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ZEROS AND SINGULAR POINTS FOR ONE-SIDED COQUATERNIONIC
POLYNOMIALS WITH AN EXTENSION TO OTHER R

4 ALGEBRAS∗

DRAHOSLAVA JANOVSKÁ† AND GERHARD OPFER‡

Abstract. For finding the zeros of a coquaternionic polynomialp of degreen, wherep is given in standard
form p(z) =

∑
cjz

j , the concept of a (real) companion polynomialq of degree2n, as introduced for quaternionic
polynomials, is applied. Ifz0 is a root ofq, then, based onz0, there is a simple formula for an elementz with the
property thatp(z)p(z) = 0, thusz is a singular point ofp. Under certain conditions, the samez has the property
thatp(z) = 0, thusz is a zero ofp. There is an algorithm for finding zeros and singular points of p. This algorithm
will find all zerosz with the property that in the equivalence class to whichz belongs, there are complex elements.
For finding zeros which are not similar to complex numbers, Newton’s method is applied, and a simple technique for
computing the exact Jacobi matrix is presented. We also show, that there is no “Fundamental Theorem of Algebra”
for coquaternions, but we state a conjecture that a “Weak Fundamental Theorem of Algebra” for coquaternions is
valid. Several numerical examples are presented. It is also shown how to apply the given results to other algebras
of R4 like tessarines, cotessarines, nectarines, conectarines, tangerines, cotangerines.

Key words. zeros of coquaternionic polynomials, zeros of polynomials insplit quaternions, companion polyno-
mial for coquaternionic polynomials, singular points for coquaternionic polynomials, Newton method for coquater-
nionic polynomials, exact Jacobi matrix for coquaternionic polynomials, “Weak Fundamental Theorem of Algebra”
for coquaternions, zeros of polynomials in otherR4 algebras (tessarines, cotessarines, nectarines, conectarines, tan-
gerines, cotangerines)
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1. Introduction. In this paper we will use the notationsZ,R,C,H for the integers, the
real number system, the complex numbers, and the quaternions, respectively. Coquaternions
were introduced in 1849 by Sir James Cockle1 (1819–1895) [3]. They may be regarded as
elements ofR4 of the form

a := a1 + a2i+ a3j+ a4k, a1, a2, a3, a4 ∈ R,

which we also abbreviate bya = (a1, a2, a3, a4) and which obey the multiplication rules
given in Table1.1.

The algebra of coquaternions will be abbreviated byHcoq. The explicit multiplication
rule for the productab of two coquaternionsa = (a1, a2, a3, a4), b = (b1, b2, b3, b4) derived
from Table1.1 is

ab = a1b1 − a2b2 + a3b3 + a4b4

+ (a1b2 + a2b1 − a3b4 + a4b3)i

+ (a1b3 − a2b4 + a3b1 + a4b2)j

+ (a1b4 + a2b3 − a3b2 + a4b1)k,

which implies that

a2 = a21 − a22 + a23 + a24 + 2a1(a2i+ a3j+ a4k).(1.1)
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134 D. JANOVSKÁ AND G. OPFER

TABLE 1.1
Multiplication table for coquaternions.Coloredentries differ in sign from the quaternionic case.

1 i j k

1 1 i j k

i i −1 k −j

j j −k 1 −i

k k j i 1

As elements ofR4 we have1:=(1, 0, 0, 0), i :=(0, 1, 0, 0), j :=(0, 0, 1, 0), k :=(0, 0, 0, 1). If
a coquaternion has the forma = (a1, 0, 0, 0), we will call it real and identify it witha1. The
real coquaternions and no others have the property that theycommute with all coquaternions.
In algebraic terms this means that thecenterof Hcoq is R. The first componenta1 of a
coquaterniona = (a1, a2, a3, a4) will be calledreal part of a and abbreviated byℜ(a). The
second componenta2 will be called theimaginary partof a and denoted byℑ(a). Complex
numbersa1 + a2i will be identified witha := (a1, a2, 0, 0) ∈ Hcoq and vice versa, and the
coquaterniona will then be calledcomplex. We will use the notations

(1.2) abs2(a) := a21 + a22 − a23 − a24, a := conj(a) := (a1,−a2,−a3,−a4),

where botha andconj(a) are called theconjugate ofa, and it should be noted thatabs2 is
not the square of a norm sinceabs2 may take on negative values. The following additional
properties hold as well:

(1.3) aa = aa = abs2(a), abs2(ab) = abs2(ba) = abs2(a)abs2(b), ℜ(ab) = ℜ(ba).

A coquaterniona will be calledinvertible if abs2(a) 6= 0, and in this case

a−1 =
a

abs2(a)
, abs2(a

−1) =
1

abs2(a)
.

A noninvertible coquaternion is also calledsingular. An invertible coquaternion is called
nonsingular. A producta1a2 · · · ak, k ≥ 1, is singular if and only if one of the factors is
singular. This follows from the second identity in (1.3). A more detailed survey of properties
of coquaternions is given in [11]. Applications to physical problems are treated in [2, 6].
Information regarding general algebraic systems can be found in [1, 4, 7, 17].

Let

(1.4) p(z) :=

n∑

j=0

cjz
j , z, cj ∈,Hcoq, for j = 0, 1, . . . , n, with c0 6= 0, cn 6= 0,

be a coquaternionic polynomial. The conditions onc0, cn in (1.4) ensure thatp(0) 6= 0
and that the degree ofp is not smaller thann. Because of the noncommutativity of the
elements inHcoq, we call this polynomialone-sidedsince there are other forms of poly-
nomials with terms of the formcjzjdj , called two-sided, or even with terms of the form
c0zc1zc2z · · · cj−1zcj , which are called amonomials of degreej. An arbitrary finite sum of
monomials of any degree is called ageneral coquaternionic polynomial. Since we are deal-
ing here only with one-sided coquaternionic polynomials, we will omit the word one-sided
in the following. Solutions ofp(z) = 0 will be calledzerosof p. Before we start any general
investigation, we will treat the most simple quadratic casesince it sheds already some light
on the general case.
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EXAMPLE 1.1. Let

(1.5) p(z) := z2 − c, z = (z1, z2, z3, z4), c = (c1, c2, c3, c4) ∈ Hcoq,

and let us look for thosez with p(z) = 0. We will call thesez square roots ofc and use the
notation

√
c. The equationp(z) = 0 splits into four real equations (see (1.1))

z21 − z22 + z23 + z24 = c1,(1.6)

2z1zj = cj , j = 2, 3, 4.(1.7)

(a) Let c 6= 0 be nonreal, i.e.,cj 6= 0 for at least onej ∈ {2, 3, 4}. Then, (1.7) implies
thatz1 6= 0 and

zj =
cj
2z1

, j = 2, 3, 4,

z21 −
(

c2
2z1

)2

+

(
c3
2z1

)2

+

(
c4
2z1

)2

= c1.

The last equation can also be written as

z41 − c1z
2
1 +

−c22 + c23 + c24
4

= 0.

The standard solution formula yields

z21 =
1

2

(

c1 ±
√

abs2(c)
)

.(1.8)

Sincez1 6= 0 must be real, the existence of a solutionz1 depends on the validity of the
conditions

(1.9) (i) abs2(c) ≥ 0, (ii) c1 −
√

abs2(c) > 0, (iii) c1 +
√

abs2(c) > 0,

and this result is summarized in Lemma1.4.
(b) Let c = ℜ(c), i.e.,c = (c1, 0, 0, 0). In this case, (1.7) has several solutions:

(b1) z1 = 0 andzj arbitrary, forj = 2, 3, 4, or
(b2) zj = 0, for j = 2, 3, 4, andz1 arbitrary.

In case (b1), equations (1.6), (1.7) yield

z1 = 0, −z22 + z23 + z24 = c1.(1.10)

In case (b2), equations (1.6), (1.7) yield

z21 = c1, zj = 0, j = 2, 3, 4.(1.11)

Case (b2) will not have a solution ifc1 < 0, but case (b1) will have infinitely many so-
lutions. Forc = 0, for instance, we obtain from (1.10) that

√
c = (0, z2, z3.z4) with

−z22 + z23 + z44 = 0.
The just encountered phenomenon that polynomials may have infinitely many zeros is a

typical feature for all coquaternionic polynomials with real coefficients.
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THEOREM 1.2. Let p be a coquaternionic polynomial as defined in(1.4) where all
coefficientscj , j = 0, 1, . . . , n, are real. Then,

p(z) = 0 ⇒ p(h−1zh) = 0 for all nonsingularh ∈ Hcoq.

In particular, if z is nonreal,p has infinitely many zeros.
Proof. From the fact that all real elements (and no others) commutewith all elements

in Hcoq, we deduce

h−1p(z)h = h−1





n∑

j=0

cjz
j



h =

n∑

j=0

cjh
−1zjh

=

n∑

j=0

cj(h
−1zh)j = p(h−1zh).

The set{u ∈ Hcoq : u = h−1zh for all nonsingularh ∈ Hcoq} contains either exactly one
element ifz ∈ R, or, otherwise, it contains infinitely many elements.

LEMMA 1.3. Let p be given as in(1.5) with c := (c1, 0, 0, 0) ∈ Hcoq. Then there exist
infinitely many zerosz = (0, z2, z3, z4) of p defined in(1.10). If c1 ≥ 0, there are up to two
additional zeros

√
c = (±√

c1, 0, 0, 0). For c1 < 0, there are no additional zeros.
Proof. Follows from the solution formulas (1.10), (1.11).
LEMMA 1.4. Letp be given as in(1.5) with c ∈ Hcoq\R.
(I) If (i) of (1.9) is not valid,p has no zeros.

(II) If (i) is valid but(ii) and(iii) are not valid,p has no zeros.
(III) If (i) and(ii) are valid,p has up to four zeros.
(IV) If (i) and(iii) are valid, but(ii) is not valid,p has up to two zeros.
Proof. In view of the solution formula (1.8) for z1, which yields two solutions if the

expression in parentheses is positive, the cases (I), (II),(IV) are clear. In (III), the validity of
(ii) implies the validity of (iii).

To summarize, infinitely many square roots will always occurif c is real and in no other
cases. The cases (I), (II) of Lemma1.4are conditions such that there is no square root at all.

EXAMPLE 1.5. For each case mentioned in Lemma1.4, there is an example:

(I) : c := (1, 2, 3, 4) has no square root sinceabs2(c) = −20 < 0;

(II) : c := (−2, 1, 2, 0) has no square root sinceabs2(c) = 1 > 0, but

c1 −
√

abs2(c) = −3 < 0, c1 +
√

abs2(c) = −1 < 0;

(III) : c := (2, 1, 2, 0) has four square roots sinceabs2(c) = 1 > 0,

c1 −
√

abs2(c) = 1 > 0, c1 +
√

abs2(c) = 3 > 0,
√
c = ±

√
2 (1/2, 1/2, 1, 0),

√
c = ±

√
6 (1/2, 1/6, 1/3, 0);

(IV) : c := (4, 6, 5, 1) has two square roots sinceabs2(c) = 26 > 0,

c1 −
√

abs2(c) = 4−
√
26 < 0, a := c1 +

√

abs2(c) = 4 +
√
26 > 0,

√
c = ±

√
2a

(
1

2
,
3

a
,
5

2a
,
1

2a

)

.

COROLLARY 1.6. There is no “Fundamental Theorem of Algebra” for coquaternions.
Proof. There is a well known “Fundamental Theorem of Algebra” for quaternions by

Eilenberg and Niven from 1944 [5] ensuring that all general quaternionic polynomials of
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degreen ≥ 1 have at least one zero provided that there is only one monomial term of the
highest degreen. However, in the coquaternionic case, the first two parts of Lemma1.4show
that there are coquaternionic, quadratic polynomials without any zeros.

2. Similarity and quasi-similarity of coquaternions. In Lam [14, p. 52] and in Ja-
novsḱa and Opfer [11], we find thatHcoq is isomorphic toR2×2, where this isomorphism is
defined by

(2.1) ı̂(a) = ı̂(a1, a2, a3, a4) :=

[
a1 + a4 a2 + a3

−a2 + a3 a1 − a4

]

.

The mappinĝı : Hcoq → R
2×2 is invertible. LetB :=

[
b11 b12
b21 b22

]

∈ R
2×2 be arbitrary.

Then,

ı̂−1(B) =
1

2

(
b11 + b22, b12 − b21, b12 + b21, b11 − b22

)
.

Note that

(2.2) abs2(a) = det(ı̂(a)), 2ℜ(a) = tr(ı̂(a)),

wheredet andtr stand fordeterminantandtrace, respectively. We will transfer the concept
of similarity of matrices to coquaternions.

DEFINITION 2.1. Two coquaternionsa, b will be called similar, denoted bya ∼ b, if
the corresponding matricesı̂(a), ı̂(b) are similar, or in other words, if there is a nonsingular
(=invertible) coquaternionh such thata = h−1bh. By

[a] := {b : b = h−1ah, for all invertibleh ∈ Hcoq}

we denote the equivalence class of all coquaternions which are similar toa.
The fact that this definition of similarity yields anequivalence relationwas shown by

Horn and Johnson [9, p. 45]. We have the following property:

(2.3) a = ℜ(a) ⇔ [a] = {a},

which means that the equivalence class[a] consists of one single element if and only ifa is
real.

LEMMA 2.2. Leta ∼ b. Then

(2.4) ℜ(a) = ℜ(b), abs2(a) = abs2(b).

Proof. Both parts follow easily from conditions given in (1.3).
In contrast to the quaternionic case, the conditions (2.4) are not sufficient for similarity.

Takea = (α, 0, 0, 0), b = (α, 5, 4, 3) for an arbitraryα ∈ R. Since[a] consists of one single
element only (see (2.3)), a, b are not similar. However, (2.4) is valid.

Similarity is a very useful tool when investigating properties of matrices such as the
determination of the rank of a matrix. However, in this investigation we are mainly interested
in a consequence of similarity, namely in the properties mentioned in (2.4) which in some
cases are also valid for nonsimilar matrices or nonsimilar coquaternions.

DEFINITION 2.3. Two coquaternionsa, b are said to bequasi-similar, written asa
q∼ b,

if (2.4) is valid.
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LEMMA 2.4. The relation
q∼ is an equivalence relation.

Proof. The three properties of equivalence relations,a
q∼ a (reflexivity), a

q∼ b ⇔ b
q∼ a

(symmetry),a
q∼ b, b

q∼ c ⇒ a
q∼ c (transitivity) are easily verified.

The corresponding equivalence classes are denoted by

[a]q := {b : b q∼ a}.

We have the following simple properties:

a ∼ b ⇒ a
q∼ b, [a] ⊂ [a]q.

Because of the first condition in (2.4), distinct real numbers are in different equivalence
classes with respect to∼ and to

q∼. In a later section (Section4) we will see that there is
only a small difference between similarity and quasi-similarity.

3. Reformulation of coquaternionic polynomials via matrix equivalents. Let the
matrixA∈R

2×2 be arbitrary. Then (see Horn and Johnson [9, p. 87]),

(3.1) Aj ∈ 〈I,A〉, j ∈ N ∪ {0},

where〈· · · 〉 is the linear span of the elements between the brackets. The characteristic poly-
nomial ofA is (see (2.2))

χA(z) := z2 − tr(A)z + det(A) = z2 − 2a1z + abs2(a).

The Cayley-Hamilton Theorem (see Horn and Johnson [9, p. 86]) implies the matrix identity
A2 = −abs2(a)I + 2ℜ(a)A. Because of the isomorphism betweenR

2×2 andHcoq and the
relation (3.1), we have

(3.2) zj = αj + βjz, j = 0, 1, . . . ,

where the coefficients can be determined by the recursion

α0 = 1, β0 = 0,(3.3)

αj+1 = −abs2(z)βj , βj+1 = αj + 2ℜ(z)βj , j = 0, 1, . . .(3.4)

We observe that all coefficientsαj , βj , j ≥ 0, are real and, more important, they depend only
onℜ(z) andabs2(z) and not fully onz.

LEMMA 3.1. Let a, b ∈ Hcoq and a
q∼ b. Then,aj and bj have the same recursion

coefficientsαj , βj , j ≥ 0 as defined in(3.2).
Proof. The quasi-similarity implies that the coefficientsℜ(z), abs2(z) occurring in (3.4)

are the same fora andb. Thus, the recursion coefficientsαj , βj are the same fora andb.

There is another difference between coquaternions and quaternions. In the corresponding
quaternionic equivalence classes[a], there are always complex elements provided thata /∈ R;
see [13].

LEMMA 3.2. Leta = (a1, a2, a3, a4) ∈ Hcoq\C. Then∆ := [a]q ∩C 6= ∅ if and only if

a22 − a23 − a24 ≥ 0.

In this case∆ = {b+, b−}, whereb± = a1 ±
√

a22 − a23 − a24 i.
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Proof. Let b ∈ ∆. Then,b := b1 + b2i, a1 = ℜ(a) = ℜ(b) = b1, and

a21 + a22 − a23 − a24 = abs2(a) = abs2(b) = b21 + b22 ⇔ b22 = a22 − a23 − a24 ≥ 0.

By similar arguments,a22 − a23 − a24 < 0 implies∆ = ∅.
Thus, in[a := (1, 2, 3, 4)]q there is no complex number.

We replacezj in the definition of the polynomialp in (1.4) by the recursion formula
for zj and obtain

p(z) :=
n∑

j=0

cjz
j =

n∑

j=0

cj(αj + βjz) =
n∑

j=0

αjcj +





n∑

j=0

βjcj



 z

=: A(ℜ(z), abs2(z)) +B(ℜ(z), abs2(z))z.

(3.5)

Here, the two newly defined quantities,A,B, depend only onℜ(z) andabs2(z). Therefore,
we have included this dependence in parentheses.

LEMMA 3.3. The quantitiesA(ℜ(z), abs2(z)), B(ℜ(z), abs2(z)) defined in(3.5) are
constant on the quasi-similar equivalence class[z]q.

Proof. The properties (2.4) are valid for all elements in the same quasi-similar equiva-
lence class[z]q.

Let a = (a1, a2, a3, a4). In contrast to (2.3) we have

(3.6) a ∈ [a1]q ⇔ a22 − a23 − a24 = 0.

Thus, there is no quasi-similar equivalence class with onlyone element. Leta = (a1, 0, 0, 0).
Then for allb ∈ [a]q, we have according to (3.6) that abs2(a) = abs2(b) = a21. Condi-
tion (3.6) also implies that there is no complex element with nonvanishing imaginary part
in [a1]q.

LEMMA 3.4. Letp(z) = 0. Then,

p(z) = A(ℜ(z0), abs2(z0)) +B(ℜ(z0), abs2(z0))z = 0, for all z0 ∈ [z]q,(3.7)

Bz = 0 ⇔ A = 0, Bz = 0 ⇒ B is singular,(3.8)

B = 0 ⇒ A = 0.(3.9)

If B = 0 or Bz = 0, then allz0 ∈ [z]q are zeros ofp. Here we have omitted the arguments
of A,B in (3.8), (3.9).

Proof. (3.7) follows from (3.5) and the second part of Lemma2.2. In (3.8), Bz = 0
implies thatB is singular becausez 6= 0. In (3.9), B = 0 ⇒ A = 0 is obvious. The cases
B = 0 andBz = 0 imply p(z0) = 0 for all z0 in [z]q.

DEFINITION 3.5. Let z ∈ Hcoq\R. If p(z0) = 0 for all z0 ∈ [z]q, then we say thatz
generates a class of hyperbolic zerosor z is a hyperbolic zero. If there is exactly one zero
in [z]q, we call this zeroisolated.

There is an instance of a hyperbolic zero in Example1.1, equation (1.10). The con-
ditions given there (second condition in (1.10)), expressed as an equation for a hyperbo-
la x2 − y2 = c, are the reason for using the wordhyperbolic.

EXAMPLE 3.6. Letp be a coquaternionic polynomial with only real coefficients.Then
all nonreal zeros ofp are hyperbolic. See Theorem1.2.

LEMMA 3.7. Let u, v be two distinct zeros of a coquaternionic polynomialp in the
same quasi-similar equivalence class[u]q = [v]q. Let z ∈ [u]q. Then,B is singular in the
representationp(z) = A + Bz (with the arguments ofA,B omitted). Moreover,B = 0 if
u − v is nonsingular. IfB = 0, all elements in[u]q = [v]q are zeros ofp and all zeros are
hyperbolic.
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Proof. It follows that p(u) = A + Bu = 0, p(v) = A + Bv = 0, with the conse-
quence thatp(u) − p(v) = B(u − v) = 0, becauseA,B are constant on[u]q. Thus,B is
singular. Ifu− v is nonsingular, then it follows thatB = 0. If B = 0, then the statement
follows from Lemma3.4. Two distinct zeros in the same equivalence class can never be real.
Thus,[u]q consists of (infinitely many) hyperbolic zeros ofp.

We can refine the representation (3.5) of the coquaternionic polynomialp by applying
thecolumn operatorcol : Hcoq → R

4×1 defined by

(3.10) col(h) =







h1

h2

h3

h4







,

whereh = (h1, h2, h3, h4) ∈ Hcoq. The following lemma is very useful in this context.
LEMMA 3.8. LetB, z be two coquaternions.
(α) There is a real4× 4 matrixC, such that

col(Bz) = C col(z) and

C = [col(B), col(Bi), col(Bj), col(Bk)].(3.11)

(β) The matrixC is singular if and only ifB is singular.
(γ) If B 6= 0 is singular, thenrank(C) = 2.

Proof. (α) and (β) follow from [11, equation (5.2) and Theorem 5.1]. (γ) Let B 6= 0 be
singular. One can explicitly show that the last two columns of C can be expressed as a linear
combination of the first two columns.

The application of thecol operator to (3.5) now yields

col(p(z)) = col(A) + col(Bz) = col(A) +Ccol(z),

whereC is defined in Lemma3.8.
THEOREM 3.9. Let [z0]q contain a zero of the coquaternionic polynomialp. Then all

zeros ofp in [z0]q can be found by solving the linear inhomogeneous system

(3.12) Ccol(z) = −col(A), subject toz ∈ [z0]q.

(i) LetB be nonsingular. Then there is exactly one (isolated) zeroz ∈ [z0]p, which can
be computed by

(3.13) z = −B−1A = −conj(B)A

abs2(B)
⇔ col(z) = −C−1col(A),

whereA,B is short forA(ℜ(z0), abs2(z0)), B(ℜ(z0), abs2(z0)), respectively, and whereC
is defined in(3.11).

(ii) LetB be singular. Then the linear system given in(3.12) has a solution if the extended
matrix [C, col(A)] has the same rank asC.

Proof. This follows from Lemma3.8, from equation (3.7) in Lemma3.4, and simple
facts from linear algebra.

4. Symmetric and normal coquaternions. A comparison of similarity and quasi-
similarity. We will make a very short excursion to symmetric and normal coquaternions and
show that, in most cases, similarity and quasi-similarity are identical notions.
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DEFINITION 4.1. A coquaterniona is calledsymmetricor normal if the matrix ı̂(a)
defined in(2.1) has these properties, respectively. Thus,a is symmetric and normal if

ı̂(a) = ı̂(a)T, ı̂(a)ı̂(a)T − ı̂(a)T ı̂(a) = 0,

respectively, wherêı(a)T denotes the transpose ofı̂(a).
LEMMA 4.2. A coquaterniona is symmetric if and only ifℑ(a) = 0. A coquaterniona

is normal if and only ifℑ(a) = 0 or a ∈ C.
Proof. The condition for symmetry follows immediately from (2.1). Let a ∈ Hcoq be

arbitrary anda = (a1, a2, a3.a4). Then,

ı̂(a)ı̂(a)T − ı̂(a)T ı̂(a) = −4a2

[
−a3 a4
a4 a3

]

.

Thus, a coquaternion is normal if and only if it is symmetric or complex. Leta, b ∈ Hcoq

be normal. Then, the conditions in (2.4) are sufficient for similarity ofa, b; see Horn and
Johnson [9, p. 109, Problem 15]. Thus,a ∼ b ⇔ a

q∼ b if a and b are normal. Two
normal coquaternionsa = (a1, 0, a3, a4), b = (b1, b2, 0, 0) are similar if and only ifa1 = b1
and b2 = a3 = a4 = 0, which meansa = b ∈ R. Two distinct complex numbers are
similar (=quasi-similar) if and only if they are conjugate complex to each other. Two normal
coquaternionsa = (a1, 0, a3, a4), b = (b1, 0, b3, b4) are similar (=quasi-similar) if and only if

a1 = b1, a23 + a24 = b23 + b24.

LEMMA 4.3. Leta, b ∈ Hcoq\R and let(2.4) be valid. Thena ∼ b.
Proof. The assumption (2.4) implies that the two characteristic polynomials forı̂(a)

and ı̂(b) (see2.1) are identical. The assumptiona /∈ R is in matrix terms equivalent to
ı̂(a) 6= αI, α ∈ R, whereI is the identity matrix inR2×2. In other words,̂ı(a) does not belong
to the center ofR2×2. The two possible canonical Jordan normal forms ofı̂(a) andı̂(b) are

(i):

[
x 0
0 y

]

, (ii):

[
z 1
0 z

]

.

The assumptions imply thatx 6= y, and thus all eigenvalues (in both forms) have geomet-
ric multiplicity one; see Horn and Johnson [9, p. 135]. This means that similaritya ∼ b
is equivalent to the two conditions (2.4) and, thus, equivalent to quasi-similarity provided
botha, b /∈ R.

5. Singular points of coquaternionic polynomials.The zero point inR,C, H is in all
these three cases the only singular point in the sense that ithas no inverse. This is one of
the reasons why polynomials in these three spaces are investigated for its zeros. This applies
also to eigenvalues in matrix spaces overR,C because they are zeros of the corresponding
characteristic polynomials. In the spaceHcoq, however, there are infinitely many singular
points. Therefore, it is not surprising that we will encounter pointsz such thatp(z) is singular,
i.e., abs2(p(z)) = 0, but p(z) 6= 0, wherep is defined in (1.4). We will conjecture in
Section11, that all coquaternionic polynomials of degreen ≥ 1 have at least one singular
point.

DEFINITION 5.1. Letp be given as in(1.4). We say thatz ∈ Hcoq is asingular point for
p if

(5.1) abs2(p(z)) := p(z)p(z) = 0.
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It is clear, that a zero ofp is also a singular point forp. In contrast to the polynomial equation
p(z) = 0, which may be regarded as four real equations in four real unknowns, equation (5.1)
is only one equation in four real unknowns. Thus, it is not a polynomial equation.

EXAMPLE 5.2. Letp(z) := z2 − c, wherec is a given coquaternion. Then,

abs2(p(z)) = (z2 − c)(z2 − c) = abs2(z
2)− 2ℜ(cz2) + abs2(c).

Now, abs2(z2) = (abs2(z))
2, which follows from (1.3). The middle term in the previous

identity is

ℜ(c z2) = ℜ(z2 c) = c1(z
2
1 − z22 + z23 + z24) + 2z1(c2z2 − c3z3 − c4z4).

Altogether,

abs2(p(z)) = (z21 + z22 − z23 − z24)
2 − 2c1(z

2
1 − z22 + z23 + z24)

− 4z1(c2z2 − c3z3 − c4z4) + abs2(c).

If we choosec = (1, 2, 3, 4) as in Example1.5, part (I), andz = (z1, z2, z3, z4) with

z1 = z2 = z3 = z4 = ±1

2

√
5,

thenz2 = 2.5(1, 1, 1, 1), p(z) = z2 − c = (1.5, 0.5,−0.5,−1.5) andabs2(p(z)) = 0. Thus,
z is a singular point forp(z) := z2 − c, thoughp is a polynomial without any zeros. The
same applies toc = (−2, 1, 2, 0) in Example1.5, part (II). In this casez = 0.5(1, 1,−1, 1)
yieldsp(z) = z2 − c = 0.5(5,−1,−5, 1) andabs2(p(z)) = 0.

THEOREM 5.3. Letz0 ∈ R be a zero of a coquaternionic polynomialp and letv ∈ [z0]q.
Thenabs2(p(v)) = 0. Hence,v is a singular point forp.

Proof. An elementv ∈ [z0]q has the formv = z0 + u, whereu = (0, u2, u3, u4) with
abs2(u) = u2

2 − u2
3 − u2

4 = 0. As a consequenceℜ(v) = ℜ(z0) = z0, abs2(v) = abs2(z0).
If p(z0) = A(ℜ(z0), abs2(z0)) + B(ℜ(z0), abs2(z0))z0 = 0, then (using Lemma3.3)
p(v) = A + B(z0 + u) = A + Bz0 + Bu = Bu andabs2(Bu) = abs2(B)abs2(u) = 0.

COROLLARY 5.4. Letz0 be a zero of a coquaternionic polynomialp and let[z0]q contain
a real element. Then all elementsv ∈ [z0]q are singular points forp.

THEOREM 5.5. Let there be az ∈ Hcoq such thatA(ℜ(z), abs2(z)) = 0, and
B(ℜ(z), abs2(z)) is singular, whereA,B are defined in(3.5). Thenz is singular forp.

Proof. In this situation we have

abs2(p(z)) = p(z)p(z) = (A+Bz)(A+Bz)

= BzBz = BzzB = abs2(B)abs2(z) = 0.

6. The companion polynomial. Theorem3.9 describes a simple formula for comput-
ing a zero of a coquaternionic polynomialp provided that one knows an equivalence class
[z0]q ⊂ Hcoq that contains a zero ofp. This knowledge will be provided by the so-called
companion polynomial ofp, which will be introduced in this section and will be denoted
by q. The concept of a companion polynomial is very successful intreating one-sided
quaternionic polynomials; see [13]. It was originally already introduced by Niven in 1941
[16] and later used by Pogorui and Shapiro in 2004 [19] to find an alternative proof for the
number of zeros of a one-sided quaternionic polynomials as given by Gordon and Motzkin
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in 1965 [8]. The companion polynomialq is a polynomial with real coefficients, the roots of
which determine—under certain conditions—equivalence classes which contain zeros ofp.

DEFINITION 6.1. Let p be the polynomial of degreen given in(1.4). The polynomialq
of degree≤ 2n defined by

(6.1) q(z) :=

n∑

j,k=0

cj ckz
j+k, z ∈ C

will be called thecompanion polynomial ofp. The zeros ofq will be calledrootsof q.

LEMMA 6.2. The coefficients ofq defined in(6.1) are all real, andq can be written as

(6.2) q(z) :=

2n∑

k=0

bkz
k, bk :=

min(k,n)
∑

j=max(0,k−n)

cj ck−j ∈ R, k = 0, 1, . . . , 2n.

Proof. Equation (6.2) is obtained from (6.1) by puttingκ := j+ k, observing the restric-
tions0 ≤ κ ≤ 2n, 0 ≤ j, k ≤ n, and in the end renamingκ ask. For a fixed0 ≤ k ≤ 2n,
there aremin{k + 1, 2n + 1 − k} terms in the representation ofbk given in (6.2). If k is
odd, the number of terms is even, and in this case, ifcjck−j is one of the terms, then there is
another, distinct termck−jcj , and the sum is real. Ifk is even, the number of terms is odd.
We use the same argument as before and note that in this case there is an additional, single
real termc k

2
c k

2
.

The companion polynomialq should only be regarded as a polynomial overC, not
overHcoq. The highest coefficient of the companion polynomialq is b2n = cncn = abs2(cn).
Thus, ifcn is singular, the degree of the companion polynomial is less than2n. If c0 is singu-
lar, then the constant term ofq is b0 = abs2(c0) = 0 andq(0) = 0. It is even possible that the
companion polynomialq vanishes identically. The companion polynomialq can be computed
by q(z) := p(z)p(z) assuming thatz ∈ R and using that in this case,z = z commutes with
all coefficients. This implies that a real zero ofp appears as a double root ofq.

EXAMPLE 6.3. Letp(z) = bz2−c. Thenq(z) = abs2(b)z
4−2ℜ(bc)z2+abs2(c) andq

vanishes ifabs2(b) = abs2(c) = ℜ(bc) = 0. In this case

abs2(p(z)) = abs2(b)abs2(z
2)− 2ℜ(bz2c) + abs2(c) = −2ℜ(bz2c),

andabs2(p(z)) vanishes for allz ∈ R. Now letb = 1. Then, for the rootsz of q we have

z2 = ℜ(c)±
√

−c22 + c23 + c24.

Putσ := ±
√

−c22 + c23 + c24 and assume thatσ ∈ R. Then,z2 = c1 + σ ∈ R, and

c21 − c22 + c23 + c24 + 2c1σ
︸ ︷︷ ︸

abs2(z2)

−2c21 − 2c1σ
︸ ︷︷ ︸

−2ℜ(z2c)

+ c21 + c22 − c23 − c24
︸ ︷︷ ︸

abs2(c)

= 0.

Thus, the real rootsz of q are singular points forp.

LEMMA 6.4. Letq(z) = 0 for somez ∈ R. Thenz is a singular point forp. If q vanishes
identically, then allz ∈ R are singular points forp.

Proof. q(z) = p(z)p(z) = abs2(p(z)) = 0 sincez ∈ R.

LEMMA 6.5. Let p have the formp(z) = A
(
ℜ(z), abs2(z)

)
+ B

(
ℜ(z), abs2(z)

)
z;

see(3.5). Then the companion polynomialq can be written as (omitting the arguments ofA
andB)

(6.3) q(z) = abs2(A) + 2ℜ(BA)z + abs2(B)z2.
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Proof: Let zj = αj + βjz; see (3.2)–(3.4). Then,

q(z) =

n∑

j,k=0

cj ckz
j+k =

n∑

j=0

cj

(
n∑

k=0

ckz
k

)

zj =

n∑

j=0

cj (A+Bz)zj

=

n∑

j=0

cj (A+Bz)(αj + βjz) [αj , βj ∈ R]

=
n∑

j=0

αjcj A+
n∑

j=0

βjcj Az +
n∑

j=0

αjcj Bz +
n∑

j=0

βjcj Bz2

= AA+BAz +ABz +BBz2.

We will show thatz
q∼ z0 if [z0]p contains a zero, which is computed by the formula

given in Theorem3.9.
LEMMA 6.6. Let z0 = x + iy be a root ofq with y 6= 0 andB(ℜ(z0), abs2(z0)) be

nonsingular. Then forz defined in(3.13), we havez ∈ [z0]q, i.e.,

ℜ(z0) = ℜ(z), abs2(z0) = abs2(z).

Proof. PutA := A(ℜ(z0), abs2(z0)), B := B(ℜ(z0), abs2(z0)). Lemma6.5 implies

q(z0) = abs2(A) + 2ℜ(BA)z0 + abs2(B)z20 = 0.

Denote

v := BA =: (v1, v2, v3, v4), z0 =: (x, y, 0, 0), wherey 6= 0.

Splitting q(z0) into real and imaginary part yields

ℜ(q(z0)) = abs2(A) + 2v1x+ abs2(B)(x2 − y2) = 0,(6.4)

ℑ(q(z0)) = 2
(
ℜ(BA) + abs2(B)x

)
y = 0 ⇒ v1 = −abs2(B)x.(6.5)

From the definition ofz it follows that

ℜ(z) = − ℜ(BA)

abs2(B)
= − v1

abs2(B)
= x = ℜ(z0),

where the last part follows from (6.5). Thus, the first part is shown. Now from (3.13) we
conclude that

(6.6) abs2(z) = abs2(−B−1A) =
abs2(A)

abs2(B)
.

If we insertv1 = −abs2(B)x from (6.5) into (6.4), then we obtain

abs2(A)− 2abs2(B)x2 + abs2(B)(x2 − y2) = abs2(A)− abs2(B)abs2(z0) = 0,

and together with (6.6) the second part,abs2(z0) = abs2(z), follows.
LEMMA 6.7. Let the companion polynomialq have a pair of complex conjugate rootsz±0 .

Then formula(3.13) yields the same value forz for both rootsz±0 .
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Proof. The formula forz depends only onℜ(z0) and onabs2(z0), which are the same
for both rootsz±0 .

LEMMA 6.8. Let p be a given coquaternionic polynomial (see(1.4)), and letq be the
companion polynomial ofp. Letz0 ∈ C be a root ofq, letB(ℜ(z0), abs2(z0)) be nonsingular,
and letz be determined by formula(3.13). Then,

(6.7) abs2(A) = abs2(Bz), ℜ(ABz) = −abs2(A).

Proof. The definition (3.13) of z implies thatBz = −A, which proves both parts.

THEOREM 6.9. Letp be a given coquaternionic polynomial (see(1.4)), and letq be the
companion polynomial ofp; see(6.1), (6.2). Letz0 ∈ C be a root ofq, letB(ℜ(z0), abs2(z0))
be nonsingular, and letz be determined by formula(3.13). Then,

(6.8) p(z) p(z) = abs2(p(z)) = 0.

If z0 /∈ R, then

(6.9) p(z) = 0.

Proof. We have

p(z) p(z) = (A+Bz)(A+Bz) = abs2(A) +ABz +BzA+ abs2(Bz)

= abs2(A) + 2ℜ(ABz) + abs2(Bz).

Conditions (6.7) yield p(z) p(z) = 2abs2(A) − 2abs2(A) = 0, which proves (6.8). In the
second case, Lemma6.6 is valid, and following (3.5), we find that

p(z) = A(ℜ(z), abs2(z)) +B(ℜ(z), abs2(z))z
= A(ℜ(z), abs2(z))

+B(ℜ(z), abs2(z))
(
−B(ℜ(z0), abs2(z0)))−1A(ℜ(z0), abs2(z0)

)

= A(ℜ(z0), abs2(z0))
−B(ℜ(z0), abs2(z0))(B(ℜ(z0), abs2(z0)))−1A(ℜ(z0), abs2(z0))

= 0,

which proves (6.9).
The assumption in Lemma6.6 thatz0 is not real is essential. Ifz0 ∈ R, then we have

equation (6.8). However, this does not exclude the casep(z) = 0.
THEOREM 6.10.Letp(z) = 0, wherep is defined in(1.4). Assume that

(6.10) ∆ := [z]q ∩ C 6= ∅.

Then there is az0 ∈ ∆ with q(z0) = 0 andq as in Definition6.1.
Proof. (a) Letz ∈ R. Then∆ = {z} andq(z) = p(z)p(z) = 0.
(b) Letz /∈ R andB(ℜ(z), abs2(z)) = 0 orB(ℜ(z), abs2(z))z = 0. Then

A(ℜ(z), abs2(z)) = 0 andabs2(B(ℜ(z), abs2(z))) = 0

according to Lemma3.4. Let z0 ∈ ∆. The companion polynomial in the representation (6.3)
yieldsq(z0) = 0.



ETNA
Kent State University 

http://etna.math.kent.edu

146 D. JANOVSKÁ AND G. OPFER

(c) Letz /∈ R andB be nonsingular. In this case

p(z) = A(ℜ(z), abs2(z)) +B(ℜ(z), abs2(z))z = 0 andz = −B−1A,

omitting the arguments. The quadratic polynomial forq in the form (6.3) has real coefficients
and can be solved by standard techniques with the zero

(6.11) z0 = − ℜ(BA)

abs2(B)
+

i

|abs2(B)|

√

abs2(AB)− (ℜ(BA))2.

The radicand is positive ifz /∈ R. Equation (6.11) yields

ℜ(z0) = − ℜ(BA)

abs2(B)
= ℜ(z).

We use (6.11) again, and sincez0 ∈ C, we have

abs2(z0) = |z0|2 =

( ℜ(BA)

abs2(B)

)2

+
abs2(AB)− (ℜ(BA))2

(abs2(B))2
=

abs2(A)

abs2(B)
= abs2(z).

Property (6.10) is governed by Lemma3.2.
The previous theorem tells us that we find all zeros ofp by employing the companion

polynomial provided that the zero has a complex number in itsequivalence class. Or in other
words, Theorem6.10says that all zerosz of p with the propertyz22 − z23 − z24 ≥ 0 can be
found by applying the companion polynomial, but all others cannot be found. More precisely,
the assumption∆ 6= ∅ (see (6.10)) is equivalent toc22 = z22 −z23 −z24 ≥ 0, which implies that
c1 + c2i ∈ C, wherec2 := ±

√

z22 − z23 − z24 . Thus, the complex zeros ofq can be recovered
from the zeros ofp. If we have a look at Example1.5, part (III), we see that all four square
roots

√
c given there do not satisfy condition (6.10), whereas the two roots

√
c of part (IV) do

satisfy (6.10).

EXAMPLE 6.11. Let us treat the most trivial case

p(z) := z − c, c = (c1, c2, c3, c4).

In terms of (3.5), we havep(z) = A + Bz with A = −c, B = 1. Both,A andB do not
depend onz ∈ Hcoq. The assumptions of Theorem3.9 are met in this case sincep always
has a zero. Formula (3.13) yields the correct answerz = c. Let us now apply the companion
polynomialq(z) = z2−2c1z+abs2(c), the roots of which arez1,2 = c1±

√

−c22 + c23 + c24.
If we apply Theorem6.9, we also obtain the correct answer, however, independent ofthe
rootsz1,2.

EXAMPLE 6.12. Let the quadratic coquaternionic polynomialp be defined by the coef-
ficientsc0 = 1, c1 = (−15, 6,−6,−25)/25, c2 = 1. Then, the companion polynomial

q(z) = z4 − (6/5)z3 + (43/25)z2 − (6/5)z + 1

has two pairs of complex conjugate roots,r1 = a1 ± b1i, r2 = a2 ± b2i. For the first pair,
we haveA1 = (0, 0, 0, 0), B1 = (4/5, 6/25,−6/25,−4/5), and for the second pair, we
haveA2 = (0, 0, 0, 0), B2 = (−4/5, 6/25,−6/25,−4/5). Both,B1, B2 are singular and
Theorem5.5applies.

Experiments with random integer coefficients for the coquaternionic polynomial show
that cases whereB is singular are very rare.
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7. Application to the quadratic case. Let us treat the quadratic case

(7.1) p(z) := c2z
2 + c1z + c0, c0, c2 6= 0.

Equation (3.5) applied to (7.1) yields

p(z) = c0 − abs2(z)c2 + (c1 + 2ℜ(z)c2)z := A(abs2(z)) +B(ℜ(z))z.

The companion polynomialq of p is (omitting the arguments ofA andB)

q(z) = abs2(c2)z
4 + 2ℜ(c1c2)z3 +

(
2ℜ(c0c2) + abs2(c1)

)
z2

+ 2ℜ(c0c1)z + abs2(c0)

= abs2(A) + 2ℜ(BA)z + abs2(B)z2,

where the second equation is derived from (6.3). The appearance of the factorc2 atz2 in (7.1)
is only justified if abs2(c2) = 0. In this case,q has degree≤ 3, and the formalism just
described has to be applied.

Let abs2(c2) 6= 0. We may assume thatc2 = 1 andℜ(c1) = 0. The latter condition
can always be achieved by introducing the transformationz = u − ℜ(c1)

2 . The transformed
quadratic polynomial inu has the property that the real part of the coefficient at the linear
term is zero; see also Niven [16]. Thus, if abs(c2) 6= 0, we can transform (7.1) into the
simpler form

p(z) := z2 + c1z + c0, c0 6= 0,ℜ(c1) = 0,

and if c1 is real, we havec1 = 0, and in this case the complete solution is described in the
two Lemmas1.3, 1.4. Let c1 be nonreal. Then the above polynomialq specializes to

(7.2) q(z) = z4 +
(
2ℜ(c0) + abs2(c1)

)
z2 + 2ℜ(c0c1)z + abs2(c0).

If c0 ∈ R, then the linear term cancels and the rootsz of q defined in (7.2) obey

z2 =
1

2

(

−2c0 − abs2(c1)±
√

abs2(c1)
(
abs2(c1) + 4c0

)
)

.

For singularc1 it follows thatz2 = −c0. If c0, c1 are both nonreal, equation (7.2) has to be
further investigated by the given means.

8. Newton’s method for finding coquaternionic zeros and the determination of the
exact Jacobi matrix. Let p be the coquaternionic polynomial (1.4). Since the method of
using the companion polynomialq to find zeros ofp is restricted to those zeros which share
a complex number in their equivalence class, we turn to the computation of the zeros ofp
by Newton’s method in order to find the remaining zeros, if anyexist. Letp′(z, h) be the
(Fréchet-) derivative ofp. Theorem8.1 below describes how to find it. In short, Newton’s
method consists of solving the real, linear(4× 4) system

col(p(zk)) + col(p′(zk, h)) = 0, zk+1 := zk + h, k = 0, 1, . . . ,

for h, wherez0 is the initial guessand wherecol is defined in (3.10). If J(z) is theJacobi
matrixof the mappingp : R4 → R

4, then

col(p′(z, h)) = J(z)col(h),
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whereJ(z) is a real(4 × 4) matrix. How do we find it? We refer to a paper by Lauterbach
and Opfer [15].

THEOREM 8.1. Letp be a given coquaternionic polynomial with coefficientsc0, . . . , cn,
for n ≥ 1. Define

(8.1) λj(z, h) :=
∑

k+ℓ=j−1

k,ℓ≥0

zkhzℓ, j ≥ 1, L(z, h) :=

n∑

j=1

cjλj(z, h),

whereL : Hcoq → Hcoq is a linear mapping overR with respect toh. Its matrix representa-
tion is the Jacobi matrix ofp,

J(z) :=

n∑

j=1

Mj(z) ∈ R
4×4, where(8.2)

Mj(z) :=
∑

k+ℓ=j−1

k,ℓ≥0

[
col(zkzℓ), col(zkizℓ), col(zkjzℓ), col(zkkzℓ)

]
.(8.3)

Proof. The quantityλj(z, h) is the derivative ofzj , for j ≥ 1. It is a linear mapping
overR with respect toh since real numbers (and no others) commute with coquaternions.
Therefore the derivative ofp is p′(z, h) = L(z, h). The identity (8.3) for Mj(z) is equa-
tion (5.4) in [11].

The right hand side ofλj(z, h) is obtained by computing(z + h)j and deleting all terms
which are not linear inh. The result is the derivative ofzj . To mention two examples,
λ2(z, h) = zh + hz, λ3(z, h) = z2h + zhz + hz2. An application of the method just
described to the quaternionic algebraic Riccati equation is treated in [10].

LEMMA 8.2. Letz, cj ∈ Z
4 ⊂ Hcoq, for j = 1, 2, . . . , n. Then,J(z) ∈ Z

4×4.
Proof. The formula for computing the Jacobi matrixJ(z) involves only additions and

multiplications of the dataz, cj , for j = 1, 2, . . . , n; see (8.1)–(8.3).
The property given in Lemma8.2 is not shared by the numerical version of the Jacobi

matrix which is columnwise computed by

p(z + αej)− p(z)

α
, j = 1, 2, 3, 4, α ≈ 10−6,

whereej ∈ Hcoq, j = 1, 2, 3, 4, represent the four units ofHcoq andα is a real number of
the order of the square root of the machine precision.

EXAMPLE 8.3. We take a cubic polynomialp with data from Example10.3. Then, for
the starting valuez0 = (0, 0, 0, 0), the Jacobi matrix is

J(z0) =







2 −3 5 7
3 2 7 −5
5 7 2 −3
7 −5 3 2






.

After six Newton steps we arrive at the zeroz which is listed in the third row of Table10.3
and which satisfies‖p(z)‖ = 1.8609 · 10−14, where‖.‖ is the Euclidean norm inR4.

9. The algorithms for finding zeros and singular points of coquaternionic polyno-
mials. The techniques to find zeros and singular points for the coquaternionic polynomialp
with the methods described in the foregoing sections is summarized by the following algo-
rithms.
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ALGORITHM 9.1. Algorithm I for finding zeros and singular points for coquaternionic
polynomials by means of the companion polynomial.

1. Letc0, c1, . . . , cn be the coquaternionic coefficients of the polynomialp.
2. Compute the real coefficientsb0, b1, . . . , b2n of the companion polynomialq by

equation (6.2).
3. If the companion polynomial vanishes, all pointsz ∈ R are singular points forp,

stop here, otherwise continue.
4. Compute all (real and complex) roots ofq. There are at most2n roots.
5. Delete all complex roots with negative imaginary part. The remaining roots will be

denoted byr1, r2, . . . , rm, m ≤ 2n.
6. Define an integer vectorind (indicator) of lengthm and set all entries to zero.

for j = 1 tom do
7. ComputeAj , Bj at the rootrj by using formulas (3.3), (3.4), and (3.5).
8. Computeρj = −AjB

−1
j if Bj is nonsingular (abs2(Bj) 6= 0), otherwise put

ρj = rj and identifyρj with a coquaternion.
9. Check whetherp(ρj) = 0; in this case setind(j) = 2 (ρj is a zero ofp).

Otherwise, check whetherρj is a singular point forp (abs2(p(ρj)) = 0). In
this case setind(j) = 1.

end for j

REMARK 9.2. The result of Algorithm I is a vector of coquaternionsρj and an integer
vectorindj , j = 1, 2, . . . ,m with

indj =







0 if ρj is neither a zero ofp nor a singular point forp,

1 if ρj is a singular point forp but not a zero ofp,

2 if ρj is a zero ofp.

In the above algorithm we have not paid special attention to the case when one of the zeros
of p is real. In this case, a real double root appears in the set of roots ofq. For the above algo-
rithm to work smoothly, one should use a so-calledoverloading technique, which is available
in several programming systems. Overloading means that theelementary arithmetic oper-
ations and functions can be extended to coquaternions keeping the standard notation such
as+,−, ∗, /. In particular, one needs a subprogram with which one can evaluate coquater-
nionic polynomials at coquaternions. If the overloading technique has been implemented,
then polynomial evaluation can be done simply by the application of Horner’s scheme. For
finding the roots of a real polynomial (such as the companion polynomial), standard pro-
grams are available. However, the standard program in MATLAB is calledroots and it
suffers from a severe loss in accuracy if there are multiple roots. A remedy is hinted in [13].
If one uses the overloading technique, typically, the definition for a vector of coquaternionsc
readsc(j) =coquaternion([cj1, cj2, cj3, cj4]), j = 1, 2, . . .

ALGORITHM 9.3. Algorithm II for finding zeros of coquaternionic polynomials by
means of Newton’s method.

1. Letc0, c1, . . . , cn be the coquaternionic coefficients of the polynomialp.
2. Define a listL of already known zeros ofp, possibly empty at the beginning or filled

with zeros obtained from Algorithm I.



ETNA
Kent State University 

http://etna.math.kent.edu

150 D. JANOVSKÁ AND G. OPFER

3. Define a number of trialsno trials, a maximal number of Newton iterations
max Newton, and a stopping criterioncrit stop.
for j = 1 to no trials do

4. Define an initial guessz = z0, computey = p(z), andynorm = ‖y‖
(Euclidean norm). Setℓ = 0.
while ynorm ≥ crit stop andℓ ≤ max Newton do

5. ℓ = ℓ+ 1; execute one Newton step:z = Newton(z).
Computey = p(z), ynorm = ‖y‖.

end while
6. If ℓ < max Newton or ynorm < crit stop, check whether the last com-

putedz is already contained in the listL. If not, add it toL.
end for j

REMARK 9.4. The result of this algorithm will be a listL of zeros ofp, which in
general is not exhaustive. The starting value is—according to the experience of the authors—
best selected by a random, integer choice, where the integers should be restricted to a small
interval, say to[−5, 5]. It is possible (in rare cases) that the Jacobi matrix is singular. This
can be easily overcome by choosing a new initial guess.

10. Numerical examples.We present some examples of cubic coquaternionic poly-
nomials to show that the number of zeros and singular points computed by the companion
polynomial and by Newton’s methods is rather unpredictable. Nevertheless, there is some
pattern we would like to show. The examples are ordered with respect to the number of zeros
which one finds by using the companion polynomial. The corresponding zeros are printed in
color.

EXAMPLE 10.1 (no zeros). The cubic coquaternionic polynomialp with coefficients
c0 = (2,−2, 2, 3), c1 = (−4,−5, 1, 1), c2 = (−1, 0,−5,−1), c3 = (2, 2,−1, 0) hasno
zerossimilar to complex numbers and six singular points. Applying Newton’s method with
the exact Jacobi matrix yields the eight zeros listed in Table 10.1. None of them is similar to
a complex number.

EXAMPLE 10.2 (one zero). The cubic coquaternionic polynomialp with coefficients
c0 = (1,−5,−2, 0), c1 = (3, 3,−2, 4), c2 = (−4,−3,−5, 2), c3 = (−3,−4, 1,−2) hasone
zerowhich is similar to a complex number, four singular points, and six zeros computed by
Newton’s method, not similar to a complex number. The seven zeros are listed in Table10.2.

EXAMPLE 10.3 (two zeros). The cubic coquaternionic polynomialp with coefficients
c0 = (7, 6, 5, 1), c1 = (2, 3, 5, 7), c2 = (4,−3, 2, 1), c3 = (1, 3, 2, 4) hastwo zeroswhich
are similar to a complex number, two singular points, and onezero computed by Newton’s
method, listed in Table10.3.

EXAMPLE 10.4 (three zeros). The cubic coquaternionic polynomialp with coefficients
c0 = (0, 2, 0, 5), c1 = (0, 1, 0, 1), c2 = (−2,−4, 4, 1), c3 = (1, 0, 4,−2) hasthree zeros
which are similar to a complex number, no singular points. The three zeros are listed in
Table10.4. No zeros were found by applying Newton’s method (several thousand trials).

We made many more tests with coquaternionic polynomials of degreen ≥ 3 which
attained the maximal numbern of zeros found by the companion polynomial. In all these
cases we did not find additional zeros computed by Newton’s method. This applies also to
Example1.5, part (IV).

CONJECTURE10.5. Let p be a coquaternionic polynomial of degreen which hasn
zeros which are similar to complex numbers. Then, there are no additional zeros not similar
to complex numbers.

Another observation is the following: if a coquaternionic polynomialp has many zeros
which are not similar to complex numbers, then there are onlyfew zeros which are similar to
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complex numbers. This applies, in particular, to Example1.5, part (III). However, this is a
very vague statement, which needs more attention.

TABLE 10.1
Eight zeros of a cubic coquaternionic polynomialp defined in Example10.1, all found by Newton’s method.

0.920792194877860, -0.477350655832754, 2.428458796390070, -1.654108298624764
2.450727144208431, 0.977395660928656, 0.317301767845470, -1.652159929881599
0.038499359300800, -0.459455816622210, 0.517633403455030, 0.178975644511005
0.040708445821269, -0.839407205920705, -0.328922433104592, 1.295950832229326
0.709019332932411, -0.294621664264792, -0.112477811982268, 0.461335678870540

-0.448518057687961, 1.536978387850394, 2.034978412068015, 0.749577465189058
0.410896918015976, -0.063043960237222, 0.222327740640928, 0.635721599205228

-1.489226503509231, -0.051244615268034, 0.422127971968205, -0.252540209891112

TABLE 10.2
Seven zeros of a cubic coquaternionic polynomialp defined in Example10.2, the last six found by Newton’s

method.

-0.084025738354299, 1.111175126311441, -0.574783886624048, 0.584853095346396
-1.280365616247547, 0.020877114875100, 0.503907316675033, 2.157051290547817
-0.285608645398092, 1.407387895553819, 1.602481962888596, -0.292825912129321
0.734696869093826, -0.802514241229524, -0.739507355478451, 0.370330803674946

-1.480332927529147, -0.481980935905488, 0.945158732810532, 1.843761755812835
-2.300671130739401, 0.360373154160493, -0.067402575042700, 1.246070549138632
-0.085641334116581, 3.501590113862619, 3.639869657498098, 0.231312656003601

TABLE 10.3
Three zeros of a cubic coquaternionic polynomialp of Example10.3, the last one found by Newton’s method.

-1.618852521797113, 6.463899263531390, 2.829324921055154, 5.651970856832540
0.418326476405790, -1.691555573954496, 0.998887526357887, 0.395365114055260

-0.099473954608707, -1.081012068817781, -0.782231163978552, -1.127180514797187

TABLE 10.4
Three zeros of a cubic coquaternionic polynomialp, defined in Example10.4all found by using the companion

polynomial.

-1.466507448592167, 1.324915491617470, 1.123223813460332, -0.564677198394439
0.781247091809576, 0.634161128551769, -0.200695566535362, 0.065867128807512

-0.156844906375301, -2.299180524759707, 1.304072974458774, -1.766122605663109

11. On the number of zeros and singular points.We have already seen that coquater-
nionic polynomials may have no zeros; see Corollary1.6. On the other hand there is a max-
imum number of zeros which contain complex numbers in the corresponding equivalence
class.

THEOREM 11.1. A coquaternionic polynomialp of degreen ≥ 1 has at mostn zeros
in equivalence classes which contain complex numbers. The numbern will be attained if all
roots of the companion polynomialq are either pairs of complex conjugate numbers or pairs
of real numbers and the corresponding quantitiesB are nonsingular.

Proof. Let the companion polynomialq have degreed ≤ 2n. It may have2m1 ≤ d real
double roots,2m2 ≤ d complex roots, andm3 ≤ d real single roots. The total number of
roots is2m1 +2m2 +m3 = d. Only the real double roots and the complex roots may lead to
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a zero ofp. Thus,m1 +m2 = (d−m3)/2 ≤ n is the maximum number of zeros ofp. The
maximum number is attained ifd = 2n andm3 = 0.

THEOREM 11.2.Letp be a coquaternionic polynomial of degreen and let the compan-
ion polynomialq have degreed ≤ 2n. If nz is the number of zeros ofp andns is the number
of singular points forp not identical with those zeros and where both zeros and singular
points are computed from the roots ofq, then2nz + ns ≤ d. In particular,ns ≤ 2n, which
means that there are at most2n singular points forp that are different from zeros ofp and
which are computed by means of the companion polynomialq.

Proof. Singular points forp are derived from single, real roots ofq. See Theorem6.9.

Our experiments led us to the following conjecture.

CONJECTURE11.3. All coquaternionic polynomialsp (defined in(1.4)) which do not
reduce to a constant have singular points.

Sincep(0) = c0 the conjecture is true ifc0 is singular. Letc0 be nonsingular. In this case
a proof could consist of showing that there is az ∈ Hcoq such that

(11.1) abs2(p(0))abs2(p(z)) = abs2(c0)abs2(p(z)) ≤ 0.

In our tests we always found a very simplez such that (11.1) was valid. It was sufficient to
choose either one of the four unit vectors (possibly multiplied by 2) forz or one of the square
roots ofz = 0 (see Example1.1).

This conjecture (if true) could be called the “Weak Fundamental Theorem of Algebra”
for coquaternions.

12. Extension to algebras inR4. If we go from the algebra of coquaternions to other
algebras inR4, we observe many similarities with the coquaternionic case. The algebras to
be considered are given in Table12.1. The full multiplication table of the eight listed algebras
can be obtained by multiplying the last three columns in Table 12.1by j,k, i, respectively.
The table is obtained by allowing all eight combinations of signs±1 for the squaresi2, j2,k2

and keeping the productij = k the same for all algebras. The names given to the algebras
with numbers 2 to 4 are from Cockle, 1849 [3], the names for the algebras 5 to 8 are from
Schmeikal, 2014 [21], who also establishes the connection to Clifford algebrasin his paper.
In a first draft, these algebras were called New Algebra 1 to New Algebra 4 by the present
authors.

The first mentioned algebra, the algebra of quaternions, goes back to Hamilton, 1843.
The problem of finding zeros of unilateral and bilateral polynomials in quaternionic variables
has been treated by the authors already in [12, 13].

The 8 algebras separate into 4 noncommutative ones, namely those with numbers 1,2,5,6,
and into four commutative ones, those with numbers 3,4,7,8.We note that the center of all 8
algebras is or containsR, which means that the real numbers commute with all members of
all algebras. In all eight cases we define the conjugate of an algebraic elementa as in (1.2).

LEMMA 12.1. LetA be one of the four noncommutative algebras of Table12.1(num-
ber 1, 2, 5, or 6) anda ∈ A. Then the productaconj(a) = conj(a)a is real and

(12.1) a−1 =
conj(a)

conj(a)a
if conj(a)a 6= 0.
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Proof. As in (1.2) we putabs2(a) := conj(a)a, and by applying the multiplication rules,
we obtain

(12.2) abs2(a) =







a21 + a22 + a23 + a24 for quaternions,

a21 + a22 − a23 − a24 for coquaternions,

a21 − a22 + a23 − a24 for nectarines,

a21 − a22 − a23 + a24 for conectarines.

Equation (12.1) follows by multiplying from the left or right bya and from the fact that
conj(a)a is real.

TABLE 12.1
EightR4 algebras with multiplication rules.

No Name of algebra Short name i2 j2 k2 ij jk ki

1 Quaternions H −1 −1 −1 k i j

2 Coquaternions Hcoq −1 1 1 k −i j

3 Tessarines Htes −1 1 −1 k i −j

4 Cotessarines Hcotes 1 1 1 k i j

5 Nectarines Hnec 1 −1 1 k i −j

6 Conectarines Hcon 1 1 −1 k −i −j

7 Tangerines Htan 1 −1 −1 k −i j

8 Cotangerines Hcotan −1 −1 1 k −i −j

It is clear that all 8 algebras containR as a subalgebra by defining the set of elements of
the forma = (a1, 0, 0, 0), a1 ∈ R. However, this is not in general true for the fieldC.

LEMMA 12.2. The cotessarinesHcotes (algebra number 4) do not contain the field of
complex numbersC as a subalgebra. Letz = (x, y) ∈ C. Then,C is a subalgebra of one of
the remaining seven algebrasA if A is reduced to the following form:

(12.3) z = (x, y) →







(x, y, 0, 0) for A = quaternions, or

(x, 0, y, 0) for A = quaternions, or

(x, 0, 0, y) for A = quaternions,

(x, y, 0, 0) for A = coquaternions,

(x, y, 0, 0) for A = tessarines, or,

(x, 0, 0, y) for A = tessarines,

(x, 0, y, 0) for A = nectarines,

(x, 0, 0, y) for A = conectarines,

(x, 0, y, 0) for A = tangerines or,

(x, 0, 0, y) for A = tangerines,

(x, y, 0, 0) for A = cotangerines or,

(x, 0, y, 0) for A = cotangerines.

Proof. We set the imaginary party of z at the positions where the squaresi2, j2,k2 in
Table12.1are equal to−1. However, there is not such a position in the case of cotessarines.

Thus, in the noncommutative algebras coquaternions, nectarines, and conectarines, the
complex numbers have the formz = x + iy, z = x + jy, z = x + ky, respectively. In the
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quaternionic case, a complex number may have one of these three forms. The real numbers
x, y are again calledreal partandimaginary partof the complex numberz.

The task of finding zeros (or singular points) of polynomialsp defined with coefficients
from one of the noncommutative algebras (number1, 2, 5, 6) can now be achieved as de-
scribed for coquaternions. The complex solutions of the companion polynomial must be
inserted in the corresponding algebra according to the rules given in (12.3).

The fact that (quasi-) similarity classes may not contain complex numbers is prevalent in
all noncommutative algebras apart from quaternions; compare Theorem6.10and Lemma3.2.

LEMMA 12.3. Let A be one of the noncommutative algebras anda ∈ C with real
part a1 and imaginary parta2. In order thatb = (b1, b2, b3, b4) ∈ A is quasi-similar toa, it
is necessary and sufficient thata1 = b1 and

a22 =







+b22 + b23 + b24 for quaternions

+b22 − b23 − b24 for coquaternions

−b22 + b23 − b24 for nectarines

−b22 − b23 + b24 for conectarines







≥ 0.

Proof. Follows from (12.2).
For the commutative cases, the companion polynomial is not well defined since in these

casesconj(a)a is not real. In addition, in commutative algebras all similarity classes shrink
to one point. The commutative cases are treated in a subsequent section.

Let α ∈ A, andA one of the eight algebras, whereα := (a, b, c, d). Since the mapping
l : A → A defined by

l(x) := αx, x ∈ A

is linear inx (overR), there must be a matrixM ∈ R
4×4, depending onA, such that

(12.4) col(l(x)) = Mcol(x).

We will denote the four unit standard vectors again as

e1 := 1 := (1, 0, 0, 0), e2 := i := (0, 1, 0, 0), e3 := j := (0, 0, 1, 0), e4 := k := (0, 0, 0, 1).

By puttingx = ej , j = 1, 2, 3, 4, in (12.4) we obtain thej-th column ofM , such that

M := [col(αe1), col(αe2), col(αe3), col(αe4)],

and these eight matrices are given in Table12.2using the notationı : A → R
4×4.

The inverses of elements of the noncommutative algebras cansimply be computed by
equation (12.1). The inverses of elements in one of the four commutative algebras can be
computed by rules given in Table12.3. The computations were facilitated by usingmaple.

The determinant of ı(Hcotes) factors into the form

det(ı(Hcotes)) = (a1+a2−a3−a4)(a1−a2−a3+a4)(a1+a2+a3+a4)(a1−a2+a3−a4),

such thatdet(ı(Hcotes)) = 0 if and only if |a1 + a2| = |a3 + a4| or |a1 − a2| = |a3 − a4|.
Since all other determinants have the formdet = x2 − 4y2, they also factor into the form
det = (x− 2y)(x+ 2y), where the meaning ofx, y has to be read from Table12.3.
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TABLE 12.2
Representations of the above eight algebras inR4×4.

ı(H) =









a −b −c −d

b a −d c

c d a −b

d −c b a









, ı(Hcoq) =









a −b c d

b a d −c

c d a −b

d −c b a









,

ı(Htes) =









a −b c −d

b a d c

c −d a −b

d c b a









, ı(Hcotes) =









a b c d

b a d c

c d a b

d c b a









,

ı(Hnec) =









a b −c d

b a −d c

c −d a b

d −c b a









, ı(Hcon) =









a b c −d

b a d −c

c −d a b

d −c b a









,

ı(Htan) =









a b −c −d

b a −d −c

c d a b

d c b a









, ı(Hcotan) =









a −b −c d

b a −d −c

c −d a −b

d c b a









.

TABLE 12.3
Rules for computing the inversesa−1 = b/ det = (b1, b2, b3, b4)/ det of a = (a1, a2, a3, a4) ∈ A in the

four commutative algebrasA.

No Algebra a−1 = (b1, b2, b3, b4)/det

3 Htes det = (a21 + a22 + a23 + a24)
2 − 4(a1a3 + a2a4)

2

b1 = a1( a21 + a22 − a23 + a24)− 2a2a3a4
b2 = −a2( a21 + a22 + a23 − a24) + 2a1a3a4
b3 = a3(−a21 + a22 + a23 + a24)− 2a1a2a4
b4 = −a4( a21 − a22 + a23 + a24) + 2a1a2a3

4 Hcotes det = (a21 + a22 − a23 − a24)
2 − 4(a1a2 − a3a4)

2

b1 = a1( a21 − a22 − a23 − a24) + 2a2a3a4
b2 = a2(−a21 + a22 − a23 − a24) + 2a1a3a4
b3 = a3(−a21 − a22 + a23 − a24) + 2a1a2a4
b4 = a4(−a21 − a22 − a23 + a24) + 2a1a2a3

7 Htan det = (a21 + a22 + a23 + a24)
2 − 4(a1a2 + a3a4)

2

b1 = a1( a21 − a22 + a23 + a24)− 2a2a3a4
b2 = a2(−a21 + a22 + a23 + a24)− 2a1a3a4
b3 = −a3( a21 + a22 + a23 − a24) + 2a1a2a4
b4 = −a4( a21 + a22 − a23 + a24) + 2a1a2a3

8 Hcotan det = (a21 + a22 + a23 + a24)
2 − 4(a1a4 − a2a3)

2

b1 = a1( a21 + a22 + a23 − a24) + 2a2a3a4
b2 = −a2( a21 + a22 − a23 + a24)− 2a1a3a4
b3 = −a3( a21 − a22 + a23 + a24)− 2a1a2a4
b4 = a4(−a21 + a22 + a23 + a24) + 2a1a2a3
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In (2.1) we have already seen, that the algebra of coquaternions is isomorphic to the alge-
bra of all real2× 2 matrices. This is also true for the algebra of nectarines andconectarines,
though the representation differs as follows (usingı̂ : A → R

2×2):

(12.5) ı̂(Hnec) =

[
a− d b+ c
b− c a+ d

]

, ı̂(Hcon) =

[
a− c b+ d
b− d a+ c

]

.

This can be verified by puttingα = (a, b, c, d) = ej , j = 1, 2, 3, 4, and checking the multi-
plication rules of Table12.1.

The noncommutative algebras number2, 5, 6 (coquaternions, nectarines, conectarines)
are all isomorphic to the set of real2 × 2 matricesR2×2 with representations given in (2.1),
(12.5). Thus, it is sufficient to study one of these algebras in order to studyR2×2.

12.1. Polynomials with coefficients from commutative algebras. A polynomial p
with coefficients from a commutative algebraA always has the form (1.4). We are interested
in finding the zeros of a givenp and their number for the commutative algebras presented in
this section. This will be called thepolynomial problem. We show that the three commutative
algebrasHtes,Htan,Hcotan are isomorphic and recall a result of 1891 by Segre [22], which
settles the polynomial problem for the three mentioned algebras.

LEMMA 12.4.The three algebrasHtes,Htan,Hcotan are isomorphic.
Proof. Let a = (a1, a2, a3, a4) ∈ R

4 and define two mappings e1 := exchange1,
e2 := exchange2 : R

4 → R
4 by e1(a) = (a1, a3, a2, a4), e2(a) = (a1, a4,−a3, a2).

Note, that the two mappings are bijective with e−1
j = ej , j = 1, 2. Besidesa ∈ R

4, let
b = (b1, b2, b3, b4) ∈ R

4.
(A) In Htes let c = ab. Then, inHtan we havec = e1(e1(a)e1(b)). Or, in an equivalent

formulation, e1(ab) = e1(a)e1(b). Thus,Htes andHtan are isomorphic.
(B) In Htan let c = ab. Then, inHcotan we havec = e2(e2(a)e2(b)). Thus,Htan andHcotan

are isomorphic.
This implies that all three algebras are pairwise isomorphic
(C) InHtes let c = ab. Then inHcotan we havec = e1(e2

(
e2(e1(a))e2(e1(b))

)
).

Segre [22] introduced in his paperbicomplex numbers(numeri bicomplessi) and used
a definition (on p. 456) which is identical with the definitionof the algebraHcotan (num-
ber 8 in Table12.1) of this paper2. In all eight algebras we haveij = k. Therefore,
a = (a1, a2, a3, a4) can be expressed in the form

(12.6) a = x+ yj, x = a1 + a2i, y = a3 + a4i,

and inHtes,Hcotan we havei2 = −1 such thatx, y are complex numbers in the usual sense.
Thedirect sumC⊕ C is the set of pairs(x, y) of complex numbers with the standard vector
space operations and a new multiplication

(12.7) (x, y) ⋆ (u, v) := (xu, yv), x, y, u, v ∈ C,

wherexu, yv are the standard products of complex numbers.
THEOREM 12.5.The direct sumC⊕C with the multiplication rule(12.7) is isomorphic

with Htes,Htan,Hcotan.
Proof. Leta, b ∈ Htes with the representationsa = x+ yj, b = u+ vj; see (12.6). Then,

ab = xu+ yv + (xv + yu)j.

2See alsohttp://en.wikipedia.org/wiki/Bicomplex_number.

http://en.wikipedia.org/wiki/Bicomplex_number
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Define the mapping

(12.8) A : Htes → C⊕ C by A(x+ yj) := (x+ y, x− y).

The inverseA−1 exists for all(r, s) ∈ C⊕ C and

x+ yj = A−1(r, s) =
1

2

([
r1 + s1 + (r2 + s2)i

]
+
[
r1 − s1 + (r2 − s2)i

]
j
)
.

Thus,A is bijective. We have to show thatA(ab) = A(a) ⋆ A(b). Now,

A(ab) = (xu+ yv + (xv + yu), xu+ yv − (xv + yu))

= A(a) ⋆ A(b) = ((x+ y)(u+ v), (x− y)(u− v)).

The remaining part of the proof follows from Lemma12.4.
COROLLARY 12.6. The number of zeros of a polynomialp of degreen in

Htes,Htan,Hcotan is at mostn2 and at least one.
Proof. Let p(z) =

∑n

ℓ=0 aℓ ⋆ zℓ be a polynomial inC ⊕ C and letaℓ = (bℓ, cℓ)
and z = (u, v). Then,p(z) =

∑n

ℓ=0(bℓ, cℓ) ⋆ (uℓ, vℓ) = (0, 0) splits into two complex
polynomialsp1(u) =

∑n

ℓ=0 bℓu
ℓ = 0, p2(v) =

∑n

ℓ=0 cℓv
ℓ = 0. If the zeros ofp1 are

u1, u2, . . . , un and those ofp2 are v1, v2, . . . , vn, then the zeros ofp are (ur, vs),
r, s = 1, 2, . . . , n. Because of the isomorphism betweenC ⊕ C andHtes,Htan,Hcotan, the
statement of the theorem follows.

For examples of zeros of polynomials inHcotan, see [18].
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