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LARGE-SCALE DUAL REGULARIZED TOTAL LEAST SQUARES *

JORG LAMPE’ AND HEINRICH VOSS
Dedicated to Lothar Reichel on the occasion of his 60th dimh

Abstract. The total least squares (TLS) method is a successful appfoadimear problems when not only
the right-hand side but also the system matrix is contamirtatesbme noise. For ill-posed TLS problems, regular-
ization is necessary to stabilize the computed solutionhisigaper we present a new approach for computing an
approximate solution of the dual regularized large-scatd teast squares problem. An iterative method is proposed
which solves a convergent sequence of projected lineagmsysand thereby builds up a highly suitable search space.
The focus is on an efficient implementation with particular eagion the reuse of information.
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1. Introduction. Many problems in data estimation are governed by overdétedn
linear systems

(1.1) Ax =~ b, AeR™™ beR™ m > n.

In the classical least squares approach, the system matgxassumed to be free of error,
and all errors are confined to the observation vektdidowever, in engineering application
this assumption is often unrealistic. For example, if ndydhe right-hand sidé but A as
well are obtained by measurements, then both are contagdibgtsome noise.

An appropriate approach to this problem is the total leasases (TLS) method, which
determines perturbatiosA € R”™*" to the coefficient matrix andhb € R™ to the vectob
such that

(1.2) [[AA, Ab)||% = min! subject to{ A + AA)x = b+ Ab,

where|| - || denotes the Frobenius norm of a matrix. An overview on tatabl squares
methods and a comprehensive list of references is cont&iriéd, 30, 31].

The TLS problem 1.2) can be analyzed in terms of the singular value decompasitio
(SVD) of the augmented matripd, b] = UXVT; cf. [8, 31]. A TLS solution exists if and
only if the right singular subspadg,,;,, corresponding t@,,,; contains at least one vector
with a nonzero last component. It is uniquesif > 0,1 whereo,, denotes the smallest
singular value of4, and then it is given by

1

—V(1: 1).
Vin+1,n+1) (Lin,n+1)

rrLs = —
When solving practical problems, they are usually ill-ctiotied, for example the dis-
cretization of ill-posed problems such as Fredholm integcuations of the first kind;
cf. [4, 9]. Then least squares or total least squares methods foingol¥.1) often yield
physically meaningless solutions, and regularizationeisesgsary to stabilize the computed
solution.
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To regularize probleml(2), Fierro, Golub, Hansen, and O’Leary] [suggested to filter
its solution by truncating the small singular values of theSTmatrix [A, b], and they pro-
posed an iterative algorithm based on Lanczos bidiagatadiz for computing approximate
truncated TLS solutions.

Another well-established approach is to add a quadratistcaint to the problemi(2)
yielding the regularized total least squares (RTLS) pnaoble

(1.3)  [[AA,Ab|% = min! subjectto(A + Ad)z = b+ Ab, ||La|| < 6,

where|| - || denotes the Euclidean norni, > 0 is the quadratic constraint regularization
parameter, and the regularization matfixe RP*", p < n defines a (semi-)norm on the
solution space, by which the size of the solution is boundedaertain degree of smoothness
can be imposed. Typically, it holds that < ||Lzrrs|| or evend < | Lxrrs|, which
indicates an active constraint. Stabilization of totabtesquares problems by introducing a
guadratic constraint was extensively studieddn7, 12, 14, 15, 16, 17, 19, 24, 26, 27, 28].

If the regularization matrixl. is nonsingular, then the solutiangr;s of the prob-
lem (1.3) is attained. For the more general case of a singhjats existence is guaranteed if

(1.4) Omin([AF, D)) < opmin(AF),

whereF € R™*¥ is a matrix the columns of which form an orthonormal basisefrtullspace
of L; cf. [1].

Assuming inequality1.4), it is possible to rewrite problend (3) into the more tractable
form

| Az — b|”

1.5
(1.5) e

= min! subjectto ||Lz| <.
Related to the RTLS problem is the approach of the dual RThSHhas been introduced
and investigated in2, 24, 29]. The dual RTLS (DRTLS) problem is given by

(1.6) | Lz|| = min! subjectto (A+ AA)z =b+ Ab, |Ab|| < hy, |AA||p < ha,

where suitable bounds for the noise leviejsandh 4 are assumed to be known. It was shown
in [24] that in case the two constrainta\b|| < h, and||AA||r < hy4 are active, the DRTLS
problem (L.6) can be reformulated into

(1.7) |Lz| = min! subjectto |[Az — b|| = hy + hallz].

Note that due to the two constraint parametégsandh 4, the solution set of the dual
RTLS problem (when varying, andh 4) is larger than that one of the RTLS problem with
only one constraint paramet&r For every RTLS problem, there exists a corresponding dual
RTLS problem with an identical solution, but this does ndthace versa.

In this paper we propose an iterative projection method kvitiembines orthogonal
projections to a sequence of generalized Krylov subspacexi@asing dimensions and a
one-dimensional root-finding method for the iterative iolu of the first order optimality
conditions of (.6). Taking advantage of the eigenvalue decomposition of tbgpted prob-
lem, the root-finding can be performed efficiently such thatéssential costs of an iteration
step are two matrix-vector products. Since usually a verglsnumber of iteration steps is
required for convergence, the computational complexitpwf method is essentially of the
order of a matrix-vector product with the matrik
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The paper is organized as follows. In Sectiyibasic properties of the dual RTLS prob-
lem are summarized, the connection to the RTLS problem sepited, and two methods for
solving small-sized problems are investigated. For sgliange-scale problems, different ap-
proaches based on orthogonal projection are proposed tio88c The focus is on the reuse
of information when building up well-suited search spa&section4 contains numerical ex-
amples demonstrating the efficiency of the presented msthGdncluding remarks can be
found in Sectiorb.

2. Dual regularized total least squares.In Section2.1, important basic properties of
the dual RTLS problem are summarized and connections ttecefaoblems are regarded,
especially the connection to the RTLS problem3. In Section2.2, existing methods for
solving small-sized dual RTLS problemk.€) are reviewed, difficulties are discussed, and a
refined method is proposed.

2.1. Dual RTLS basics. Literature about dual regularized total least squares (C53T
problems is limited, and they are by far less intensely saidhan the RTLS probleni (3).
The origin of the DRTLS probably goes back to Golub, who aredyin [6] the dual regular-
ized least squares problem

2.1) ||| = min! subjectto ||Az —b|| = hy

assuming an active constraint, i.,, < ||Azrs — b|| with 2.5 = ATb being the least squares
solution. His results are also valid for the non-standasgéar 1

(2.2) |Lz|| = min! subjectto ||Az — b|| = hy.

In [6], an approach with a quadratic eigenvalue problem is pteddrom which the solution
of (2.1) can be obtained. The dual regularized least squares pnqBl&) is exactly the dual
RTLS problem withh 4 = 0, i.e., with no error in the system matrik. In the following we
review some facts about the dual RTLS problem.

THEOREM 2.1 ([23]). If the two constraintg|Ab|| < h, and||AA|| < ha of the dual
RTLS problen{l.6) are active, then its solutiom = zpr7 g Satisfies the equation

(2.3) (ATA+aL”L + Iz = ATb
with the parameters, 3 solving

Ay + hallz(a, B)I)

h
@4 Ax( B) = bl = o+ hallates )l F=————prm

wherez(«, 8) is the solution of(2.3) for fixedo and 5.

In this paper we throughout assume active inequality caims of the dual RTLS prob-
lem, and we mainly focus on the first order necessary comdit{e.3) and @.4).

REMARK 2.2. In [21], a related problem is considered, i.e., the generalizecrépancy
principle for Tikhonov regularization. The correspondprgblem reads:

|4z (a) = b]* + a| La(a)|* = min!
with the value ofo chosen such that
|[Az(a) = bl| = hy + hallz(a)]].

Note that this problem is much easier than the dual RTLS problA globally convergent
algorithm can be found ir[l].
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By comparing the solution of the RTLS problerh.§ and of the dual RTLS prob-
lem (1.6) assuming active constraints in either case, some basaratices of the two prob-
lems can be revealed: using the RTLS solutigsy-; s, the corresponding corrections of the
system matrix and the right-hand side are given by

(b— AzprLs)ThrLs
L+ [[zrrLsl?
Azrrrs — b

1+ [|zrros|?’

AAgrrs =

AbprLs =

whereas the corrections for the dual RTLS problem are giyen b

(b— AxprrLs)ThrrLs

AApprrrs = ha )
(2.5) (b~ AxDRTLS)x£RTLS”F
Azprrrs — b

Ab =hp———
DRTLS b ||A1'DRTLS — bH )

with 2 prr s @s the dual RTLS solution. Notice, that the correctionslierdystem matrices
of the two problems are always of rank one. A sufficient caadifor identical corrections is
given bnyRTLS = TRTLS and

b— A A b
(2.6) pa = Lzmresllb = Avwresl oy g, _ lATRTLS — D]
1+H1'RTLS|| 1+||xRTLsH

In this case the value fgt in (2.4) can also be expressed as

5= _ha(hy + hallorros|) |l Azrres — bl

lzrrLs| 1+ lzrres|®

By the first order conditions, the solutiarnzr s of problem (L.3) is a solution of the
problem

(ATA+ N1, + A\ LT L)z = ATb,

where the parameteps and )\, are given by

Az — b|? | < Abe)
A= AT Oy = 2 (BT Ag) — AT PN
s R b= 42) = e

Identical solutions for the RTLS and the dual RTLS problem loa constructed by using the
solutionz rrrs of the RTLS problem to determine values for the correctibpsand by, as
stated in 2.6). This does not hold the other way round, i.e., with the $olut pzrrrs Of a

dual RTLS problem at hand, it is in general not possible testroict a corresponding RTLS
problem since the parametércannot be adjusted such that the two parameters of the dual
RTLS problem are matched.

2.2. Solving the Dual RTLS problems. Although the formulation 1.7) of the dual
RTLS problem looks tractable, this is generally not the c&is¢24] suitable algorithms are
proposed for special cases of the DRTLS problem, i.e., when= 0, h;, = 0, 0or L = I,
where the DRTLS problem degenerates to an easier probleff29)ran algorithm for the
general case dual RTLS problem formulatio®,3 and @.4), is suggested. This idea has
been worked out as a special two-parameter fixed-pointiberan [22, 23], where a couple
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of numerical examples can be found. Note that these metlwdsofving the dual RTLS
problem require the solution of a sequence of linear systd@raguations, which means that
complexity and effort are much higher compared to existiggrthms for solving the related
RTLS problem {.3); cf. [12, 14, 15, 16, 17, 19]. In the following, inconsistencies of the two
DRTLS methods are investigated, and a refined method is Warke

Let us review the DRTLS algorithm fron2§] for computing the dual RTLS solution; it
will serve as the basis for the methods developed later snghper.

Algorithm 1 Dual Regularized Total Least Squares Basis Method.
Require: € > 0,A,b, L, ha, hy

1: Choose a starting valug = —h?

2: for i = 0,1, ... until convergencelo

3:  Find pair(x;, «;) that solves

(2.7) (ATA+ Bil + ;LT L)z; = ATb, st.||Az; — b|| = hy + hal|z]|

hoa(hy + halx;
4: ComPUteBiJrl _ A( b|"|’_ AHLL‘ ||)
Li

Stop if|Biv1 — Bi <e
end for
7. Determine an approximate dual RTLS solutioprrrs = x;

o a

The pseudo-code of Algorithrh (directly taken from 29)) is not very precise since the
solution of @.7) is nonunique in general and a suitable pair has to be sdledtete that
the motivation for Algorithml in [29] is given by the analogy to a similar looking fixed
point algorithm for the RTLS probleml(5) with an efficient implementation to be found
in[12, 14, 15, 16, 17].

The method proposed ir2f] is based on a model function approach for solving the
minimization problem

(2.8) 1Az (e, B) — b|* + a|| La(a, B)|I? + Bllz(a, B)||> = min!
subject to the constraints

_ hahy
[z (e, B)||”

The corresponding method for solvirgy®) with (2.9) is given below as Algorithng; cf. [22].
This approach is shown to work fine for a couple of numericaneples (cf. 2, 23]), but
a proof of global convergence is only given for special cases., forh, = 0. In [20],
details about the model function approach for the more gémpeoblem of multi-parameter
regularization can be found.

The following example shows that Algorithehdoes not necessarily converge to a solu-
tion of the dual RTLS problemil(6).

EXAMPLE 2.3. Consider the undisturbed problem

(2.9) | Az (e, B) = bl| = hy + hallz(e, B)|| and = —h%

0.5 —=0.5 0.5 1
Appve = | 1 1 |, bpue= |1 with solutionz,. = {0] ,
1 -1 1

which is nicely scaled since the normigf.,,. is equal to the norm of a column df;,.,.., and
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Algorithm 2 DRTLS Model Function Approach.
Require: ¢ > 0, A,b, L, ha, hy
1: Choose starting values) > o*, 8y = —h%
2: for i = 0,1, ... until convergencelo
SOlVE(ATA + 611 + OéiLTL)J}i =ATp
4: ComputeF = [|Az; — bl|* + o[ Lay[|* + Bil|:i |,
5: Fy = ||Lai|)?, F3 = [l D = —(||b]|* = F1 — 0 F»)?/ F,
6: T = (|[b]]* — F\ — a;Fy)/F5 — B3
~ha(hy + hallzi)

7. Updates; 1 = Tl and compute
£
5 9 2hahyy/=D  D(T +2Bi41 + h3)
8: N = |b||* = hi — 5
T+ Biy1 (T + Biy1)

9: UpdatEaH_l = 20[12F2/N

10: StOp if|ai+1 — Ozi| + ‘614_1 — 51| <e€

11: end for

12: Solve(AT A+ Bi 11 + a1 LT L)xprrrs = ATb for the dual RTLS solution

thusv/2||brue || = || Atruel| 7. Assume the following noise:
~1/v2 0 0.4
Anoise - 0 0 5 bnoise - 0
v0.14 0 —0.4
With v/2||broisel| = || Anoise|l- Thus, the system matrix and the right-hand side are given

by A = Aprye + Anoise aNAD = byrye +bnoise. The constrainté 4, hy,, and the regularization
matrix L are chosen as

2 0
ha = HAnoiseHF = 0.8, hy = ||bn0i86|| = 08/\/57 L= |:1 1:| '

When applying Algorithm2 to this example withny = 100 > o* ande = 1078, the
following fixed point is reached after 19 iterations

2* = (0.9300,0.1781)T with o* = 0, 8* = —1.1179, || Lz*| = 2.1650.

The initial valueag = 100 seems to be unnecessarily far away from the lufit Note that
for an initial value ofay = 2 > «o*, the same fixed point is reached after 28 iterations. Then
the constraint conditior2(9) is not satisfied|| Ax* — b|| — (hy + hallz*]]) = —0.0356 # 0,
and therefore this fixed point is not the solution of the duBL® problem.
The solution of this example is given by

ztprrrs = (0.7353,0.0597)T with aprrrs = 0.1125, Bprris = —1.2534,

with [[Lzprrrs| = 1.6718 < |Lz*|| and||Azprrrs — b|| — (hy + hallzprrrs|) = 0.
Note that for an initial value ofy = 1, this solution is reached after 65 iterations.

Example2.3 shows that Algorithn®2 is not guaranteed to converge to the dual RTLS
solution. Hence, in the following we will focus on Algorithih The main difficulty of
Algorithm 1 is the constraint condition ir2(7), i.e., ||[Ax — b|| = hy + ha||x||. The task to
find a pair(z, ) for a given value ofs such that

(ATA + BT+ aL™L)x = ATb, st.||Az —b|| = hy + halz||
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can have a unigue solution, more than one solution, or ndisnlun the following we try to
shed some light on this problem.
Let us introduce the function

g(a; B) == ||[Az(a) — b|| — hy — hallz(a)|| with z(a) = (ATA+ I+ aLTL) 1 ATD

for a given fixed value of.. In analogy to the solution of RTLS problems, we are lookiog f
the rightmost non-negative root ¢f i.e., the largestv > 0; cf. [12, 14, 16, 28]. A suitable
tool for the investigation of; is the generalized eigenvalue problem (GEVP) of the matrix
pair (AT A+ BI, LTL). Itis assumed that the regularization matkisas full rankn, hence
the GEVP is definite. Otherwise, a spectral decompositioh’of could be employed to
reduce the GEVP to the range bf this case is not worked out here.

LEMMA 2.4. Let [V,D] = eig(ATA + BI,LTL) be the spectral decomposition
of the matrix pencil(ATA + BI,LTL) with VI (ATA + BI)V = D =: diag{dy, . ..d,}
andVTLTLV = I, and letc := VT ATb.

Theng(-) := g(-; 8) : Ry — R has the following properties:
(i) ¢ is a rational function, the only poles of which are the negateigenvalueg,
with ¢, # 0.

(i) limg— oo g() = ||b]] — .

(i) Let d) be a simple negative eigenvalue with# 0 and letv, be a corresponding
eigenvector. If|Avg|| < hallvk||, thenlim,—, 4, = —oo, and if || Avg|| > ha|lvkl|.
thenlim,_, 4, = occ.

Proof. The spectral decomposition 67 A + 81, L™ L) yields

ATA+ BI+al”L =V T (D+al)V L.
Hence,

z(a) = (ATA+BI +aLl"L) " ATb = V(D + ol) VT ATY

= Vdiag{d_ ia}c

with ¢ = VT ATh, which immediately yields statement (i) atigh, ., 7(a) = 0, from
which we get (ii).
If dj is a simple eigenvalue withy, # 0 andvy, a corresponding eigenvector, then

(dk O (a) - vk) —0,

Ck

(2.10)

lim
Ot*}*dk

and therefore
g(a) = f(a)(|[Avkl| — hallvell)  with f(a) = |ex/(dy + @)

holds fora # —dj, sufficiently close to-dy, which proves statement (iii). 0O

From Lemma2.4 we obtain the following results about the roots of We assume
that ||b]] — hy, > 0, which applies for reasonably posed problems.g(if) < 0, then it
follows (independently of the presence of poles) from (i) &) that g has at least one pos-
itive root, and ifg(0) > 0 and a simple negative eigenvaldg exists with non-vanishing;,
and||Avi|| < halluk||, then the functiory has at least two positive roots. Otherwise, it may
happen thay is positive onR ; and has no root iR , .

Since the functioy(«a; ) is not guaranteed to have a root, it appears suitable toaepla
the constraint condition ir2(7) by a corresponding minimization of

9(a; B) = [|[Ax — bl| — hy — hallz|| InRy,
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Algorithm 3 Dual Regularized Total Least Squares Method.
Require: ¢ > 0, A,b, L, ha, hy

1: Choose a starting valug = —h?%

2: for i = 0,1, ... until convergencelo

3:  Find pair(z;, ;) for the rightmosty; > 0 that solves

(2.11) (ATA + BiI + a; LY L)x; = ATb, s.t. min! = |g(as; B;)]

ha(hy + hallzil])
e

4.  Computes; ;1 = —

Stop if|Bi41 — Bil <e
: end for
7: Determine an approximate dual RTLS solutioBgrrs = x;

o a

yielding the revised Algorithn3.

REMARK 2.5. If a simple negative leftmost eigenvaldg exists with non-vanishing
component;,, and||Av, || < hallv,|, then itis sufficient to restrict the root-finding 9f«)
to the interval(—d,,, c0), which contains the rightmost root of

REMARK 2.6. A note on the idea to extend the domain of the funcji@n to negative
values ofq, i.e., to eventually keep the root-finding instead of theimimation constraint in
equation 2.17). Unfortunately, it is of no principle remedy to allow neiyatvalues ofx. The
limit of g for &« — —oo is identical to that forx — oo, i.e., g()|a——00 = ||b]| = hp > 0.
Hence, it may happen that after extending the fundien toR — R, only poles are present
with ||Av;|| > hallvil], = 1,...,nand thus still no root of may exist. Notice that should
be positive at the dual RTLS solution in case of active cansts.

REMARK 2.7. Note that the quantityLx|| which is to be minimized in the dual RTLS
problem is not necessarily monotonic. Non-monotonic biiaaay occur for the iterations
of Algorithm 3, i.e., for||Lz;||,7 = 0, 1,..., as well as for the functiofiLz ()| within an
iteration with a fixed value of andz(a) = (AT A+ BI +a LT L)~* ATb. Thisis in contrast
to the quantityf(«) for RTLS problems; cf. 14, 16].

Let us apply Algorithm3 to Example2.3. The functiong(«; 5p) is shown in Fig-
ure 2.1 for the starting value oy = —h% = —0.64. For the limit asa — oo, it holds
that g(a)|a—o00 = ||b]| — ks = 0.9074, and fora. — 0 we haveg(0) = 0.0017. The eigen-
values of the matrix AT A + ,1) are positive and so are the eigenvalues of the matrix
pair (AT A + 3,1, LT L). Hence, no poles exist for positive valuescofFurthermore, in this
example no positive root exists. There do exist negativésydee., the rightmost negative
root is located atv = —0.0024, but this is not considered any further; cf. Remar& Thus,
in the first iteration of Algorithn8, the pair(zg, ag) = ([0.7257,0.0909]7,0) is selected as
the minimizer of|g(«; —h?)| for all non-negative values af. In the following iterations,
the functiong(c, 3;),i = 1,... always has a unique positive root. Machine precisiof?
is reached afteb iterations of Algorithm3. The method of choice to find the rightmost
root or to find the minimizer ofg(«)|, respectively, is discussed in SectidnUp to now,
any one-dimensional minimization method suffices to sotvaexation of a small-sized dual
regularized total least squares problem.

REMARK 2.8. Another interesting approach for obtaining an appnation of the dual
RTLS solution is to treat the constrairts, = ||AA||r andh, = ||Ab|| separately. In the
first stage, the valuk 4 can be used to make the system mattiketter conditioned, e.g., by
a shifted SVD, truncated SVD, shifted normal equations, ostnpromising for large-scale
problems by a truncated bidiagonalizationAf In the second stage, the resulting problem
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g(a; [30) for starting value BO = —h2A

o
3]
T

o
IS
T

[1AX(a)=bi| = (h,+h,[Ix(@)l))

0.31

0.2f

0.1f

FIGURE 2.1. Initial function g(«a; Bo) for Example2.3,

has to be solved, i.e., a Tikhonov least squares probleny ésiras discrepancy principle.
This means that with the corrected matdx= A + A A, the following problem has to be
solved

|Lz| = min! subjectto |[Az —b|| = hs.
The first order optimality conditions can be obtained from derivative of the Lagrangian
L(x, 1) = | Lall? + p(| Az — b]> — 13).
Setting the derivative equal to zero yields
(ATA+ p~'LTL)z = ATb subjectto ||Az —b| = || Ab| = hs,

which is just the problem of determining the correct valutor the Tikhonov least squares
problem such that the discrepancy principle holds with étyu&lence, a function

flp) = || Az, — b)) = h with , := (ATA+ptLTL)~LATh
can be introduced, where its roptetermines the solutiany; cf. [13]. A root exists if
IPrrcamybll = [Azrs — bl < hy < [[b]|  with 215 = ATb.

Note, that this condition here does not hold automaticaltyich may lead to difficulties.
Another weak point of this approach is that none of the predosriants in the first stage
uses correctiond A of small rank although the solution dual RTLS correction finds of
rank one; see equatiof.p).

3. Solving large DRTLS problems. When solving large-scale problems, it is pro-
hibitive to solve a large number of huge linear systems. Airagtapproach would be to
project the linear system in equatio®.11) in line 3 of Algorithm 3 onto search spaces of
much smaller dimensions and then only to work with the prtej@@roblems. In this paper
we propose an iterative projection method that computegpprogimate solution of4.11)
in a generalized Krylov subspat® which is then used to solve the corresponding restricted
minimization problemmin! = |gv (a;; 8;)| with gy (a; B) := || AVy—b||—hy—ha||Vy| and
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where the columns df form an orthonormal basis df. For the use of generalized Krylov
subspaces in related problems, s&& [L8]. The minimization oflgy («; 8)| is in almost all
practical cases equal to the determination of the rightmuagtof gy («; 5). Therefore in the
following, only root-finding methods are considered fonéad the minimization constraint.
The root can be computed, e.g., by bracketing algorithmsehelose the rightmost root,
and it turned out to be beneficial to use rational inversepaiation; see 15, 17]. Having
determined the roat; for a value off3;, a new values; ,; is calculated. These inner itera-
tions are carried out until the projected dual RTLS problsmalved. Only then is the search
space) expanded by the residual of the original linear syste@m1). After expansion, a
new projected DRTLS problem has to be solved, i.e., zerdrignend updating of; is re-
peated until convergence. The outer subspace enlargetetidans are performed until 3,

or z(B) = Vy(B) satisfy a stopping criterion. Since the expansion directiepends on the
parametery, the search spadeis not a Krylov subspace. Numerical examples illustraté tha
the stopping criterion typically is satisfied for searchcgs)’ of fairly small dimension.

The cost of enlarging the dimension of the search space bisarig¢he order ofD(mn)
arithmetic floating point operations and so is the multgiion of a vector by the mat-
rix (AT A+ BI + o L™ L). This cost is higher than the determination of the dual RT&/8-s
tion of a projected problem. We therefore solve the compgaetgected DRTLS problem after
each increase afim(V) by one. The resulting method is given in Algorithin

Algorithm 4 Generalized Krylov Subspace Dual RTLS Method.
Require: € > 0, A, b, L, h4, hy and initial basis/y, VL' Vy = I

1: Choose a starting valug) = —h?

2: for j =0,1,... until convergencelo

38 fori=0,1,... until convergencelo

4: Find pair(y(3]), ;) for rightmosta; > 0 that solves

(3.1) VI(ATA+ B/I + o] LTL)Vy(B]) = Vi AT, s.t. min! = |gy; (af; 5]

ha(ho + hally(8])1)
ly(B)
6 Stop if[8,, — B]1/18] < e
7:  end for _ ' _
8.  Computer! = (ATA+ /I + o LTL)V;y(5]) — ATb
9:  Computer’ = M~'77 (where)M is a preconditioner)
10:  Orthogonalize™ = (I — V;V;')#
11:  Normalizevpey = 7 /||7||
12:  Enlarge search spadé_; = [V}, Uneu]
13: end for _
14: Determine an approximate dual RTLS solutionrrrs = V;y(53;)

a

Computes/, | = —

Algorithm 4 iteratively adjusts the parametersand 5 and builds up a search space si-
multaneously. Generally, “convergence” is achieved dlydar search spaces of fairly small
dimension; see Sectioh Most of the computational work is done in line 8 for comput-
ing the residual since solving the projected dual RTLS pobin lines 3—7 is comparably
inexpensive.

We can use several convergence criteria in line 2:
e Stagnation of the sequen{g’ }: the relative change of two consecutive valgést
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the solution of the corresponding dual RTLS problems is ki), |37 — 37| /|57
is smaller than a given tolerance.

Stagnation of the sequen¢e’ }: the relative change of two consecutive valuést
the solution of the corresponding dual RTLS problems is ko), |o/ 1 — o/ /|a|
is smaller than a given tolerance.

The relative change of two consecutive Ritz vecta$’) = V;y(/37) at the solution
of a projected DRTLS problems is small, i.r,( 87 1) —z(57)]| /||=(87)| is smaller
than a given tolerance.

The absolute values of the laselements of the vectay(37) at the solution of a
projected DRTLS problem are several orders of magnituddienthan the firstt
elements, i.e., a recent increase of the search space dbaffew the computed
solution significantly.

The residuat’ from line 8 is sufficiently small, i.el)|r7|| /|| ATb|| is smaller than a
given tolerance.

We now discuss how to efficiently determine an approximaketiem of the large-scale
dual RTLS problemX.6) with Algorithm 4. For large-scale problems, matrix valued opera-
tions are prohibitive, thus our aim is to carry out the altion with a computational complex-
ity of O(mn), i.e., of the order of a matrix-vector product (MatVec) wit{general) dense
matrix A € R™*",

The algorithm can be used with or without preconditionendfpreconditioner is to
be used, the/ = I and line 9 can be neglected. When a preconditioner is used, it
suggested to choosd = LT L if M > 0 andL is sparse, and otherwise to employ
a positive definite sparse approximatibh~ L™ L. For solving systems with/, a
Cholesky decomposition has to be computed once. The cosisodi¢composition

is less tharO(mn), which includes the solution of the subsequent system i t
matrix M.

A suitable starting basig, is an orthonormal basis of small dimension (€.g= 5)

of the Krylov spaceC, (M ~*AT A, M~ ATb).

The main computational cost of Algorithé consists in building up the search
spaceV; of dimensiont + j with V; := span{V;}. If we assumeA to be un-
structured and. to be sparse, the costs for determinifigare roughly2(¢ + j) — 1
matrix-vector multiplications with, i.e., one MatVec fod”'b and/+-;j —1 MatVecs
with A and A”, respectively. IfL is dense, the costs roughly double.

An outer iteration is started with the previously deterndivalue of3 from the last
iteration, i.e..3)"" == 67,7 =0,1,....

When the matrice’;, AV;, AT AV;, LT LV; are stored and one column is appended
at each iteration, no additional MatVecs have to be perfdrme

Withy = (VF (AT A+ 1 + oL" L)V;)~'V," ATb and the matri¥/; € R™*(¢+7)
having orthonormal columns, we ggt (o; 3;) = [|AV;y — bl — hy — hally||.

Instead of solving the projected linear systesril) several times, it is sufficient to
solve the eigenproblem of the projected peridif’ (A" A + 5/1)V;, V' LT LV;)
once for everyﬁf, which then can be used to obtain an analytic expression for
y(a) = (VI(ATA + BT + aLTL)V;)~'VF ATb; cf. equationsZ.10) and @.2).
This enables efficient root-finding algorithms ft, (a?; 57)).

With the vectory’ = y(ﬁ{), the residual in line 8 can be written as

1l = AT AV + ol LY LV’ + Bla(Bl) — ATb.

Note that in exact arithmetic the direction= AT AV;y’ + o LT LV;y? + 5/ x(87)
leads to the same new expansiongf,.



ETNA
Kent State University
http://etna.math.kent.edu

24 J. LAMPE AND H. VOSS

e For a moderate number of outer iteratign& n, the overall cost of Algorithrd is
of the orderO(mmn).

The expansion direction of the search space in itergtidepends on the current values
of o, 3]; see line 8. Since both parameters are not constant thraugfe algorithm, the
search space is not a Krylov space but a generalized Krylavesgef. [L3, 18].

A few words concerning the preconditioner. Most exampledatiord show that Algo-
rithm 4 gives reasonable approximations to the solutigik ;s also without preconditioner
but that it is not possible to obtain a high accuracy with a enatk size of the search space.
In [18] the preconditione/ = LT L or an approximatio/ ~ L L has been successfully
applied for solving the related Tikhonov RTLS problem, andli5, 17] a similar precondi-
tioner has been employed for solving the eigenproblem oicguin the RTLSEVP method
of [26]. For Algorithm 4 with preconditioner, convergence is typically achieve@d fairly
small number of iterations.

3.1. Zero-finding methods. For practical problems, the minimization constraint cendi
tion in (3.1) almost always reduces to the determination of the rightmam of gy (a; 7).
Thus, in this paper we focus on the use of efficient zero-fmdehich only use a cheap
evaluation of the constraint condition for a given pgj(3;),«). As introduced in Sec-
tion 2.2, it is beneficial for the investigation gfvj(a;ﬁg) to compute the corresponding
eigendecomposition of the projected problem. It is assuthatithe projected regulariza-
tion matrix VjTLTLVj is of full rank, which directly follows from the full rank asmption
of LT L, but this may even hold for singuldr’ L. An explicit expression fog(a) can be
derived analogously to the expression igrv) in equation 2.10. With the decomposition
(W, D] = ei g(V;" AT AV;+ /1, VI LT LV;) = ei g(V;" (AT A+ p]1, L" L)V;) of the pro-
jected problem, the following relations for the eigenvectatrix W and the corresponding
eigenvalue matrixD hold. With W™ VI LT LV;W = I andW TV (AT A+ p/1)V;W = D,
the matrixV," (AT A + 8/ + oL L)V; can be expressed &7 (D + o)W ~!. Hence,

j ; -1
ylei 1) = (VI (AT A+ BT +aLTL)V; ) VAT
(3.2)

1
_ —1 Ty T ATy __ H
=W(D+al) "WV b—Wdlag{diJra}c

with ¢ = WTVTATb andV € R™*(“+9). For the functioryy, (o 37), the characterization
regarding poles and zeros as stated in Sedi@rfor g(«a; 3) holds accordingly. So, after
determining the eigenvalue decomposition in an innertimgor an updated value @, all
evaluations of the constraint condition are then availabEmost no cost.

We are in a position to discuss the design of efficient zerdefis. Newton’s method is
an obvious candidate. This method works well if a fairly aete initial approximation of
the rightmost zero is known. However, if our initial appnmtion is larger than and not very
close to the desired zero, then the first Newton step is liteelyive a worse approximation
of the zero than the initial approximation; see Figdré for a typical plot ofg(«). The
functiong is flat for large values oft > 0 and may contain several poles.

Let us review some facts about poles and zerogydfa) := gy, (a; 5]) that can be
exploited for zero-finding methods; cf. also Lemrda. The limit asa — oo is given
by gv(@)|a—ee = ||b]| = hs, Which is equal to the limit of the original functiog(«) and
should be positive for a reasonably posed problem wheredheation ofb is assumed to
be smaller than the norm of the right-hand side itself. Adagmsimple eigenvalues and the
orderingd; > --- > dyp—1 > 0 > d,, > -+ > dy4j, the shape ofy can be characterized as
follows
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¢ If no negative eigenvalue occurg, (o) has no poles forw > 0 and nothing can be
exploited.

e For every negative eigenvalug,k = m,...,¢ + j, with w; the corresponding
eigenvector, the expressidialV;wy || — ha|jwy || can be evaluated, i.e., tieh col-
umn of the eigenvector matri/ € RUFTD*EH) If ¢, £ 0 with ¢, the kth
component of the vectar = WV A"b and if | AVjw|| — hallwk| > 0, then

the functiongy () has a pole atv = —dj, with lim,_,_4, gv(a) = +oo. If
| AV wg|| — hallwg|| < 0 with ¢, # 0, thengy () has a pole atv = —dj, with
limg s g, gv(a) = —o0.

e The most frequent case in practical problems is the occoereha negative smallest
eigenvalue d,r; < 0 with a non-vanishing component,,; such that
|AVwes ]| < hallwey |- Then it is sufficient to restrict the root-finding to the in-
terval (—dy j, oo) which contains the rightmost root. This information caredity
be exploited in a bracketing zero-finding algorithm.

e Otherwise, the smallest negative eigenvalue correspgnidirthe rightmost pole
of gy (a) with lim,—, 4, gv (o) = —oc is determined, i.e., the smallest eigen-
valuedy,k = m,...,0 + j for which ¢, # 0 and ||AVjw| < hallwg|. This
rightmost pole is then used as a lower bound for a brackeeéng-tinder, i.e., the
interval is restricted td—d, o).

In this paper two suitable bracketing zero-finding methoadssauggested. As a stan-
dard bracketing algorithm for determining the root in theeimal (—d, ;, ), (—dy, 00),
or [0, 00), the King method is chosen; cfl]]. The King method is an improved version of
the Pegasus method, such that after each secant step, aetiatifp has to follow.

In a second bracketing zero-finder, a suitable model functar ¢y is used; cf.
also [13, 15, 17]. Since the behavior at the rightmost root is not influencedimby the
rightmost pole but much more by the asymptotic behavigrohsa — oo, it is reasonable
to incorporate this knowledge. Thus, we derive a zero-fihdsed on rational inverse inter-
polation, which takes this behavior into account. Considemodel function for the inverse

of gy (o),

k-1
(3.3) gy ~ h(g) = ) with a polynomial p(g) = Zaigj’,
9 — 9o e

whereg., = ||b|| — h, independently of the search spa¢eThe degree of the polynomial can
be chosen depending on the informatiorypfthat is to be used in each step. We propose to
use three function values, i.é.,= 3. This choice yields a small linear systems of equations
with ak x k matrix that have to be solved in each step.

Let us consider the use of three pajis’, gy (a?)}, i = 1,2, 3; see also15]. Assume
that the following inequalities are satisfied,

(3.4) al <a? <a® and gy(al) <0< gy(a®).

Otherwise we renumber the value$sso that 8.4) holds.

If gy is strictly monotonically increasing ift, o], then @.3) is a rational interpolant
of g;' : [gv(al),gv(a®)] — R. Our next iterate iswmew = h(0), where the polyno-
mial p(g) is of degree2. The coefficientsag, a1, a2 are computed by solving the equa-
tionsh(gy (o)) = of, i = 1,2, 3, which we formulate as a linear system of equations with
a3 x 3 matrix. In exact arithmetiaynew € (o', a?), and we replace! or a® by anew SO that
the new triplet satisfies3(4).
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Due to round-off errors or possible non monotonic behavibrgp the computed
value anew Might not be contained in the intervak!, o). In this case we carry out a bi-
section step, so that the interval is guaranteed to stilladonthe zero. If we have two positive
valuesgy (o), then we letv® = (o' + o?)/2; in the case of two negative valugs (a*), we
leta! = (a? +a?)/2.

4. Numerical examples. To evaluate the performance of Algorithdin we use large-
dimensional test examples from HanseR&gularization Toolscf. [10]. Most of the prob-
lems in this package are discretizations of Fredholm iatezuations of the first kind, which
are typically very ill-conditioned.

The MATLAB routines baart, shaw, deriv2(1), deriv2(2), deriv2(3),

il apl ace(2), il apl ace(3), heat (x=1), heat (x=5), phil li ps, andbl ur pro-
vide square matriced;,,.. € R™*", right-hand side$,,..., and true solutions:,.,.., with
AtrueTirue = birue. I all cases, the matrices;,,.. and[Ay, e, birue] are ill-conditioned.
The parameter for problemheat controls the degree of ill-posedness of the kerrek: 1
yields a severely ill-conditioned and = 5 a mildly ill-conditioned problem. The number
in brackets forderi v2 andi | apl ace specifies the shape of the true solution, e.g., for
deri v2, the 2’ corresponds to a true continuous solution which is exptakwhile '3’
corresponds to a piecewise linear one. The right-hand sidedified correspondingly.

To construct a suitable dual RTLS problem, the norm of thietfigind sidé,,.,.. is scaled
such that,/n||bsruell = | Atruell 7, @andzy. is then scaled by the same factor.

The noise added to the problem is put in relation to the noroh,pf. andby,...., respec-
tively. Adding a white noise vectar € R" to by,.,. and a matrixtl € R"*™ to A,... yields
the error-contaminated probledwr ~ b with b = byye + € andA = Ay, + E. We refer to
the quotient

IE; e]llp £ r [le]

H [Atrue; bt’r'ue] HF ||At7'ue || F ||bt’r'us ||

as thenoise level In the examples, we consider the noise levets 10~2 ando = 1073,
To adapt the problem to an overdetermined linear system wéditens, we stack two
error-contaminated matrices and right-hand sides (wiferéint noise realizations), i.e.,

A1 b1
a=al -]
with the resulting matrix4 € R?2"*" andb € R?". Stacked problems of this kind arise when
two measurements of the system matrix and right-hand sele\ailable, which is, e.g., the
case for some types of magnetic resonance imaging problems.

Suitable values of constraint parameters are giverh py= || E||r andh, = v|le]|
with y € [0.8,1.2].

For the small-scale example, the model function approachlgdrithm 2 as well as
the refined Algorithm3 and the iterative projection Algorithm are applied using the two
proposed zero-finders.

For several large-scale examples, two methods for soltiegr¢lated RTLS problem
are evaluated additionally for further comparison. Thelegmentation of the RTLSQEP
method is described inlf, 16, 17], and details of the RTLSEVP implementation can be
found in [15, 17]. For both algorithms, the value of the quadratic constraiim (1.3) is set
to 0 = v||Lzyuel|.- Please note that the dual RTLS problem and the RTLS probkera h
different solutions; cf. Sectiol. L
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FIGURE 4.1. Initial function g(«) for a small-size example.

The regularization matrixX is chosen as an approximation of the scaled discrete first
order derivative operator in one space dimension,

1 -1
(41) L = c R(n_l)xn.
1 -1

In all one-dimensional examples, we use the following itilsér approximation of.

1 -1

This nonsingular approximation tb was introduced and studied if]] where it was found
that the performance of such a preconditioner is not vergitea to the value ot. In all
computed examples we let= 0.1.

The numerical tests are carried out on an Intel Core 2 Duo @ ¢athputer with 2.3 GHz
and 2GB RAM under MATLAB R2009a (actually our numerical exdes require less
than 0.5 GB RAM).

In Sectiord.1, the problenheat (k=1) of small size is investigated in some detail. The
projection Algorithm4 is compared to the full DRTLS method described in AlgoritBand
to the model function approach, Algorithth Several examples frofRegularization Tools
of dimensior4000 x 2000 are considered in Sectigh2. A large two-dimensional problem
with a system matrix of dimensiag38809 x 38809 is investigated in Sectiof.3.

4.1. Small-scale problems.n this section we investigate the convergence behavior of
Algorithm 4. The convergence history of the relative approximationremorm is compared
to Algorithm 2 and to the full DRTLS Algorithm3. The system matrix4 € R*00%200 js
obtained by usindheat (x = 1), adding noise of the levet = 1072, and stacking two
perturbed matrices and right hand sides as described abbeeinitial value fors is given
by By = —h% = —3.8757 - 10~° and the corresponding initial functigric; 5,) is displayed
in Figure4.1.
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FIGURE 4.2. Convergence histories fdreat (1), size400 x 200.

The functiong(«; 5y) has 182 poles fory > 0 with the rightmost pole located at
the valuea = —dypp = 0.0039 and the second rightmost pole -atl;g9 = 0.00038 as in-
dicated by the dashed lines in Figutel For these poledim,_,_4, g(a) = —oo holds
since||Auvg|| — hallvk|| < 0, for k = n — 1,n. In the left subplot, it can be observed that
the occurrence of the poles does not influence the behavideateroa, = 0.0459. In
the right subplot, the behavior for large valuescofs displayed. The limit value is given
byg(a; ﬁO)‘a—wo = Joo = 0.0435.

Figure 4.2 displays the convergence history of the Generalized Krabspace Dual
Regularized Total Least Squares Method (GKS-DRTLS) usiegteconditioned = LT L

for different convergence measures.
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FIGURE 4.3. Convergence history of approximation$ for heat (1), size400 x 200.

The size of the initial search space is equal.t&ince no stopping criterion for the outer
iterations is applied, Algorithrd actually runs untildim()) = 200. Since all quantities
shown in Figured.2(a)—(d) quickly converge, only the first part of each coneaige history
is shown. It can be observed that not all quantities convergeachine precision which is
due to the convergence criteria used within an inner it@natNote that for each subspace
enlargement in the outer iteration, a DRTLS problem of theedision of the current search
space has to be solved. For the solution of these projectdd BRroblems, a zero-finder is
applied, which in the following is referred to as inner it@was. For the computed example
heat (1), the convergence criteria have been chosetras? for the relative error of 5}
in the inner iterations, and alg6 2 for the relative error ofa*} and for the absolute value
of gv; (a®; 87) within the zero-finder. In the upper left subplot of Figdré&, the convergence
history of {a*} is shown. In every outer iteration, the dimension of the cleapace is in-
creased by one. Convergence is achieved withiterations corresponding to a search space
of dimension20. In Figure4.2(b) the relative change df3*} is displayed logarithmically,
roughly reaching machine precision afteriterations. The Figures.2(c) and (d) show the
relative change of the GKS-DRTLS iteratés*}, i.e., the approximate solutiori§y(57)
obtained from the projected DRTLS problems and the norm efrésidual{r*}, respec-
tively. For a search space dimension of abtiyjtconvergence is reached for these quantities,
too. Note that convergence does not have to be monotonidedlseasing. Figuré.2(e) dis-
plays logarithmically the firs50 absolute values of the entries in the coefficient vegtd?.
This stresses the quality of the firdh columns of the basi¥” of the search space. The
coefficients corresponding to basis vectors with a colummbyer larger thar20 are basi-
cally zero, i.e., around machine precision. In Figdr#f) the true solution together with the
GKS-TTLS approximation:'? are shown. The relative errdite;,... — x'2(|/||¢ el is ap-
proximately30%. Note that identical solutionsp rr s are obtained with the GKS-DRTLS
method without preconditioner, the full DRTLS method, ahd tnodel function approach.
The RTLS solutionz g s has a relative error dfzruwe — TrrLs ||/ | Ttrue | = 8%, butit has
to be stressed that this corresponds to the solution of erdiff problem. Note that identical
solutionsz g1 s are obtained by the RTLSEVP and the RTLSQEP method. The duabR
solution does not exactly match the peakegf, ., but on the other hand does not show the
ripples from the RTLS solution. In Figur& 3 the convergence history of the relative error
norms of{z*} with respect to the solutionp r7 1.5 are displayed for Algorithnd with and
without preconditioner, the model function Algorithtnand the full DRTLS Algorithns.
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In the left subplot of Figuret.3, the whole convergence history of the approximation
error norms of both GKS-DRTLS iterates are shown, i.e.,luhti()) = 200 which corre-
sponds tal 92 outer iterations. As mentioned above, machine precisiontseached due to
the applied convergence criteria for the inner iteratiams, it is reached a relative approx-
imation error of10~'2. Additionally the convergence history of Algorithr@sand3 to the
same approximation level is shown. The right subplot is aestoip of the left one that only
displays the firstl5 iterations. While the full DRTLS method converges witfiirand the
GKS-DRTLS method with preconditionéd = LT L in about1?2 iterations to the required
accuracy, the GKS-DRTLS method without preconditioneunes 140 iterations. This is a
very typical behavior of the GKS-DRTLS method without preditioner, i.e., it is in need
of a rather large search space; heté vectors ofR2%° are needed. The model function ap-
proach was started with the initial valag = 1.5a* with a* = 0.04702 as the value at the
solutionzprrrs. Despite the good initial value, the required number ofatiens wasss,
where in each iteration of Algorithrg, a different large linear system of equations has to
be solved. The main effort of one iteration of the full DRTLStimod Algorithm3 lies in
computing a large eigendecomposition such that the zedinfirproblem can then be carried
out at negligible costs. Hence, the costs of the full DRTLShoé are much less compared
to the model function approach. Note that the costs for abitgithe approximation:'? of
the GKS-DRTLS method with preconditioner are essentiafily 89 MatVecs, i.e.15 for
building up the initial space ariit for the resulting search spatec R200%20,

A few words concerning the zero-finders for the full DRTLS hwat and the GKS-
DRTLS Algorithm4. We start the bracketing zero-finders by first determinirgesa” such
that not allg(a®; 3;) or gy, (a*; 37) are of the same sign. Such values can be determined
by multiplying available values of the parameterby 0.01 or 100 depending on the sign
of g(«, ;). After very few steps, this gives an interval that contaimsat of g(«, 3;). For
the King method, two values”, k = 1,2, with g(a'; 8;)g(a?; 8;) < 0 are sufficient for ini-
tialization while for the rational inverse interpolatidmee pairga”, g(a*; 3;)), k = 1,2, 3,
have to be given with not all(a*; 8;), k = 1,2, 3, having the same sign. For Algorith&the
initial value fora is chosen as!' = —1.1dygo = 0.0043 with dyg being the smallest eigen-
value of (AT A + pyI, LT L). This initial guess is located slightly right from the rigiast
pole; see also Figuré.1. For the GKS-DRTLS method Algorithr, no pole ofgy, («; 39)
for the initial search spadg, € R2%9%8 exists, thus the initial value was setdd = 1. Note
that neverthelessy, («; 5) does have a positive root. When, subsequently, the dimension
the search space is increased, the initial value for thmpra&w{)“ is set equal to the last
determined valuéif. The first value of the parametes; i.e., o', used during initialization
for the zero-finding problemgy, (a;ﬁ{) =0,1=1,2,...,Iis set equal to the last calculated
valuea? .

Tables4.1and4.2 show the number of outer and inner iterations as well as énations
required for the zero-finder within one inner iteration fbetfull DRTLS method and the
generalized Krylov subspace DRTLS method with and withaatpnditioner. In Tablg.1
the iterations required for Algorithré are compared to the inner and outer iterations of Al-
gorithm 4 when no preconditioner is applied, i.e., with = I. The King method and the
rational inverse interpolation zero-finder introduced éct®n3.1 are compared for solving
all the inner iterations.

The first outer iteration of the GKS-DRTLS method is treatepasately since it corre-
sponds to solving the projected DRTLS with the starting®Bgiwhere no information from
previous iterations can be used as initial guess for thenpetersy and5. Thus, this leads to
a number of; or 6 inner iterations, i.e., updates Gf, depending on the applied zero-finder.
The iterations required by the zero-findeiand 7, respectively, for determining the very
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TABLE 4.1
Number of iterations for Full and GKS-DRTLS witlh = 1.

. Outer | Inner . . . _

Zero-finder | Alg. . . Istit. | 2ndit. | 3rdit. | ithit.
iters | iters

Rat.-Inv. GKS 1 6 6 2 1 0
Rat.-Inv. GKS | 2-60 | 3-4 1-2 0-1 0 0
Rat.-Inv. GKS | >60 | 1-3 0-1 0 0 -
Rat.-Inv. Full - 6 6 2 1 0
King GKS 1 5 7 3 3 0-1
King GKS | 2-60 | 3-4 2-3 1-3 0-1 0-1
King GKS | >60 | 1-2 0-1 0 - -
King Full - 5 7 3 3 0-1

first update of3), i.e., 37. The effort for determining the subsequent valggsi = 2,3, ...,
drastically decreases, e.g., for the rational inversepolation zero-finder, determining?
requires2 iterations and determining? requires onlyl iteration of the zero-finder. Deter-
mining the zeros in the following0 outer iterations only consists 84 inner iterations each
time. After more thar60 outer iterations have been carried out, i.e., the dimensfdhe
search space satisfidan(V;) > 68, typically one or two inner iterations are sufficient for
solving the projected DRTLS problem. Note that a ‘0’ in Tablé for the number of itera-
tions of a zero-finder means that the corresponding irgtiéilbn was sufficient to fulfill the
convergence criteria. The King method and the rationalrse@terpolation scheme perform
similarly. The full DRTLS does not carry out any outer prdjen iterations and directly
treats the full problem. So the meaning of inner iteratiogsipdating the parameteris
identical for Algorithms3 and4.

In Table4.2the number of iterations required for the full DRTLS alglnitis compared
to the GKS-DRTLS method when the preconditionér= L L is applied.

TABLE 4.2 o
Number of iterations for Full and GKS-DRTLS witli = L™ L.
. OQuter | Inner . . . o
Zero-finder| Alg. . . Istit. | 2ndit. | 3rdit. | ithit.
iters | iters
Rat.-Inv. GKS 1 5 6 2 1 0
Rat.-Inv. GKS | 2-8 2-5 | 0-3 0-1 0 0
Rat.-Inv. GKS | >8 1 0 - - -
Rat.-Inv. Full - 6 6 2 1 0
King GKS 1 5 6 3 2 0
King GKS | 2-8 3-4 1-4 0-3 0-1 0-1
King GKS | >8 1 0 - - -
King Full - 5 7 3 3 0-1

Table4.2shows a similar behavior to that already observed in Talitethe King method
and rational inverse interpolation zero-finder perform pambly well, and the greater the
inner iteration number is, the fewer the number of zero-fintdgations. In contrast to the
method without preconditioner, here much fewer outer itena are needed for convergence.
Convergence of the GKS-DRTLS method corresponds to an almstsnt solution of the
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zero-finder in only one inner iteration. Note that no coneace criterion for stopping the
outer iterations has been applied.

4.2. Large-scale examplesin this section we compare the accuracy and performance
of Algorithm 4 with and without preconditioner, the RTLSQEP method frdim, [L6, 17],
and the RTLSEVP method fromi}, 17]. Various examples from HanserRegularization
Toolsare employed to demonstrate the efficiency of the propose@i@kzed Krylov Sub-
space Dual RTLS method. All examples are of the dix@) x 2000. With a valuey from
the interval[0.8, 1.2], the quadratic constraint of the RTLS problem is set te v|| Lzt e/,
and the constraints for the dual RTLS are settg, and~h,, respectively. The stopping
criterion for the RTLSQEP method is chosen as the relatiamgh of two subsequent values
of f(x*) being less thari0~=¢. The initial space isC;(L~TAT AL~ ATb). The RTL-
SEVP method also solves the quadratically constrained ToBlgm (L.3). For all examples,
it computes values oh;, = « almost identical to the RTLSQEP method. The stopping
criterion for the RTLSEVP method is chosen as the residughnaf the first order condi-
tion to be less than0—8, which has also been proposed ir5]. The starting search space
is Ks([A,b]T[A, 1], [0,...,0,1]T).

For the GKS-DRTLS method, the dimension of the initial shaspace i$ for all ex-
amples unless stated differently and the following stogpiniterion is applied: the rela-
tive change of subsequent approximationsdand s in two outer iterations has to be less
than10~'°. For the variant without preconditioner, an additionalpging criterion is ap-
plied: the dimension of the search space is not allowed teexkt)0, which corresponds
to a maximum number d¥4 iterations. For all exampled( different noise realizations are
computed and the averaged results can be found in TalBesd4.4.

In Table4.3 several problems frorRegularization Tool$10] are investigated with re-
spect to under- and over-regularization for the noise level 10=2. For all problems in Ta-
ble 4.3, the residual of the GKS-DRTLS method with preconditiordar(oted as 'DRTLS’)
converges to almost machine precision. The variant withpyatonditioner (denoted as
'DRTLSNp’) is not very accurate, e.g., with residual nornetvikeen0.01-10% while us-
ing the same convergence criterion. This deficiency is aigblighted in Figure4.3. The
accuracy of the RTLSQEP and RTLSEVP methods are somewhdretiveen, where in
most examples the latter one yields more accurate apprt¢ininsa In the fourth column, the
relative error of the corresponding constraint conditgiven: for Algorithm4 this is

lg(a*; 5% _ MlA2prrLs — bl — hy — hallzprrLs]|
hy + hallzprrrs| o+ hallzprres|

and for the RTLS methods this j(sHZa;RTLS — 0)|/6. The constraint condition within the
DRTLS methods is fulfilled with almost machine precision leHbr the used implementa-
tions of the RTLS methods this quantity varies with the ulyileg problem. The number
of iterations for DRTLSnp is always equal to the maximum nemdf iterations, which is
94 in most cases. Foheat (1) andheat (5), the dimension of the initial search space
was increased t8 and 10, respectively, to ensure that the functign, (a; 83) has a posi-
tive root. Note that this is not essential for Algorith#if it is equipped with a minimizer
for |gv, (o; 87)| and not only a zero-finder. For these examples, the conveegeniteria

laltt —al|/ad] < 10710 and | — 7|/ | < 10710 are never achieved by Algorith¢h
without preconditioner, but the variant with = LTL always converged. The DRTLS and
DRTLSnp algorithm increase the search space by one vectoy @eration, whereas the
RTLSQEP and RTLSEVP methods may add several new vectorsiitenation. More inter-

esting is the number of overall matrix-vector multiplicats (MatVecs). For the DRTLSnp
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TABLE 4.3
Problems from Regularization Tools, noise leve: 10~2.
Problem llrd Mat- | CPU |  lz—zirucl -
factor~ Method HATL‘II Constr. | 1ers | \ecs | time (Srﬂ]gﬁi‘ggme) 1Lz
shaw DRTLS 1.4e-13| 2.6e-13| 3.0| 17.0| 0.32| 3.4e-1 (4.6e-1)| 6.0e-5
v=1.2 DRTLSnp | 7.7e-02| 1.0e-12| 94.0 | 199.0 | 6.47 | 2.6e-1 (4.6e-1)| 6.7e-5
RTLSQEP | 4.0e-07| 3.8e-05| 6.7 | 104.3| 3.01 | 1.2e-1(1.3e-1) 1.3e-4
RTLSEVP | 1.3e-12| 1.1e-02| 4.0| 54.2| 0.92| 1.2e-1(1.3e-1) 1.3e-4
baart DRTLS 5.7e-11| 5.0e-15| 1.9 | 14.8| 0.31| 2.1e-1(3.5e-1) 3.4e-5
vy=1.1 DRTLSnp | 1.1e-01| 5.4e-14| 94.0 | 199.0| 6.10 | 1.9e-1 (3.5e-1)| 3.8e-5
RTLSQEP | 2.8e-06| 3.0e-02| 6.3 | 100.7| 2.82 | 1.3e-1(1.9e-1) 5.5e-5
RTLSEVP | 1.7e-12| 1.8e-02| 2.0| 40.8| 0.77 | 1.2e-1(1.9e-1) 5.5e-5
phillips DRTLS 1.5e-11| 6.4e-15| 3.4 | 17.8| 0.33 | 1.0e-1(1.0e-1)| 1.4e-4
y=1.1 DRTLSnp | 3.8e-03| 5.3e-14| 94.0 | 199.0| 5.94 | 1.0e-1 (1.0e-1) 1.4e-4
RTLSQEP | 8.1e-05| 7.1e-01| 9.5| 141.9| 1.88 | 7.9e-2 (8.0e-2) 1.8e-4
RTLSEVP | 2.4e-12| 1.3e-02| 2.6 | 62.4| 1.15| 6.1e-2(8.0e-2) 1.7e-4
heat (1) DRTLS 1.7e-11| 1.5e-13| 7.3 | 29.6| 0.58| 3.1e-1(3.0e-1) 3.0e-4
v=1.0 DRTLSnp | 1.2e-03| 2.2e-14| 92.0 | 199.0| 6.30 | 3.1e-1 (3.0e-1)| 3.0e-4
RTLSQEP | 7.6e-07| 6.4e-06| 17.8 | 212.4| 3.67 | 6.5e-2 (1.9e-1)| 5.3e-4
RTLSEVP | 5.2e-11| 1.6e-06| 5.1 | 78.0| 1.48 | 6.5e-2 (1.1e-1) 5.3e-4
heat (5) DRTLS 1.5e-08| 9.8e-15| 14.0| 47.0| 0.87 | 8.9e-2 (8.8e-2)| 8.5e-4
v=1.0 DRTLSnp | 9.5e-04| 2.5e-13| 90.0 | 199.0 | 5.89 | 8.9e-2 (8.8e-2)| 8.5e-4
RTLSQEP | 2.5e-04| 6.1e-04| 23.4 | 212.4| 4.14 | 8.3e-3 (1.5e-2)| 1.0e-3
RTLSEVP | 1.7e-04| 8.6e-04| 35| 76.6| 1.30| 6.6e-3 (1.7e-2)| 1.0e-3
deriv2(1) DRTLS 1.1e-13| 2.1e-13| 3.0| 17.0| 0.32| 3.3e-1(2.0e-1)| 4.8e-5
v=1.0 DRTLSnp | 3.3e-02| 1.8e-13| 94.0 | 199.0| 6.22 | 3.4e-1 (2.0e-1)| 5.0e-5
RTLSQEP | 9.3e-07| 1.7e-04| 15.6 | 194.6 | 3.50 | 1.1e-1 (5.3e-2)| 1.2e-4
RTLSEVP | 9.8e-13| 1.4e-09| 51| 77.0| 1.39| l.1e-1(5.3e-2) 1.2e-4
deriv2(2) DRTLS 2.2e-13| 6.3e-13| 3.0| 17.0| 0.34 | 2.9e-1(1.7e-1) 3.7e-5
v=20.9 DRTLSnp | 3.5e-02| 6.3e-14| 94.0 | 199.0| 6.66 | 3.0e-1 (1.7e-1)| 4.2e-5
RTLSQEP | 7.6e-07| 1.9e-04| 5.1 | 101.1| 1.89 | 9.0e-2 (4.7e-2)| 8.4e-5
RTLSEVP | 5.9e-14| 1.2e-08| 6.1 | 78.6| 1.43| 9.0e-2 (4.7e-2)| 8.4e-5
deriv2(3) DRTLS 1.6e-13| 5.5e-13| 3.0| 17.0| 0.36 | 2.0e-1 (2.1e-1)| 2.8e-5
v=0.9 DRTLSnp | 1.4e-01| 2.6e-12| 94.0 | 199.0| 6.51 | 1.4e-1 (2.1e-1) 3.3e-5
RTLSQEP | 1.1e-07| 2.3e-09| 3.0| 54.8| 1.02| 5.1e-2 (6.7e-2)| 3.7e-5
RTLSEVP | 2.3e-13| 2.8e-10| 5.4 | 67.2| 1.22| 5.1e-2 (6.7e-2)| 3.7e-5
i | apl ace(2)| DRTLS 4.7e-12| 5.5e-14| 5.0| 21.0| 0.43| 3.4e-1(1.9e-1) 6.7e-5
v=0.8 DRTLSnp | 8.8e-03| 2.2e-13| 94.0 | 199.0| 6.30 | 7.9¢e-1 (5.7e-1)| 1.1e-4
RTLSQEP | 2.3e-07| 9.8e-07| 4.0 | 79.4| 1.44 | 4.2e-1(3.0e-1) 1.5e-4
RTLSEVP | 3.5e-12| 5.5e-03| 1.4 | 46.8| 0.84| 4.1e-1(3.0e-1)| 1.5e-4
i | apl ace(3)| DRTLS 9.3e-13| 3.7e-11| 17.7 | 46.4| 0.98 | 3.9e-1(2.3e-1) 1.4e-3
v=0.8 DRTLSnp | 3.8e-04| 1.3e-14| 94.0 | 199.0| 6.29 | 2.6e-1 (2.3e-1)| 1.4e-3
RTLSQEP | 1.1e-06| 2.0e-09| 5.0| 84.0| 1.51| 2.6e-1(2.1e-1)| 1.5e-3
RTLSEVP | 1.3e-11| 2.9e-08| 3.0 | 48.6| 0.87 | 2.6e-1(2.1e-1)| 1.5e-3

method, thé4 iterations directly correspond B(Maxlters+6)—1 = 199 MatVecs; see Sec-
tion 3. Similarly for the variant with preconditioner, the retai2 - (Iters+6) — 1 = MatVecs
holds. Thus, for Algorithmd the dimension of the search space is the size of the initedesp
plus the number of iterations. For the RTLSQEP method werareed of four MatVecs to
increase the size of the search space by one, whereas th&aRPLU8ethod requires only two
MatVecs. Hence, despite the large number of MatVecs red|fireRTLSQEP, the dimension
of the search space often is smaller than for RTLSEVP.
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The CPU times in the seventh column are given in seconds. @reylosely related
to the number of MatVecs since these are the most expenseratams within all four al-
gorithms. Thus, the main part of the CPU time is required fonputing the MatVecs, i.e.,
roughly60% for the GKS-DRTLS method without preconditioner a@-90% for the other
three algorithms. Note that the CPU time for simply compmiifio matrix vector multiplica-
tions with A € R4000x2000 js ahoutl.7 seconds. The DRTLS method outperforms the other
three algorithms, i.e., in almost all cases, the highestracy is obtained with the smallest
number of MatVecs. In the next to last column, the relativerewith respect to the true
solutionz,,.,. can be found together with a value given in brackets statiegelative error
of a reduced discretization level (by a factorl6j of the same problem, i.e., using a system
matrix of size400 x 200. Note that the relative error is not suited for directly caripg the
DRTLS and RTLS methods since they are solving different fgmols. More meaningful is
the comparison between the two variants of the DRTLS and Rfiefhods on the one hand
and the comparison of the relative error of a specific metbat tcorrespondent small-scale
value. The relative errors of small- and large-scale proklare throughout very similar, dif-
fering by a factor of two at most. The same holds true when @imng DRTLS and DRTLSnp
as well as RTLSEVP and RTLSQEP, i.e., often the relativersrace almost identical and the
maximum difference is given by a factor of two. In the lasturoh, the norm ofl.x at the
computed solution is given. Since this is the quantity wh&chinimized in the dual RTLS
approach, one would expect this value to be less comparéé t@tue at the computed RTLS
solutions. This is indeed the case for all problems of Tadbke Notice that in none of these
examples, the DRTLSnp method has achieved a smaller harmompared to the DRTLS
variant with preconditioner.

The smallest relative errors are obtained wijth= 1. Values of~ larger thanl cor-
responds to a certain degree of under-regularization, edser < 1 corresponds to over-
regularization.

Table 4.4 contains the results of the problems considered in Tédk3ebut now with
the noise level reduced i@ = 1073. The results are similar to those in TaBle. The
GKS-DRTLS with preconditioner outperforms DRTLSnp, RTLER) and RTLSEVP in all
examples, i.e., the relative residual is computed to almmasthine precision within a search
space of fairly small dimension. For the examphest (1) andheat (5), the dimension of
the initial search space was now increased2@and 16 and for both examplesaplace to
9 to ensure the functiopy, («; 3) having a positive root. Note that for problemeat (5)
with the noise levet = 10~3, the DRTLSnp method converges for several noise realizatio
to the required accuracy, whereas for all other examplesideémum number of iterations
is reached. For most examples the number of MatVecs of Alyorit with M = LTL is
often only about 0-50% of the MatVecs required for the RTLSQEP and RTLSEVP method.
The DRTLSnp method is clearly inferior to the other threehods in terms of accuracy and
number of MatVecs. The relative error in the next to last noiwf Table4.4indicates again
suitable computed approximations for all algorithms.

Notice that in the last column there is one case,ilgglace(3) where the norm oLz
at the dual RTLS solution is larger than the normlaf at the RTLS solution. This might
appear implausible at first sight but can be explained bygkeial problem setup: the choice
of constraint parameters has been defined as~|| Lz .|| for RTLS andhy = ~| E||F,
hy, = |le|. The norm ofLz at the RTLS solution is directly given by. Hence, for all
valuesy > 1, the norm at the RTLS solution is not smaller th\aﬁxtmeu, whereas the
DRTLS solution has a norm afz which is not larger tharﬂfxtmeu since this is already
contained in the feasible region. But for valuesydéss than, as in the last row of Tablé.4
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TABLE 4.4
Problems from Regularization Tools, noise leve: 103,

Problem = Mat- | CPU Ha‘clfztm‘e\l _
ZTtruel

factor Method TATH] Constr. | lters vecs | time (smz;II-scaIe) || Lx||

shaw DRTLS 2.5e-14| 3.9e-13| 3.0| 17.0| 0.32]| 2.3e-1(2.4e-1) 7.8e-5

vy=1.2 DRTLSnp | 6.1e-04| 2.4e-12| 94.0 | 199.0| 6.12 | 2.1e-1 (2.4e-1) 8.0e-5

RTLSQEP| 4.3¢-08| 6.56-08| 15.2 | 183.4| 1.51| 9.6e-2 (1.1e-1) 1.3e-4
RTLSEVP | 5.3e-13| 1.2e-01| 1.0| 44.6| 0.81| 5.7e-2(7.8e-2) 1.le-4
baar t DRTLS | 8.7e-14| 1.2e-12| 1.9| 14.8| 0.28] 9.5e-2 (1.3e-1)| 4.1e-5
=11 DRTLSnp | 2.3e-03| 1.8e-12| 94.0 | 199.0| 6.06 | 1.2e-1 (1.3e-1) 4.3e-5
RTLSQEP| 8.2¢-08| 3.9e-07| 11.2 | 150.6| 1.61 | 1.1e-1(1.6e-1) 5.5e-4
RTLSEVP | 1.5e-12| 1.1e-01| 1.0| 31.4| 0.54| 7.9e-2 (1.4e-1) 5.1e-5
phillips | DRTLS | 1.3e-13| 1.1e-13| 4.8| 22.6| 0.43]| 2.7e-2 (2.7e-2) 1.6e-4
y=11 DRTLSnp | 1.6e-04| 1.5e-14| 94.0 | 199.0| 6.04 | 2.7e-2 (2.7e-2)| 1.6e-4
RTLSQEP| 2.3¢-08| 1.1e-06| 20.0 | 228.2| 4.01 | 3.8e-2 (5.1e-2) 1.8e-4
RTLSEVP | 4.5e-10| 3.3e-02| 1.0| 62.0| 1.12| 3.8e-2(5.2e-2) 1.8e-4
heat (1) DRTLS | 8.7e-13| 4.1e-12| 11.1| 45.2| 0.81| 1.1e-1(1.1e-1) 4.5e-4
~=1.0 DRTLSnp | 4.7e-06| 2.1e-13| 88.0 | 199.0| 5.91 | 1.1e-1(1.1e-1) 4.5e-4
RTLSQEP| 8.0e-09| 2.3e-10| 23.4 | 261.6| 4.68 | 2.7e-2 (3.7e-2)| 5.3e-4
RTLSEVP | 5.7e-09| 4.7e-02| 3.2| 87.0| 1.42| 4.9e-2(4.2e-2) 5.6e-4
heat (5) DRTLS | 7.3e-09| 2.3e-12| 23.8| 78.6| 1.59| 1.3e-2 (1.4e-2) 9.9e-4
v =1.0 DRTLSnp | 1.4e-06| 9.8e-12| 82.1 | 195.2| 5.36 | 1.3e-2 (1.4e-2) 9.9e-4
RTLSQEP| 1.1e-03| 4.3e-02| 24.0 | 301.4| 5.78 | 2.1e-2 (2.4e-2) 1.1e-3
RTLSEVP | 1.4e-05| 9.6e-04| 2.0 | 78.0| 1.29| 2.1e-3 (5.4e-3) 1.0e-3
deriv2(l) | DRTLS | 3.3e-14| 2.2e-13| 7.0| 25.0| 047 1.7e-1(8.7e-2) 6.9e-5
v =1.0 DRTLSnp | 4.6e-04| 3.6e-14| 94.0 | 199.0| 5.97 | 1.9e-1(8.7e-2) 7.1e-5
RTLSQEP| 3.5¢-08| 3.9e-07| 22.2 | 238.8| 3.91 | 5.3e-2 (2.6e-2) 1.2e-4
RTLSEVP | 3.5e-11| 3.2e-05| 5.3 | 84.6| 1.42| 4.9e-2(2.6e-2) 1.2e-4
deriv2(2) | DRTLS | 1.8e-14| 2.7e-13| 7.0| 25.0| 0.50 | 1.5e-1(7.3e-2) 5.4e-5
v =0.9 DRTLSnp | 5.1e-04| 7.1e-14| 94.0 | 199.0| 6.41 | 1.7e-1(7.3e-2) 5.9e-5
RTLSQEP| 4.9e-08| 2.3e-06| 18.8 | 217.4| 4.22 | 4.2e-2 (3.0e-2) 8.4e-5
RTLSEVP | 7.4e-12| 5.9e-06| 4.5| 80.6| 1.48| 4.2e-2(3.0e-2) 8.4e-5
deriv2(3) | DRTLS | 1.0e-13| 6.4e-14| 4.0 | 19.0| 0.37 | 7.3e-2 (8.5e-2) 3.5e-5
v =09 DRTLSnp | 2.0e-03| 2.6e-13| 94.0 | 199.0| 5.99 | 4.5e-2 (8.5e-2) 3.7e-5
RTLSQEP| 4.0e-09| 3.8¢-09| 3.0 | 52.0| 0.96| 4.9e-2 (4.5e-2) 3.7e-5
RTLSEVP | 1.4e-13| 2.1e-10| 5.0| 63.2| 1.15| 4.9e-2 (4.5e-2) 3.7e-5
ilapl ace(2)] DRTLS | 2.5e-13| 2.5e-13| 4.9 | 26.8| 0.51| 3.8e-1(2.6e-1) 1.3e-4
v =0.8 DRTLSnp | 2.4e-04| 2.2e-13| 91.0 | 199.0| 6.01 | 7.7e-1 (5.6e-1) 1.5e-4
RTLSQEP| 2.6e-08| 1.5e-07| 9.2 | 128.6| 2.39 | 4.1e-1(3.0e-1) 1.5e-4
RTLSEVP | 4.5¢-13| 1.4e-03| 1.0 | 44.6| 0.80| 4.1e-1(3.0e-1) 1.5e-4
ilaplace(3)] DRTLS | 1.3e-13| 1.2e-12| 12.7| 42.4| 0.85| 1.4e-1(8.4e-1) 1.8e-3
v =08 DRTLSnp | 4.96-06| 1.8e-13| 91.0 | 199.0| 6.05 | 1.0e-1 (1.8e-1) 1.8e-3
RTLSQEP| 7.5e-07| 2.2e-09| 5.0| 83.2| 1.50| 2.5e-1(2.1e-1) 1.5e-3
RTLSEVP | 3.7e-11| 2.8e-08| 3.0| 45.0| 0.81| 2.5e-1(2.1e-1) 1.5e-3

with v = 0.8, there is no guarantee that the DRTLS method yields semmteas thar.
(Especially for small values <« 1.)

4.3. Large 2-D example.We consider the restoration of a greyscale image that is rep-
resented by an array d7 x 197 pixels. The pixels are stored columnwise in a vector
in R38309 " The vectorz,,.. represents the uncontaminated image. A block Toeplitz blur
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ring matrix A;,.,. € R38809x38809 with Toeplitz blocks is determined with the function
bl ur from [10] using the parameter valuéand = 3 (which is the half-bandwidth of
each197 x 197 Toeplitz block) andsigma = 1.5 (which determines the width of the un-
derlying Gaussian point spread function). The mattix,. has9.6 - 10° nonzero entries.
The right hand sidéy,.,.. is determined byA,.,.x-.. and the scaling described in the be-
ginning of Sectiord has been applied. We add Gaussian noise corresponding tmite
level 0 = 10~ to by, and the nonzero entries of,,.,.. to keep the number of nonzeros
of A = A;ue + Ancise@t @ manageable level (a full matrix fraRy3809>38809 requires more
than 11GB storage). Please note that this kind of distudbdnes not entirely reflect the un-
derlying basic idea of total least squares problems, whereamplete matrix and right-hand
side are assumed to be contaminated by noise.

We would like to determine an accurate restoration:gf,. given A andb and some
information about the noise. The factgis set tol.

Different regularization matrices and zero-finders are compared. We use the first order
discrete derivative operator for two space dimensions

Li®I1,
Lisp = I,® L

with L, defined by 4.1) with n = 197 andI,, the identity matrix of ordet97. The second
order discrete derivative operator in two space dimensions

L2 ® In
L2,2D = I ® L2

is also considered where
-1 2 -1
Ly = e RM=2xn - —197.
-1 2 -1

We compare the performance of Algorithfrto the RTLSEVP algorithm (for solving
the correspondent RTLS problem) for the regularizationrices L, 2p, Lo 2p, andL = I.
For the latter regularization matrix, the generalized Kw$ubspace¥ determined by Algo-
rithm 4 reduce to the standard Krylov subspatgg AT A, ATb).

Initial search spaces and stopping criteria for the GKS-D&®R&nd RTLSEVP algorithms
have been chosen as in the previous Secti@together with the additional criterion of a
maximum search space dimension50f For the GKS-DRTLS method, no preconditioner
has been applied, i.e)ld = I. The convergence history of the most interesting quastitie
when using the regularization matrix = L, »p is shown in Figuret.4. The graphs are
similar for the regularization matricds = L, op andL = I, therefore the latter graphs are
not shown.

Similarly as in the small-scale example in Sectibnd, the parameters: and 5 stag-
nate quite quickly; see Figures4(a) and (b), respectively. Other quantities on which a
stopping criterion for Algorithm4 can be based are displayed in Figufe4(c)—(e). The
relative change of two consecutive approximatiefisand the corresponding relative resid-
ual norm||r(z*)||/||ATb|| are shown in Figuré.4(c) and (d), respectively. Both quantities
decrease by orders of magnitude. The absolute value of the entries of/éiwgor 32 is
displayed in Figurel.4(e). They decrease #/orders of magnitude but not monotonically.

Figure4.5shows the original (blur- and noise-free) image, the biiaed noisy image,
and several restorations. The first row of Figdrgdepicts the original image as well as the
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FIGURE 4.4. Convergence histories for the restoration of Lothar using tegularization matrix; 2 p.

blur- and noise-contaminated image. The relative erronetiurred and noisy image is

b— rue
b =@iruell _ o0 469

1 Ztruel

The images restored in the second row are obtained by usiag/ as regularization matrix
and applying the RTLSEVP algorithm in FigufeSc) and the GKS-DRTLS algorithm in
Figure 4.5(d) using search spaces of dimensitim()) = 43 and50 at termination. The
relative errors in the computed restorations &el% and5.37%. The restorations shown
by the images in row three are for the discrete first orderveléve operatorL; »p. The
termination criterion is the same as above. The computddregidns have relative errors

Ly - L .
”leTzLDS — Ztruell /1T true || = 7-45% and||xD1R27?LS = Ztruell /| Ttrue || = 6.20% by using a
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(a) Original picture (b) Blurred and noisy picture

(c) Restored by RTLS witll, = I (d) Restored by DRTLS witll, = I

0 40 80 120 160

(e) Restored by RTLS witlh, = L 2p (f) Restored by DRTLS with, = Ly 2p

0 [o]

40

80

120

160

0 40 80 120 160

(9) Restored by RTLS witl. = L3 2p (h) Restored by DRTLS witll, = L2 op

FIGURE 4.5. Original, blurred, and restored Lothar.
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search space of dimensid for RTLSEVP and of32 for GKS-DRTLS. The last row dis-
plays two restored images obtained with the discrete Lapigeratorl = Lo op; the first
one corresponds to RTLSEVP withm (V) = 41 and an relative error df.55%, while the
DRTLS restoration used in the second image has requiredrehsspace oflim(V) = 42

with a relative error ofl 27222, ¢ — Zeruell/ | Ztrue|| = 6.34%.

Figure4.5shows that the regularization matiix= I gives the best restoration although
the restored images can be seen to contain a lot of “frecklé® quality of the restorations
obtained by the DRTLS method with; »p andLs »p is about the same, whereas the corre-
sponding restorations by RTLS are clearly inferior. We finel images obtained with; 5p
to be slightly sharper than the image determined With p. Also the relative error is slightly
smaller. Since only the DRTLS method with= I has been terminated by the condition on
the search space dimension (with visually indistinguihabstorations in the last few outer
iterations), we conclude that it typically suffices to useJdimensional search spacg<of
dimensiond0.

5. Conclusions. A new method based on orthogonal projection for solving degt
ularized total least squares problems is presented. Thmged iterative method solves a
convergent sequence of projected two-parameter linedersgswith a minimization con-
straint. Due to convergence of this sequence, it turns olbietbighly advantageous to reuse
the information gathered while solving one system for thetsm of the next. Several nu-
merical examples demonstrate that the computed search sphighly suitable. Typically,
search spaces of fairly small dimension are sufficient.
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