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Abstract. The total least squares (TLS) method is a successful approachfor linear problems when not only
the right-hand side but also the system matrix is contaminatedby some noise. For ill-posed TLS problems, regular-
ization is necessary to stabilize the computed solution. In this paper we present a new approach for computing an
approximate solution of the dual regularized large-scale total least squares problem. An iterative method is proposed
which solves a convergent sequence of projected linear systems and thereby builds up a highly suitable search space.
The focus is on an efficient implementation with particular emphasis on the reuse of information.
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1. Introduction. Many problems in data estimation are governed by overdetermined
linear systems

(1.1) Ax ≈ b, A ∈ R
m×n, b ∈ R

m,m ≥ n.

In the classical least squares approach, the system matrixA is assumed to be free of error,
and all errors are confined to the observation vectorb. However, in engineering application
this assumption is often unrealistic. For example, if not only the right-hand sideb butA as
well are obtained by measurements, then both are contaminated by some noise.

An appropriate approach to this problem is the total least squares (TLS) method, which
determines perturbations∆A ∈ R

m×n to the coefficient matrix and∆b ∈ R
m to the vectorb

such that

(1.2) ‖[∆A,∆b]‖2F = min! subject to(A+∆A)x = b+∆b,

where‖ · ‖F denotes the Frobenius norm of a matrix. An overview on total least squares
methods and a comprehensive list of references is containedin [25, 30, 31].

The TLS problem (1.2) can be analyzed in terms of the singular value decomposition
(SVD) of the augmented matrix[A, b] = UΣV T ; cf. [8, 31]. A TLS solution exists if and
only if the right singular subspaceVmin corresponding toσn+1 contains at least one vector
with a nonzero last component. It is unique ifσ′

n > σn+1 whereσ′
n denotes the smallest

singular value ofA, and then it is given by

xTLS = − 1

V (n+ 1, n+ 1)
V (1 : n, n+ 1).

When solving practical problems, they are usually ill-conditioned, for example the dis-
cretization of ill-posed problems such as Fredholm integral equations of the first kind;
cf. [4, 9]. Then least squares or total least squares methods for solving (1.1) often yield
physically meaningless solutions, and regularization is necessary to stabilize the computed
solution.
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To regularize problem (1.2), Fierro, Golub, Hansen, and O’Leary [5] suggested to filter
its solution by truncating the small singular values of the TLS matrix [A, b], and they pro-
posed an iterative algorithm based on Lanczos bidiagonalization for computing approximate
truncated TLS solutions.

Another well-established approach is to add a quadratic constraint to the problem (1.2)
yielding the regularized total least squares (RTLS) problem

(1.3) ‖[∆A,∆b]‖2F = min! subject to(A+∆A)x = b+∆b, ‖Lx‖ ≤ δ,

where‖ · ‖ denotes the Euclidean norm,δ > 0 is the quadratic constraint regularization
parameter, and the regularization matrixL ∈ R

p×n, p ≤ n defines a (semi-)norm on the
solution space, by which the size of the solution is bounded or a certain degree of smoothness
can be imposed. Typically, it holds thatδ < ‖LxTLS‖ or evenδ ≪ ‖LxTLS‖, which
indicates an active constraint. Stabilization of total least squares problems by introducing a
quadratic constraint was extensively studied in [2, 7, 12, 14, 15, 16, 17, 19, 24, 26, 27, 28].

If the regularization matrixL is nonsingular, then the solutionxRTLS of the prob-
lem (1.3) is attained. For the more general case of a singularL, its existence is guaranteed if

(1.4) σmin([AF, b]) < σmin(AF ),

whereF ∈ R
n×k is a matrix the columns of which form an orthonormal basis of the nullspace

of L; cf. [1].
Assuming inequality (1.4), it is possible to rewrite problem (1.3) into the more tractable

form

(1.5)
‖Ax− b‖2
1 + ‖x‖2 = min! subject to ‖Lx‖ ≤ δ.

Related to the RTLS problem is the approach of the dual RTLS that has been introduced
and investigated in [22, 24, 29]. The dual RTLS (DRTLS) problem is given by

(1.6) ‖Lx‖ = min! subject to (A+∆A)x = b+∆b, ‖∆b‖ ≤ hb, ‖∆A‖F ≤ hA,

where suitable bounds for the noise levelshb andhA are assumed to be known. It was shown
in [24] that in case the two constraints‖∆b‖ ≤ hb and‖∆A‖F ≤ hA are active, the DRTLS
problem (1.6) can be reformulated into

(1.7) ‖Lx‖ = min! subject to ‖Ax− b‖ = hb + hA‖x‖.

Note that due to the two constraint parameters,hb andhA, the solution set of the dual
RTLS problem (when varyinghb andhA) is larger than that one of the RTLS problem with
only one constraint parameterδ. For every RTLS problem, there exists a corresponding dual
RTLS problem with an identical solution, but this does not hold vice versa.

In this paper we propose an iterative projection method which combines orthogonal
projections to a sequence of generalized Krylov subspaces of increasing dimensions and a
one-dimensional root-finding method for the iterative solution of the first order optimality
conditions of (1.6). Taking advantage of the eigenvalue decomposition of the projected prob-
lem, the root-finding can be performed efficiently such that the essential costs of an iteration
step are two matrix-vector products. Since usually a very small number of iteration steps is
required for convergence, the computational complexity ofour method is essentially of the
order of a matrix-vector product with the matrixA.
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The paper is organized as follows. In Section2, basic properties of the dual RTLS prob-
lem are summarized, the connection to the RTLS problem is presented, and two methods for
solving small-sized problems are investigated. For solving large-scale problems, different ap-
proaches based on orthogonal projection are proposed in Section 3. The focus is on the reuse
of information when building up well-suited search spaces.Section4 contains numerical ex-
amples demonstrating the efficiency of the presented methods. Concluding remarks can be
found in Section5.

2. Dual regularized total least squares.In Section2.1, important basic properties of
the dual RTLS problem are summarized and connections to related problems are regarded,
especially the connection to the RTLS problem (1.3). In Section2.2, existing methods for
solving small-sized dual RTLS problems (1.6) are reviewed, difficulties are discussed, and a
refined method is proposed.

2.1. Dual RTLS basics.Literature about dual regularized total least squares (DRTLS)
problems is limited, and they are by far less intensely studied than the RTLS problem (1.3).
The origin of the DRTLS probably goes back to Golub, who analyzed in [6] the dual regular-
ized least squares problem

(2.1) ‖x‖ = min! subject to ‖Ax− b‖ = hb

assuming an active constraint, i.e.,hb < ‖AxLS−b‖ with xLS = A†b being the least squares
solution. His results are also valid for the non-standard caseL 6= I

(2.2) ‖Lx‖ = min! subject to ‖Ax− b‖ = hb.

In [6], an approach with a quadratic eigenvalue problem is presented from which the solution
of (2.1) can be obtained. The dual regularized least squares problem (2.2) is exactly the dual
RTLS problem withhA = 0, i.e., with no error in the system matrixA. In the following we
review some facts about the dual RTLS problem.

THEOREM 2.1 ([23]). If the two constraints‖∆b‖ ≤ hb and‖∆A‖ ≤ hA of the dual
RTLS problem(1.6) are active, then its solutionx = xDRTLS satisfies the equation

(2.3) (ATA+ αLTL+ βI)x = AT b

with the parametersα, β solving

(2.4) ‖Ax(α, β)− b‖ = hb + hA‖x(α, β)‖, β = −hA(hb + hA‖x(α, β)‖)
‖x(α, β)‖ ,

wherex(α, β) is the solution of(2.3) for fixedα andβ.
In this paper we throughout assume active inequality constraints of the dual RTLS prob-

lem, and we mainly focus on the first order necessary conditions (2.3) and (2.4).
REMARK 2.2. In [21], a related problem is considered, i.e., the generalized discrepancy

principle for Tikhonov regularization. The correspondingproblem reads:

‖Ax(α)− b‖2 + α‖Lx(α)‖2 = min!

with the value ofα chosen such that

‖Ax(α)− b‖ = hb + hA‖x(α)‖.

Note that this problem is much easier than the dual RTLS problem. A globally convergent
algorithm can be found in [21].
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By comparing the solution of the RTLS problem (1.3) and of the dual RTLS prob-
lem (1.6) assuming active constraints in either case, some basic differences of the two prob-
lems can be revealed: using the RTLS solutionxRTLS , the corresponding corrections of the
system matrix and the right-hand side are given by

∆ARTLS =
(b−AxRTLS)x

T
RTLS

1 + ‖xRTLS‖2
,

∆bRTLS =
AxRTLS − b

1 + ‖xRTLS‖2
,

whereas the corrections for the dual RTLS problem are given by

∆ADRTLS = hA

(b−AxDRTLS)x
T
DRTLS

‖(b−AxDRTLS)xT
DRTLS‖F

,

∆bDRTLS = hb

AxDRTLS − b

‖AxDRTLS − b‖ ,

(2.5)

with xDRTLS as the dual RTLS solution. Notice, that the corrections for the system matrices
of the two problems are always of rank one. A sufficient condition for identical corrections is
given byxDRTLS = xRTLS and

(2.6) hA =
‖xRTLS‖‖b−AxRTLS‖

1 + ‖xRTLS‖2
and hb =

‖AxRTLS − b‖
1 + ‖xRTLS‖2

.

In this case the value forβ in (2.4) can also be expressed as

β = −hA(hb + hA‖xRTLS‖)
‖xRTLS‖

= −‖AxRTLS − b‖2
1 + ‖xRTLS‖2

.

By the first order conditions, the solutionxRTLS of problem (1.3) is a solution of the
problem

(ATA+ λIIn + λLL
TL)x = AT b,

where the parametersλI andλL are given by

λI = −‖Ax− b‖2
1 + ‖x‖2 , λL =

1

δ2

(
bT (b−Ax)− ‖Ax− b‖2

1 + ‖x‖2
)
.

Identical solutions for the RTLS and the dual RTLS problem can be constructed by using the
solutionxRTLS of the RTLS problem to determine values for the correctionshA andhb as
stated in (2.6). This does not hold the other way round, i.e., with the solution xDRTLS of a
dual RTLS problem at hand, it is in general not possible to construct a corresponding RTLS
problem since the parameterδ cannot be adjusted such that the two parameters of the dual
RTLS problem are matched.

2.2. Solving the Dual RTLS problems. Although the formulation (1.7) of the dual
RTLS problem looks tractable, this is generally not the case. In [24] suitable algorithms are
proposed for special cases of the DRTLS problem, i.e., whenhA = 0, hb = 0, or L = I,
where the DRTLS problem degenerates to an easier problem. In[29] an algorithm for the
general case dual RTLS problem formulation, (2.3) and (2.4), is suggested. This idea has
been worked out as a special two-parameter fixed-point iteration in [22, 23], where a couple
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of numerical examples can be found. Note that these methods for solving the dual RTLS
problem require the solution of a sequence of linear systemsof equations, which means that
complexity and effort are much higher compared to existing algorithms for solving the related
RTLS problem (1.3); cf. [12, 14, 15, 16, 17, 19]. In the following, inconsistencies of the two
DRTLS methods are investigated, and a refined method is worked out.

Let us review the DRTLS algorithm from [29] for computing the dual RTLS solution; it
will serve as the basis for the methods developed later in this paper.

Algorithm 1 Dual Regularized Total Least Squares Basis Method.
Require: ε > 0, A, b, L, hA, hb

1: Choose a starting valueβ0 = −h2
A

2: for i = 0, 1, . . . until convergencedo
3: Find pair(xi, αi) that solves

(2.7) (ATA+ βiI + αiL
TL)xi = AT b, s.t.‖Axi − b‖ = hb + hA‖xi‖

4: Computeβi+1 = −hA(hb + hA‖xi‖)
‖xi‖

5: Stop if |βi+1 − βi| < ε
6: end for
7: Determine an approximate dual RTLS solutionxDRTLS = xi

The pseudo-code of Algorithm1 (directly taken from [29]) is not very precise since the
solution of (2.7) is nonunique in general and a suitable pair has to be selected. Note that
the motivation for Algorithm1 in [29] is given by the analogy to a similar looking fixed
point algorithm for the RTLS problem (1.5) with an efficient implementation to be found
in [12, 14, 15, 16, 17].

The method proposed in [22] is based on a model function approach for solving the
minimization problem

(2.8) ‖Ax(α, β)− b‖2 + α‖Lx(α, β)‖2 + β‖x(α, β)‖2 = min!

subject to the constraints

(2.9) ‖Ax(α, β)− b‖ = hb + hA‖x(α, β)‖ and β = −h2
A − hAhb

‖x(α, β)‖ .

The corresponding method for solving (2.8) with (2.9) is given below as Algorithm2; cf. [22].
This approach is shown to work fine for a couple of numerical examples (cf. [22, 23]), but
a proof of global convergence is only given for special cases, e.g., forhA = 0. In [20],
details about the model function approach for the more general problem of multi-parameter
regularization can be found.

The following example shows that Algorithm2 does not necessarily converge to a solu-
tion of the dual RTLS problem (1.6).

EXAMPLE 2.3. Consider the undisturbed problem

Atrue =



0.5 −0.5
1 1
1 −1


 , btrue =



0.5
1
1


 with solutionxtrue =

[
1
0

]
,

which is nicely scaled since the norm ofbtrue is equal to the norm of a column ofAtrue, and
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Algorithm 2 DRTLS Model Function Approach.
Require: ε > 0, A, b, L, hA, hb

1: Choose starting valuesα0 ≥ α∗, β0 = −h2
A

2: for i = 0, 1, . . . until convergencedo
3: Solve(ATA+ βiI + αiL

TL)xi = AT b
4: ComputeF1 = ‖Axi − b‖2 + αi‖Lxi‖2 + βi‖xi‖2,
5: F2 = ‖Lxi‖2, F3 = ‖xi‖2, D = −(‖b‖2 − F1 − αiF2)

2/F3,
6: T = (‖b‖2 − F1 − αiF2)/F3 − βi

7: Updateβi+1 = −hA(hb + hA‖xi‖)
‖xi‖

and compute

8: N = ‖b‖2 − h2
b −

2hAhb

√
−D

T + βi+1
+

D(T + 2βi+1 + h2
A)

(T + βi+1)2

9: Updateαi+1 = 2α2
iF2/N

10: Stop if |αi+1 − αi|+ |βi+1 − βi| < ε
11: end for
12: Solve(ATA+ βi+1I + αi+1L

TL)xDRTLS = AT b for the dual RTLS solution

thus
√
2‖btrue‖ = ‖Atrue‖F . Assume the following noise:

Anoise =



−1/

√
2 0

0 0√
0.14 0


 , bnoise =




0.4
0

−0.4




with
√
2‖bnoise‖ = ‖Anoise‖F . Thus, the system matrix and the right-hand side are given

byA = Atrue+Anoise andb = btrue+bnoise. The constraintshA, hb, and the regularization
matrixL are chosen as

hA = ‖Anoise‖F = 0.8, hb = ‖bnoise‖ = 0.8/
√
2, L =

[
2 0
1 1

]
.

When applying Algorithm2 to this example withα0 = 100 > α∗ and ε = 10−8, the
following fixed point is reached after 19 iterations

x∗ = (0.9300, 0.1781)T with α∗ = 0, β∗ = −1.1179, ‖Lx∗‖ = 2.1650.

The initial valueα0 = 100 seems to be unnecessarily far away from the limitα∗. Note that
for an initial value ofα0 = 2 > α∗, the same fixed point is reached after 28 iterations. Then
the constraint condition (2.9) is not satisfied,‖Ax∗ − b‖ − (hb + hA‖x∗‖) = −0.0356 6= 0,
and therefore this fixed point is not the solution of the dual RTLS problem.

The solution of this example is given by

xDRTLS = (0.7353, 0.0597)T with αDRTLS = 0.1125, βDRTLS = −1.2534,

with ‖LxDRTLS‖ = 1.6718 < ‖Lx∗‖ and‖AxDRTLS − b‖ − (hb + hA‖xDRTLS‖) = 0.
Note that for an initial value ofα0 = 1, this solution is reached after 65 iterations.

Example2.3 shows that Algorithm2 is not guaranteed to converge to the dual RTLS
solution. Hence, in the following we will focus on Algorithm1. The main difficulty of
Algorithm 1 is the constraint condition in (2.7), i.e.,‖Ax − b‖ = hb + hA‖x‖. The task to
find a pair(x, α) for a given value ofβ such that

(ATA+ βI + αLTL)x = AT b, s.t.‖Ax− b‖ = hb + hA‖x‖
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can have a unique solution, more than one solution, or no solution. In the following we try to
shed some light on this problem.

Let us introduce the function

g(α;β) := ‖Ax(α)− b‖ − hb − hA‖x(α)‖ with x(α) = (ATA+ βI + αLTL)−1AT b

for a given fixed value ofβ. In analogy to the solution of RTLS problems, we are looking for
the rightmost non-negative root ofg, i.e., the largestα ≥ 0; cf. [12, 14, 16, 28]. A suitable
tool for the investigation ofg is the generalized eigenvalue problem (GEVP) of the matrix
pair (ATA+ βI, LTL). It is assumed that the regularization matrixL has full rankn, hence
the GEVP is definite. Otherwise, a spectral decomposition ofLTL could be employed to
reduce the GEVP to the range ofL; this case is not worked out here.

LEMMA 2.4. Let [V,D] = eig(ATA + βI, LTL) be the spectral decomposition
of the matrix pencil(ATA + βI, LTL) with V T (ATA+ βI)V = D =: diag{d1, . . . dn}
andV TLTLV = I, and letc := V TAT b.
Theng(·) := g(·;β) : R+ → R has the following properties:

(i) g is a rational function, the only poles of which are the negative eigenvaluesdk
with ck 6= 0.

(ii) limα→∞ g(α) = ‖b‖ − hb.
(iii) Let dk be a simple negative eigenvalue withck 6= 0 and letvk be a corresponding

eigenvector. If‖Avk‖ < hA‖vk‖, thenlimα→−dk
= −∞, and if‖Avk‖ > hA‖vk‖,

thenlimα→−dk
= ∞.

Proof. The spectral decomposition of(ATA+ βI, LTL) yields

ATA+ βI + αLTL = V −T (D + αI)V −1.

Hence,

x(α) = (ATA+ βI + αLTL)−1AT b = V (D + αI)−1V TAT b

= V diag

{
1

di + α

}
c

(2.10)

with c = V TAT b, which immediately yields statement (i) andlimα→∞ x(α) = 0, from
which we get (ii).

If dk is a simple eigenvalue withck 6= 0 andvk a corresponding eigenvector, then

lim
α→−dk

(
dk + α

ck
x(α)− vk

)
= 0,

and therefore

g(α) ≈ f(α)(‖Avk‖ − hA‖vk‖) with f(α) = |ck/(dk + α)|

holds forα 6= −dk sufficiently close to−dk, which proves statement (iii).
From Lemma2.4 we obtain the following results about the roots ofg. We assume

that ‖b‖ − hb > 0, which applies for reasonably posed problems. Ifg(0) < 0, then it
follows (independently of the presence of poles) from (i) and (iii) that g has at least one pos-
itive root, and ifg(0) > 0 and a simple negative eigenvaluedk exists with non-vanishingck
and‖Avk‖ < hA‖vk‖, then the functiong has at least two positive roots. Otherwise, it may
happen thatg is positive onR+ and has no root inR+.

Since the functiong(α;β) is not guaranteed to have a root, it appears suitable to replace
the constraint condition in (2.7) by a corresponding minimization of

g(α;β) := ‖Ax− b‖ − hb − hA‖x‖ in R+,
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Algorithm 3 Dual Regularized Total Least Squares Method.
Require: ε > 0, A, b, L, hA, hb

1: Choose a starting valueβ0 = −h2
A

2: for i = 0, 1, . . . until convergencedo
3: Find pair(xi, αi) for the rightmostαi ≥ 0 that solves

(2.11) (ATA+ βiI + αiL
TL)xi = AT b, s.t. min! = |g(αi;βi)|

4: Computeβi+1 = −hA(hb + hA‖xi‖)
‖xi‖

5: Stop if |βi+1 − βi| < ε
6: end for
7: Determine an approximate dual RTLS solutionxDRTLS = xi

yielding the revised Algorithm3.
REMARK 2.5. If a simple negative leftmost eigenvaluedn exists with non-vanishing

componentcn and‖Avn‖ < hA‖vn‖, then it is sufficient to restrict the root-finding ofg(α)
to the interval(−dn,∞), which contains the rightmost root ofg.

REMARK 2.6. A note on the idea to extend the domain of the functiong(α) to negative
values ofα, i.e., to eventually keep the root-finding instead of the minimization constraint in
equation (2.11). Unfortunately, it is of no principle remedy to allow negative values ofα. The
limit of g for α → −∞ is identical to that forα → ∞, i.e.,g(α)|α→−∞ = ‖b‖ − hb > 0.
Hence, it may happen that after extending the functiong(α) toR → R, only poles are present
with ‖Avi‖ > hA‖vi‖, i = 1, . . . , n and thus still no root ofg may exist. Notice thatα should
be positive at the dual RTLS solution in case of active constraints.

REMARK 2.7. Note that the quantity‖Lx‖ which is to be minimized in the dual RTLS
problem is not necessarily monotonic. Non-monotonic behavior may occur for the iterations
of Algorithm 3, i.e., for‖Lxi‖, i = 0, 1, . . . , as well as for the function‖Lx(α)‖ within an
iteration with a fixed value ofβ andx(α) = (ATA+βI+αLTL)−1AT b. This is in contrast
to the quantityf(x) for RTLS problems; cf. [14, 16].

Let us apply Algorithm3 to Example2.3. The functiong(α;β0) is shown in Fig-
ure 2.1 for the starting value ofβ0 = −h2

A = −0.64. For the limit asα → ∞, it holds
thatg(α)|α→∞ = ‖b‖ − hb = 0.9074, and forα → 0 we haveg(0) = 0.0017. The eigen-
values of the matrix(ATA + β0I) are positive and so are the eigenvalues of the matrix
pair (ATA+ β0I, L

TL). Hence, no poles exist for positive values ofα. Furthermore, in this
example no positive root exists. There do exist negative roots, i.e., the rightmost negative
root is located atα = −0.0024, but this is not considered any further; cf. Remark2.6. Thus,
in the first iteration of Algorithm3, the pair(x0, α0) = ([0.7257, 0.0909]T , 0) is selected as
the minimizer of|g(α;−h2

A)| for all non-negative values ofα. In the following iterations,
the functiong(α, βi), i = 1, . . . always has a unique positive root. Machine precision2−52

is reached after5 iterations of Algorithm3. The method of choice to find the rightmost
root or to find the minimizer of|g(α)|, respectively, is discussed in Section3. Up to now,
any one-dimensional minimization method suffices to solve an iteration of a small-sized dual
regularized total least squares problem.

REMARK 2.8. Another interesting approach for obtaining an approximation of the dual
RTLS solution is to treat the constraintshA = ‖∆A‖F andhb = ‖∆b‖ separately. In the
first stage, the valuehA can be used to make the system matrixA better conditioned, e.g., by
a shifted SVD, truncated SVD, shifted normal equations, or most promising for large-scale
problems by a truncated bidiagonalization ofA. In the second stage, the resulting problem
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FIGURE 2.1. Initial functiong(α;β0) for Example2.3.

has to be solved, i.e., a Tikhonov least squares problem using hb as discrepancy principle.
This means that with the corrected matrix̂A = A + ∆Â, the following problem has to be
solved

‖Lx‖ = min! subject to ‖Âx− b‖ = hb.

The first order optimality conditions can be obtained from the derivative of the Lagrangian

L(x, µ) = ‖Lx‖2 + µ(‖Âx− b‖2 − h2
b).

Setting the derivative equal to zero yields

(ÂT Â+ µ−1LTL)x = ÂT b subject to ‖Âx− b‖ = ‖∆b̂‖ = hb,

which is just the problem of determining the correct valueµ for the Tikhonov least squares
problem such that the discrepancy principle holds with equality. Hence, a function

f(µ) = ‖Âxµ − b‖2 − h2
b with xµ := (ÂT Â+ µ−1LTL)−1ÂT b

can be introduced, where its rootµ̄ determines the solutionxµ̄; cf. [13]. A root exists if

‖PN (ÂT )b‖ = ‖ÂxLS − b‖ < hb < ‖b‖ with xLS = Â†b.

Note, that this condition here does not hold automatically,which may lead to difficulties.
Another weak point of this approach is that none of the proposed variants in the first stage
uses corrections∆Â of small rank although the solution dual RTLS correction matrix is of
rank one; see equation (2.5).

3. Solving large DRTLS problems. When solving large-scale problems, it is pro-
hibitive to solve a large number of huge linear systems. A natural approach would be to
project the linear system in equation (2.11) in line 3 of Algorithm 3 onto search spaces of
much smaller dimensions and then only to work with the projected problems. In this paper
we propose an iterative projection method that computes an approximate solution of (2.11)
in a generalized Krylov subspaceV, which is then used to solve the corresponding restricted
minimization problemmin! = |gV (αi;βi)| with gV (α;β) := ‖AV y−b‖−hb−hA‖V y‖ and
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where the columns ofV form an orthonormal basis ofV. For the use of generalized Krylov
subspaces in related problems, see [13, 18]. The minimization of|gV (α;β)| is in almost all
practical cases equal to the determination of the rightmostroot ofgV (α;β). Therefore in the
following, only root-finding methods are considered for solving the minimization constraint.
The root can be computed, e.g., by bracketing algorithms that enclose the rightmost root,
and it turned out to be beneficial to use rational inverse interpolation; see [15, 17]. Having
determined the rootαi for a value ofβi, a new valueβi+1 is calculated. These inner itera-
tions are carried out until the projected dual RTLS problem is solved. Only then is the search
spaceV expanded by the residual of the original linear system (2.11). After expansion, a
new projected DRTLS problem has to be solved, i.e., zero-finding and updating ofβ is re-
peated until convergence. The outer subspace enlargement iterations are performed untilα, β,
or x(β) = V y(β) satisfy a stopping criterion. Since the expansion direction depends on the
parameterα, the search spaceV is not a Krylov subspace. Numerical examples illustrate that
the stopping criterion typically is satisfied for search spacesV of fairly small dimension.

The cost of enlarging the dimension of the search space by oneis of the order ofO(mn)
arithmetic floating point operations and so is the multiplication of a vector by the mat-
rix (ATA+ βI + αLTL). This cost is higher than the determination of the dual RTLS solu-
tion of a projected problem. We therefore solve the completeprojected DRTLS problem after
each increase ofdim(V) by one. The resulting method is given in Algorithm4.

Algorithm 4 Generalized Krylov Subspace Dual RTLS Method.

Require: ε > 0, A, b, L, hA, hb and initial basisV0, V T
0 V0 = I

1: Choose a starting valueβ0
0 = −h2

A

2: for j = 0, 1, . . . until convergencedo
3: for i = 0, 1, . . . until convergencedo
4: Find pair(y(βj

i ), α
j
i ) for rightmostαj

i ≥ 0 that solves

(3.1) V T
j (ATA+ βj

i I + αj
iL

TL)Vjy(β
j
i ) = V T

j AT b, s.t. min! = |gVj
(αj

i ;β
j
i )|

5: Computeβj
i+1 = −hA(hb + hA‖y(βj

i )‖)
‖y(βj

i )‖
6: Stop if |βj

i+1 − βj
i |/|β

j
i | < ε

7: end for
8: Computerj = (ATA+ βj

i I + αj
iL

TL)Vjy(β
j
i )−AT b

9: Computêrj = M−1rj (whereM is a preconditioner)
10: Orthogonalizẽrj = (I − VjV

T
j )r̂j

11: Normalizevnew = r̃j/‖r̃j‖
12: Enlarge search spaceVj+1 = [Vj , vnew]
13: end for
14: Determine an approximate dual RTLS solutionxDRTLS = Vjy(β

j
i )

Algorithm 4 iteratively adjusts the parametersα andβ and builds up a search space si-
multaneously. Generally, “convergence” is achieved already for search spaces of fairly small
dimension; see Section4. Most of the computational work is done in line 8 for comput-
ing the residual since solving the projected dual RTLS problem in lines 3–7 is comparably
inexpensive.

We can use several convergence criteria in line 2:

• Stagnation of the sequence{βj}: the relative change of two consecutive valuesβj at
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the solution of the corresponding dual RTLS problems is small, i.e.,|βj+1 − βj |/|βj |
is smaller than a given tolerance.

• Stagnation of the sequence{αj}: the relative change of two consecutive valuesαj at
the solution of the corresponding dual RTLS problems is small, i.e.,|αj+1 − αj |/|αj |
is smaller than a given tolerance.

• The relative change of two consecutive Ritz vectorsx(βj) = Vjy(β
j) at the solution

of a projected DRTLS problems is small, i.e.,‖x(βj+1)−x(βj)‖/‖x(βj)‖ is smaller
than a given tolerance.

• The absolute values of the lasts elements of the vectory(βj) at the solution of a
projected DRTLS problem are several orders of magnitude smaller than the firstt
elements, i.e., a recent increase of the search space does not affect the computed
solution significantly.

• The residualrj from line 8 is sufficiently small, i.e.,‖rj‖/‖AT b‖ is smaller than a
given tolerance.

We now discuss how to efficiently determine an approximate solution of the large-scale
dual RTLS problem (1.6) with Algorithm 4. For large-scale problems, matrix valued opera-
tions are prohibitive, thus our aim is to carry out the algorithm with a computational complex-
ity of O(mn), i.e., of the order of a matrix-vector product (MatVec) witha (general) dense
matrixA ∈ R

m×n.
• The algorithm can be used with or without preconditioner. Ifno preconditioner is to

be used, thenM = I and line 9 can be neglected. When a preconditioner is used, it is
suggested to chooseM = LTL if M > 0 andL is sparse, and otherwise to employ
a positive definite sparse approximationM ≈ LTL. For solving systems withM , a
Cholesky decomposition has to be computed once. The cost of this decomposition
is less thanO(mn), which includes the solution of the subsequent system with the
matrixM .

• A suitable starting basisV0 is an orthonormal basis of small dimension (e.g.ℓ = 5)
of the Krylov spaceKℓ

(
M−1ATA,M−1AT b

)
.

• The main computational cost of Algorithm4 consists in building up the search
spaceVj of dimensionℓ + j with Vj := span{Vj}. If we assumeA to be un-
structured andL to be sparse, the costs for determiningVj are roughly2(ℓ+ j)− 1
matrix-vector multiplications withA, i.e., one MatVec forAT b andℓ+j−1 MatVecs
with A andAT , respectively. IfL is dense, the costs roughly double.

• An outer iteration is started with the previously determined value ofβ from the last
iteration, i.e.,βj+1

0 := βj
i , j = 0, 1, . . . .

• When the matricesVj , AVj , A
TAVj , L

TLVj are stored and one column is appended
at each iteration, no additional MatVecs have to be performed.

• With y = (V T
j (ATA+ βj

i I + αLTL)Vj)
−1V T

j AT b and the matrixVj ∈ R
n×(ℓ+j)

having orthonormal columns, we getgVj
(α;βi) = ‖AVjy − b‖ − hb − hA‖y‖.

• Instead of solving the projected linear system (3.1) several times, it is sufficient to
solve the eigenproblem of the projected pencil(V T

j (ATA + βj
i I)Vj , V

T
j LTLVj)

once for everyβj
i , which then can be used to obtain an analytic expression for

y(α) = (V T
j (ATA + βj

i I + αLTL)Vj)
−1V T

j AT b; cf. equations (2.10) and (3.2).

This enables efficient root-finding algorithms for|gVj
(αj

i ;β
j
i )|.

• With the vectoryj = y(βj
i ), the residual in line 8 can be written as

rj = ATAVjy
j + αj

iL
TLVjy

j + βj
i x(β

j
i )−AT b.

Note that in exact arithmetic the directionr̄ = ATAVjy
j +αj

iL
TLVjy

j + βj
i x(β

j
i )

leads to the same new expansion ofvnew.
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• For a moderate number of outer iterationsj ≪ n, the overall cost of Algorithm4 is
of the orderO(mn).

The expansion direction of the search space in iterationj depends on the current values
of αj

i , β
j
i ; see line 8. Since both parameters are not constant throughout the algorithm, the

search space is not a Krylov space but a generalized Krylov space; cf. [13, 18].
A few words concerning the preconditioner. Most examples inSection4 show that Algo-

rithm 4 gives reasonable approximations to the solutionxDRTLS also without preconditioner
but that it is not possible to obtain a high accuracy with a moderate size of the search space.
In [18] the preconditionerM = LTL or an approximationM ≈ LTL has been successfully
applied for solving the related Tikhonov RTLS problem, and in [15, 17] a similar precondi-
tioner has been employed for solving the eigenproblem occurring in the RTLSEVP method
of [26]. For Algorithm4 with preconditioner, convergence is typically achieved after a fairly
small number of iterations.

3.1. Zero-finding methods.For practical problems, the minimization constraint condi-
tion in (3.1) almost always reduces to the determination of the rightmost root of gVj

(α;βj
i ).

Thus, in this paper we focus on the use of efficient zero-finders, which only use a cheap
evaluation of the constraint condition for a given pair(y(βj

i ), α). As introduced in Sec-
tion 2.2, it is beneficial for the investigation ofgVj

(α;βj
i ) to compute the corresponding

eigendecomposition of the projected problem. It is assumedthat the projected regulariza-
tion matrixV T

j LTLVj is of full rank, which directly follows from the full rank assumption
of LTL, but this may even hold for singularLTL. An explicit expression fory(α) can be
derived analogously to the expression forx(α) in equation (2.10). With the decomposition
[W,D] = eig(V T

j ATAVj+βj
i I, V

T
j LTLVj) = eig(V T

j (ATA+βj
i I, L

TL)Vj) of the pro-
jected problem, the following relations for the eigenvector matrixW and the corresponding
eigenvalue matrixD hold. WithWTV T

j LTLVjW = I andWTV T
j (ATA+βj

i I)VjW = D,

the matrixV T
j (ATA+ βj

i I + αLTL)Vj can be expressed asW−T (D + αI)W−1. Hence,

y(α;βj
i ) =

(
V T
j (ATA+ βj

i I + αLTL)Vj

)−1

V T
j AT b

= W (D + αI)−1WTV T
j AT b = Wdiag

{
1

di + α

}
c

(3.2)

with c = WTV T
j AT b andV ∈ R

n×(ℓ+j). For the functiongVj
(α;βj

i ), the characterization
regarding poles and zeros as stated in Section2.2 for g(α;β) holds accordingly. So, after
determining the eigenvalue decomposition in an inner iteration for an updated value ofβj

i , all
evaluations of the constraint condition are then availableat almost no cost.

We are in a position to discuss the design of efficient zero-finders. Newton’s method is
an obvious candidate. This method works well if a fairly accurate initial approximation of
the rightmost zero is known. However, if our initial approximation is larger than and not very
close to the desired zero, then the first Newton step is likelyto give a worse approximation
of the zero than the initial approximation; see Figure4.1 for a typical plot ofg(α). The
functiong is flat for large values ofα > 0 and may contain several poles.

Let us review some facts about poles and zeros ofgV (α) := gVj
(α;βj

i ) that can be
exploited for zero-finding methods; cf. also Lemma2.4. The limit asα → ∞ is given
by gV (α)|α→∞ = ‖b‖ − hb, which is equal to the limit of the original functiong(α) and
should be positive for a reasonably posed problem where the correction ofb is assumed to
be smaller than the norm of the right-hand side itself. Assuming simple eigenvalues and the
orderingd1 > · · · > dm−1 > 0 > dm > · · · > dℓ+j , the shape ofgV can be characterized as
follows
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• If no negative eigenvalue occurs,gV (α) has no poles forα > 0 and nothing can be
exploited.

• For every negative eigenvaluedk, k = m, . . . , ℓ + j, with wk the corresponding
eigenvector, the expression‖AVjwk‖ − hA‖wk‖ can be evaluated, i.e., thekth col-
umn of the eigenvector matrixW ∈ R

(ℓ+j)×(ℓ+j). If ck 6= 0 with ck the kth
component of the vectorc = WTV T

j AT b and if ‖AVjwk‖ − hA‖wk‖ > 0, then
the functiongV (α) has a pole atα = −dk with limα→−dk

gV (α) = +∞. If
‖AVjwk‖ − hA‖wk‖ < 0 with ck 6= 0, thengV (α) has a pole atα = −dk with
limα→−dk

gV (α) = −∞.
• The most frequent case in practical problems is the occurrence of a negative smallest

eigenvalue dℓ+j < 0 with a non-vanishing componentcℓ+j such that
‖AVjwℓ+j‖ < hA‖wℓ+j‖. Then it is sufficient to restrict the root-finding to the in-
terval(−dℓ+j ,∞) which contains the rightmost root. This information can directly
be exploited in a bracketing zero-finding algorithm.

• Otherwise, the smallest negative eigenvalue corresponding to the rightmost pole
of gV (α) with limα→−dk

gV (α) = −∞ is determined, i.e., the smallest eigen-
valuedk, k = m, . . . , ℓ + j for which ck 6= 0 and‖AVjwk‖ < hA‖wk‖. This
rightmost pole is then used as a lower bound for a bracketing zero-finder, i.e., the
interval is restricted to(−dk,∞).

In this paper two suitable bracketing zero-finding methods are suggested. As a stan-
dard bracketing algorithm for determining the root in the interval (−dℓ+j ,∞), (−dk,∞),
or [0,∞), the King method is chosen; cf. [11]. The King method is an improved version of
the Pegasus method, such that after each secant step, a modified step has to follow.

In a second bracketing zero-finder, a suitable model function for gV is used; cf.
also [13, 15, 17]. Since the behavior at the rightmost root is not influenced much by the
rightmost pole but much more by the asymptotic behavior ofgV asα → ∞, it is reasonable
to incorporate this knowledge. Thus, we derive a zero-finderbased on rational inverse inter-
polation, which takes this behavior into account. Considerthe model function for the inverse
of gV (α),

(3.3) g−1
V ≈ h(g) =

p(g)

g − g∞
with a polynomial p(g) =

k−1∑

i=0

aig
i,

whereg∞ = ‖b‖−hb independently of the search spaceV. The degree of the polynomial can
be chosen depending on the information ofgV that is to be used in each step. We propose to
use three function values, i.e.,k = 3. This choice yields a small linear systems of equations
with ak × k matrix that have to be solved in each step.

Let us consider the use of three pairs{αi, gV (α
i)}, i = 1, 2, 3; see also [15]. Assume

that the following inequalities are satisfied,

(3.4) α1 < α2 < α3 and gV (α
1) < 0 < gV (α

3).

Otherwise we renumber the valuesαi so that (3.4) holds.
If gV is strictly monotonically increasing in[α1, α3], then (3.3) is a rational interpolant

of g−1
V : [gV (α

1), gV (α
3)] → R. Our next iterate isαnew = h(0), where the polyno-

mial p(g) is of degree2. The coefficientsa0, a1, a2 are computed by solving the equa-
tionsh(gV (αi)) = αi, i = 1, 2, 3, which we formulate as a linear system of equations with
a3× 3 matrix. In exact arithmetic,αnew ∈ (α1, α3), and we replaceα1 orα3 byαnew so that
the new triplet satisfies (3.4).
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Due to round-off errors or possible non monotonic behavior of g, the computed
valueαnew might not be contained in the interval(α1, α3). In this case we carry out a bi-
section step, so that the interval is guaranteed to still contain the zero. If we have two positive
valuesgV (αi), then we letα3 = (α1 +α2)/2; in the case of two negative valuesgV (αi), we
let α1 = (α2 + α3)/2.

4. Numerical examples.To evaluate the performance of Algorithm4, we use large-
dimensional test examples from Hansen’sRegularization Tools; cf. [10]. Most of the prob-
lems in this package are discretizations of Fredholm integral equations of the first kind, which
are typically very ill-conditioned.

The MATLAB routines baart, shaw, deriv2(1), deriv2(2), deriv2(3),
ilaplace(2), ilaplace(3), heat(κ=1), heat(κ=5), phillips, andblur pro-
vide square matricesAtrue ∈ R

n×n, right-hand sidesbtrue, and true solutionsxtrue, with
Atruextrue = btrue. In all cases, the matricesAtrue and [Atrue, btrue] are ill-conditioned.
The parameterκ for problemheat controls the degree of ill-posedness of the kernel:κ = 1
yields a severely ill-conditioned andκ = 5 a mildly ill-conditioned problem. The number
in brackets forderiv2 andilaplace specifies the shape of the true solution, e.g., for
deriv2, the ’2’ corresponds to a true continuous solution which is exponential while ’3’
corresponds to a piecewise linear one. The right-hand side is modified correspondingly.

To construct a suitable dual RTLS problem, the norm of the right hand sidebtrue is scaled
such that

√
n‖btrue‖ = ‖Atrue‖F , andxtrue is then scaled by the same factor.

The noise added to the problem is put in relation to the norm ofAtrue andbtrue, respec-
tively. Adding a white noise vectore ∈ R

n to btrue and a matrixE ∈ R
n×n to Atrue yields

the error-contaminated problem̄Ax ≈ b̄ with b̄ = btrue + e andĀ = Atrue +E. We refer to
the quotient

σ :=
‖[E, e]‖F

‖[Atrue, btrue]‖F
=

‖E‖F
‖Atrue‖F

=
‖e‖

‖btrue‖

as thenoise level. In the examples, we consider the noise levelsσ = 10−2 andσ = 10−3.
To adapt the problem to an overdetermined linear system of equations, we stack two

error-contaminated matrices and right-hand sides (with different noise realizations), i.e.,

A =

[
Ā1

Ā2

]
, b =

[
b̄1
b̄2

]
,

with the resulting matrixA ∈ R
2n×n andb ∈ R

2n. Stacked problems of this kind arise when
two measurements of the system matrix and right-hand side are available, which is, e.g., the
case for some types of magnetic resonance imaging problems.

Suitable values of constraint parameters are given byhA = γ‖E‖F andhb = γ‖e‖
with γ ∈ [0.8, 1.2].

For the small-scale example, the model function approach ofAlgorithm 2 as well as
the refined Algorithm3 and the iterative projection Algorithm4 are applied using the two
proposed zero-finders.

For several large-scale examples, two methods for solving the related RTLS problem
are evaluated additionally for further comparison. The implementation of the RTLSQEP
method is described in [14, 16, 17], and details of the RTLSEVP implementation can be
found in [15, 17]. For both algorithms, the value of the quadratic constraint δ in (1.3) is set
to δ = γ‖Lxtrue‖. Please note that the dual RTLS problem and the RTLS problem have
different solutions; cf. Section2.1.
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FIGURE 4.1. Initial functiong(α) for a small-size example.

The regularization matrixL is chosen as an approximation of the scaled discrete first
order derivative operator in one space dimension,

(4.1) L =



1 −1

. . .
. . .
1 −1


 ∈ R

(n−1)×n.

In all one-dimensional examples, we use the following invertible approximation ofL

L̃ =




1 −1
. ..

.. .
1 −1

ε


 ∈ R

n×n.

This nonsingular approximation toL was introduced and studied in [3], where it was found
that the performance of such a preconditioner is not very sensitive to the value ofε. In all
computed examples we letε = 0.1.

The numerical tests are carried out on an Intel Core 2 Duo T7200 computer with 2.3 GHz
and 2GB RAM under MATLAB R2009a (actually our numerical examples require less
than 0.5 GB RAM).

In Section4.1, the problemheat(κ=1) of small size is investigated in some detail. The
projection Algorithm4 is compared to the full DRTLS method described in Algorithm3 and
to the model function approach, Algorithm2. Several examples fromRegularization Tools
of dimension4000 × 2000 are considered in Section4.2. A large two-dimensional problem
with a system matrix of dimension38809× 38809 is investigated in Section4.3.

4.1. Small-scale problems.In this section we investigate the convergence behavior of
Algorithm 4. The convergence history of the relative approximation error norm is compared
to Algorithm 2 and to the full DRTLS Algorithm3. The system matrixA ∈ R

400×200 is
obtained by usingheat(κ = 1), adding noise of the levelσ = 10−2, and stacking two
perturbed matrices and right hand sides as described above.The initial value forβ is given
by β0 = −h2

A = −3.8757 · 10−5 and the corresponding initial functiong(α;β0) is displayed
in Figure4.1.
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FIGURE 4.2. Convergence histories forheat(1), size400× 200.

The functiong(α;β0) has 182 poles forα > 0 with the rightmost pole located at
the valueα = −d200 = 0.0039 and the second rightmost pole at−d199 = 0.00038 as in-
dicated by the dashed lines in Figure4.1. For these poleslimα→−dk

g(α) = −∞ holds
since‖Avk‖ − hA‖vk‖ < 0, for k = n − 1, n. In the left subplot, it can be observed that
the occurrence of the poles does not influence the behavior atthe zeroα0 = 0.0459. In
the right subplot, the behavior for large values ofα is displayed. The limit value is given
by g(α;β0)|α→∞ = g∞ = 0.0435.

Figure4.2 displays the convergence history of the Generalized KrylovSubspace Dual
Regularized Total Least Squares Method (GKS-DRTLS) using the preconditionerM = L̃T L̃
for different convergence measures.
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FIGURE 4.3. Convergence history of approximationsxk for heat(1), size400× 200.

The size of the initial search space is equal to8. Since no stopping criterion for the outer
iterations is applied, Algorithm4 actually runs untildim(V) = 200. Since all quantities
shown in Figure4.2(a)–(d) quickly converge, only the first part of each convergence history
is shown. It can be observed that not all quantities convergeto machine precision which is
due to the convergence criteria used within an inner iteration. Note that for each subspace
enlargement in the outer iteration, a DRTLS problem of the dimension of the current search
space has to be solved. For the solution of these projected DRTLS problems, a zero-finder is
applied, which in the following is referred to as inner iterations. For the computed example
heat(1), the convergence criteria have been chosen as10−12 for the relative error of{βk}
in the inner iterations, and also10−12 for the relative error of{αk} and for the absolute value
of gVj

(αk;βj
i ) within the zero-finder. In the upper left subplot of Figure4.2, the convergence

history of{αk} is shown. In every outer iteration, the dimension of the search space is in-
creased by one. Convergence is achieved within12 iterations corresponding to a search space
of dimension20. In Figure4.2(b) the relative change of{βk} is displayed logarithmically,
roughly reaching machine precision after12 iterations. The Figures4.2(c) and (d) show the
relative change of the GKS-DRTLS iterates{xk}, i.e., the approximate solutionsVjy(β

j
i )

obtained from the projected DRTLS problems and the norm of the residual{rk}, respec-
tively. For a search space dimension of about20, convergence is reached for these quantities,
too. Note that convergence does not have to be monotonicallydecreasing. Figure4.2(e) dis-
plays logarithmically the first50 absolute values of the entries in the coefficient vectory200.
This stresses the quality of the first20 columns of the basisV of the search space. The
coefficients corresponding to basis vectors with a column number larger than20 are basi-
cally zero, i.e., around machine precision. In Figure4.2(f) the true solution together with the
GKS-TTLS approximationx12 are shown. The relative error‖xtrue − x12‖/‖xtrue‖ is ap-
proximately30%. Note that identical solutionsxDRTLS are obtained with the GKS-DRTLS
method without preconditioner, the full DRTLS method, and the model function approach.
The RTLS solutionxRTLS has a relative error of‖xtrue−xRTLS‖/‖xtrue‖ = 8%, but it has
to be stressed that this corresponds to the solution of a different problem. Note that identical
solutionsxRTLS are obtained by the RTLSEVP and the RTLSQEP method. The dual RTLS
solution does not exactly match the peak ofxtrue, but on the other hand does not show the
ripples from the RTLS solution. In Figure4.3 the convergence history of the relative error
norms of{xk} with respect to the solutionxDRTLS are displayed for Algorithm4 with and
without preconditioner, the model function Algorithm2, and the full DRTLS Algorithm3.
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In the left subplot of Figure4.3, the whole convergence history of the approximation
error norms of both GKS-DRTLS iterates are shown, i.e., until dim(V) = 200 which corre-
sponds to192 outer iterations. As mentioned above, machine precision isnot reached due to
the applied convergence criteria for the inner iterations,i.e., it is reached a relative approx-
imation error of10−12. Additionally the convergence history of Algorithms2 and3 to the
same approximation level is shown. The right subplot is a close–up of the left one that only
displays the first15 iterations. While the full DRTLS method converges within5 and the
GKS-DRTLS method with preconditionerM = L̃T L̃ in about12 iterations to the required
accuracy, the GKS-DRTLS method without preconditioner requires140 iterations. This is a
very typical behavior of the GKS-DRTLS method without preconditioner, i.e., it is in need
of a rather large search space; here140 vectors ofR200 are needed. The model function ap-
proach was started with the initial valueα0 = 1.5α∗ with α∗ = 0.04702 as the value at the
solutionxDRTLS . Despite the good initial value, the required number of iterations was85,
where in each iteration of Algorithm2, a different large linear system of equations has to
be solved. The main effort of one iteration of the full DRTLS method Algorithm3 lies in
computing a large eigendecomposition such that the zero-finding problem can then be carried
out at negligible costs. Hence, the costs of the full DRTLS method are much less compared
to the model function approach. Note that the costs for obtaining the approximationx12 of
the GKS-DRTLS method with preconditioner are essentially only 39 MatVecs, i.e.,15 for
building up the initial space and24 for the resulting search spaceV ∈ R

200×20.

A few words concerning the zero-finders for the full DRTLS method and the GKS-
DRTLS Algorithm4. We start the bracketing zero-finders by first determining valuesαk such
that not allg(αk;βi) or gVj

(αk;βj
i ) are of the same sign. Such values can be determined

by multiplying available values of the parameterα by 0.01 or 100 depending on the sign
of g(α, βi). After very few steps, this gives an interval that contains aroot of g(α, βi). For
the King method, two valuesαk, k = 1, 2, with g(α1;βi)g(α

2;βi) < 0 are sufficient for ini-
tialization while for the rational inverse interpolation three pairs(αk, g(αk;βi)), k = 1, 2, 3,
have to be given with not allg(αk;βi), k = 1, 2, 3, having the same sign. For Algorithm3 the
initial value forα is chosen asα1 = −1.1d200 = 0.0043 with d200 being the smallest eigen-
value of(ATA + β0I, L̃

T L̃). This initial guess is located slightly right from the rightmost
pole; see also Figure4.1. For the GKS-DRTLS method Algorithm4, no pole ofgV0

(α;β0
0)

for the initial search spaceV0 ∈ R
200×8 exists, thus the initial value was set toα1 = 1. Note

that neverthelessgV0
(α;β0

0) does have a positive root. When, subsequently, the dimensionof
the search space is increased, the initial value for the parameterβj+1

0 is set equal to the last
determined valueβj

i . The first value of the parameterα, i.e.,α1, used during initialization
for the zero-finding problemsgVj

(α;βj
i ) = 0, i = 1, 2, . . . , is set equal to the last calculated

valueαj−1
i .

Tables4.1and4.2show the number of outer and inner iterations as well as the iterations
required for the zero-finder within one inner iteration for the full DRTLS method and the
generalized Krylov subspace DRTLS method with and without preconditioner. In Table4.1
the iterations required for Algorithm3 are compared to the inner and outer iterations of Al-
gorithm 4 when no preconditioner is applied, i.e., withM = I. The King method and the
rational inverse interpolation zero-finder introduced in Section3.1 are compared for solving
all the inner iterations.

The first outer iteration of the GKS-DRTLS method is treated separately since it corre-
sponds to solving the projected DRTLS with the starting basisV0 where no information from
previous iterations can be used as initial guess for the parametersα andβ. Thus, this leads to
a number of5 or 6 inner iterations, i.e., updates ofβ0

i , depending on the applied zero-finder.
The iterations required by the zero-finder is6 and7, respectively, for determining the very
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TABLE 4.1
Number of iterations for Full and GKS-DRTLS withM = I.

Zero-finder Alg.
Outer
iters

Inner
iters

1st it. 2nd it. 3rd it. ith it.

Rat.-Inv. GKS 1 6 6 2 1 0
Rat.-Inv. GKS 2–60 3–4 1–2 0–1 0 0
Rat.-Inv. GKS >60 1–3 0–1 0 0 -
Rat.-Inv. Full - 6 6 2 1 0
King GKS 1 5 7 3 3 0–1
King GKS 2–60 3–4 2–3 1–3 0–1 0–1
King GKS >60 1–2 0–1 0 - -
King Full - 5 7 3 3 0–1

first update ofβ0
0 , i.e.,β0

1 . The effort for determining the subsequent valuesβ0
i , i = 2, 3, . . . ,

drastically decreases, e.g., for the rational inverse interpolation zero-finder, determiningβ0
2

requires2 iterations and determiningβ0
3 requires only1 iteration of the zero-finder. Deter-

mining the zeros in the following60 outer iterations only consists of3–4 inner iterations each
time. After more than60 outer iterations have been carried out, i.e., the dimensionof the
search space satisfiesdim(Vj) ≥ 68, typically one or two inner iterations are sufficient for
solving the projected DRTLS problem. Note that a ’0’ in Table4.1 for the number of itera-
tions of a zero-finder means that the corresponding initialization was sufficient to fulfill the
convergence criteria. The King method and the rational inverse interpolation scheme perform
similarly. The full DRTLS does not carry out any outer projection iterations and directly
treats the full problem. So the meaning of inner iterations as updating the parameterβ is
identical for Algorithms3 and4.

In Table4.2the number of iterations required for the full DRTLS algorithm is compared
to the GKS-DRTLS method when the preconditionerM = L̃T L̃ is applied.

TABLE 4.2
Number of iterations for Full and GKS-DRTLS withM = L̃T L̃.

Zero-finder Alg.
Outer
iters

Inner
iters

1st it. 2nd it. 3rd it. ith it.

Rat.-Inv. GKS 1 5 6 2 1 0
Rat.-Inv. GKS 2–8 2–5 0–3 0–1 0 0
Rat.-Inv. GKS >8 1 0 - - -
Rat.-Inv. Full - 6 6 2 1 0
King GKS 1 5 6 3 2 0
King GKS 2–8 3–4 1–4 0–3 0–1 0–1
King GKS >8 1 0 - - -
King Full - 5 7 3 3 0–1

Table4.2shows a similar behavior to that already observed in Table4.1: the King method
and rational inverse interpolation zero-finder perform comparably well, and the greater the
inner iteration number is, the fewer the number of zero-finder iterations. In contrast to the
method without preconditioner, here much fewer outer iterations are needed for convergence.
Convergence of the GKS-DRTLS method corresponds to an almost instant solution of the
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zero-finder in only one inner iteration. Note that no convergence criterion for stopping the
outer iterations has been applied.

4.2. Large-scale examples.In this section we compare the accuracy and performance
of Algorithm 4 with and without preconditioner, the RTLSQEP method from [14, 16, 17],
and the RTLSEVP method from [15, 17]. Various examples from Hansen’sRegularization
Toolsare employed to demonstrate the efficiency of the proposed Generalized Krylov Sub-
space Dual RTLS method. All examples are of the size4000 × 2000. With a valueγ from
the interval[0.8, 1.2], the quadratic constraint of the RTLS problem is set toδ = γ‖L̃xtrue‖,
and the constraints for the dual RTLS are set toγhA andγhb, respectively. The stopping
criterion for the RTLSQEP method is chosen as the relative change of two subsequent values
of f(xk) being less than10−6. The initial space isK7(L̃

−TATAL̃−1, AT b). The RTL-
SEVP method also solves the quadratically constrained TLS problem (1.3). For all examples,
it computes values ofλL = α almost identical to the RTLSQEP method. The stopping
criterion for the RTLSEVP method is chosen as the residual norm of the first order condi-
tion to be less than10−8, which has also been proposed in [15]. The starting search space
is K5([A, b]

T [A, b], [0, . . . , 0, 1]T ).
For the GKS-DRTLS method, the dimension of the initial search space is6 for all ex-

amples unless stated differently and the following stopping criterion is applied: the rela-
tive change of subsequent approximations forα andβ in two outer iterations has to be less
than10−10. For the variant without preconditioner, an additional stopping criterion is ap-
plied: the dimension of the search space is not allowed to exceed100, which corresponds
to a maximum number of94 iterations. For all examples,10 different noise realizations are
computed and the averaged results can be found in Tables4.3and4.4.

In Table4.3 several problems fromRegularization Tools[10] are investigated with re-
spect to under- and over-regularization for the noise levelσ = 10−2. For all problems in Ta-
ble 4.3, the residual of the GKS-DRTLS method with preconditioner (denoted as ’DRTLS’)
converges to almost machine precision. The variant withoutpreconditioner (denoted as
’DRTLSnp’) is not very accurate, e.g., with residual norms between0.01–10% while us-
ing the same convergence criterion. This deficiency is also highlighted in Figure4.3. The
accuracy of the RTLSQEP and RTLSEVP methods are somewhere inbetween, where in
most examples the latter one yields more accurate approximations. In the fourth column, the
relative error of the corresponding constraint condition is given: for Algorithm4 this is

|g(α∗;β∗)|
hb + hA‖xDRTLS‖

=
|‖AxDRTLS − b‖ − hb − hA‖xDRTLS‖|

hb + hA‖xDRTLS‖

and for the RTLS methods this is|(‖L̃xRTLS − δ)|/δ. The constraint condition within the
DRTLS methods is fulfilled with almost machine precision while for the used implementa-
tions of the RTLS methods this quantity varies with the underlying problem. The number
of iterations for DRTLSnp is always equal to the maximum number of iterations, which is
94 in most cases. Forheat(1) andheat(5), the dimension of the initial search space
was increased to8 and10, respectively, to ensure that the functiongV0

(α;β0
0) has a posi-

tive root. Note that this is not essential for Algorithm4 if it is equipped with a minimizer
for |gVj

(αj
i ;β

j
i )| and not only a zero-finder. For these examples, the convergence criteria

|αj+1
i − αj

i |/α
j
i | < 10−10 and|βj+1

i − βj
i |/β

j
i | < 10−10 are never achieved by Algorithm4

without preconditioner, but the variant withM = L̃T L̃ always converged. The DRTLS and
DRTLSnp algorithm increase the search space by one vector every iteration, whereas the
RTLSQEP and RTLSEVP methods may add several new vectors in one iteration. More inter-
esting is the number of overall matrix-vector multiplications (MatVecs). For the DRTLSnp
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TABLE 4.3
Problems from Regularization Tools, noise levelσ = 10−2.

Problem
factorγ

Method ‖rj‖

‖AT b‖
Constr. Iters

Mat-
Vecs

CPU
time

‖x−xtrue‖
‖xtrue‖

(small-scale)
‖L̃x‖

shaw DRTLS 1.4e-13 2.6e-13 3.0 17.0 0.32 3.4e-1 (4.6e-1) 6.0e-5
γ = 1.2 DRTLSnp 7.7e-02 1.0e-12 94.0 199.0 6.47 2.6e-1 (4.6e-1) 6.7e-5

RTLSQEP 4.0e-07 3.8e-05 6.7 104.3 3.01 1.2e-1 (1.3e-1) 1.3e-4
RTLSEVP 1.3e-12 1.1e-02 4.0 54.2 0.92 1.2e-1 (1.3e-1) 1.3e-4

baart DRTLS 5.7e-11 5.0e-15 1.9 14.8 0.31 2.1e-1 (3.5e-1) 3.4e-5
γ = 1.1 DRTLSnp 1.1e-01 5.4e-14 94.0 199.0 6.10 1.9e-1 (3.5e-1) 3.8e-5

RTLSQEP 2.8e-06 3.0e-02 6.3 100.7 2.82 1.3e-1 (1.9e-1) 5.5e-5
RTLSEVP 1.7e-12 1.8e-02 2.0 40.8 0.77 1.2e-1 (1.9e-1) 5.5e-5

phillips DRTLS 1.5e-11 6.4e-15 3.4 17.8 0.33 1.0e-1 (1.0e-1) 1.4e-4
γ = 1.1 DRTLSnp 3.8e-03 5.3e-14 94.0 199.0 5.94 1.0e-1 (1.0e-1) 1.4e-4

RTLSQEP 8.1e-05 7.1e-01 9.5 141.9 1.88 7.9e-2 (8.0e-2) 1.8e-4
RTLSEVP 2.4e-12 1.3e-02 2.6 62.4 1.15 6.1e-2 (8.0e-2) 1.7e-4

heat(1) DRTLS 1.7e-11 1.5e-13 7.3 29.6 0.58 3.1e-1 (3.0e-1) 3.0e-4
γ = 1.0 DRTLSnp 1.2e-03 2.2e-14 92.0 199.0 6.30 3.1e-1 (3.0e-1) 3.0e-4

RTLSQEP 7.6e-07 6.4e-06 17.8 212.4 3.67 6.5e-2 (1.9e-1) 5.3e-4
RTLSEVP 5.2e-11 1.6e-06 5.1 78.0 1.48 6.5e-2 (1.1e-1) 5.3e-4

heat(5) DRTLS 1.5e-08 9.8e-15 14.0 47.0 0.87 8.9e-2 (8.8e-2) 8.5e-4
γ = 1.0 DRTLSnp 9.5e-04 2.5e-13 90.0 199.0 5.89 8.9e-2 (8.8e-2) 8.5e-4

RTLSQEP 2.5e-04 6.1e-04 23.4 212.4 4.14 8.3e-3 (1.5e-2) 1.0e-3
RTLSEVP 1.7e-04 8.6e-04 3.5 76.6 1.30 6.6e-3 (1.7e-2) 1.0e-3

deriv2(1) DRTLS 1.1e-13 2.1e-13 3.0 17.0 0.32 3.3e-1 (2.0e-1) 4.8e-5
γ = 1.0 DRTLSnp 3.3e-02 1.8e-13 94.0 199.0 6.22 3.4e-1 (2.0e-1) 5.0e-5

RTLSQEP 9.3e-07 1.7e-04 15.6 194.6 3.50 1.1e-1 (5.3e-2) 1.2e-4
RTLSEVP 9.8e-13 1.4e-09 5.1 77.0 1.39 1.1e-1 (5.3e-2) 1.2e-4

deriv2(2) DRTLS 2.2e-13 6.3e-13 3.0 17.0 0.34 2.9e-1 (1.7e-1) 3.7e-5
γ = 0.9 DRTLSnp 3.5e-02 6.3e-14 94.0 199.0 6.66 3.0e-1 (1.7e-1) 4.2e-5

RTLSQEP 7.6e-07 1.9e-04 5.1 101.1 1.89 9.0e-2 (4.7e-2) 8.4e-5
RTLSEVP 5.9e-14 1.2e-08 6.1 78.6 1.43 9.0e-2 (4.7e-2) 8.4e-5

deriv2(3) DRTLS 1.6e-13 5.5e-13 3.0 17.0 0.36 2.0e-1 (2.1e-1) 2.8e-5
γ = 0.9 DRTLSnp 1.4e-01 2.6e-12 94.0 199.0 6.51 1.4e-1 (2.1e-1) 3.3e-5

RTLSQEP 1.1e-07 2.3e-09 3.0 54.8 1.02 5.1e-2 (6.7e-2) 3.7e-5
RTLSEVP 2.3e-13 2.8e-10 5.4 67.2 1.22 5.1e-2 (6.7e-2) 3.7e-5

ilaplace(2) DRTLS 4.7e-12 5.5e-14 5.0 21.0 0.43 3.4e-1 (1.9e-1) 6.7e-5
γ = 0.8 DRTLSnp 8.8e-03 2.2e-13 94.0 199.0 6.30 7.9e-1 (5.7e-1) 1.1e-4

RTLSQEP 2.3e-07 9.8e-07 4.0 79.4 1.44 4.2e-1 (3.0e-1) 1.5e-4
RTLSEVP 3.5e-12 5.5e-03 1.4 46.8 0.84 4.1e-1 (3.0e-1) 1.5e-4

ilaplace(3) DRTLS 9.3e-13 3.7e-11 17.7 46.4 0.98 3.9e-1 (2.3e-1) 1.4e-3
γ = 0.8 DRTLSnp 3.8e-04 1.3e-14 94.0 199.0 6.29 2.6e-1 (2.3e-1) 1.4e-3

RTLSQEP 1.1e-06 2.0e-09 5.0 84.0 1.51 2.6e-1 (2.1e-1) 1.5e-3
RTLSEVP 1.3e-11 2.9e-08 3.0 48.6 0.87 2.6e-1 (2.1e-1) 1.5e-3

method, the94 iterations directly correspond to2·(MaxIters+6)−1 = 199 MatVecs; see Sec-
tion 3. Similarly for the variant with preconditioner, the relation2 · (Iters+6)− 1 = MatVecs
holds. Thus, for Algorithms4 the dimension of the search space is the size of the initial space
plus the number of iterations. For the RTLSQEP method we are in need of four MatVecs to
increase the size of the search space by one, whereas the RTLSEVP method requires only two
MatVecs. Hence, despite the large number of MatVecs required for RTLSQEP, the dimension
of the search space often is smaller than for RTLSEVP.
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The CPU times in the seventh column are given in seconds. Theyare closely related
to the number of MatVecs since these are the most expensive operations within all four al-
gorithms. Thus, the main part of the CPU time is required for computing the MatVecs, i.e.,
roughly60% for the GKS-DRTLS method without preconditioner and80–90% for the other
three algorithms. Note that the CPU time for simply computing 100 matrix vector multiplica-
tions withA ∈ R

4000×2000 is about1.7 seconds. The DRTLS method outperforms the other
three algorithms, i.e., in almost all cases, the highest accuracy is obtained with the smallest
number of MatVecs. In the next to last column, the relative error with respect to the true
solutionxtrue can be found together with a value given in brackets stating the relative error
of a reduced discretization level (by a factor of10) of the same problem, i.e., using a system
matrix of size400× 200. Note that the relative error is not suited for directly comparing the
DRTLS and RTLS methods since they are solving different problems. More meaningful is
the comparison between the two variants of the DRTLS and RTLSmethods on the one hand
and the comparison of the relative error of a specific method to its correspondent small-scale
value. The relative errors of small- and large-scale problems are throughout very similar, dif-
fering by a factor of two at most. The same holds true when comparing DRTLS and DRTLSnp
as well as RTLSEVP and RTLSQEP, i.e., often the relative errors are almost identical and the
maximum difference is given by a factor of two. In the last column, the norm of̃Lx at the
computed solution is given. Since this is the quantity whichis minimized in the dual RTLS
approach, one would expect this value to be less compared to the value at the computed RTLS
solutions. This is indeed the case for all problems of Table4.3. Notice that in none of these
examples, the DRTLSnp method has achieved a smaller normL̃x compared to the DRTLS
variant with preconditioner.

The smallest relative errors are obtained withγ = 1. Values ofγ larger than1 cor-
responds to a certain degree of under-regularization, whereasγ < 1 corresponds to over-
regularization.

Table 4.4 contains the results of the problems considered in Table4.3 but now with
the noise level reduced toσ = 10−3. The results are similar to those in Table4.3. The
GKS-DRTLS with preconditioner outperforms DRTLSnp, RTLSQEP, and RTLSEVP in all
examples, i.e., the relative residual is computed to almostmachine precision within a search
space of fairly small dimension. For the examplesheat(1) andheat(5), the dimension of
the initial search space was now increased to12 and16 and for both examplesilaplace to
9 to ensure the functiongV0

(α;β0
0) having a positive root. Note that for problemheat(5)

with the noise levelσ = 10−3, the DRTLSnp method converges for several noise realizations
to the required accuracy, whereas for all other examples themaximum number of iterations
is reached. For most examples the number of MatVecs of Algorithm 4 with M = L̃T L̃ is
often only about10–50% of the MatVecs required for the RTLSQEP and RTLSEVP method.
The DRTLSnp method is clearly inferior to the other three methods in terms of accuracy and
number of MatVecs. The relative error in the next to last column of Table4.4 indicates again
suitable computed approximations for all algorithms.

Notice that in the last column there is one case, forilaplace(3), where the norm of̃Lx
at the dual RTLS solution is larger than the norm ofL̃x at the RTLS solution. This might
appear implausible at first sight but can be explained by the special problem setup: the choice
of constraint parameters has been defined asδ = γ‖L̃xtrue‖ for RTLS andhA = γ‖E‖F ,
hb = ‖e‖. The norm ofL̃x at the RTLS solution is directly given byδ. Hence, for all
valuesγ ≥ 1, the norm at the RTLS solution is not smaller than‖L̃xtrue‖, whereas the
DRTLS solution has a norm of̃Lx which is not larger than‖L̃xtrue‖ since this is already
contained in the feasible region. But for values ofγ less than1, as in the last row of Table4.4
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TABLE 4.4
Problems from Regularization Tools, noise levelσ = 10−3.

Problem
factorγ

Method ‖rj‖

‖AT b‖
Constr. Iters

Mat-
Vecs

CPU
time

‖x−xtrue‖
‖xtrue‖

(small-scale)
‖L̃x‖

shaw DRTLS 2.5e-14 3.9e-13 3.0 17.0 0.32 2.3e-1 (2.4e-1) 7.8e-5
γ = 1.2 DRTLSnp 6.1e-04 2.4e-12 94.0 199.0 6.12 2.1e-1 (2.4e-1) 8.0e-5

RTLSQEP 4.3e-08 6.5e-08 15.2 183.4 1.51 9.6e-2 (1.1e-1) 1.3e-4
RTLSEVP 5.3e-13 1.2e-01 1.0 44.6 0.81 5.7e-2 (7.8e-2) 1.1e-4

baart DRTLS 8.7e-14 1.2e-12 1.9 14.8 0.28 9.5e-2 (1.3e-1) 4.1e-5
γ = 1.1 DRTLSnp 2.3e-03 1.8e-12 94.0 199.0 6.06 1.2e-1 (1.3e-1) 4.3e-5

RTLSQEP 8.2e-08 3.9e-07 11.2 150.6 1.61 1.1e-1 (1.6e-1) 5.5e-4
RTLSEVP 1.5e-12 1.1e-01 1.0 31.4 0.54 7.9e-2 (1.4e-1) 5.1e-5

phillips DRTLS 1.3e-13 1.1e-13 4.8 22.6 0.43 2.7e-2 (2.7e-2) 1.6e-4
γ = 1.1 DRTLSnp 1.6e-04 1.5e-14 94.0 199.0 6.04 2.7e-2 (2.7e-2) 1.6e-4

RTLSQEP 2.3e-08 1.1e-06 20.0 228.2 4.01 3.8e-2 (5.1e-2) 1.8e-4
RTLSEVP 4.5e-10 3.3e-02 1.0 62.0 1.12 3.8e-2 (5.2e-2) 1.8e-4

heat(1) DRTLS 8.7e-13 4.1e-12 11.1 45.2 0.81 1.1e-1 (1.1e-1) 4.5e-4
γ = 1.0 DRTLSnp 4.7e-06 2.1e-13 88.0 199.0 5.91 1.1e-1 (1.1e-1) 4.5e-4

RTLSQEP 8.0e-09 2.3e-10 23.4 261.6 4.68 2.7e-2 (3.7e-2) 5.3e-4
RTLSEVP 5.7e-09 4.7e-02 3.2 87.0 1.42 4.9e-2 (4.2e-2) 5.6e-4

heat(5) DRTLS 7.3e-09 2.3e-12 23.8 78.6 1.59 1.3e-2 (1.4e-2) 9.9e-4
γ = 1.0 DRTLSnp 1.4e-06 9.8e-12 82.1 195.2 5.36 1.3e-2 (1.4e-2) 9.9e-4

RTLSQEP 1.1e-03 4.3e-02 24.0 301.4 5.78 2.1e-2 (2.4e-2) 1.1e-3
RTLSEVP 1.4e-05 9.6e-04 2.0 78.0 1.29 2.1e-3 (5.4e-3) 1.0e-3

deriv2(1) DRTLS 3.3e-14 2.2e-13 7.0 25.0 0.47 1.7e-1 (8.7e-2) 6.9e-5
γ = 1.0 DRTLSnp 4.6e-04 3.6e-14 94.0 199.0 5.97 1.9e-1 (8.7e-2) 7.1e-5

RTLSQEP 3.5e-08 3.9e-07 22.2 238.8 3.91 5.3e-2 (2.6e-2) 1.2e-4
RTLSEVP 3.5e-11 3.2e-05 5.3 84.6 1.42 4.9e-2 (2.6e-2) 1.2e-4

deriv2(2) DRTLS 1.8e-14 2.7e-13 7.0 25.0 0.50 1.5e-1 (7.3e-2) 5.4e-5
γ = 0.9 DRTLSnp 5.1e-04 7.1e-14 94.0 199.0 6.41 1.7e-1 (7.3e-2) 5.9e-5

RTLSQEP 4.9e-08 2.3e-06 18.8 217.4 4.22 4.2e-2 (3.0e-2) 8.4e-5
RTLSEVP 7.4e-12 5.9e-06 4.5 80.6 1.48 4.2e-2 (3.0e-2) 8.4e-5

deriv2(3) DRTLS 1.0e-13 6.4e-14 4.0 19.0 0.37 7.3e-2 (8.5e-2) 3.5e-5
γ = 0.9 DRTLSnp 2.0e-03 2.6e-13 94.0 199.0 5.99 4.5e-2 (8.5e-2) 3.7e-5

RTLSQEP 4.0e-09 3.8e-09 3.0 52.0 0.96 4.9e-2 (4.5e-2) 3.7e-5
RTLSEVP 1.4e-13 2.1e-10 5.0 63.2 1.15 4.9e-2 (4.5e-2) 3.7e-5

ilaplace(2) DRTLS 2.5e-13 2.5e-13 4.9 26.8 0.51 3.8e-1 (2.6e-1) 1.3e-4
γ = 0.8 DRTLSnp 2.4e-04 2.2e-13 91.0 199.0 6.01 7.7e-1 (5.6e-1) 1.5e-4

RTLSQEP 2.6e-08 1.5e-07 9.2 128.6 2.39 4.1e-1 (3.0e-1) 1.5e-4
RTLSEVP 4.5e-13 1.4e-03 1.0 44.6 0.80 4.1e-1 (3.0e-1) 1.5e-4

ilaplace(3) DRTLS 1.3e-13 1.2e-12 12.7 42.4 0.85 1.4e-1 (8.4e-1) 1.8e-3
γ = 0.8 DRTLSnp 4.9e-06 1.8e-13 91.0 199.0 6.05 1.0e-1 (1.8e-1) 1.8e-3

RTLSQEP 7.5e-07 2.2e-09 5.0 83.2 1.50 2.5e-1 (2.1e-1) 1.5e-3
RTLSEVP 3.7e-11 2.8e-08 3.0 45.0 0.81 2.5e-1 (2.1e-1) 1.5e-3

with γ = 0.8, there is no guarantee that the DRTLS method yields seminorms less thanδ.
(Especially for small valuesγ ≪ 1.)

4.3. Large 2-D example.We consider the restoration of a greyscale image that is rep-
resented by an array of197 × 197 pixels. The pixels are stored columnwise in a vector
in R

38809. The vectorxtrue represents the uncontaminated image. A block Toeplitz blur-
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ring matrix Atrue ∈ R
38809×38809 with Toeplitz blocks is determined with the function

blur from [10] using the parameter valuesband = 3 (which is the half-bandwidth of
each197 × 197 Toeplitz block) andsigma = 1.5 (which determines the width of the un-
derlying Gaussian point spread function). The matrixAtrue has9.6 · 105 nonzero entries.
The right hand sidebtrue is determined byAtruextrue and the scaling described in the be-
ginning of Section4 has been applied. We add Gaussian noise corresponding to thenoise
level σ = 10−4 to btrue and the nonzero entries ofAtrue to keep the number of nonzeros
of A = Atrue + Anoiseat a manageable level (a full matrix fromR38809×38809 requires more
than 11GB storage). Please note that this kind of disturbance does not entirely reflect the un-
derlying basic idea of total least squares problems, where the complete matrix and right-hand
side are assumed to be contaminated by noise.

We would like to determine an accurate restoration ofxtrue givenA andb and some
information about the noise. The factorγ is set to1.

Different regularization matricesL and zero-finders are compared. We use the first order
discrete derivative operator for two space dimensions

L1,2D =

[
L1 ⊗ In
In ⊗ L1

]

with L1 defined by (4.1) with n = 197 andIn the identity matrix of order197. The second
order discrete derivative operator in two space dimensions

L2,2D =

[
L2 ⊗ In
In ⊗ L2

]

is also considered where

L2 =



−1 2 −1

. . .
. . .

. ..
−1 2 −1


 ∈ R

(n−2)×n, n = 197.

We compare the performance of Algorithm4 to the RTLSEVP algorithm (for solving
the correspondent RTLS problem) for the regularization matricesL1,2D, L2,2D, andL = I.
For the latter regularization matrix, the generalized Krylov subspacesV determined by Algo-
rithm 4 reduce to the standard Krylov subspacesKk(A

TA,AT b).
Initial search spaces and stopping criteria for the GKS-DRTLS and RTLSEVP algorithms

have been chosen as in the previous Section4.2 together with the additional criterion of a
maximum search space dimension of50. For the GKS-DRTLS method, no preconditioner
has been applied, i.e.,M = I. The convergence history of the most interesting quantities
when using the regularization matrixL = L1,2D is shown in Figure4.4. The graphs are
similar for the regularization matricesL = L2,2D andL = I, therefore the latter graphs are
not shown.

Similarly as in the small-scale example in Section4.1, the parametersα andβ stag-
nate quite quickly; see Figures4.4(a) and (b), respectively. Other quantities on which a
stopping criterion for Algorithm4 can be based are displayed in Figures4.4(c)–(e). The
relative change of two consecutive approximationsxk and the corresponding relative resid-
ual norm‖r(xk)‖/‖AT b‖ are shown in Figure4.4(c) and (d), respectively. Both quantities
decrease by7 orders of magnitude. The absolute value of the entries of thevectory32 is
displayed in Figure4.4(e). They decrease by8 orders of magnitude but not monotonically.

Figure4.5shows the original (blur- and noise-free) image, the blurred and noisy image,
and several restorations. The first row of Figure4.5depicts the original image as well as the
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FIGURE 4.4. Convergence histories for the restoration of Lothar using the regularization matrixL1,2D .

blur- and noise-contaminated image. The relative error of the blurred and noisy image is

‖b− xtrue‖
‖xtrue‖

= 20.46% .

The images restored in the second row are obtained by usingL = I as regularization matrix
and applying the RTLSEVP algorithm in Figure4.5(c) and the GKS-DRTLS algorithm in
Figure4.5(d) using search spaces of dimensiondim(V) = 43 and50 at termination. The
relative errors in the computed restorations are5.24% and5.37%. The restorations shown
by the images in row three are for the discrete first order derivative operatorL1,2D. The
termination criterion is the same as above. The computed restorations have relative errors
‖xL1,2D

RTLS − xtrue‖/‖xtrue‖ = 7.45% and‖xL1,2D

DRTLS − xtrue‖/‖xtrue‖ = 6.20% by using a
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(h) Restored by DRTLS withL = L2,2D

FIGURE 4.5. Original, blurred, and restored Lothar.
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search space of dimension42 for RTLSEVP and of32 for GKS-DRTLS. The last row dis-
plays two restored images obtained with the discrete Laplace operatorL = L2,2D; the first
one corresponds to RTLSEVP withdim(V) = 41 and an relative error of9.55%, while the
DRTLS restoration used in the second image has required a search space ofdim(V) = 42

with a relative error of‖xL2,2D

DRTLS − xtrue‖/‖xtrue‖ = 6.34%.

Figure4.5shows that the regularization matrixL = I gives the best restoration although
the restored images can be seen to contain a lot of “freckles”. The quality of the restorations
obtained by the DRTLS method withL1,2D andL2,2D is about the same, whereas the corre-
sponding restorations by RTLS are clearly inferior. We find the images obtained withL1,2D

to be slightly sharper than the image determined withL2,2D. Also the relative error is slightly
smaller. Since only the DRTLS method withL = I has been terminated by the condition on
the search space dimension (with visually indistinguishable restorations in the last few outer
iterations), we conclude that it typically suffices to use low-dimensional search spacesV of
dimension40.

5. Conclusions. A new method based on orthogonal projection for solving dualreg-
ularized total least squares problems is presented. The proposed iterative method solves a
convergent sequence of projected two-parameter linear systems with a minimization con-
straint. Due to convergence of this sequence, it turns out tobe highly advantageous to reuse
the information gathered while solving one system for the solution of the next. Several nu-
merical examples demonstrate that the computed search space is highly suitable. Typically,
search spaces of fairly small dimension are sufficient.
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