Electronic Transactions on Numerical Analysis. ETNA

Volume 42, pp. 177-196, 2014. Kent State University
Copyright 0 2014, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

DATA COMPLETION AND STOCHASTIC ALGORITHMS FOR PDE INVERSION
PROBLEMS WITH MANY MEASUREMENTS *

FARBOD ROOSTA-KHORASANI, KEES VAN DEN DOELf, AND URI ASCHER'
Dedicated to Lothar Reichel on the occasion of his 60th deh

Abstract. Inverse problems involving systems of partial different@iations (PDEs) with many measurements
or experiments can be very expensive to solve numericallyusyy that all experiments share the same set of
receivers, in a recent paper we examined both stochastic etednuinistic dimensionality reduction methods to
reduce this computational burden. In the present articleamsider the more general and practically important case
where receivers are not shared across experiments. We prapglada completion approach to alleviate this problem.
This is done by means of an approximation using an appropriegstricted gradient or Laplacian regularization,
extending existing data for each experiment to the union lofegkiver locations. Results using the method of
simultaneous sources (SS) with the completed data are thenacedhfp those obtained by a more general but
slower random subset (RS) method which requires no modifitatio
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1. Introduction. The reconstruction of distributed parameter functions fitiyng to
measured data solution values of partial differential équaPDE) systems in which they
appear as material properties, can be very expensive tg catr This is so especially in
cases where there are many experiments, where just onexgwvalof the forward operator
can involve hundreds and thousands of PDE solves. And yetrtdly there are several such
problems of intense interest in which the use of many exparimis crucial for obtaining
credible reconstructions in practical situatioBs{, 10, 11, 14, 18, 22, 24, 26, 28, 30, 35, 36].
Extensive theory (e.g.2[ 3, 24, 29]) also suggests that many well-placed experiments are
often a practical must for obtaining credible reconstrtdi Thus, methods to alleviate the
resulting computational burden are highly sought after.

To be more specific, let us consider the problem of recovesingodelm € R‘",
representing a discretization of a surface functiefx) in 2D or 3D, from measurements
d; e R, i =1,2,...,s. For eachi, the data is predicted as a functionmafby a forward
operatorF;, and the goal is to find (or infegh = m* such that the misfit function

(1.1) o(m) = _[[Fi(m) - d?

is roughly at a level commensurate with the ndgiskhe forward operator involves an approx-
imate solution of a PDE system, which we write in discretifmd as

(1.2a) Am)u; =q;, i=1,...,s,

whereu; € IR’ is theith field, q; € IR* is theith source, and4 is a square matrix
discretizing the PDE plus appropriate side conditionsti&rmore, there are given projection
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1For notational simplicity we make the nonessential assumjttiat? does not depend on the experimeént
2 Throughout this article we use tife vector norm unless otherwise specified.
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matricesP; such that
(1.2b) Fi(m) = Pu; = P,A(m) " 'q;

predicts theth data set. Thus, evaluatidg requires a PDE system solve, and evaluating the
objective functiony(m) requiress PDE system solves.

For reducing the cost of evaluating.{), stochastic approximations are natural. Thus,
introducing a random vectar = (w1, ..., w,)? from a probability distribution satisfying

(1.3) E(ww’) =1

(with E denoting the expected value with respectt@nd/ the s x s identity matrix), we
can write (L.1) as

(1.4) ¢(m) =E (II > wi(Fi(m) - di)||2> :
i=1

and approximate the expected value by a few samplgd]. If, furthermore, the data sets in
different experiments are measured at the same locatiend;;i= P for all ¢, then

(1.5) ZU%F@ = ZwiPiA(m)71CIi = PA(m)fl(ZwiQi),
=1 =1 =1

which can be computed with a single PDE solve per realizaifdhe weight vectosw, so a
very effective procedure for approximating the objectivedtion$(m) is obtained 20].

Next, in an iterative process for sufficiently reduciriglj, consider approximating the
expectation value at iterationby random sampling from a set ef vectorsw, with s,, < s
potentially satisfyings,, < s; see, e.g.,17, 27, 33]. Several recent papers have proposed
methods to control the sizg, [6, 9, 15, 32]. Let us now concentrate on one of such an iter-
ationn, for which a specialized Gauss-Newton (GN) or L-BFGS metmay be employed.
We can write {.1) using the Frobenius norih- || » as

¢(m) = || F(m) — DI|%,

1.6
(1.6) F=[F,Fs,....,F,] e R, D=[dy,da,...,ds] € R,

and hence, an unbiased estimatop@in) in thenth iteration is

(1.7) Hm, W) = |

S|l (F(m) = D)W,
whereW = W,, = [wl,wQ, e 7Ws,,J is ans x s, matrix with w;'s drawn from any
distribution satisfying 1.3). For the case wher®, = P for all 4, different methods of si-
multaneous sources (SS) are obtained by using differentitigis for thismodel and data
reductionprocess4, 31, 38]. In [32] we have discussed and compared three of such methods:
(i) a Hutchinson random sampling, (ii) a Gaussian randonp$iam and (iii) the determinis-
tic truncated singular value decomposition (TSVD). We Haumd that, upon applying these
methods to the famous DC-resistivity problem, their perfance was roughly comparable
(although for just estimating the misfit function by.7), only the stochastic methods work
well).

A fourth, random subset (RS) method was considere8,ifj], where a random subset
of the original experiments is selected at each iteratiohis method does not require that
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the receivers be shared among different experiments. Hawies performance was found to
be generally worse than the methods of simultaneous squueghly by a factor betweeh
and4, and on average aboRf This brings us to the quest of the present article, namely, to
seek methods for the general case whreloes depend ofy which are as efficient as the
simultaneous sources methods. The tool employed is to ffithissing data”, thus replac-
ing P;, for eachi, by a common projection matri® to the union of all receiver locations,
1=1,...,s.

The prospect of sucdata completionlike that of casting a set of false teeth based
on a few genuine ones, is not necessarily appealing, butés afecessary for reasons of
computational efficiency. Moreover, applied mathematisido a virtual data completion
automatically when considering, for instance, a DirictitetNeumann map, because such
maps assume knowledge of the fieldsee, e.g.,4.4) below) or its normal derivative on the
entire spatial domain boundary, or at least on a partial baticuous segment of it. Such
a knowledge of noiseless data at uncountably many locaionsver the case in practice,
where receivers are discretely located and some noiseding data measurement noise, is
unavoidable. On the other hand, it can be argued that anyigahdata completion must
inherently destroy some of the “integrity” of the statisfimodeling underlying, for instance,
the choice of the iteration stopping criterion, becauseréiselting “generated noise” at the
false points is not statistically independent of the geawines where data was collected.

Indeed, the problem of proper data completion is far frornded trivial one, and its
inherent difficulties are often overlooked by practitionein this article we consider this
problem in the context of the DC-resistivity problem (SentP.3), with the sources and
receivers for each data set locatedegments othe boundary? of the domain on which
the forward PDE is defined. Our data completion approach @épproximate or interpolate
the given data directly in smooth segments of the bounddmilewaking advantage of prior
knowledge as to how the fields; must behave therée emphasize that the sole purpose
of our data completion algorithms is to allow the set of reesi to be shared among all
experiments. This can be very different from traditionaladeompletion efforts that have
sought to obtain extended data throughout the physical oiésnaoundary or even in the
entire physical domain. Our “statistical crime” with respt® noise independence is thus far
smaller, although still existent.

We have tested several regularized approximations on thef sgamples of Sectios,
including several DCT, wavelet, and curvelet approximai¢for which we had hoped to
leverage the recent advances in compressive sensing arse épanethods 12 as well as
straightforward piecewise linear data interpolation)wdwer, the latter is well-known not to
be robust against noise, while the former methods are ntatldaiin the present context, as
they are not built to best take advantage of the known salygroperties. The methods which
were proved winners in the experimentation ultimately uS&honov-type regularization in
the context of our approximation, penalizing the discetiz, integral norm of the gradi-
ent or Laplacian of the fields restricted to the boundary ssgmurface. They are further
described and theoretically justified in Secti®rproviding a rare instance where theory cor-
rectly predicts and closely justifies the best practicalhods. We believe that this approach
applies to a more general class of PDE-based inverse preblem

In Section2 we describe the inverse problem and the algorithm variasésl dor its
solution. Several aspects arise with the prospect of dat#pletion: for instance, which
data—the original or the completed—to use for carrying outitbeation, which data for
controlling the iterative process, which stopping criterto use, and more. These aspects are

3 The relative efficiency factor further increases if a lessseovative criterion is used for algorithm termination;
see Sectiod.
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addressed in Sectidhl The resulting algorithm, based on Algorithm 2 8], is given in
Section2.2. The specific EIT/DC resistivity inverse problem descrilie&ection2.3 leads
then to the data completion methods developed and proveekitio® 3.

In Section4 we apply the algorithm variants developed in the two previsections to
solve test problems with different receiver locations. gbal is to investigate whether the SS
algorithms based on completed data achieve results ofasiilality at a cheaper price, as
compared to the RS method applied to the original data. Qyeeay encouraging results are
obtained even when the original data receiver sets arerrgplagse. Conclusions are offered
in Sectionb.

2. Stochastic algorithms for solving the inverse problem.The first two subsections
below apply more generally than the third subsection. Tkterlaettles on one application
and leads naturally to Secti@n

Let us recall the acronyms for random subset (RS) and simadias sources (SS), used
repeatedly in this section.

2.1. Algorithm variants. To compare the performance of our model recovery methods
with completed data], against the corresponding ones with the original d&taywe use
the framework of Algorithm 2 in32]. This algorithm consists of two stages within each GN
iteration. The first stage produces a stabilized GN itefateyhich we use data denoted by
D. The second one involves assessment of this iterate in tefimprovement and algorithm
termination, using the datR. This second stage consists of evaluationsLof)( in addition
to (1.6). We consider three variants:

() D=D, D=D;

(i) D=D, D=D;
@iy D=D, D=D.
Note that only the RS method can be used in varigmihereas any of the SS methods as well
as the RS method can be employed in variét (n variant (i) we can use a more accurate
SS method for the stabilized GN stage and an RS method foothergence checking stage,
with the potential advantage that the evaluationslof)(do not use our “invented data”.
However, the disadvantage is that RS is potentially legalsiei than Gaussian or Hutchinson,
precisely for tasks such as those in this second stage3&ge [

A major source of computational expense is the algorithnppstay criterion, which
in [32] was taken to be

2.1) ¢(m) < p,

for a specified tolerance. In [32], we deliberately employed this criterion in order to be
able to make fair comparisons among different methods. Mewéhe evaluation o for
this purpose is very expensive wheis large, and in practice is hardly ever known in a
rigid sense. In any case, this evaluation should be cartiedsrarely as possible. 187, we
addressed this issue by proposing a safety check, callegftainty check”, which use4 (7)

as an unbiased estimator ¢fm) with a stochastic weight matrik” = ¢ which has far
fewer columns thai, provided that the columns d¥ ¢ are independent and satisfy. ).
Thus, in the course of an iteration, we can perform the relBtiinexpensive uncertainty
check whether

(2.2) ¢(m, W) < p.

This is like the stopping criterion2(1), but in expectation (with respect 16¢). If (2.2
is satisfied, it is an indication tha2.(l) is likely to be satisfied as well, so we check the
expensiveZ.1) only then.
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In the present article, we propose an alternative heuriséithod of replacing2.1) with
another uncertainty check evaluation asr?( with an independently drawn weight matrix
wWe e R**t» whoset,, columns have i.i.d. elements drawn from the Rademachetlulist
tion (NB the Hutchinson estimator has smaller variance thanssian). The sample sizg
can be heuristically set as

(2.3) t, = min (s, max (to, Sn)),

wheret, > 1 is some preset minimal sample size for this purpose. Thugdch algorithm
variant (), (i), or (i), we consider two stopping criteria, namely,

(a) the hard?.1), and

(b) the more relaxed2(2)+(2.3).

When using the original dat® in the second stage of our general algorithm, as in vari-
ants () and (ii) above, since the projection matricEBsare not the same across experiments,
one is restricted to the RS method as an unbiased estimabareér, when the completed
data is used and we only have oRdor all experiments, we can freely use the stochastic SS
methods and leverage their rather better accuracy in oodestimate the true misfii(m).
This is indeed an important advantage of data completiohoaist

However, when using the completed datan the second stage of our general algorithm,
as in variantif), an issue arises: when the data is completed, the giveratmep loses its
meaning and we need to take into account the effect of theiaddi data to calculate a new
tolerance. Our proposed heuristic approach is to replagéh a new tolerance := (1+c¢)p,
wherec is the percentage of the data that needs to be completedssepras a fraction. For
example, if30% of data is to be completed, then we get= 1.3p. Since the completed
data after using3.1) or (3.5 is smoothed and denoised, we only need to add a small fractio
of the initial tolerance to get the new one, and, in our exger,1 + ¢ is deemed to be a
satisfactory factor. We experiment with this less rigidogtiog criterion in Sectiod.

2.2. General algorithm. Our general algorithm utilizes a stabilized Gauss-New@N)
method P], where each iteration consists of two stages as descrilgedtior2.1. In addition
to combining the elements described above, this algoritlsm @rovides a schedule for se-
lecting the sample sizg, in thenth stabilized GN iteration. In Algorithr, variants {), (ii),
and (ii), and criteria §) and ), are as specified in Sectiénl

For implementation details as well as convergence andaggation results pertaining
to this algorithm, we refer tod] 32] and the references therein.

2.3. The DC resistivity inverse problem. For the forward problem we consider, fol-
lowing [9, 20, 32], a linear PDE of the form

(2.4a) V- (o(x)gradu) = ¢(x), x€Q,

whereo is a given conductivity function which may be rough (e.gsodintinuous) but is
bounded away frond; i.e., there is a constamf, > 0 such thato(x) > 09, Vx € Q. A
similar PDE is used for the EIT problenThis elliptic PDE is subject to the homogeneous
Neumann boundary conditions

ou

(2.4b) — =0, x€dN.
on

In our numerical examples we take C IR? to be the unit square or unit cube, and the
sourcegy to be the differences @kfunctions. Furthermore, the receivers (where data values
are measured) lie ifi§2, so in our data completion algorithms we approximate datagabne
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Algorithm 1 Solve inverse problem using variamy, (i), or (iii), cross validation, and stop-
ping criterion @) or (b).

Given: sources, measurement®), measurement®), stopping tolerance, decrease
factorx < 1, and initial guessn,.
Initialize: m = mg , sg = 1.
for n =0,1,2,... until terminationdo
- Choose dV;/ € IR***" stochastically from appropriate distribution.
- Fitting : Perform one stabilized GN iteration, basedionwith W = W/,
- ChooseV¢ € IR***» andW, € IR***" stochastically from appropriate distribution.
if p(my,41,WE) < ko (m,, WE), based oD, i.e.,Cross Validation holdsthen
- Uncertainty Check: Compute {.7) based oD usingm,, . ; andW¢.
if (2.2) holdsthen
- Stopping Criterion:
if Option @) selected and( 1) holdsthen
terminate; otherwise set,, .1 = s,.
else
Sett,, = min (s, max (to, $5))-
Draw anotheV¢ € IR**' stochastically from appropriate distribution.
Terminate if (2.2) holds usingD; otherwise set,, ;; = s,,.
end if
end if
else
- Sample Size Increasefor example, set,, 1 = min(2s,,, s).
end if
end for

of four edges in the 2D case or within one of six square facélsar8D caseThe setting of
our experiments, which follows the one used3g][ is more typical of DC resistivity than of
the EIT problem.

For the inverse problem we introduce additional a prioroiniation, when such infor-
mation is available, via a point-wise parameterizatiom @f) in terms ofm(x). We define
the transfer function

ap + g Qy — o

(2.5) (1) =U(7;0, a1, 3) = atanh (é) + 5 a= 5

If we know that the sought conductivity function(x) takes only one of two values;;
or oy, at eachx, then we use an approximate level set function representatiriting
o(x) = limy_,0 o(x; h), where

(2.6) o(x;h) = (m(x); h,or,011).

The functiony here depends on the resolution, or grid widthMore commonly, we may
only know reasonably tight bounds, say,;, ando,.x, such thatr,in < o(x) < omax-
Such information may be enforced usirig) by defining

(2.7) o(x) =¢¥(m(x)), withy(r) =9¥(7;1, Omin, Tmax)-

For details of this, as well as the PDE discretization andsthbilizedGN iteration used, we
refer to P, 32] and the references therein.
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3. Data completion. Let A; C 952 denote the point set of receiver locations for tHe
experiment. Our goal here is to extend the data for each emeet to the union
A =, A; C 09 i.e., the common measurement domain. To achieve this, weseha
suitable boundary patch C 052, such thatA ¢ T', whereI' denotes the closure &f with
respect to the boundary subspace topology. For examplesanehoosé’ to be the interior
of the convex hull (ord$2) of A. We also assume thRtcan be selected such that it is a simply
connected open set. For each experimente then construct an extension functignron T’
which approximates the measured dataAgn The extension method can be viewed as an
inverse problem, and we select a regularization based dimtheledge of the function space
wherev; (which represents the restriction of potentiako I') should live in. Once; is con-
structed, the extended dada is obtained by restricting; to A, denoted in what follows by

v2. Specifically, for the receiver locatiary € A, we seffd;]; = vi(z;), where[d,]; denotes
thegth component of the vectat; corresponding ta;. Below we show that the trace of the
potentialu; to the boundary is indeed continuous, thus point valueseéxtension function
v; make sense.

In practice, the conductivity (x) in (2.49 is often piecewise smooth with finite jump dis-
continuities. As such, one is faced with two scenarios legth two approximation methods
for finding v;: (@) the discontinuities are some distance away ffgrand (b) the discontinu-
ities extend all the way tb. These cases result in a different a priori smoothness dfale
v; onT'. Hence, in this section we treat these cases separatelyrapdse an appropriate
data completion algorithm for each.

Consider the problen®(4). In what follows we assume th&tis a bounded open domain
and 012 is Lipschitz. Furthermore, we assume tlhats continuous on a finite number of
disjoint subdomains(2; c €, such thatUj.V:lﬁj = QandoQ; N Q € C*, for some
0<ac<lie,oe C?Qy), j=1,...,N.* Moreover, assume that € L () and
q € Lip(©2; N Q), i.e., itis Lipschitz continuous in each subdomain; thisuagption will be
slightly weakened in Subsecti@n4.

Under these assumptions and for the Dirichlet problem witt? §92) boundary condi-
tion, there is a constant, 0 < v < 1, such thatu € C*7(Q;) [23, Theorem 4.1]. In25,
Corollary 7.3], it is also shown that the solution on the lcendomam is Wlder continuous,
i.e.,u € CA(Q) for someps, 0 < 3 < 1. Note that the mentioned theorems are stated for
the Dirichlet problem, and in the present article we assumenaogeneous Neumann bound-
ary condition. However, in this case we have infinite smoesisnin the normal direction at
the boundary, i.e.C>° Neumann condition, and no additional complications arsss for
example B4]. So the results stated above would still hold far4j.

3.1. Discontinuities in conductivity are away from common neasurement domain.
This scenario corresponds to the case where the boundany patan be chosen such that
C (092; N o) for somej. Then we can expect a rather smooth field aprecisely,

u € C*7(T). Thus,u belongs to the Sobolev spaé# (I'), and we can impose this know!-
edge in our continuous completion formulation. For tHeexperiment, we define our data
completion functiony; € H%(T') N C(T') as

o1 , 2
(31) v; = argvmln 5”1}/\1 — dl”% + A HASUHLQ(F) 5

whereAg is the Laplace-Beltrami operator for the Laplacian on thertatary surface, and
v is the restriction of the continuous functiento the point set\;. The regularization
parametep depends on the amount of noise in our data; see Segtin

4X denotes the closure 6f with respect to the appropriate topology.
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We next discretized.1) using a mesh o' as specified in Sectio, and we solve the
resulting linear least squares problem using standarahigebs.

Figure3.1shows an example of such data completion. The true field andhdasured
data correspond to an experiment described in Exa®@e Section4. We only plot the
profile of the field along the top boundary of the 2D domain. As be observed, the approx-
imation process imposes smoothness which results in atl@xiceompletion of the missing
data, despite the presence of noise at a fairly high level.

True noiseless
*  Measured noisy data
Completed data

FiG. 3.1. Completion using the regularizatigi3.1), for an experiment taken from Examg@evhere50% of
the data requires completion and the noise level%. Observe that even in the presence of significant noise, the
data completion formulatio(B8.1) achieves a good quality field reconstruction.

We hasten to point out that the results in Fig8ré as well as those in Figu@2 below,
pertain to differences in field values, i.e., the solutiohshe forward problem;, and not
those in the inverse problem solution shown, e.g., in Figuge The good quality approx-
imations in Figures3.1 and 3.2 generally form a necessary but not sufficient condition for
success in the inverse problem solution.

3.2. Discontinuities in conductivity extend all the way to ommon measurement
domain. This situation corresponds to the case in wHiotan only be chosen in such a way
that it intersects more than just one of {{@%2 N 0€2;)’s. More precisely, assume that there is
anindex set7 C {1,2,--- N} with | 7| = K > 2 such tha{T'n (02N 9d%;)° , je€ J}
forms a set of disjoint subsets Bfsuch thal” = Ujes I'N (92N 0Q;)°, whereX® denotes
the interior of the sefX, with respect to the subspace topology @n. In such a casey
restricted tal is no longer necessarily if?(I"). Hence, the smoothing term iB.() is no
longer valid, ag|Asul|, -) might be undefined or infinite. However, as described aboge, w
know that the solution is piecewise smooth and overall comtiss, i.e.u € C*7(;) and
u € CP(Q). The following theorem shows that the smoothnes$ @not completely gone:
we may lose one degree of regularity at worst.

THEOREM3.1. LetU and{U;| j = 1,2,..., K} be open and bounded sets such that
theU,’s are pairwise disjoint and/ = Ule U,. Further, letu € C(U) N H'(U;) V4. Then
ue HYU).

Proof. It is easily seen that sineee C(U) andU is bounded, them € Ly(U). Now,
letp € C5°(U) be atest function and denate = aixi- Using the assumptions that the’s
form a partition ofU, thatw is continuous i/, that¢ is compactly supported insidé, and
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the fact that théU;’s have measure zero, we obtain

[uwvo=[wvo= [ uvo- udh
U U UJK=1 Uj (UJK=1UJ') U(U]K=18UJ')

K K K
= udp = / ud;p = / ugy] — / Oiud,
/U .U ; Uj JZ:; ou; ; Uj

wherev/ is thei*" component of the outward unit surface normadtd;. Sinceu € H'(U;),
for all 7, the second part of the rightmost expression makes senge fdtdwo surface®U,,
anddU,, such thabU,, NoU,, # 0, we haves"(x) = —v*(x) Vx € 9U,, N AU, This fact,
in addition to the remark that is compactly supported insidé, implies that the first term in
the right hand side vanishes. We can now define the weak theeiaf « with respect tax;
to be

K
(3.2) v(x) = duXy,,
j=1

whereAy;,; denotes the characteristic function of the8gt This yields

(3.3) /U udip = — /U .

Also
K

(3.4) V]| oy <D 105l Ly, < oo,
j=1

and thus we conclude thate H(U). 0

If the assumptions stated at the beginning of this sectidd, then we can expect a
field w € HY(I') N C(I'). This is obtained by invoking Theoref1 with U = T' and
Ui =TnN(002NnoQ;)° forallj € J.

Now we can formulate the data completion method as

(3.5) v; = arg min %va — i3+ Mlgrads vll2 )
wherev?: and )\ are as in Sectiof. 1

Figure 3.2 shows an example of data completion using the formulatio®),(depicting
the profile ofv; along the top boundary. The field in this example is contisuand only
piecewise smooth. The approximation process imposesnessteness along the boundary
as compared ta3(1), and this results in an excellent completion of the missiatp, despite
a nontrivial level of noise.

To carry out our data completion strategy, the problef$) (or (3.5 are discretized.
This is followed by a straightforward linear least squasehhique, which can be carried out
very efficiently. Moreover, this is a preprocessing stagéopmed once, which is completed
before the algorithm for solving the nonlinear inverse @aobcommences. Also, as the data
completion for each experiment can be carried out indepafydef others, the preprocessing
stage can be done in parallel if needed. Furthermore, tlggHenf the vector of unknowns
v; is relatively small compared to those @f because only the boundary is involved. All in
all, the amount of work involved in the data completion stedramatically less than one full
evaluation of the misfit functionl(1).
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- 'l.‘u r

+ True noiseless
w'® *  Measured noisy data
+ Completed data

FiG. 3.2.Completion using the regularizatid.5), for an experiment taken from Examgleshere50% of the
data requires completion and the noise leveb$. Discontinuities in the conductivity extend to the measiget
domain and their effect on the field profile along the boundany be clearly observed. Despite the large amount of
noise, data completion formulatiq8.5) achieves a good reconstruction.

3.3. Determining the regularization parameter. Let us write the discretization 08(1)
or (3.5 as

1 .
(3.6) miniﬂin*diH%Jr)\”LV”%a

whereL is the discretization of the surface gradient or Laplaciaerator,v is a vector whose
length is the size of the discretiz&4 P, is the projection matrix from the discretizationof
to A;, andd; is the:*" original measurement vector.

Determining\ in this context is a textbook problem; see, e.§7][ Viewing it as a
parameter, we have a linear least squares problenv for (3.6), whose solution can be
denotedv(A). Now, in the simplest case, which we assume in our expersnéné noise
level for thei*" experimenty);, is known, so one can use the discrepancy principle to pick
such that

2

(3.7) Hff’iv(/\) —di|| <n.

Numerically, this is done by setting equality i&. {) and solving the resulting nonlinear equa-
tion for A\ using a standard root finding technique.

If the noise level is not known, one can use the generalizedscvalidation (GCV)
method or the L-curve method; se&¥7]. Here, we need not to dwell longer on this.

3.4. Point sources and boundaries with cornersin the numerical examples of Sec-
tion4, as in P, 32, we use delta function combinations as the sougggs), in a manner that
is typical in exploration geophysics (namely, DC resisyivs well as low-frequency electro-
magnetic experiments), less so in EIT. Howevkese are clearly not honekt,, functions.
Moreover, our domain€ are a square or a cube, and as such they have corners.

However, the theory developed above, and the data complet@hods that it generates,
can be extended to our experimental setting because we batm®lcover the experimental
setup. The desired effect is obtained by simply separatiaddcation of each source from
any of the receivers, and avoiding domain corners altogethe
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Thus, let us consider ir2(49 a source function of the form
q(x) = 4(x) +0(x —x7) = 6(x = x™),

where satisfies the assumptions previously madeyoiThen we seleck* andx** such
that there are two open ball3(x*, r) and B(x**, r) of radiusr > 0 each, and centered at
x* andx**, respectively, where (i) no domain corner belong$te*, ) U B(x**,r), and
(i) (B(x*,r)UB(x**,r))NT is empty. Now, in our elliptic PDE problem the lower smooth-
ness effect of either a domain corner or a delta functiondalldn particular, the contribution
of the point source to the fluxgrad u is the integral ob(x — x*) — §(x — x**), and this is
smooth outside the union of the two balls.

4. Numerical experiments. The PDE problem used in our experiments is described in
Section2.3. For each experimeritthere is a positive unit point sourcexa and a negative
sink atx}, wherex! andx) are two locations on the boundaf). Hence in 2.439 we
must consider sources of the forn(x) = §(x — xt) — d(x — x3), i.e., a difference of
two §-functions. For our experiments in 2D, when we place a soarcthe left boundary,
the corresponding sink on the right boundary is placed inygvessible combination. Hence,
havingp locations on the left boundary for the source would resuit+ap? experiments. The
receivers are located at the top and bottom boundaries. &g sie completion steps$.()
or (3.5) are carried out separately for the top and bottom bounslaN® source or receiver
is placed at the corners. In 3D we use an arrangement whesebpbreholes are located at
the four edges of the cube, and source and sink pairs are pppasing boreholes in every
combination, except that there are no sources on the pointersection of boreholes and
the surface, i.e., at the top four corners, since these fodesare part of the surface where
data values are gathered.

In the sequel we generate databy using a chosen true model (or ground truth) and
a source-receiver configuration as described above. Siecketidw from (2.4) is only de-
termined up to a constant, only voltage differences are mgan. Hence, for each we
subtract the average of the boundary potential values fibfiekl values at the locations
where data is measured. As a result, each row of the projectadrix P; has zero sum. This
is followed by peppering these values with additive Gaumssizise to create the dath used
in our experiments. Specifically, for an additive noise afy,2%, denoting the “clean data”
{ x s matrix by D*, we reshape this matrix into a vectdt of lengths/¢, we calculate the
standard deviatiosd = .02||d*||/v/s¢, and we defindD = D* + sd * randn(1, s) using
MATLAB's random generator functiarandn.

For all our numerical experiments, the “true field” is calted on a grid that is twice
as fine as the one used to reconstruct the model. For the 2Dpéesnthe reconstruction is
done on a uniform grid of siz&292 with s = 961 experiments in the setup described above.
For the 3D examples, we set= 512 and we employ a uniform grid of si83, except for
Example3 where the grid size i$7°.

In the numerical examples considered below, we use true Isvadta piecewise constant
levels, with the conductivities bounded away fromFor further discussion of such models
within the context of EIT, se€lf].

Numerical examples are presented for both cases descnlsections3.1and3.2. For
all our numerical examples except Exampeend6, we use the transfer functio.) with
Omax = 1.2max o(x), andowin = 75 mino(x). In the ensuing calculations we then “for-
get” what the exact(x) is. Further, in the stabilized GN iteration we employ predien
tioned conjugate gradient (PCG) inner iterations, set@sgin [37], the PCG iteration limit
tor = 20, and the PCG tolerance 1@ 2. The initial guess isny = 0. Exampless and6
are carried out using the level set meth@ds)(. Here we can set = 5, which is significantly
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lower than above. The initial guess for the level set exarigpéecube with rounded corners
inside(2 (see Figure 2 in32]). For Exampledl, 2, 3, and5, in addition to displaying the log
conductivities (i.e.Jog(o)) for each reconstruction, we also show the log-log plot da$fini
on the entire data (i.e|/,F'(m) — D||r) vs. PDE count. A table of total PDE counts (without
the additional counts required for the plots) for each méikalisplayed. In order to simulate
the situation where sources do not share the same receieffirst generate the data fully
on the entire domain of measurement and then we knock ounhdbna some percentage
of the generated data. This setting roughly corresponds 8MG experiment with faulty
receivers.

For each example, we use Algorithbrwith one of the variantsi), (ii), or (i) paired
with one of the stopping criteria) or (b). For instance, when using variatif) (vith the soft
stopping criterionlf), we denote the resulting algorithm by, (©). For the relaxed stopping
rule (b) we (conservatively) sefy = 100 in (2.3). A computation using RS applied to the
original data, using variant (i,x), is compared to one usk&applied to the completed data
through variant (ii,x) or (iii,x), where x stands faror b.

For convenience of cross reference, we gather all resudgrgn algorithm comparisons
and corresponding work counts in Taldlel below. For Exampleg, 2, 3, and5, the corre-
sponding entries of this table should be read together Wwéhntisfit plots for each example.

TABLE 4.1
Algorithm and work in terms of number of PDE solves, comgaRI$ against data completion using Gaussian SS.

Example| Algorithm Random Subset Data Completion
1 (i,a) | (i, a) 3,647 1,716
2 (i,a) | (iti,a) 6,279 1,754
3 (i,a) | (iti,a) 3,887 1,704
4 (i,b) | (i1,b) 4,004 579
5 (i,a) | (iti,a) 3,671 935
6 (,b) | (i7,b) 1,016 390
7 (i,b) | (i1,b) 4,847 1,217

ExAaMPLE 1. In this example, we place two target objects of condugtivi = 1 in
a background of conductivity;; = 0.1, and5% noise is added to the data as described
above. Also25% of the data requires completion. The discontinuities increductivity are
touching the measurement domain, so we 3s8 (o complete the data. The hard stopping
criterion @) is employed, and iteration control is done using the odfuhata, i.e., variants
(i, @ and (ii, a) are compared: see the first entry of Tabléand Figuret.4(a).

0
N/ ;

o1

0.2 02

0.4

06

0.8

1

(a) True model (b) Random Subset (c) Data Completion

FiG. 4.1. Examplel: reconstructed log conductivity witB5% data missing and% noise. Regulariza-
tion (3.5) has been used to complete the data.
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The corresponding reconstructions are depicted in Figuirdt can be seen that roughly
the same quality reconstruction is obtained using the datgptetion method at less than half
the price.

EXAMPLE 2. This example is the same as Exampleexcept thab0% of the data is
missing and requires completion. The same algorithm vezr@sin Examplé are compared.
The reconstructions are depicted in Figdr@ and comparative computational results are
recorded in Tabld.1and Figuret.4 (b).

0

! - .
02 -02 -02

103 03
0.4 -04 -0.4

| os |05

-0.6 |-06 1-06

07 07

08 08
-0.8

09 -09

-1 -1
-1

(a) True model (b) Random Subset (c) Data Completion

FIG. 4.2. Example2: reconstructed log conductivity with0% data missing and% noise. Regulariza-
tion (3.5) has been used to complete the data.

Similar observations to those in Examplegenerally apply here as well, despite the
smaller amount of original data.

ExamPLE 3. This is the same as Examién terms of noise and amount of missing
data, except that the discontinuities in the conductivity some distance away from the
common measurement domain, so we usé)(to complete the data. The same algorithm
variants as in the previous two examples are compared,$blaing the effect of a smoother

data approximant.
0 0 o
!_:; !:;
i B
os i'ii i'ZZ
1 3 !

(a) True model (b) Random Subset (c) Data Completion

FiG. 4.3. Example3: reconstructed log conductivity with0% data missing and% noise. Regulariza-
tion (3.1) has been used to complete the data.

Results are recorded in Figufe3, the third entry of Tabl&.1, and Figuret.4(c).

Figures4.1, 4.2, and4.3in conjunction with Figuret.4, as well as Tablé.1, show the
superiority of the SS method combined with data completizer the RS method with the
original data. From the first three entries of Tabl& we see that the SS reconstruction with
completed data can be done more efficiently by a factor of rii@ne two. The quality of the
reconstruction is also very good. Note that the graph of tisditnior Data Completion lies
mostly under that of Random Subset. This means that, giveeed fiumber of PDE solves,
we obtain a lower (and thus better) misfit for the former thartfie latter.

Next, we consider examples in 3D.

EXAMPLE 4. In this example, the discontinuities in the true, piesaxonstant conduc-
tivity extend all the way to the common measurement domaie,Figure4.5. We therefore
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——Random Subset |
—+—Completed Data ||
----- Desired Misfit ||

(a) Examplel

—— Random Subset -
——Completed Data ||
***** Desired Misfit 1

(b) Example2

s
——Random Subset |
—+— Completed Data
----- Desired Misfit |

(c) Example3

FIG. 4.4.Data misfit vs. PDE count for Exampl&s2, and3.

use B.5) to complete the data. The target object has conductiuity= 1 in a background
having conductivitys;; = 0.1. We add2% noise and knock oui0% of the data. Further-
more, we consider the relaxed stopping criteriop (With the original data (hence using
RS), the varianti( b) is employed, and it is compared to the variantlf), with SS applied
to the completed data. For the latter case, the stoppingatude is adjusted as discussed in
Section2.1
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°Q

%

-nz

(d) 3D view

(a) RS slices (b) 3D view

Ry

FIG. 4.6. Example4: reconstructed log conductivity for the 3D model with (aifgndom Subset, (c,d) Data
Completion for the case @% noise ands0% of data missing. Regularizatiai3.5) has been used to complete the
data.

Reconstruction results are depicted in Figdii@ and work estimates are gathered in the
4th entry of Table4.1 It can be seen that the results relative to data completibich are
obtained at about /7th the cost, are comparable to those obtained with RS aptitide
original data.

ExampPLE 5. The underlying model in this example is the same as thakaniple4
except that, since we intend to plot the misfit on the entita daevery GN iteration, we de-
crease the reconstruction mesh resolution7ta Also, 30% of the data requires completion,
and we use the level set transfer functiéhg( to reconstruct the model. With the origi-
nal data, we use the variant §), while the varianti(i, a) is used with the completed data.
The reconstruction results are recorded in Figuig and performance indicators appear in
Figure4.8as well as Tabld.1

(a) RS slices (b) 3D view (c) DC slices

FIG. 4.7. Example5: reconstructed log conductivity for the 3D model using tieel set method with (a,b)
Random Subset, (c,d) Data Completion for the cas¥ohoise and30% of data missing. Regularizatigi.5) has
been used to complete the data.
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10

Random Subset |
—+— Completed Data ||
----- Desired Misfit

10 10 10 10 10

FIG. 4.8.Data misfit vs. PDE count for Exampie

The algorithm proposed here produces a better reconstnuian RS on the original
data. A relative efficiency observation can be derived froabld 4.1, where a factor of
roughly4 is revealed.

EXAMPLE 6. This is exactly the same as Exampleexcept that we use the level set
transfer function Z.6) to reconstruct the model. The same variants of Algorithmas in
Exampled are employed.

a) RS slices (b) 3D view (c) DC slices (d) 3D view

FIG. 4.9. Example6: reconstructed log conductivity for the 3D model using tieel set method with (a,b)
Random Subset, (c,d) Data Completion for the cas®¥ohoise and50% of data missing. Regularizatig3.5) has
been used to complete the data.

It is evident from Figuret.9 that employing the level set formulation allows a signifi-
cantly better quality reconstruction than in ExampleThis is expected, as much stronger
assumptions on the true model are utilized.8n32] it was shown that using level set func-
tions can greatly reduce the total amount of work, and thibierved here as well.

Whereas in all previous examples convergence of the modifi¢deeations from a zero
initial guess was fast and uneventful, typically requiriegrer than 10 iterations, the level set
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result of this example depends am, in a more erratic manner. This reflects the underlying
uncertainty of the inversion, with the initial guess, playing the role of a prior.

It can be clearly seen from the results of Example$, and6 that Algorithm 1 does
a great job in recovering the model by using the completed gats the SS method, as
compared to RS with the original data. This is so both in teofntotal work and quality
of the recovered model. Note that for all the reconstrustiadhe conductive object placed
deeper than the ones closer to the surface is not recovetedis is due to the fact that we
only measure on the surface, and the information coming flesdeep conductive object is
majorized by that coming from the objects closer to the serfa

EXAMPLE 7. In this 3D example, we examine the performance of our datgptetion
approach for more severe cases of missing data. For thispteame place a target object
of conductivityo; = 1 in a background of conductivity;; = 0.1, see Figuret.10, and
2% noise is added to the “exact” data. Then we knock®j of the data and use(1) to
complete it. The algorithm variants employed are the sanie Bgamplest and 6.

Results are gathered in Figurésll as well as Tablel.1. The data completion plus
simultaneous sources algorithm does well again, with aciefiity factor= 4.

ul
HEEEE [,

FIG. 4.10.True Model for Exampl@&.
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(a) RS slices (b) 3D view (c) DC slices (d) 3D view

FiG. 4.11.Example7: reconstructed log conductivity for the 3D model with (aRgndom Subset, (c,d) Data
Completion for the case &% noise and70% data missing. Regularizatiof8.1) has been used to complete the
data.

5. Conclusions and further comments.This paper is a sequel t&%], in which we
studied the case where sources share the same receiveeswelbave focused on the very
practical case where sources do not share the same recgatease distributed in a particular
manner, and we have proposed a hew approach based on apfalypegularized data com-
pletion. Our data completion methods are motivated by Snbgpaces theory regarding the
properties of weak solutions along the domain boundary.rékelting completed data allow
an efficient use of the methods developeddf|] as well as utilization of a relaxed stopping
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criterion. Our approach shows great success in cases ofratediata completion, say up to
60—-70%. In such cases we have demonstrated that, utilinimg sariant of Algorithnil, an
execution speedup factor of at least 2 and often much morbeachieved while obtaining
excellent reconstructions.

It needs to be emphasized that a blind employment of somepitgion/approximation
method would not take into account available a priori infation about the sought signal. In
contrast, the method developed in this paper, while beimg sienple, is in fact built upon
such a priori information and is theoretically justified.

Note that with the methods of SectiBnve have also replaced the original data with new,
approximate data. Alternatively we could keep the origishaia, and just add the missing
data sampled from; at appropriate locations. The potential advantage of dtiiggis that
fewer changes are made to the original problem, so it woudthsplausible that the data
extension will produce results that are close to the moresipe inversion without using the
simultaneous sources method, at least when there are oaly missing receivers. However,
we found in practice that this method yields similar or waesgonstructions for moderate or
large amounts of missing data as compared to the methodstids8.

For severe cases of missing data, 88% or more, we do not recommend data com-
pletion in the present context as a safe approach. With st oimpletion, the bias in the
completed field could overwhelm the given observed datatlamdecovered model may not
be correct. In such cases, one can use the RS method appiieddadginal data. A good ini-
tial guess for this method may still be obtained with the S$hwe applied to the completed
data. Thus, one can always start with the most daring va(iigntof Algorithm 1, and add a
more conservative run of variant (i,b) on top, if necessary.

If the forward problem is very diffusive and has a strong sthiny effect, as is the
case for the DC-resistivity and EIT problems, then data detigm can be attempted using a
(hopefully) good guess of the sought modeby solving the forward problem and evaluating
the solution wherever necessafyg]. The rationale here is that even relatively large changes
in m(x) produce only small changes in the fieldgx). However, such a prior might prove
dominant, hence risky, and the data produced in this waikeutthe original data, no longer
have natural high frequency noise components. Indeedeaf@tadvantage of this approach
is in using the difference between the original measured dad the calculated prior field at
the same locations for estimating the noise le\fel a subsequent application of the Morozov
discrepancy principlel]3, 37].

In this paper we have focused on data completion, using wieermossible the same
computational setting as ir8f], which is our base reference. Other approaches to reduce
the overall computational costs are certainly possibleas€hinclude adapting the number of
inner PCG iterations in the modified GN outer iteration ($§§ pnd adaptive gridding for
m(x); see, e.g.,41] and the references therein. Such techniques are esgeint@pendent
of the focus here. At the same time, they can be incorporatddsed together with our
stochastic algorithms, further improving efficiency: effee ways of doing this are a topic
for future research.

The specific data completion techniques proposed in thisrpagve been justified and
used in our model DC resistivity problem. However, the olfeédeea can be extended to
other PDE based inverse problems as well, by studying theepties of the solution of the
forward problem. One first needs to see what the PDE solutiomgxpected to behave like
on the measurement domain, for example on a portion of thadany, and then impose this
prior knowledge in the form of an appropriate regularizeth@ data completion formulation.
Following that, the rest can be similar to our present apgrolmvestigating such extensions
to other PDE models is a subject for future studies.
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