optimization problem

[αj , βj ] = argmin
α∈R,β∈R

hj(α, β), hj(α, β) := ‖Sj‖ = ‖Wj(α, β)T
T
j (α, β)‖.(3.5)

The incorporation of complex shifts is straightforward although one has to take care of the
case when one computed shift is a complex and the other a real one [5]. Of course, this
approach is again very expensive since each function evaluation in an optimization routine
alone requires to solve two shifted linear systems with multiple right-hand sides. Also, it is
difficult to guarantee that a global minimum is found. Local minima might lead to a slower
convergence. Because of these severe drawbacks, these norm-minimizing shifts are at the
current stage only of theoretical interest.

3.3.2. Shifts obtained via projections with ADI iterates. It is easy to generalize the
V - andW -shifts for Lyapunov equations in Section2.3.2to Sylvester equations. Assume we
have at iterationj of Algorithm 3.1the iteratesVj , Sj andWj , Tj available. Then the nextα-
andβ-shifts can be obtained via the following two approaches:

1. A = Λ(V̂ TAV̂ , V̂ TEV̂ ) andB = Λ(ŜTAŜ, ŜTEŜ), whereV̂ , Ŝ span orthonor-
mal bases ofVj , Sj . As in the Lyapunov case, one can work with orthonormal bases
of [Re (Vj) , Im (Vj)], [Re (Sj) , Im (Sj)] whenVj , Sj are complex iterates. We re-
fer to this strategy asV -S-shifts.

2. A = Λ(ŴTAŴ , ŴTEŴ ) andB = Λ(T̂TAT̂ , T̂TET̂ ), whereŴ , T̂ span or-
thonormal bases ofWj , Tj . These quantities are always real matrices in the real
formulation [5, Algorithm 2] of Algorithm 3.1. This strategy is calledW -T -shifts
from now on.
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TABLE 3.1
Dimensionsn, f , andm, maximum number of allowed ADI iterationsjmax, structural properties, and sources

for the used Sylvester test examples. The desired toleranceǫS for the normalized residual norm is10−10.

Example n f m jmax Properties Source
FDM2 6 400 3 600 5 50 E = In,G = If ,B,C random [22, Example 2]
rail5k/1k 5 177 1 377 6 150 A,F snd,E,G spd OC1, ID=38881
ifiss2 16 6414 225 4 100 E,−G spd,B,C random IFISS [32] T-CD3

For both variants, the initialα- andβ-shifts can be obtained similarly by using orthonormal
bases ofB andC, respectively. Due to the orthogonalization process it canhappen that nearly
linearly dependent columns inVj , Sj or Wj , Tj are discarded and hence card(A) ≤ m and
card(B) ≤ m. Note that one should ensure that the new shifts satisfyα 6= β. Also note that,
because the numbers of initialα- andβ-shifts does not have to be equal, newα- andβ-shifts
do not need to be calculated at the same time, but we restrict ourselves to this situation here
for simplicity.

3.4. Other shifts. An overview over several other approaches for generating shifts for
the Sylvester ADI, for instance, generalizations of the Leja point-based shifts, can be found
in [31]. For a generalized version of the iteration (3.2), specialized shift strategies can be
found in [23]. Shifts for Sylvester equations occurring in image restoration are proposed
in [15].

3.5. Related matrix equations. Several other linear matrix equations where the un-
knownX appears twice are special classes of the just discussed generalized Sylvester equa-
tion (3.1). Prominent examples are cross-Gramian Sylvester equations (G = E, F = −A),
discrete-time Sylvester equations (interchangeF andG), and generalized discrete-time Lya-
punov equations (G = AT , F = ET , B = C), which are also known as Stein equations.
Of course, the generalized Lyapunov equations (2.1) discussed in Section2 also belong to
this class. Exploiting the structure of these special cases, specially tailored low-rank ADI
methods can be formulated [5, Section 4], and consequently the shift strategies discussed so
far can be adapted accordingly.

3.6. Numerical examples.In this section we test some of the proposed shift strategies
for the Sylvester ADI with the same hard- and software setting as for the Lyapunov experi-
ments. The examples are given in Table3.1, where we use similar notations and abbreviations
as for the Lyapunov examples (Table2.1). The factors of the right-hand side for the example
rail5k/1kwere taken as the output matricesCT provided in the associated OC example. In all
examples, G-fADI was terminated when‖S‖ < ǫS‖BC

T ‖ with ǫS = 10−10 (or afterjmax

iterations).
The results are summarized in Table3.2. There, the entries “optimal(kA+, kA−, kF+, kF−)”

and “heur(J , L, kA+, kA−, kF+, kF−)” refer to the optimal and heuristic shift approaches as con-
sidered in Sections3.2.1–3.2.2, respectively. For the optimal shifts, the obtained number
J is also given. Theparsyl routine is used to compute optimal shifts for the examples
FDM2 andifiss2, where we modifiedparsyl such that (inverse) Arnoldi processed are used
to obtain the approximate spectral data. This was more efficient than usingeigs as it is
done in the originalparsyl implementation. For the examplerail5k/1k, the approach given
in [31, Algorithm 2.1] is employed sinceparsyl did not lead to good shifts for this ex-
amples. SyIRKA(J) and (Sy)2IRKA(J) stands forJ shifts generated with the (symmetric)
Sylvester IRKA. These IRKA shifts and the similarly expensive residual norm-minimizing
shifts were only applied for the smaller examplesFDM2 andrail5k/1k, where it was in both
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TABLE 3.2
Results for the Sylvester examples using different shift strategies: tshift and tADI denote the times spend for

computing the shifts and executing G-fADI, respectively, and the total consumed time isttotal. The required iterations
j iter and the final obtained residual norm‖Sj iter‖ are also given. All timings are given in seconds. The smallest

values ofttotal andj iter are emphasized by bold letters.

Ex. Shift strategy tshift tADI ttotal j
iter ‖Sj iter‖

F
D

M
2

heur(20, 10, 10, 20, 10, 10) 0.73 2.80 3.53 34 9.87·10−11

optimal(10, 10, 10, 10),J =10 0.97 3.44 4.41 40 3.08·10−11

SyIRKA(20) 186.87 2.60 189.47 31 3.45·10−11

res.min 343.03 2.52 345.55 28 5.93·10−11

V -S-shifts 0.42 2.61 3.03 31 8.97·10−11

W -T -shifts 0.42 2.95 3.37 34 1.75·10−11

ra
il5

k/
1

k

heur(40, 40, 20, 20, 20, 20) 1.27 5.20 6.47 74 6.52·10−11

optimal(10, 5, 10, 5),J = 70 0.31 4.72 5.03 63 1.43·10−11

SyIRKA(60) 37.24 6.48 43.72 101 2.54·10−12

res.min 183.62 8.89 192.51111 8.06·10−11

V -S-shifts 0.04 3.45 3.50 50 6.46·10−12

W -T -shifts 0.10 10.41 10.51 150 9.32·10−5

ifi
ss

2

heur(30, 30, 10, 20, 10, 20) 5.49 29.68 35.18 89 8.57·10−11

optimal(10, 10, 10, 10),J =15 3.65 29.78 33.43 98 7.65·10−11

V -S-shifts 0.16 25.41 25.57 76 5.78·10−12

W -T -shifts 0.14 31.46 31.60 99 4.46·10−11

examples sufficient to restrict the computation to real residual norm-minimizing shifts. The
construction of theV -S- andW -T -shifts was carried out using theorth command. Fig-
ure3.1shows the curves of the residual norm against the iteration number (top plots) as well
as the consumed iteration time (bottom plots) for these two examples.

To some extent, similar observations can be made as in the Lyapunov examples. For
the heuristic shifts, the timetshift needed for their generation is a significant portion of the
overall computational timettotal. They, however, manage to achieve the desired accuracy
within jmax iterations for all examples. Compared to the heuristic shifts, the optimal shifts
required smaller values ofkA+, kA−, kF+, kF− to get the necessary spectral data. The top right
plot of Figure3.1 corresponding to examplerail5k/1k reveals that they converge similarly
to the Wachspress shifts for Lyapunov equations with real spectra. However, the required
setup numbers seems to be highly influential for their performance. Different values than
the ones used here lead to a different, often slower, convergence especially for the examples
FMD2 andifiss2, which involve complex spectra. In terms of the required iterationsj iter, the
IRKA shifts only work well for exampleFDM2. In examplerail5k/1k they lead to a much
higher value ofj iter as shown in the top right plot of Figure3.1. Since their generation time is
much larger than the actual ADI iteration timetADI , they are not a reasonable choice, which
is also visible from the bottom plots in Figure3.1. Similar to the corresponding Lyapunov
examples we observed in further tests a strong dependence onthe initial data for SyIRKA and
(Sy)2IRKA. The residual-minimizing shifts require the longest generation time but lead to the
smallest numberj iter for FDM2, where they also show a monotonically decreasing residual
norm in Figure3.1(top left plot). Forrail5k/1k this is not the case for similar reasons as in the
Lyapunov examplerail5k: the detection of minima of (3.5) which are not global minima. In
other tests, the number of iterationsj iter was always smaller than for the other shifts provided
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FIG. 3.1.Scaled residual norm against iteration indexj (top plots) and cumulative execution time at iteration
j (bottom plots) of G-fADI using different shift strategies for FDM2 (left plots) and rail5k/1k (right plots) example.

that global minima of (3.5) were used. Therefore, improving their computation and ensuring
that global minima are found is current research.

As before, the shifts obtained from projections to spaces spanned by G-fADI iterates or
residual factors require only a very small generation timetshift. However, theW -T -shifts do
not achieve convergence for examplerail5k/1k, which is somehow similar to the Lyapunov
case. TheV -S-shifts lead to the smallest timesttotal for FMD2, rail5k/1k; see also the bottom
plots in Figure3.1. The residual history of both theV -S- andW -T -shifts seems to be highly
oscillatory as it is clearly visible in the residual plot forrail5k/1k in Figure3.1(top right plot).
There are very high spikes in‖Sj‖ which appear to unnecessarily prolong the iteration. A
closer investigation of this phenomenon revealed that, in terms of (3.3), these peaks are the
result of shiftαk, βk with ρ(Aαk,βk

)ρ(Fαk,βk
) ≫ 1. This indicates that the corresponding

computed shiftsαk, βk are of no good quality. Avoiding these infeasible shifts is currently
investigated and might lead to a further performance improvement. Due to the small execution
and generation times as well as the advantage that they are computed in an entirely automatic
way, theV -S-shift are nevertheless competitive to the other approaches.

4. Summary. We discussed shift parameter strategies for low-rank ADI methods for
solving large-scale Lyapunov and Sylvester equations. After reviewing some prominent ap-
proaches to compute shifts a priori, two novel strategies have been proposed which generate
shifts automatically during the ADI iteration without requiring any setup data. The first one
is intrinsically designed to compute the new shift such thatthe residual norm is minimized
at each step, and the second one uses orthonormal spaces spanned by the current ADI iter-



ETNA
Kent State University 

http://etna.math.kent.edu

SELF-GENERATING AND EFFICIENT ADI SHIFTS 161

ates to obtain a small number of Ritz values as next shifts. Especially the latter one showed
impressive numerical results that outperformed the existing shift strategies with respect to
the required execution time but in most cases also in terms ofthe required ADI iterations.
To conclude, the proposed projection-basedV - andV -S-shifts are definitely competitive to
existing shift parameter approaches especially for problems with complex spectra. However,
a sound theoretical explanation for their often outstanding performance is not known yet.
For Sylvester equations, the proposed dynamically updatedshifts can also lead to a very os-
cillatory residual behavior which deteriorates the convergence. The (approximate) optimal
shifts appear to be the method of choice for real spectra. At the current stage, the newly pro-
posed residual norm-minimizing shifts are not competitiveregarding their computational per-
formance. Currently, we are investigating efficient ways tosolve the occurring optimization
problems in an approximate and efficient way. We also plan to adapt the proposed approaches
to low-rank Newton-ADI methods [9, 11, 12, 14] for solving algebraic Riccati equations.
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