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α-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION ∗

PUTHAN VEEDU VISWANATHAN† AND ARYA KUMAR BEDABRATA CHAND †

Abstract. This article is devoted to the development of a constructive approach to constrained interpolation
problems from a fractal perspective. A general constructionof anα-fractal functionsα ∈ Cp, the space of allp-times
continuously differentiable functions, by a fractal perturbation of a traditional functions ∈ Cp using a finite sequence
of base functions is introduced. The construction of smoothα-fractal functions described here allows us to embed
shape parameters within the structure of differentiable fractal functions. As a consequence, it provides a unified
approach to the fractal generalization of various traditional non-recursive rational splines studied in the field of
shape preserving interpolation. In particular, we introduce a class ofα-fractal rational cubic splinessα ∈ C1 and
investigate its shape preserving aspects. It is shown thatsα converges to the original functionΦ ∈ C2 with respect
to theC1-norm provided that a suitable mild condition is imposed on thescaling vectorα. Besides adding a layer
of flexibility, the constructed smoothα-fractal rational spline outperforms its classical non-recursive counterpart in
approximating functions with derivatives of varying irregularity. Numerical examples are presented to demonstrate
the practical importance of the shape preservingα-fractal rational cubic splines.

Key words. iterated function system,α-fractal function, rational cubic spline, convergence, convexity, mono-
tonicity, positivity
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1. Introduction. Fractal interpolation, a subject championed by Barnsley [1], is a new
technique which has proven to be advantageous over traditional interpolation methods. The
traditional interpolants such as polynomial, rational, trigonometric, and spline functions are
always smooth or piecewise smooth. Fractal Interpolation Functions (FIFs) defined via a
suitable Iterated Function System (IFS) possess the novelty of providing one of the very few
methods that produce non-differentiable interpolants. Non-smooth FIFs are well suited for
deterministic representations of complex real-world phenomena such as economic time se-
ries, weather data, bioelectric recordings, etc. Barnsleyand Harrington [2] observed that FIFs
are closed under the operation of integration and subsequently developed the calculus of frac-
tal functions. Thus, these authors have initiated the construction of smooth FIFs and unfolded
a striking relationship between the theory of fractal functions and splines. Overall, a FIF of-
fers the flexibility of choosing either a smooth or a non-smooth approximant. Smooth FIFs
can be utilized to generalize the classical interpolation and approximation techniques; see,
for instance, [4, 5, 6, 8, 25, 26, 27, 28]. Furthermore, if experimental data are approximated
by aCp-FIF f , then the fractal dimension of the graph off (p) can be aptly used as an index
for analyzing the underlying physical process.

Consequently, traditional interpolation theory and fractal theory together yield many pos-
sible approaches for interpolating given data by means of smooth functions. Unfortunately,
there is no consensus on a “best” interpolant from the wealthof various possibilities. How-
ever, there are several desirable properties such as smoothness, approximation order, locality,
fairness, and preservation of the inherent shape that are often expected from interpolants. By
focusing on these properties and trade-offs between them, we may narrow down our search
for a good interpolant. The problem of reproducing the qualitative properties inherent in
the data not only eliminates some interpolants from consideration but also provides a real-
istic model for the intended physical situation. The subfield of interpolation/approximation
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wherein one deals with the problem of finding an interpolants for which s(k) is nonneg-
ative for somek ∈ N ∪ {0}, wheneverf (k) is nonnegative for the data generating func-
tion f , is generally referred to asshape preserving interpolationor isogeometric interpola-
tion. Fork = 0, 1, and2, the problem reduces to preserving nonnegativity, monotonicity, and
convexity, respectively.

Due to the everlasting demands from engineering, industrial, and scientific problems,
the construction of shape preserving smooth interpolants is one of the major research areas
of approximation theory and of computer aided design. Thereis a large body of literature
devoted to shape preserving interpolation with traditional non-recursive interpolants; see, for
instance, [3, 9, 10, 18, 30] and the references therein. Among various non-recursive shape
preserving interpolants, the rational splines with shape or tension parameters are extensively
used due to their simplicity and flexibility [11, 12, 19, 20]. However, many of these traditional
shape preserving interpolation methods require the data tobe generated from a continuous
function which has derivatives of all orders except perhapsat a finite number of points in the
interpolating interval. Consequently, these methods are less satisfactory for preserving the
shape of given Hermite data wherein the variables representing the derivatives are modeled
using functions of varying irregularity (from smooth to nowhere differentiable). Such data
arise naturally and abundantly in nonlinear control systems (e.g., a pendulum-cart system)
and in some fluid dynamics problems (e.g., the motion of a falling sphere in a non-Newtonian
fluid) [21, 32]. Recursive subdivision schemes can produce shape preserving interpolants
with fractality in the derivative of the interpolant. However, a quantification of the fractality
of the derivative in terms of the parameters involved in the scheme is unavailable.

From an application’s point of view, the development of shape preservingCp-FIFs is
beneficial due to the following reasons: (i) they can recapture the traditional non-recursive
shape preserving interpolants for suitable values of the IFS parameters, (ii) they provide shape
properties of the interpolant and fractality of the derivatives, and (iii) the fractality can be
controlled through the free parameters (scaling factors) of the IFS and can be quantified in
terms of the fractal dimension allowing to compare and discriminate the experimental pro-
cesses. On the other hand, the theoretical importance of developing shape preserving fractal
functions lies in the fact that shape preserving interpolation and fractal interpolation are two
methodologies that are evolving independently and in parallel, and hence there is a need to
bridge this gap for one to benefit from the other. At the outset, we admit that due to the
implicit and recursive nature of the fractal function, developing shape preserving polynomial
FIFs will be more challenging than that of their classical counterparts. For an initial easy and
elegant exposition of fractal interpolation techniques toshape preservation theory, rational
FIFs with shape parameters act as a suitable vehicle.

For constructing smooth FIFs, we need to find an IFS satisfying the hypotheses of
the Barnsley and Harrington theorem [2]. This may be difficult in some cases, especially
when some specific boundary conditions are required. Based on the construction ofC0-FIFs
through a “base function” [1] and the Barnsley and Harrington theorem, Navascués and Se-
bastían [28] described a method for the construction ofCp-FIFs, specifically polynomial FIFs.
However, this single base function method is not suitable for the development of smooth ra-
tional FIFs with shape parameters. In Section3.1, we generalize the construction ofCp-FIFs
using anα-fractal function technique with the help of a finite sequence of “base functions”
in contrast to a single base function adopted in [1, 28]. Our present approach to the construc-
tion settles the issue of incorporating shape parameters into the structure of a fractal spline.
Consequently, the construction ofCp-continuousα-fractal splines enunciated in this article
heralds a unified approach to the definition of fractal generalizations of various non-recursive
shape preserving rational splines; see, for instance, [12, 19, 29, 31, 33]. Recently, the authors
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have investigated fractal versions of some of these rational splines using a constructive ap-
proach, thereby initiating the study of shape preserving fractal interpolation [7, 34, 35]. Note
that the present approach is more general providing a commonmedium for these rational
fractal splines and many more.

In Section3.2, we particularize our construction to obtain anα-fractal functionsα ∈ C1

corresponding to the traditional rational cubic splines studied in detail in [31]. Our predilec-
tion to the choice of rational splines with linear denominator as an illustration for the process
of generalizing the traditional shape preserving rationalsplines is attributed to the reasons of
computational economy. Further, from the point of view of the magnitude of the optimal error
coefficient, the spline with linear denominator can better approximate the function being in-
terpolated than the rational interpolation with quadraticor cubic denominator [15]. A detailed
study of the approximation property of the constructedα-fractal rational cubic spline when
applied to the approximation of a function in classC2 is broached in Section4. In Section5.1,
the constructedα-fractal rational cubic spline is further investigated andsuitable conditions
on the parameters are developed to preserve the convexity property of the given data. It is
observed that, in general, it may not be possible to get a monotone fractal curve using the
developedα-fractal rational cubic spline interpolation scheme unless the derivative param-
eters are chosen to satisfy some suitable conditions in addition to the necessary monotone
conditions. Whence, our approach generalizes and corrects the monotonicity result quoted in
[31]. Section6 provides test examples where we compare the plots obtained by the proposed
α-fractal rational cubic spline and its classical counterpart; the result is encouraging for the
fractal spline class treated herein. We conclude the paper with some remarks and possible
extensions in Section7.

2. FIFs andα-fractal functions. In this section, we recall the concepts of a FIF and
α-fractal functions, which are needed in the sequel. For a complete and rigorous treatment,
we may refer the reader to [1, 2].

Let ∆ := {x1, x2, . . . , xN} be a partition of the real compact intervalI = [x1, xN ]
satisfyingx1 < x2 < · · · < xN . Let a set of data points

{(xn, yn) ∈ I × R : n = 1, 2, . . . , N}

be given. Forn ∈ J = {1, 2, . . . , N − 1}, setIn = [xn, xn+1], and letLn : I → In be affine
maps defined by

(2.1) Ln(x) = anx+ cn, Ln(x1) = xn, Ln(xN ) = xn+1.

Let D be a large enough compact subset ofR. For n ∈ J , let −1 < αn < 1, and define
N − 1 continuous mappingsFn : I ×D → D such that

(2.2) |Fn(x, y)− Fn(x, y
∗)| ≤ |αn||y − y∗|, Fn(x1, y1) = yn, Fn(xN , yN ) = yn+1.

Define functionswn : I×D → I×D such thatwn(x, y) =
(

Ln(x), Fn(x, y)
)

, for all n ∈ J .

THEOREM 2.1 (Theorem 1, Barnsley [1]). The Iterated Function System (IFS)
I = {I × D,wn : n ∈ J} defined above admits a unique attractorG. Furthermore,G
is the graph of a continuous functionf : I → R which obeysf(xn) = yn, n = 1, 2, . . . , N .

The previous function is called a FIF corresponding to the IFS I. Let the set
G := {f ∈ C(I) | f(x1) = y1 andf(xN ) = yN} be endowed with the uniform metric
d(f, g) = max{|f(x)− g(x)| : x ∈ I}. The IFSI induces an operator such thatT : G → G,
Tf(x) := Fn

(

L−1
n (x), f ◦L−1

n (x)
)

, x ∈ In, n ∈ J. Note thatT is a contraction on the com-
plete metric space(G, d). Consequently,T possesses a unique fixed point onG, i.e., there



ETNA
Kent State University 

http://etna.math.kent.edu

α-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION 423

exists a uniquef ∈ G such thatTf(x) = f(x) for all x ∈ I. The functionf turns out to be
the FIF corresponding toI and it satisfies the functional equation

f(x) = Fn

(

L−1
n (x), f ◦ L−1

n (x)
)

, ∀x ∈ In.

The FIFs that received extensive attention in the literature stem from the following IFS

wn(x, y) =
(

Ln(x), Fn(x, y)
)

, Ln(x) = anx+ cn, Fn(x, y) = αny + qn(x),

whereqn, n ∈ J, are suitably chosen continuous functions, commonly polynomials, that sat-
isfy (2.2). The constantαn is called a scaling factor of the transformationwn, and
α = (α1, α2, . . . , αN−1) is the scale vector of the IFS. Givens ∈ C(I), Barnsley [1] has
constructed a functionqn(x) = s ◦ Ln(x) − αnb(x), wheres 6≡ b ∈ C(I) and whereb
satisfiesb(x1) = s(x1) andb(xN ) = s(xN ). The corresponding FIFsα obeys

sα(x) = s(x) + αn(s
α − b) ◦ L−1

n (x), ∀ x ∈ In.

The graph G(sα) of the function sα is a union of transformed copies of itself,
i.e., G(sα) =

⋃

n∈J

wn(G(sα)), and may have noninteger Hausdorff and Minkowski dimen-

sions. Therefore, the functionsα can be treated as a “fractal perturbation” ofs obtained via a
base functionb.

3. A general method for the construction ofCp-continuousα-fractal functions. As
mentioned in the introductory section, we observe that for the construction of smooth FIFs
in the field of shape preserving interpolation, it is advantageous to define anα-fractal func-
tion sα by perturbing a given continuous functions with the help of a finite sequence of base
functions

B = {bn ∈ C(I) | bn(x1) = s(x1), bn(xN ) = s(xN ), bn 6≡ s, n ∈ J}

instead of a single base functionb. That is, in the first place, we consider

qn(x) = s ◦ Ln(x)− αnbn(x),

and the IFS

Ln(x) = anx+ cn, Fn(x, y) = αny + s ◦ Ln(x)− αnbn(x), x ∈ I, n ∈ J.

The correspondingα-fractal functionsα∆,B = sα satisfies the functional equation

(3.1) sα(x) = s(x) + αn(s
α − bn) ◦ L−1

n (x), ∀ x ∈ In.

Now we make the following definition which is reminiscent of the definition ofα-fractal
functions generated via a single base function; see [25, 26].

DEFINITION 3.1. Let∆ := {x1, x2, . . . , xN} be a partition of the intervalI = [x1, xN ]
such thatx1 < x2 < · · · < xN andα ∈ (−1, 1)N−1 be a scale vector. The continuous
functionsα∆,B = sα defined in(3.1) is called anα-fractal function associated withs with
respect to the partition∆ and the familyB.

3.1. Smoothα-fractal functions. Here we look for conditions to be satisfied by the
functions inB and the scale vectorα such that theα-fractal functionsα associated withs
preserves thep-smoothness ofs. To this end, at first we recall the following theorem that
establishes the existence of differentiable FIFs (fractalsplines).
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THEOREM 3.2 (Theorem 2, Barnsley and Harrington [2]). Let I = [x1, xN ] and
x1 < x2 < · · · < xN be a partition ofI. Let Ln(x) = anx + cn, n ∈ J , be affine
maps satisfying(2.1), and letFn(x, y) = αny + qn(x), n ∈ J, satisfy(2.2). Suppose that
for some integerp ≥ 0, we have that|αn| ≤ κapn, where0 ≤ κ < 1 and qn ∈ Cp(I), for
all n ∈ J . Let

Fn,r(x, y) =
αny + q

(r)
n (x)

arn
, y1,r =

q
(r)
1 (x1)

ar1 − α1
, yN,r =

q
(r)
N−1(xN )

arN−1 − αN−1
, r = 1, 2, . . . , p.

If Fn−1,r(xN , yN,r) = Fn,r(x1, y1,r) for n = 2, 3, . . . , N − 1 and r = 1, 2, . . . , p, then the
IFS

{

I × R,
(

Ln(x), Fn(x, y)
)

: n ∈ J
}

determines a FIFf ∈ Cp(I), andf (r) is the FIF
determined by

{

I × R,
(

Ln(x), Fn,r(x, y)
)

: n ∈ J
}

for r = 1, 2, . . . , p.
Let s ∈ Cp(I). In view of the previous theorem, we assume|αn| ≤ κapn for all n ∈ J

and for some0 ≤ κ < 1. Our strategy is to impose conditions on the family of functions
B = {bn : n ∈ J} such that the mapsFn(x, y) = αny+qn(x) = αny+s◦Ln(x)−αnbn(x),
n ∈ J , satisfy the hypotheses of this theorem. The argument is patterned after the method of
smooth FIFs developed in [28]. However, we work with a more general setting in the sense
that the equality assumption on the scaling factors are not used, and a family of base func-
tionsB is employed instead of a single functionb. As mentioned in the introductory section,
the advantage gained by this slight modification is that, in addition to the polynomial splines,
several standard rational splines that are extensively used in the field of shape preserving in-
terpolation and approximation can also be generalized to fractal functions. This allows the
intersection of two fields, the theory of fractal splines andshape preserving interpolation,
which culminate with shape preserving fractal interpolation schemes.

Let us start with the decisive condition prescribed in the Barnsley-Harrington theorem,
namely

Fn−1,r(xN , yN,r) = Fn,r(x1, y1,r), n = 2, 3, . . . , N − 1, r = 1, 2, . . . , p,(3.2)

whereFn,r(x, y) =
αny+q(r)n (x)

ar
n

. For our choice ofqn, we have

q(r)n (x) = arns
(r)(Ln(x))− αnb

(r)
n (x), for r = 0, 1, 2, . . . , p,

so that

arn−1Fn−1,r(xN , yN,r) =
αn−1

arN−1 − αN−1

[

arN−1s
(r)(xN )− αN−1b

(r)
N−1(xN )

]

+ arn−1s
(r)(xn)− αn−1b

(r)
n−1(xN ),

arnFn,r(x1, y1,r) =
αn

ar1 − α1

[

ar1s
(r)(x1)− α1b

(r)
1 (x1)

]

+ arns
(r)(xn)− αnb

(r)
n (x1).

(3.3)

In view of (3.3), the following conditions on the familyB = {bn : n ∈ J} suffice to
verify (3.2):

(3.4) b(r)n (x1) = s(r)(x1), b(r)n (xN ) = s(r)(xN ), for r = 0, 1, . . . , p, n ∈ J.

Thus, if we have a family of functionsB = {bn ∈ Cp(I) : n ∈ J} such that the derivatives
up to p-th order of each of its members match with that ofs ∈ Cp(I) at the end points
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of the interval, then the corresponding FIFsα is in Cp(I) and satisfiessα(xn) = s(xn).
Furthermore, forr = 1, 2, . . . , p, (sα)(r) is the FIF corresponding to the IFS

Ln(x) = anx+ cn, Fn,r(x, y) =
αny + arns

(r)
(

Ln(x)
)

− αnb
(r)
n (x)

arn
.

Consequently,(sα)(r) satisfies the functional equation

(3.5) (sα)(r)(x) = s(r)(x) +
αn(s

α − bn)
(r) ◦ L−1

n (x)

arn
.

The above equation stipulates that ther-th derivative of theα-fractal functionsα∆,B corre-
sponding tos with respect to the scale vectorα = (α1, α2, . . . , αN−1), the partition∆, and
the family of base functionsB = {bn : n ∈ J} coincides with the fractal function ofs(r)

with respect to the scale vector̃α = (α1

ar
1
, α2

ar
2
, . . . ,

αN−1

ar
N−1

), the partition∆, and the family

Br = {b(r)n : n ∈ J}, respectively, i.e.,(sα∆,B)
(r) = (s(r))α̃∆,Br

. Using (3.5) and the con-

ditions in (3.4) imposed on the familyB, it can be verified that(sα)(r)(xn) = s(r)(xn)
for n = 1, 2, . . . , N . That is, ther-th derivative ofsα agrees with ther-th derivative ofs at
the knot points.

THEOREM 3.3. Suppose that for some integerp ≥ 0, we have|αn| ≤ κapn, for all n ∈ J

and0 < κ < 1. Let |α|∞ = max{|αn| : n ∈ J}, s ∈ Cp, and the familyB = {bn : n ∈ J}
obey the conditions prescribed in(3.4). Theα-fractal functionsα ∈ Cp(I) of s with respect
to the partition∆ and the familyB satisfies

‖sα − s‖∞ ≤ |α|∞
1− |α|∞

max
{

‖s− bn‖∞ : n ∈ J
}

,

‖(sα)(r) − s(r)‖∞ ≤ κ

1− κ
max{‖s(r) − b(r)n ‖∞ : n ∈ J}, r = 1, 2, . . . , p.

Proof. We have the functional equation

sα(x) = s(x) + αn(s
α − bn) ◦ L−1

n (x), ∀ x ∈ In.

Consequently, for allx ∈ In,

|sα(x)− s(x)| ≤ |αn|‖sα − bn‖∞,

from which it follows that

‖sα − s‖∞ ≤ |α|∞ max
{

‖sα − bn‖∞ : n ∈ J
}

.

According to the previous inequality,

‖sα − s‖∞ ≤ |α|∞
(

‖sα − s‖∞ +max{‖s− bn‖∞ : n ∈ J}
)

,

and thus

‖sα − s‖∞ ≤ |α|∞
1− |α|∞

max
{

‖s− bn‖∞ : n ∈ J
}

.

From (3.5), for r = 1, 2, . . . , p, we have

(sα)(r)(x) = s(r)(x) +
αn

arn
(sα − bn)

(r) ◦ L−1
n (x), ∀ x ∈ In.
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Inasmuch as0 < an = xn+1−xn

xN−x1
< 1, we haveapn ≤ arn, for r = 1, 2, . . . , p. Hence,

|(sα)(r)(x)− s(r)(x)| ≤ κ
∣

∣(sα − bn)
(r)(L−1

n (x))
∣

∣, ∀ x ∈ In.

Calculations similar to that in the first part yield the second assertion.
Let s ∈ C(I). Assume that the base functionsbn, n ∈ J , in the familyB depend

linearly on s. For instance, letbn, n ∈ J, be given bybn = Uns, where the operators
Un : C(I) → C(I) are linear, bounded (with respect to the uniform norm onC(I)) and satisfy
Uns(x1) = s(x1), Uns(xN ) = s(xN ). Following [25, 27], we define theα-fractal operator
Fα ≡ Fα

∆,B as

Fα : C(I) → C(I), Fα(s) = sα.

DEFINITION 3.4. Letx1 < x2 < · · · < xN be fixed knots in the intervalI = [x1, xN ].
A linear operatorT : C(I) → C(I) is said to be of interpolation type if for anyf ∈ C(I), we
haveTf(xn) = f(xn), for all n = 1, 2, . . . , N .

Next we study certain properties of theα-fractal operatorFα.
THEOREM 3.5.
(i) The fractal operatorFα : C(I) → C(I) is linear and bounded with respect to the

uniform norm.
(ii) For a suitable value of the scale vectorα, the operatorFα is a simultaneous ap-

proximation and interpolation type operator.
(iii) If α = 0, thenFα is norm-preserving. In fact, it holds thatF0 ≡ I.
(iv) For |α|∞ < |U |−1, where|U | = max{‖Un‖ : n ∈ J} and ‖Ur‖ is the opera-

tor norm ‖Ur‖ := sup{‖Ur(f)‖∞ : f ∈ C(I), ‖f‖∞ ≤ 1}, Fα is an injective,
bounded, linear, and non-compact operator.

Proof. Let α ∈ (−1, 1)N−1. Let s1, s2 ∈ C(I) andλ, µ ∈ R. From (3.1), we have for
all x ∈ In that

sα1 (x) = s1(x) + αn(s
α
1 − Uns1) ◦ L−1

n (x),

sα2 (x) = s2(x) + αn(s
α
2 − Uns2) ◦ L−1

n (x).

Therefore, from the linearity ofUn, we have

(λsα1 + µsα2 )(x) = (λs1 + µs2)(x) + αn

(

λsα1 + µsα2 − Un(λs1 + µs2)
)

◦ L−1
n (x).

From this equation we find that the functionλsα1 + µsα2 is the fixed point of the Read-
Bajraktarevíc operatorTf(x) := (λs1 + µs2)(x) +αn

(

f −Un(λs1 + µs2)
)

◦L−1
n (x). The

uniqueness of the fixed point shows that(λs1 + µs2)
α = λsα1 + µsα2 . That is,

Fα(λs1 + µs2) = λFα(s1) + µFα(s2) establishing the linearity ofFα.
From Theorem3.3we find that‖Fα(s)− s‖∞ ≤ |α|∞

1−|α|∞ max{‖s− Uns‖∞ : n ∈ J}.
Let |U | := max{‖Un‖ : n ∈ J}. Using the boundedness ofUn, the former inequality implies

‖Fα(s)‖∞ ≤
(1 + |α|∞|U |

1− |α|∞
)

‖s‖∞,

which affirms thatFα is bounded and the operator norm is bounded by‖Fα‖≤ 1 + |α|∞|U |
1− |α|∞

.

Let s ∈ C(I), x1 < x2 < · · · < xN be distinct points inI = [x1, xN ], andǫ > 0.
In view of the conditions imposed on the familyB = {Uns : n ∈ J}, it follows that
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Fαs(xn) = sα(xn) = s(xn), for n = 1, 2, . . . , N . That is, the operatorFα is of interpo-
lation type. Letα ∈ (−1, 1)N−1 be such that|α|∞ < ǫ

ǫ+‖s‖∞(1+|U |) . Then it follows
from Theorem3.3 that ‖Fα(s) − s‖∞ < ǫ. Consequently,Fα is of approximation type.
If α = 0 ∈ R

N−1 is chosen, then from equation (3.1), sα = s, for all x ∈ I. SoF0 ≡ I.
Let |α|∞ < |U |−1. Linearity and boundedness of the mapFα follow from assertion (i).

From Theorem3.3 we have‖sα − s‖∞ ≤ |α|∞ max{‖sα − Uns‖∞ : n ∈ J}. After some
routine calculations, this equation may be recast into the form 1−|U ||α|∞

1+|α|∞ ‖s‖∞ ≤ ‖Fα(s)‖∞.

This shows thatFα is bounded from below. Consequently,Fα is injective and the inverse
mapping(Fα)

−1
: Fα(C(I)) → C(I) is bounded. From the injectivity of the linear mapFα,

it follows that{1α, xα, (x2)α, . . . } is a linearly independent subset ofFα(C(I)). The non-
compactness of the operatorFα can now be deduced using a result from basic operator theory
that reads as follow: letX andY be normed linear spaces andA : X → Y be an injective
compact operator. ThenA−1 : A(X) → X is bounded if and only if rankA < ∞.

REMARK 3.6. We can also consider the function spaceCp(I) endowed with theCp-norm

‖f‖Cp(I) :=
p
∑

r=0
‖f (r)‖∞ and the operatorDα : Cp(I) → Cp(I) defined byDα(s) = sα.

Along the lines of Theorem3.5, it can be proved thatDα is a bounded linear map.

3.2. Construction ofα-fractal rational cubic splines with shape parameters.Here,
using the procedure developed in Section3.1, we introduce a new class ofα-fractal rational
cubic splinessα ∈ C1 corresponding to the rational cubic spliness ∈ C1 studied in [14, 31].
The method of construction given in this section can be mimicked to obtain fractal general-
izations of various rational cubic splines studied in the field of shape preserving interpolation.

Let a data set{(xn, yn, dn) : n = 1, 2, . . . , N}, wherex1 < x2 < · · · < xN , be given.
Hereyn anddn, respectively, are the function value and the value of the first derivative at
the knotxn. If the derivatives at the knots are not given, we can estimate them by various
approximation methods; see, for instance, [13]. A rational cubic splines ∈ C1(I) is defined
in a piecewise manner as follows; see [14, 31] for details. Forθ := x−x1

xN−x1
, x ∈ I,

(3.6) s
(

Ln(x)
)

=
(1− θ)3rnyn + θ(1− θ)2Vn + θ2(1− θ)Wn + θ3tnyn+1

(1− θ)rn + θtn
,

where

Vn = (2rn + tn)yn + rnhndn, Wn = (rn + 2tn)yn+1 − tnhndn+1, hn = xn+1 − xn.

The free parametersrn andtn are selected to be strictly positive to ensure a strictly positive
denominator, which in turn avoids a singularity of the rational expression occurring in (3.6).
The parametersrn andtn can be varied to alter the shape of the interpolant and hence are
called the shape parameters.

We note that the expression fors can be rewritten in the following form:

s
(

Ln(x)
)

= ω1(θ; rn, tn)yn + ω2(θ; rn, tn)yn+1

+ ω3(θ; rn, tn)dn + ω4(θ; rn, tn)dn+1,
(3.7)

where

ω1(θ; rn, tn) =
(1− θ)3rn + θ(1− θ)2(2rn + tn)

(1− θ)rn + θtn
, ω3(θ; rn, tn) =

θ(1− θ)2rnhn

(1− θ)rn + θtn
,

ω2(θ; rn, tn) =
θ2(1− θ)(rn + 2tn) + θ3tn

(1− θ)rn + θtn
, ω4(θ; rn, tn) = − θ2(1− θ)tnhn

(1− θ)rn + θtn
,
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are the rational cubic Hermite basis functions. The rational interpolants satisfies the Hermite
interpolation conditionss(xn) = yn ands(1)(xn) = dn, for n = 1, 2, . . . , N .

To develop theα-fractal rational cubic spline corresponding tos (cf. equation (3.6)), we
set|αn| ≤ κan, 0 ≤ κ < 1, and select a familyB = {bn ∈ C1(I) : n ∈ J} satisfying the
conditionsbn(x1) = y1, bn(xN ) = yN , b

(1)
n (x1) = d1, andb(1)n (xN ) = dN ; cf. Section3.1.

There is a variety of choices forB. To define one such family, we takebn to be a rational
function of similar structure as that of the classical interpolants. Our choice may be justified
by the simplicity it offers for the final expression of the desired rational cubic spline FIFsα.
To be precise, forx ∈ I = [x1, xN ] andθ := x−x1

xN−x1
, our specific choice forbn is

(3.8) bn(x) =
B1n(1− θ)3 +B2nθ(1− θ)2 +B3nθ

2(1− θ) +B4nθ
3

(1− θ)rn + θtn
,

where the coefficientsB1n,B2n,B3n, andB4n are determined by the conditionsbn(x1)=y1,
bn(xN ) = yN , b(1)n (x1) = d1, b(1)n (xN ) = dN . Elementary computations yield

B1n = rny1, B2n = (2rn + tn)y1 + rnd1(xN − x1),

B3n = (rn + 2tn)yN − tndN (xN − x1), B4n = tnyN .

We note thatbn can be reformulated as

bn(x) = F1(θ; rn, tn)y1 + F2(θ; rn, tn)yN +D1(θ; rn, tn)d1 +D2(θ; rn, tn)dN ,(3.9)

where

F1(θ; rn, tn) = ω1(θ; rn, tn), F2(θ; rn, tn) = ω2(θ; rn, tn),

D1(θ; rn, tn) =
θ(1− θ)2rn(xN − x1)

(1− θ)rn + θtn
, D2(θ; rn, tn) = −θ2(1− θ)tn(xN − x1)

(1− θ)rn + θtn
.

Consider theα-fractal rational cubic spline corresponding tos:

sα
(

Ln(x)
)

= αns
α(x) + s

(

Ln(x)
)

− αnbn(x).

In view of (3.6) and (3.8), we have

(3.10) sα
(

Ln(x)
)

= αns
α(x) +

Pn(x)

Qn(x)
,

where

Pn(x)

= {yn − αny1} rn(1− θ)3 + {yn+1 − αnyN} tnθ3

+ {(2rn + tn)yn + rnhndn − αn [(2rn + tn)y1 + rn(xN − x1)d1]} θ(1− θ)2

+ {(rn + 2tn)yn+1 − tnhndn+1 − αn [(rn + 2tn)yN − tn(xN − x1)dN ]} θ2(1− θ),

Qn(x) = (1− θ)rn + θtn, n ∈ J, θ =
x− x1

xN − x1
.

REMARK 3.7. Assumingd1 anddN to be exact first derivatives ofs at the extreme
knotsx1 andxN , we define

bn(x) = Uns(x) = F1(θ; rn, tn)s(x1) + F2(θ; rn, tn)s(xN )

+D1(θ; rn, tn)s
(1)(x1) +D2(θ; rn, tn)s

(1)(xN ).
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Forrn andtn independent of the data,Un defines a linear operator onC1(I). Furthermore,Un

is bounded with respect to theC1-norm onC1(I) and

‖Un‖ ≤ sup
x∈I, j=0,1

[

2
∑

i=1

(

|F (j)
i (x)|+ |D(j)

i (x)|
)

]

.

REMARK 3.8. If rn = tn for all n ∈ J , then theα-fractal rational cubic spline reduces
to theC1-cubic Hermite FIF. For a detailed discussion of the Hermitespline FIFs of arbitrary
degree and their convergence analysis, we refer to [6]. For αn = 0 andrn = tn, for all
n ∈ J , theα-fractal rational cubic spline recovers the classical cubic Hermite interpolant.

REMARK 3.9. Consider a linear operatorT : C(I) → C(I) which is of interpolation
type. Now, if f ∈ C(I) is, for example, monotone (or convex) onI, it is easy to see that
because of the interpolation conditions, in general,Tf cannot be monotone (or convex) onI.
Hencesα = Fα(s) is not, in general, monotone (or convex), even ifs is so. However, it is
a natural question whether parameters involved in the spline structure can be determined so
thatsα is monotone or convex. We address this issue in the subsequent sections.

REMARK 3.10. Let us define∆n = yn+1−yn

xn+1−xn
, for n ∈ J . Assuming twice differentia-

bility of the α-fractal splinesα, the following are the functional equations correspondingto
the first and second derivatives:

(sα)(1)
(

Ln(x)
)

=
αn

an
(sα)(1)(x)

+
M1n(1− θ)3 +M2nθ(1− θ)2 +M3nθ

2(1− θ) +M4nθ
3

[rn(1− θ) + tnθ]
2 ,

(3.11)

where

M1n = r2n

[

dn − αn

hn

d1(xN − x1)

]

,

M2n = (2r2n + 4rntn)

[

∆n − αn

hn

(yN − y1)

]

− r2n

[

dn − αn

hn

d1(xN − x1)

]

− 2rntn

[

dn+1 −
αn

hn

dN (xN − x1)

]

,

M3n = (2t2n + 4rntn)

[

∆n − αn

hn

(yN − y1)

]

− 2rntn

[

dn − αn

hn

d1(xN − x1)

]

− t2n

[

dn+1 −
αn

hn

dN (xN − x1)

]

,

M4n = t2n

[

dn+1 −
αn

hn

dN (xN − x1)

]

,

and

(sα)(2)
(

Ln(x)
)

=
αn

a2n
(sα)(2)(x)

+
C1n(1− θ)3 + C2nθ(1− θ)2 + C3nθ

2(1− θ) + C4nθ
3

[rn(1− θ) + tnθ]
3
hn

,

(3.12)
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where

C1n = (2r3n + 2r2ntn)

{

∆n − αn

hn

(yN − y1)−
[

dn − αn

hn

d1(xN − x1)

]}

− 2r2ntn

{

dn+1 −
αn

hn

dN (xN − x1)−
[

∆n − αn

hn

(yN − y1)

]}

,

C2n = 6r2ntn

{

∆n − αn

hn

(yN − y1)−
[

dn − αn

hn

d1(xN − x1)

]}

,

C3n = 6rnt
2
n

{

dn+1 −
αn

hn

dN (xN − x1)−
[

∆n − αn

hn

(yN − y1)

]}

,

C4n = (2t3n + 2rnt
2
n)

{

dn+1 −
αn

hn

dN (xN − x1)−
[

∆n − αn

hn

(yN − y1)

]}

− 2rnt
2
n

{

∆n − αn

hn

(yN − y1)−
[

dn − αn

hn

d1(xN − x1)

]}

.

These expressions will be used later in Sections5.1–5.2 for studying the shape preserving
aspects of theα-fractal rational cubic splinesα.

4. Convergence ofα-fractal rational cubic splines. In this section, we establish that
the α-fractal rational splinesα converges to the original functionf ∈ C2 with respect to
theC1-norm. We shall uncover this in a series of propositions and theorems.

PROPOSITION4.1 (Theorem 1, Duan et al. [14]). Given a functionf ∈ C2(I) and a
data set{(xn, yn) : n = 1, 2, . . . , N}, yn = f(xn). Let s be the corresponding rational
cubic spline defined in(3.6). Then, forx ∈ [xn, xn+1],

|f(x)− s(x)| ≤ h2
ncn‖f (2)‖,

wherecn = max
0≤θ≤1

Ω(θ; rn, tn),

Ω(θ; rn, tn) =
θ2(1− θ)2(rn + tn)

2

[rn + (rn + tn)θ][rn + 2tn − (rn + tn)θ]
,

and‖.‖ is the uniform norm on[xn, xn+1]. Furthermore, for any given positive values ofrn

andtn, the error constantcn satisfies 1
16 ≤ cn ≤ 5

√
5−11
2 .

Using Propositions3.3and4.1we have the following theorem.
THEOREM 4.2. Given a functionf ∈ C2(I) and a partition∆ = {x1, x2, . . . , xN}

of I satisfyingx1 < x2 < · · · < xN , let s(α) be theα-fractal rational cubic spline that
interpolates the values of the functionf at the points of the partition∆. Then

‖f − sα‖∞ ≤ h2c ‖f (2)‖∞

+
|α|∞

1− |α|∞

{

|y|∞ +max{|y1|, |yN |}+ 1

4
(h|d|∞ + |I|max{|d1|, |dN |})

}

,

where|y|∞ = max{|yn| : 1 ≤ n ≤ N}, |d|∞ = max{|dn| : 1 ≤ n ≤ N}, |I| = xN − x1,
h = max{hn : n ∈ J}, andc = max{cn : n ∈ J}.

Proof. Let s be the classical rational cubic spline andsα be the correspondingα-fractal
function interpolatingf at the pointsx1, x2, . . . , xN ∈ ∆. We have the triangle inequality,

(4.1) ‖f − sα‖∞ ≤ ‖f − s‖∞ + ‖s− sα‖∞.
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By Theorem3.3,

(4.2) ‖sα − s‖∞ ≤ |α|∞
1− |α|∞

(

‖s‖∞ +max{‖bn‖∞ : n ∈ J}
)

.

Next we establish upper bounds for‖s‖∞ and‖bn‖∞ that depend only on the function values
and the values of the derivatives at the knot points. Forx ∈ [xn, xn+1], x = Ln(x

′), consider
the classical rational cubic splines (cf. equation (3.7))

s(x) = ω1(θ; rn, tn)yn + ω2(θ; rn, tn)yn+1 + ω3(θ; rn, tn)dn + ω4(θ; rn, tn)dn+1,

whereθ = x′−x1

xN−x1
. We note thatωi(θ; rn, tn) ≥ 0, for i = 1, 2, 3, andω4(θ; rn, tn) ≤ 0.

Furthermore,

ω1(θ; rn, tn) + ω2(θ; rn, tn) = 1 and ω3(θ; rn, tn)− ω4(θ; rn, tn) = hnθ(1− θ).

Thus,

|s(x)| ≤ max{|yn|, |yn+1|}+
hn

4
max{|dn|, |dn+1|}.

Hence,

(4.3) ‖s‖∞ ≤ |y|∞ +
h

4
|d|∞.

Similarly, from the expression forbn (cf. equation (3.9)), we obtain

(4.4) ‖bn‖∞ ≤ max{|y1|, |yN |}+ 1

4
|I|max{|d1|, |dN |}.

Substituting bounds for‖s‖∞ andmax{‖bn‖∞ : n ∈ J} obtained from (4.3) and (4.4)
in (4.2), we find that

(4.5) ‖sα−s‖∞ ≤ |α|∞
1− |α|∞

{

|y|∞+max{|y1|, |yN |}+1

4

(

h|d|∞+|I|max{|d1|, |dN |}
)

}

.

From Proposition4.1 it follows that

|f(x)− s(x)| ≤ cnh
2
n‖f (2)‖,

implying

(4.6) ‖f − s‖∞ ≤ c h2‖f (2)‖∞.

The inequality (4.1) coupled with (4.5) and (4.6) proves the theorem.
PROPOSITION4.3 (Theorem 1, Duan et al. [16]). Let f ∈ C2(I) be the function gen-

erating the data{(xn, yn) : n = 1, 2, . . . , N} ands be the corresponding classical rational
cubic spline. Then, on[xn, xn+1], the error for the derivative functions(1) satisfies

|f (1)(x)− s(1)(x)| ≤ hnc
∗
n‖f (2)‖,

wherec∗n = max{χ(θ; rn, tn) : 0 ≤ θ ≤ 1} with

χ(θ; rn, tn) =















χ1(θ; rn, tn), if 0 ≤ θ ≤ θ∗ =
3rn−

√
r2n+8rntn

4(rn−tn)
,

χ2(θ; rn, tn), if θ∗ ≤ θ ≤ θ∗ =
4rn−tn−

√
t2n+8rntn

4(rn−tn)
,

χ3(θ; rn, tn), if θ∗ ≤ θ ≤ 1,
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χ1(θ; rn, tn) =θ
{

[

θ(1− 2θ + 2θ2)t2n + 2(1− θ)2rntn + 2(1− θ)3r2n
]2

+
[

2(1− θ)2rntn + θ(1− 2θ)β2
n

]2
}

×
{

(1− θ) [(1− θ)rn + θtn]
2 [

(1− θ)r2n + 2rntn + θt2n
]

}−1

+
θ(1− θ)[(1− θ)3r2n + θ3t2n]

[(1− θ)rn + θtn]2
,

χ2(θ; rn, tn) =(1− θ)
{

[

(1− θ)(1− 2θ + 2θ2)r2n + 2θ2rntn + 2θ3t2n
]2

+
[

2θ2rntn + (1− θ)(2θ − 1)r2n
]2
}

×
{

θ [(1− θ)rn + θtn]
2 [

(1− θ)r2n + 2rntn + θt2n
]

}−1

+ θ
{

[

θ(1− 2θ + 2θ2)t2n + 2(1− θ)2rntn + 2(1− θ)3r2n
]2

+
[

2(1− θ)2rntn + θ(1− 2θ)t2n
]2
}

×
{

(1− θ) [(1− θ)rn + θtn]
2 [

(1− θ)r2n + 2rntn + θt2n
]

}−1

,

χ3(θ; rn, tn) =(1− θ)
{

[

(1− θ)(1− 2θ + 2θ2)r2n + 2θ2rntn + 2θ3t2n
]2

+
[

2θ2rntn + (1− θ)(2θ − 1)r2n
]2
}

×
{

θ [(1− θ)rn + θtn]
2 [

(1− θ)r2n + 2rntn + θt2n
]

}−1

+
θ(1− θ)[(1− θ)3r2n + θ3t2n]

[(1− θ)rn + θtn]2
.

THEOREM 4.4. If f ∈ C2(I) andsα is theα-fractal rational cubic spline corresponding
to the data{(xn, yn) : n = 1, 2, . . . , N}, yn = f(xn), then

‖f (1) − (sα)(1)‖∞ ≤ hc
∗‖f (2)‖∞ +

κ

1− κ

{

‖s(1)‖∞ +
γ2

δ2
[

max{|d1|, |dN |}+
3|yN − y1|

2|I|

]

}

,

whereγ = max
n∈J

{rn, tn}, δ = min
n∈J

{rn, tn}, andc∗ = max{c∗n : n ∈ J}.

Proof. By the triangle inequality,

(4.7) ‖f (1) − (sα)(1)‖∞ ≤ ‖f (1) − s(1)‖∞ + ‖s(1) − (sα)(1)‖∞.

From Proposition4.3we have

(4.8) ‖f (1) − s(1)‖∞ ≤ hc∗‖f (2)‖∞.

By simple calculations it follows that

max
n∈J

‖b(1)n ‖∞ ≤ γ2

δ2

{

max{|d1|, |dN |}+ 3

2

|yN − y1|
xN − x1

}

.

Using the above estimate and Theorem3.3, we obtain that
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(4.9) ‖s(1) − (sα)(1)‖∞ ≤ κ

1− κ

{

‖s(1)‖∞ +
γ2

δ2
[

max{|d1|, |dN |}+ 3|yN − y1|
2|I|

]

}

.

Substituting (4.8) and (4.9) in (4.7) completes the proof.
The following theorem is a direct consequence of Theorems4.2 and4.4. It is worth to

mention here that the derivative parameters are bounded becausef ∈ C2(I), and we assume
thatγ, δ, andc∗ are fixed.

THEOREM 4.5. Let f ∈ C2(I) be the original data generating function and let the
scaling factors satisfy|αn| ≤ κan, for all n ∈ J , 0 < k < h

|I| . Thensα converges tof with

respect to theC1-norm as the mesh size approaches zero.
REMARK 4.6. In fact, we have the following more general result. If weconsider scaling

factorsαn such that|αn| ≤ h
|I|a

p
n, for all n ∈ J , then as a consequence of Theorem3.3, we

obtain convergence of theα-fractal functionsα to the original functionf ∈ Cp with respect
to theCp-norm provided thats does so.

5. Constrained interpolation with α-fractal rational splines. In this section, we em-
brace the task of deriving conditions on the spline parameters so that theα-fractal rational
cubic splinesα is: (i) convex, (ii) convex and monotone. Some remarks on positive in-
terpolation withsα are given at the end of this section to cover all major aspectsof shape
preservation.

5.1. Convex interpolation. Consider a data set{(xn, yn) : n = 1, 2, . . . , N}. Suppose
that the data set is convex, that is,∆1 < ∆2 < · · · < ∆n−1 < ∆n < ∆n+1 < · · · < ∆N−1,
where∆n := yn+1−yn

xn+1−xn
, for n ∈ J , as before. We identify suitable values for the parameters

so that the correspondingα-fractal rational cubic splinesα remains convex for a given set of
convex data. A similar approach applies to a concave set of data.

THEOREM 5.1. For a given set of data{(xn, yn) : n = 1, 2, . . . , N} with derivatives
(given or estimated) at the knot points satisfying the condition

d1 < ∆1 < · · · < dn < ∆n < dn+1 < · · · < ∆N−1 < dN ,

a convexα-fractal rational splinesα involving shape parametersrn and tn exists provided
the following conditions are satisfied.

0 ≤ αn < min
{ hn(∆n − dn)

yN − y1 − d1(xN − x1)
,

hn(dn+1 −∆n)

dN (xN − x1)− (yN − y1)
, a2n

}

,

rn

tn
=

dn+1 − αn

hn
dN (xN − x1)− [∆n − αn

hn
(yN − y1)]

∆n − αn

hn
(yN − y1)− [dn − αn

hn
d1(xN − x1)]

, n ∈ J.

Proof. Let us begin by recalling that, for the convexity off ∈ C1[x1, xN ], it is suf-
ficient to prove thatf (2)(x+) or f (2)(x−) exist and are nonnegative (possibly+∞) for all
x ∈ (x1, xN ); see [24]. Informally, we have (see equation (3.12))

(sα)(2)(Ln(x)) =
αn

a2n
(sα)(2)(x)

+
C1n(1− θ)3 + C2nθ(1− θ)2 + C3nθ

2(1− θ) + C4nθ
3

[rn(1− θ) + tnθ]3hn

.

For the sake of convenience, let

Rn(x) ≡ R∗
n(θ) =

C1n(1− θ)3 + C2nθ(1− θ)2 + C3nθ
2(1− θ) + C4nθ

3

[rn(1− θ) + tnθ]3hn

.
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Using the fact that forn ∈ J, the mapsLn : [x1, xN ] → [xn, xn+1] satisfyLn(x1) = xn,
Ln(xN ) = xn+1, we obtain

(sα)(2)(x+
1 ) =

C11

r31h1

[

1− α1

a21

]−1
, (sα)(2)(x−

N ) =
C4N−1

t3N−1hN−1

[

1− αN−1

a2N−1

]−1
,

(sα)(2)(x+
n ) =

αn

a2n
(sα)(2)(x+

1 ) +
C1n

r3nhn

, n = 2, 3, . . . , N − 1.

(5.1)

Let 0 ≤ αn ≤ κa2n. Then from (5.1) it follows that if C4N−1 ≥ 0 andC1n ≥ 0, for
n ∈ J , then the second derivatives (from the right) at the knotsxn, for n ∈ J, and the second
derivatives (from the left) atxN are nonnegative. For the knotxm, m ∈ J, we have

(5.2) s(2)
(

Ln(xm)+
)

=
αm

a2m
s(2)(x+

m) +Rn(xm).

AssumingC1n ≥ 0, for all n ∈ J , (5.2) suggests thats(2)
(

Ln(xm)+
)

≥ 0 is satisfied,
provided thatRn(xm) ≥ 0. Also Rn(xm) ≥ 0 is satisfied ifCjn ≥ 0, for j = 1, 2, 3, 4.
By the three chord lemma for convex functions, a strictly convex data set necessarily satisfies
d1 < yN−y1

xN−x1
< dN . The selection of the free parametersαn so that they satisfy

αn <
hn(∆n − dn)

(yN − y1)− d1(xN − x1)
and αn <

hn(dn+1 −∆n)

dN (xN − x1)− (yN − y1)
,(5.3)

for all n ∈ J, ensures the nonnegativity ofC2n andC3n, respectively. In view of (3.12)
and (5.3), by some algebraic manipulations, it is easy to see thatC1n ≥ 0 andC4n ≥ 0 is
satisfied if

rn

tn
=

dn+1 − αn

hn
dN (xN − x1)− [∆n − αn

hn
(yN − y1)]

∆n − αn

hn
(yN − y1)− [dn − αn

hn
d1(xN − x1)]

.

Thus, the conditions on the scaling factors and the shape parameters prescribed in the theorem
guarantee thatCjn ≥ 0, for j = 1, 2, 3, 4, n ∈ J . Since(sα)(2)(x+), (sα)(2)(x−) are
determined iteratively,(sα)(2)

(

Ln(xm)+
)

≥ 0 holds for the mapsLn, n ∈ J, and at the
knotsxm,m ∈ J , andsα(x−

N ) ≥ 0 assures that(sα)(2)(x+) ≥ 0 or (sα)(2)(x−) ≥ 0, for
all x ∈ (x1, xN ).

REMARK 5.2. By takingαn = 0, for all n ∈ J , the convexity theorem for the classical
rational cubic spline interpolant (3.6) [31, Theorem 3.2] follows as a straightforward conse-
quence of the convexity theorem for theα-fractal cubic spline stated above. Had we imposed
the conditiontn > rn > 0 on the shape parameters as in [31], then the obtained convexity
condition for the classical rational cubic spline, namelyrn

tn
= dn+1−∆n

∆n−dn
, might not have been

consistent with the additional conditiontn > rn. It seems that this issue is not addressed
in [31].

5.2. Convex and monotone interpolation.Reviving the spirit of the previous subsec-
tion, now we illustrate that the convexity preserving scheme developed therein is suitable for
solving the convex and monotone interpolation problem.

THEOREM 5.3. For a given set{(xn, yn) : n = 1, 2, . . . , N} of monotonically increas-
ing convex data with the values of the derivatives at the knots satisfying the conditions

(5.4) 0 ≤ d1 < ∆1 < · · · < dn < ∆n < dn+1 < · · · < ∆N−1 < dN ,



ETNA
Kent State University 

http://etna.math.kent.edu

α-FRACTAL RATIONAL SPLINES FOR CONSTRAINED INTERPOLATION 435

the following conditions on the scaling and the shape parameters ensure that the correspond-
ing α-fractal rational cubic spline is monotonically increasing and convex:

0 ≤ αn < min
{ hn(∆n − dn)

yN − y1 − d1(xN − x1)
,

hn(dn+1 −∆n)

dN (xN − x1)− (yN − y1)
, a2n

}

,

rn

tn
=

dn+1 − αn

hn
dN (xN − x1)− [∆n − αn

hn
(yN − y1)]

∆n − αn

hn
(yN − y1)− [dn − αn

hn
d1(xN − x1)]

.

Proof. In Theorem5.1 we have already proved that for scaling factors and the shape
parameters as in this theorem,sα is convex. Since the fractal function(sα)(1) is constructed
iteratively, in order to prove(sα)(1)(x) ≥ 0, for all x ∈ I, it is enough to prove that
(sα)(1)

(

Ln(.)
)

≥ 0, for all n ∈ J, whenever(sα)(1)(.) ≥ 0. The stated assumptions onαn

imply

(5.5) dn − αn

hn

d1(xN − x1) < ∆n − αn

hn

(yN − y1) < dn+1 −
αn

hn

dN (xN − x1)

and

αn < an, dn ≥ 0, ∀ n =⇒ αnd1 <
hn

xN − x1
d1 =⇒ dn − αn

hn

d1(xN − x1) > dn − d1.

Sinced1 < dn, we havedn − αn

hn
d1(xN − x1) > 0. Whence, (5.5) yields the inequalities

∆n − αn

hn
(yN − y1) > 0 anddn+1 − αn

hn
dN (xN − x1) > 0. From (3.11) we obtain

(sα)(1)
(

Ln(x)
)

=
αn

an
(sα)(1)(x)

+
M1n(1− θ)3 +M2nθ(1− θ)2 +M3nθ

2(1− θ) +M4nθ
3

[rn(1− θ) + tnθ]2
.

Now dn − αn

hn
d1(xN − x1) ≥ 0 anddn+1 − αn

hn
dN (xN − x1) ≥ 0 imply M1n andM4n ≥ 0.

From some simple calculations, we infer thatM2n andM3n are nonnegative if

rn

{

∆n − αn

hn

(yN − y1)−
[

dn − αn

hn

d1(xN − x1)

]}

≥ tn

{

dn+1 −
αn

hn

dN (xN − x1)−
[

∆n − αn

hn

(yN − y1)

]}

.

Therefore, the conditions on the shape parameters stated inthe theorem ensure thatM2n ≥ 0
andM3n ≥ 0. This demonstrates the monotonicity of the rational cubic spline FIFsα.

REMARK 5.4. A moment of reflection on the proof of the foregoing theorem shows
that for given data satisfying only the monotonicity condition dn ≥ 0, n = 1, 2, . . . , N , the
following conditions on the scaling factors and the shape parameters are sufficient to ensure
the monotonicity of theα-fractal rational cubic spline:

0 ≤ αn < min

{

hndn

d1(xN − x1)
,

hndn+1

dN (xN − x1)
,

hn∆n

yN − y1
, an

}

,

rn

{

∆n − αn

hn

(yN − y1)−
[

dn − αn

hn

d1(xN − x1)

]}

≥ tn

{

dn+1 −
αn

hn

dN (xN − x1)−
[

∆n − αn

hn

(yN − y1)

]}

.

(5.6)
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However, in general, there may not exist nonnegative shape parameters satisfying the above
inequality, for instance, consider the case where

∆n − αn

hn

(yN − y1)− [dn − αn

hn

d1(xN − x1)] < 0 and

dn+1 −
αn

hn

dN (xN − x1)− [∆n − αn

hn

(yN − y1)] > 0,

and hence we may not get a monotoneα-fractal rational cubic spline. However, if the deriva-
tive parameters are selected so as to satisfy (5.4), d1 < yN−y1

xN−x1
< dN , and the additional con-

dition αn < min{ hn(∆n−dn)
yN−y1−d1(xN−x1)

,
hn(dn+1−∆n)

dN (xN−x1)−(yN−y1)
} is imposed, then we can select

rn andtn satisfying (5.6) by taking rn
tn

≥
dn+1 − αn

hn
dN (xN − x1)− [∆n − αn

hn
(yN − y1)]

∆n − αn

hn
(yN − y1)− [dn − αn

hn
d1(xN − x1)]

to solve the monotonicity interpolation.
Analogously, for the monotonicity ofs, the conditionrn(∆n − dn) ≥ tn(dn+1 −∆n)

is sufficient. As in the fractal case, there may not exist nonnegativern and tn satisfying
the above mentioned inequality. However, if the given/estimated derivative values satisfy
the condition prescribed in (5.4), which is stronger than the necessary monotonicity condi-
tion dn ≥ 0, then we can selectrn > 0 andtn > 0 satisfyingrn(∆n−dn) ≥ tn(dn+1−∆n)

by demanding thatrn
tn

≥ dn+1−∆n

∆n−dn
. This observation corrects the sufficient condition for the

monotonicity ofs (cf. equation (3.6)) studied in [31].

5.3. Positive interpolation. Given a data set{(xn, yn) : n = 1, 2, . . . , N} with yn > 0,
it is of interest to know whether the parameters involved in the α-fractal rational cubic
splinesα can be chosen such thatsα(x) > 0 for all x ∈ I = [x1, xN ]. Assumeαn ≥ 0, for
all n ∈ J . Then from (3.10) and the iterative nature of the fractal interpolant, it follows that
for sα(x) > 0, for all x ∈ I, it is sufficient to havePn(x) > 0 for all x ∈ I, n ∈ J . Now the
conditionPn(x) > 0 holds if

yn − αny1 > 0,

yn+1 − αn+1yN > 0,

(2rn + tn)yn + rnhndn − αn [(2rn + tn)y1 + rn(xN − x1)d1] > 0,

(rn + 2tn)yn+1 − tnhndn+1 − αn [(rn + 2tn)yN − tn(xN − x1)dN ] > 0.

(5.7)

For the first two inequalities to hold, it suffices to takeαn < min
{

yn

y1
,
yn+1

yN

}

. Thus, our

search reduces to that of findingrn > 0 andtn > 0 such that third and fourth inequalities
in (5.7) hold. It is not hard to verify that this is true if

tn(yn − αny1) + rnhn

(

dn − αn

hn

d1(xN − x1)

)

> 0,

rn(yn+1 − αnyN )− tnhn

(

dn+1 −
αn

hn

dN (xN − x1)

)

> 0.

(5.8)

Now to find a solution to these inequalities satisfyingrn > 0, tn > 0, we impose an additional
condition on the derivatives, namelydn ≥ 0 for all n = 1, 2, . . . , N . Assumingd1 anddN to
be non-zero, (5.8) can be satisfied by taking

αn < min
{ hndn

d1(xN − x1)
,

hndn+1

dN (xN − x1)

}

,
rn

tn
>

hn[dn+1 − αn

hn
(xN − x1)dN ]

yn+1 − αnyN
.
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One may be interested in solving the inequalities in (5.8) in the absence of the additional
condition on the derivative values, and we can heuristically argue that there may not exist
valuesrn > 0, tn > 0 satisfying (5.8). Thus, maintaining positivity without the additional
assumption on the derivatives values is doubtful. In conclusion, given a positive data set,
where the derivative values satisfydn ≥ 0, n = 1, 2, . . . , N , a positive/nonnegative rational
cubic spline FIF can be constructed by choosing the parameters such that

rn

tn
>

hn[dn+1 − αn

hn
(xN − x1)dN ]

yn+1 − αnyN
,

0 ≤ αn < min
{

an,
yn

y1
,
yn+1

yN
,

hndn

d1(xN − x1)
,

hndn+1

dN (xN − x1)

}

, n ∈ J.

The above discussion reveals the following facts about the shape preserving properties of the
α-fractal rational cubic spline introduced in this paper: (i) it is well suited for preserving con-
vexity of the given data, (ii) given monotonically increasing data{(xn, yn) : n=1, 2, . . . , N},
which satisfy the necessary conditiondn ≥ 0, suitable choices of the scaling factors and the
shape parameters produce monotoneα-fractal rational cubic splines provided the derivative
parameters satisfy the additional condition

d1 < ∆1 < · · · < dn < ∆n < dn+1 < · · · < ∆N−1 < dN ,

(iii) given positive data,{(xn, yn) : n = 1, 2, . . . , N}, the suitable choices of the parame-
ters generate positiveα-fractal rational cubic splinessα provided the derivative parameters
satisfydn ≥ 0. Without these additional conditions on the derivative parameters, it is not
certain whether or not the proposedα-fractal rational cubic splinesα with linear denomina-
tor satisfactorily solves the monotonicity and positivitypreservation problems. However, as
mentioned elsewhere, our approach can be used to obtain a fractal generalization of the tradi-
tional rational cubic splines that solves all the three fundamental shape preserving problems;
see, for instance, [29].

6. Numerical examples.The aim of this section is to illustrate the rational cubic spline
fractal interpolation scheme and its shape features by someexamples. We want to notice
that in all the examples, the free shape parameterstn, n ∈ J, are taken to be unity. Since
the rational IFS scheme requires the derivative parametersas input, we shall describe an
approximation method for their estimation.

Let a data set{(xn, yn) : n = 1, 2, . . . , N} be given. To estimate the values of the
derivatives at the knot points, the three point difference approximation for the arithmetic
mean method (amm) can be used, which is expressed by the following equations:

dn =
hn∆n−1 + hn−1∆n

hn−1 + hn

, n = 2, 3, . . . , N − 1,

with end conditions

d1 =
(

1 +
h1

h2

)

∆1 −
h1

h2
∆3,1, ∆3,1 =

y3 − y1

x3 − x1
,

dN =
(

1 +
hN−1

hN−2

)

∆N−1 −
hN−1

hN−2
∆N,N−2, ∆N,N−2 =

yN − yN−2

xN − xN−2
.

The nonlinear approximation by the geometric mean method (gmm) is given by

dn = ∆n−1

hn
hn+hn−1 ∆n

hn−1
hn+hn−1 , n = 2, 3, . . . , N − 1,
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with end conditions

d1 = ∆1
(1+

h1
h2

)∆3,1

−h1
h2 , dN = ∆N−1

(1+
hN−1
hN−2

)
∆N,N−2

−hN−1
hN−2 .

The gmm works well for monotonically increasing data but notnecessarily for general data.
On the contrary, the amm can be applied to general data and turns out to be well suited for
convex data.

To illustrate convex interpolation withsα ∈ C1 and to study the effects of perturbation of
the scaling factors in the resulting convexα-fractal rational cubic spline, we consider simple
convex dataD1 = {(1, 1), (1.5, 0.7), (3, 1.7)}. The derivative parameters are estimated using
the amm. To obtain a convexα-fractal rational cubic splinesα, we take the scaling factors
asα1 = 0.06 andα2 = 0.39; see Theorem5.1. The constrained shape parametersrn,

n = 1, 2, are calculated with the help of Theorem5.1, and the corresponding convexα-fractal
rational splinesα ∈ C1 and its first derivative(sα)(1) are displayed in Figure6.1a. Due to the
implicit and recursive nature of theα-fractal function, each curve segment between two knot
points will have global properties inherited from the entire set of interpolating points. Thus,
theoretically, a perturbation in a scaling factor or shape parameter pertaining to a particular
subinterval may influence the shape of the entire curve. To study this in practice, we modify
some specific scaling factors in Figure6.1awhilst maintaining the convexity condition.

Firstly, we changeα1 to 0.01 keeping the other scaling factors as in Figure6.1a. The
constrained shape parametersrn are calculated using Theorem5.1, and the corresponding
convexα-fractal rational cubic splinesα and its first derivative are displayed in Figure6.1b.
It can be observed that in comparison with Figure6.1a, sα in Figure6.1bchanges only in the
first subinterval. Next, we modifyα2 = 0.03 keeping all other scaling factors and shape pa-
rameters as in Figure6.1a. The constrained shape parameters are calculated, and the resulting
spline is shown in Figure6.1c. In this case, as far as theα-fractal functionsα is concerned,
apparent changes occur only in the second subinterval. Thus, from a theoretical standpoint,
a perturbation of a particular component of a scale vectorα may ripple through the entire
interpolating interval, but practically, it has prominentinfluence only in the corresponding
subinterval. To be precise, since the completely local convexity preserving classical rational
cubic scheme emerges as a special case when the scaling factors are taken to be zero, the
proposed fractal scheme is locally or globally depending onthe values of the scaling factors.
With a null scaling vector, the shape parametersrn, n = 1, 2, are calculated according to The-
orem5.1. This retrieves a convexity preserving classical rationalcubic spline interpolants
displayed in Figure6.1d. Thus, the scaling factors not only provide a layer of flexibility in
adjusting the shape of the interpolant but also control the fractality of the derivative of the
interpolant. Furthermore, one would like to quantify the irregularity, for which the fractal di-
mension can be employed. As|αn| is increased from zero, the dimension of the graph of the
fractal function increases [1]. The fractal dimension of the derivative of the smoothα-fractal
functions constitutes a numerical characterization of a signal. Recall that if a real function is
smooth, the fractal dimension of its graph is one. In this case, this parameter cannot be used
as a quantifying parameter for the complexity of a signal. Due to the presence of varying ir-
regularities in the first derivatives, the proposedα-fractal rational cubic splines have potential
applications in areas wherein the data set has convexity in the measured variable and fractal-
ity in the variable representing the derivative, for instance, for data arising in connection with
nonlinear motions occurring in electro-mechanical systems [17].

To illustrate Theorem5.3, we consider the convex and monotonically increasing data
D2 = {(−2, 0.25), (−1, 1), (−0.3, 11.11), (−0.2, 25)}. The derivative values are estimated
using gmm to satisfy the necessary condition. Takingα1 = 0.01,α2 = 0.15, andα3 = 0.003,
the constrained shape parametersrn are calculated by the formulas in Theorem5.3. With
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these values of the parameters, the corresponding IFS code is iterated to generate Figure6.2a,
which represents a convex and monotone fractal curve.

For simplicity of presentation, we have considered a data set which is convex on the
entire interpolation interval. However, with a simple modification, the present interpolation
scheme can be adapted for generating a fractal curve that is co-convex with the given data.
Let us illustrate this with an example. Consider the data set

D3 =
{

(xn, yn, dn) : n = 1, 2, . . . , 8
}

=
{

(0, 0, 5), (1, 3, 1.342), (2, 3.6, 0.346), (3, 3.8, 0.1058),

(4, 4.1, 0.6408), (5, 5.5, 1.54), (6, 7.2, 1.74), (7, 9, 1.854)
}

.

We divide the interpolation intervalI = [0, 7] into two subintervals, namelyI1 = [0, 3] and
I2 = [3, 7] such that the data have the same type of convexity (convex or concave) throughout
that subinterval. The concavity preserving algorithm withthe scale vectorα1 = (α1

1, α
1
2, α

1
3),

whereα1
1 = 0.1, α1

2 = 0.06, α1
3 = 0.01, produce a concaveα-fractal rational cubic spline

sα
1

on I1. In a similar manner, the convexity preserving algorithm with the scale vector
α2 = (α2

1, α
2
2, α

2
3, α

2
4) with α2

1 = 0.04, α2
2 = 0.06, α2

3 = α2
4 = 0.01 produces a convexα-

fractal functionsα
2

onI2. Define a FIFsα by sα|Ii = sα
i

for i = 1, 2. Note that the Hermite
interpolation conditions onsα

i

, i = 1, 2, provideC1-smoothness forsα. The fractal function
sα given in Figure6.2b is co-convex with the given data set and has a point of inflection
at x = 3. We would like to remark that in case of too few data points being available in a
subinterval for the iteration of the IFS scheme, we insert node points such that the inserted
node is consistent with the desired shape.

7. Concluding remarks and possible extensions.Smooth FIFs provide an advance in
the technique of approximation since various classical real-data interpolation problems can
be generalized by means of these maps. However, methods for constructing smooth frac-
tal interpolants available in the fractal-related literature are not satisfactory for generalizing
the traditional non-recursive rational spline interpolants with shape parameters that are used
for shape preserving interpolation. By a modification of theprocedure in [1, 28], a general
method is proposed in the present work for the construction of Cp-continuousα-fractal func-
tions. The construction of smoothα-fractal functions given in this paper provides a unified
approach for the generalization of various traditional non-recursive shape preserving rational
spline interpolants.

Utilizing our procedure, we have constructedα-fractal rational cubic splines with two
families of shape parameters. With a mild condition on the scaling factors, the present
α-fractal rational cubic spline possesses convergence properties analogous to its classical
counterpart. The created fractal function is investigatedfor use in convexity preserving in-
terpolation. Our convexity preservingα-fractal function scheme generalizes the convexity
preserving classical interpolation developed in [31]. For a restricted class of data, the devel-
opedα-fractal rational cubic spline can produce monotone and positive interpolants as well.
It is noted that the shape preserving classical interpolation schemes remain suitable only for
interpolating data generated from functions with smooth (except possibly at a finite number
of points) first or second derivatives, whereas the proposedfractal generalization works well
for functions with smooth or non-smooth derivatives. The fractal dimension of the derivative
may be used as a quantifying parameter to study the complexity of a signal and to make com-
parisons. Thus, the present method supersedes its classical counterpart and finds practical
utility in areas such as geometric modeling, curve design, and nonlinear phenomena.
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FIG. 6.1.Convexity preservingα-fractal rational cubic splines and their first derivatives.

Challenges that remain to be addressed are the following. Bydefinition, ourα-fractal
rational cubic spline is in the classC1. Following the procedure described in [8], the conti-
nuity of anα-fractal spline can be enhanced toC2 by finding the derivative parameters via
the solution of a suitable linear system of equations. However, the convexity problem was
solved with theα-fractalC1-rational cubic spline. It is natural to query on the possibility of
constructing aC2-continuous convexα-fractal rational cubic spline. A close observation of
our discussion will imply that the aforementioned problem basically leads to the problem of
solving a constrained nonlinear system of equations.

Though the presence of the parameters yield much flexibility, at times there may be
a curse of choice, and the user may encounter problems of selecting the “optimal” ones.
A couple of strategies that are likely to be useful to settle the issue of optimality are as
follows. It is common to select a preferable shape preserving interpolant by minimizing a
choice functional subject to the constraints arising from the shape requirement. A widely
used one is the Holladay functional or an approximation thereof. From the point of view of
fractal approximation theory, this is an “inverse problem”which reads as: given a function
(or set of sampled values), recover the IFS parameters generating this function. Levkovich’s
work [22], in which contraction affine mappings generating a given function is obtained based
on the connection between the maxima skeleton of the wavelettransform of the function and
positions of the fixed points of the mappings in question, mayprovide basic tools for settling
this issue. However, for adapting this, in the first place, the method has to be modified and
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FIG. 6.2.Convexity preservingα-fractal cubic splines.

extended to cover the non-affine setting. Alternatively, following Lutton et al. [23], it should
be possible to use genetic algorithms for solving these types of inverse problems.
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[5] A. K. B. CHAND AND M. A. NAVASCUÉS, Natural bicubic spline fractal interpolation, Nonlinear Anal., 69

(2008), pp. 3679–3691.
[6] , Generalized Hermite fractal interpolation, Rev. R. Acad. Cienc. Exactas Fı́s. Qúım. Nat.
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