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ESTIMATING THE ERROR OF GAUSS-TUR ÁN QUADRATURE FORMULAS
USING THEIR EXTENSIONS ∗

ALEKSANDAR S. CVETKOVIĆ† AND MIODRAG M. SPALEVIĆ†

Abstract. We consider extensions of Kronrod-type and extensions obtained by generalized averaged Gaussian
quadrature formulas for Gauss-Turán quadrature formulas. Existence and uniqueness of these extensions are con-
sidered. Their numerical construction is proposed. It is thefirst general method and is based on a combination
of well-known numerical methods for Gauss-Turán, Gauss, Gauss-Kronrod, Anti-Gauss, and generalized averaged
Gaussian quadratures. We employ these extensions for estimating the remainder terms in the Gauss-Turán quadra-
tures. Numerical results are presented.
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1. Introduction. Letdλ be a given nonnegative measure on the real lineR with compact
or unbounded support for which all momentsµk =

∫

R
tk dλ(t) (k = 0, 1, . . .) exist and are

finite with µ0 > 0. If λ is an absolutely continuous function, thendλ(t) = ω(t) dt, whereω
is a given nonnegative and integrable weight function over the smallest interval[a, b] which
contains the support ofλ. Even though our results in this paper hold for anyλ defined as
above, we will present them for the most common case whendλ(t) = ω(t) dt. As usual,
for k ∈ N0, letPk denote the set of polynomials of degree at mostk.

In 1950, P. Tuŕan [40] proposed an interpolatory quadrature formula of the type

∫ 1

−1

f(t) dt ≈

n
∑

ν=1

2s
∑

i=0

Ai,νf
(i)(τν) (s ∈ N0),(1.1)

which has the highest possible algebraic degree of precision (ADP). In this paper we consider
a generalization of formula (1.1) by including a weight function, i.e.,

∫ b

a

f(t)ω(t) dt ≈

n
∑

ν=1

2s
∑

i=0

Ai,νf
(i)(τν) (s ∈ N0).(1.2)

In the Gauss-Tuŕan quadrature formula (1.2), τν are the zeros of a polynomialπn of
degreen known as ans-orthogonal polynomial, which satisfies the orthogonalityrelation

∫ b

a

π2s+1
n (t)p(t)ω(t) dt = 0, for all p ∈ Pn−1,

and theAi,ν are determined through interpolation. Ifτν andAi,ν are chosen in this way,
theADP for (1.2) is 2(s + 1)n − 1. The coefficientsAi,ν in the Gauss-Tuŕan quadrature
formula (1.2), however, are not all positive in general. In the cases = 0, formula (1.2)
reduces to well-known Gaussian quadrature.

Numerically stable methods for constructing nodesτν and coefficientsAi,ν in Gauss-
Turán quadrature formulas with multiple nodes and their generalizations can be found in
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[15, 18, 28, 37] (see also [13]). For the asymptotic representation of the coefficientsAi,ν

see [31]. Some interesting results concerning this quadrature formula and its applications can
be found in [25, 36] and the references therein, as well as in [16, 21, 31].

The estimation of the error in a quadrature formula is an important problem. The purpose
of this paper is to consider a Kronrod extension or an extension obtained using generalized
averaged Gaussian quadrature formulas for Gauss-Turán quadrature formulas. These exten-
sions can be applied to estimate the error in the original Gauss-Tuŕan quadrature. A numerical
construction of these extensions for Gauss-Turán quadrature formulas is proposed in this arti-
cle. It is the first general method, and it is based on the combination of well-known numerical
procedures for Gauss-Turán, Gauss, Gauss-Kronrod, Anti-Gauss, and generalized averaged
Gaussian quadratures.

2. A Kronrod extension of Gauss-Tuŕan quadrature formula. Following Kronrod’s
idea, Li [24] considered an extension of (1.2) of the form

∫ b

a

f(t)ω(t) dt ≈

n
∑

ν=1

2s
∑

i=0

Bi,νf
(i)(τν) +

n+1
∑

j=1

Cjf(τ̂j) (s ∈ N0),(2.1)

where theτν are the same nodes as in (1.2), and the new nodeŝτj and new weightsBi,ν , Cj

are chosen to maximize theADP of (2.1). It is shown by Li [24] that whenω is any weight
function on[a, b], we can always obtain the maximum degree2n(s+1)+n+1 by letting τ̂j
be the zeros of the polynomialπ̂n+1 that satisfies the orthogonality property

∫ b

a

π̂n+1(t)π
2s+1
n (t)p(t)ω(t) dt = 0, for all p ∈ Pn.

At the same time it is shown that̂πn+1 always exists and is unique up to a multiplicative
constant. In the special case whenω(t) = (1 − t2)−1/2, Li [ 24] determined̂πn+1 explicitly
and obtained the weights in (2.1) for s = 1 and s = 2. The weights in the remaining
casess ≥ 3 were obtained later by Shi [35].

We are going to propose a different theoretical approach here in order to lay the founda-
tion for numerical calculations of the quadrature formula (2.1) with high-precision arithmetic.
It is well known (see [16]) that the nodes in Gauss-Turán quadrature formulas are all real, dis-
tinct, and internal in the interval[a, b]. We need a couple of facts concerning the theory of
quadratures with multiple nodes, which, in particular, contains Gauss-Turán quadrature for-
mulas. We recall the following theorem established by Ghizzetti and Ossicini [17].

THEOREM 2.1. For any given set of odd multiplicitiesν1, . . . , νn, i.e., νj = 2sj + 1,
andsj ∈ N0, j = 1, . . . , n, there exists a unique quadrature formula of the form

∫ b

a

ω(t)f(t) dt ≈
n
∑

j=1

νj−1
∑

i=0

ajif
(i)(xj), a ≤ x1 < . . . < xn ≤ b,(2.2)

of ADP = ν1 + . . . + νn + n− 1, which is the well known Chakalov-Popoviciu quadrature
formula; see[5, 34]. The nodesx1, . . . , xn of this quadrature are determined uniquely by the
orthogonality property

∫ b

a

ω(t)

n
∏

k=1

(t− xk)
νkp(t) dt = 0, for all p ∈ Pn−1.
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The corresponding (monic) orthogonal polynomial
∏n

k=1(t − xk) is known in the clas-
sical literature asσ-orthogonal polynomial, withσ = σn = (s1, . . . , sn), wheren indicates
the size of the array andνk = 2sk + 1, sk ∈ N0, k = 1, . . . , n, in the preceding formula.

Bojanov and Petrova [2] (see also [27]) stated and proved the following important the-
orem that reveals the relation between the standard interpolatory quadratures of type (2.2)
and the quadratures for Fourier coefficients, which is of particular interest for the problem
that we consider here. Namely, we will show that a Kronrod extension (2.1) of (1.2) has
the same nodes as the corresponding Gauss-Kronrod quadrature formula with the weight
function(πn)

2sω. A similar result holds if—instead of extensions of Kronrod-type—we use
extensions obtained by generalized averaged Gaussian quadrature formulas.

THEOREM2.2. For any given sets of multiplicities̄µ := (µ1, . . . , µk), ν̄ := (ν1, . . . , νn),
and nodesy1 < · · · < yk, x1 < · · · < xn, there exists a quadrature formula of the form

∫ b

a

ω(t)Λµ̄(t;y)f(t) dt ≈

n
∑

j=1

νj−1
∑

i=0

cjif
(i)(xj),

whereΛµ̄(t;y) :=
∏k

m=1(t−ym)µm , withADP = N if and only if there exists a quadrature
formula of the form

∫ b

a

ω(t)f(t) dt ≈

k
∑

m=1

µm−1
∑

λ=0

bmλf
(λ)(ym) +

n
∑

j=1

νj−1
∑

i=0

ajif
(i)(xj),

which hasADP = N + µ1 + · · · + µk. In the caseym = xj for somem and j, the
corresponding terms in both sums can be combined into one sumof the form

µm+νj−1
∑

λ=0

dmλf
(λ)(ym).

We are now in the position to state and prove the following theorem, which represents the
central point in the paper.

THEOREM 2.3. Let πn be ans-orthogonal polynomial with respect to the weight func-
tion ω whose zerosτ1 < τ2 < . . . < τn are the nodes of a quadrature formula(1.2). Then
there exists an interpolatory quadrature formula of the form

∫ b

a

f(t)[πn(t)]
2sω(t)dt ≈

n
∑

ν=1

Dνf(τν) +
n+1
∑

j=1

Hjf(τ̃j) (s ∈ N0)(2.3)

with nodes̃τj that are ordered, i.e.,̃τ1 < τ̃2 < . . . < τ̃n, which hasADP = N if and only if
there exists a quadrature formula of the form

∫ b

a

f(t)ω(t) dt ≈

n
∑

ν=1

2s
∑

i=0

D̂i,νf
(i)(τν) +

n+1
∑

j=1

Ĥjf(τ̃j) (s ∈ N0),(2.4)

which hasADP = N + 2ns.
Proof. Sinceω(t) dt is a nonnegative measure,(πn(t))

2sω(t) dt is a nonnegative mea-
sure as well, i.e.,(πn(t))

2sω(t) is a new weight function (cf. [10]). According to Theo-
rem2.2, there exits a quadrature formula of the form (2.3) which hasADP = N if and only
if there exists a quadrature formula

∫ b

a

f(t)ω(t) dt ≈

n
∑

ν=1

2s−1
∑

i=0

Li,νf
(i)(τν) +

n
∑

ν=1

Mνf(τν) +

n+1
∑

j=1

Pjf(τ̃j) (s ∈ N0),
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i.e., of the form (2.4), which hasADP = N + 2ns.
Let the quadrature formula (2.3) be the standard Gauss-Kronrod quadrature with respect

to the weight function(πn)
2sω, which hasADP = 3n + 1. According to Theorem2.3, the

quadrature formula of the form (2.4), namely formula (2.1), hasADP = 2ns + 3n + 1. In
this case we havêHj = Cj , τ̃j = τ̂j , j = 1, 2, . . . , n+ 1.

In the theory of standard Gauss-Kronrod quadrature formulas, in particular for (2.3), the
Stieltjes polynomialŝπn+1 :=

∏n+1
j=1 (t − τ̂j), whose zeros are the nodesτ̃j = τ̂j , play an

important role. Also, of foremost interest are weight functions for which the Gauss-Kronrod
quadrature formula has the property that

(i) all n+ 1 nodeŝτj (i.e., zeros of the Stieltjes polynomialπ̂n+1) are in(a, b) and are
simple.

Also desirable are weight functions which additionally to (i) satisfy
(ii) the interlacing property, i.e., the nodeŝτj andτν separate each other (then+1 zeros

of π̂n+1 separate then zeros of thes-orthogonal polynomialπn(t) =
∏n

ν=1(t−τν)),
and

(iii) all quadrature weights are positive.
The most important case of Gauss-Kronrod quadrature formulas has been considered from
the computational point of view by Laurie [23] and later by Calvetti et al. [3]. Laurie’s al-
gorithm works in the case when all quadrature weights in the Gauss-Kronrod quadrature for-
mula are positive. Then all zeros of the Stieltjes polynomial are real, simple, belong to(a, b)
(except possiblyτ1, τn+1), and the interlacing property holds. Otherwise, the algorithm is
being stopped with the message “Gauss-Kronrod does not exist”. The Matlab code for this
methodkronrod.m (or in the case of symbolic calculationsskronrod.m) can be found
in the toolbox by Gautschi [14] (assembled as a companion piece to the book [13]), as well
as in the Mathematica packageOrthogonalPolynomials presented in [8, 26]. In our
case of the Gauss-Kronrod quadrature formula (2.3), the coefficients of the three-term recur-
rence relation subject to the weight function(πn)

2sω that we need for an implementation
of Laurie’s method can be determined in the same manner as in the work of Gautschi and
Milovanović [15]; see also the Matlab codesturan.m, sturan.m in [14]. However, for
the general case this method can be time-consuming and mightnot lead to a successful con-
struction. An alternative approach is to use the methods from [28] or [37] in order to compute
πn and then to construct the three-term recurrence coefficients for the weight(πn)

2sω us-
ing a moment-based method such as the Chebyshev algorithm. An implementation of the
Chebyshev algorithm can be found in the packageOrthogonalPolynomials in the
function aChebyshevAlgorithm or in the routinechebyshev.m in the correspond-
ing Matlab toolbox. There is still another possibility for acomputation based on Christof-
fel modifications of the measure, which we further discuss inSection4. We note that
the Christoffel modification algorithm can be used in machine precision arithmetic in con-
trast to the Chebyshev algorithm, which requires higher precision arithmetic. The Pack-
ageOrtogonalPolynomials implements the Christoffel modification algorithm in the
functionaChristoffelAlgorithm and the Matlab toolbox has it implemented in the
file chri2.m.

The positive interpolatory quadrature formula (2.3), if it exists, is uniquely determined.
According to Theorem2.3, its nodesτν (ν = 1, . . . , n), τ̃j = τ̂j (j = 1, . . . , n+1) are in fact
the nodes of the quadrature formula (2.1), τν with multiplicity 2s+ 1 (ν = 1, . . . , n) andτ̂j
with multiplicity one(j = 1, . . . , n+1). The coefficients in the quadrature formula (2.1) can
be calculated using the method from [28] for interpolatory quadrature formulas with multiple
nodes of variable multiplicity. Therefore, the quadratureformula constructed in this manner
is uniquely determined. As it is known, in the general case ofquadrature with multiple nodes,
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EXTENSION OF GAUSS-TUŔAN QUADRATURE FORMULAS 5

not all quadrature weights have to be positive. Therefore, for Kronrod extensions of Gaussian
quadrature formulas with multiple nodes of the type (2.1), we cannot expect property (iii) to
hold in the general case.

3. An extension of Gauss-Tuŕan quadrature formulas obtained using generalized
averaged Gaussian quadrature formulas.The existence of a positive Gauss-Kronrod quad-
rature formula, i.e., a Gauss-Kronrod quadrature formula with all quadrature weights being
positive (the property (iii) above), depends onω, and there are several known instances where
positive weights do not exists, e.g., for the Gauss-Laguerre and Gauss-Hermite cases [19]. For
the Gegenbauer weightω(α,α)(t) = (1− t2)α, Peherstorfer and Petras [32] have shown that
Gauss-Kronrod formulas forn sufficiently large andα > 5/2 do not exist. Analogous results
for the Jacobi weight functionω(α,β)(t) = (1− t)α(1 + t)β can be found in their paper [33],
particularly the nonexistence for largen of Gauss-Kronrod formulas whenmin(α, β) ≥ 0
andmax(α, β) > 5/2. In such situations, it is of interest to find an adequate alternative to
the corresponding Gauss-Kronrod quadrature formula. We are not aware of any theoretical
results concerning this problem for quadrature formulas (2.1) of Kronrod-type. It seems that
this is a very difficult problem from the theoretical point ofview.

An alternative approach are the Anti-Gaussian formulas introduced by Laurie [22], which
have been slightly generalized in [9] and in Spalevíc’s paper [38]. Such formulas always exist
and are positive. A modification of the Anti-Gaussian formulas that leads in a special case to
symmetric Gauss-Lobatto formulas has been considered by Calvetti and Reichel in [4].

In [38] a very simple numerical method is proposed for the construction of the averaged
Gaussian quadrature formulas. In [39], effort has been taken in order to determine whether the
averaged Gaussian formulas are an adequate alternative to the corresponding Gauss-Kronrod
quadrature formulas to estimate the remainder term of a Gaussian rule.

TheADP of the generalized averaged Gaussian quadrature formulas proposed in [38]
is in generalADP = 2n + 2. Now let the quadrature formula (2.3) be the generalized
averaged quadrature with respect to the weight function(πn)

2sω constructed in [38]. It
hasADP = 2n+ 2, and according to Theorem2.3, the quadrature formula of the form (2.4),
namely the quadrature formula (2.1), hasADP = 2ns + 2n + 2. In this case we have
coefficients and nodeŝHj = Cj , τ̃j = τ̂j , j = 1, 2, . . . , n+ 1. Again, we use the meth-
ods from [28, 37] in order to computeπn and then construct three-term recurrence coeffi-
cients subject to the weight function(πn)

2sω. These are needed for the implementation of
Spalevíc’s method [38], which uses moment-based methods such as the Chebyshev algorithm.
The weights in the quadrature formula (2.1) can be calculated using the method from [28] for
interpolatory quadrature formulas with multiple nodes with variable multiplicities.

4. Numerical results. A very popular method for obtaining a practical error estimate in
the numerical integration by standard quadrature is to use two quadrature formulaeA andB,
where the nodes in formulaB form a proper subset of those in formulaA, and where the
ruleA is of higher degree of precision. Kronrod originated this method; see [20]. For more
details concerning this theory for standard quadrature formulas see, e.g., [22, 29, 30, 38, 39].
The difference|A(f) − B(f)|, wheref is the integrand, is usually quite a good estimate of
the error for the ruleB. Here, let the ruleB be the Gauss-Turán quadrature rule (1.2) and
the ruleA be an extension (2.1), i.e., a Kronrod extension or an extension obtained using
generalized averaged Gaussian quadrature formulas.

For the construction of (2.1), the Mathematica packageOrthogonalPolynomials
presented in [8, 26] is used. We demonstrate the construction of the quadratureformula for the
Legendre weight function withn = 8 ands = 2. First we use the functionaTuranNodes,
which computes the nodes of the Gauss-Turán quadrature rule for the given measure. The
format of the function callaTuranNodes is as follows.
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TABLE 4.1
Nodes and weights in the formula (2.1) for the Legendre weight function withn = 8 ands = 2. Numbers in

parentheses represent exponents in the base10.

nodes
τν τν

Gauss-Tuŕan ±.97351341389220656237 ±.81887893183941851633
±.54466490130324525777 ±.19085290843984904479

τ̂ν τ̂ν
Kronrod ±.99822290664226966427 ±.91312742966813842749

±.69453148147735680361 ±.37468411056055517193
0

weights
i Bi,ν Bi,ν

0 .58386175714956789764(−1) .15089370723807276066
0 .22074279238149145536 .25860501785904752596
1 ∓.39014622164968142227(−3) ∓.83891790441786127084(−3)
1 ∓.82125588688818075943(−3) ∓.33535947356365552771(−3)
2 .71919503334752507270(−5) .11322886240186814938(−3)
2 .35125693562506992715(−3) .56357216956268884559(−3)
3 ∓.23883755204324643150(−7) ∓.34341240517473823534(−6)
3 ∓.71953009372658394643(−6) ∓.40311953782588033969(−6)
4 .11870030713306244483(−9) .13777802473954649246(−7)
4 .92258193720323290033(−7) .20363103482496320695(−6)

Cj Cj

.52356392061325635414(−2) .48662615167843382200(−1)

.86208495603928504804(−1) .11125708395348622280

.12001694575008158983

aTuranNodes[8, {aLegendre}, 2, WorkingPrecision->50,
Precision->45,AlgorithmSigma->IncreaseDegree]

This function constructs nodes for the Gauss-Turán quadrature rule (1.2) for ω = 1, n = 8,
ands = 2. It applies an algorithm presented in [28]. It should be noted that variable precision
arithmetic is used. The reason for employing variable precision arithmetic is the application
of the Chebyshev algorithm, which we discuss below. Table4.1shows the Gauss-Turán nodes
obtained using the previous function call. Note that the nodes are given with20 decimal digits
precision. Alternatively to the algorithm in [28] used here, the method presented in [37] can
be used withAlgorithmSigma->Homotopy, but this is more time-consuming although
it is more general and can be applied to arbitrary weight functions.

When the nodes of the Gauss-Turán quadrature rule have been constructed, we can com-
pute moments of the weight function(πn)

2sω. In order to apply the Chebyshev algorithm for
the computation of the three-term recurrence relation coefficients, we need to calculate the
moments up to the order2n + 1. The moments can be computed using Gaussian quadrature
rules for the weight functionω. If the weight functionω belongs to the class of those for
which a three-term recurrence is known in analytic form—as itis the case for the Legendre
weight function, then we can apply the functionaGaussianNodesWeights as follows.
{nG,wG}=aGaussianNodesWeights[n,{aLegendre},

WorkingPrecision->50,Precision->50]
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HerenG andwG are the computed Gaussian nodes and weights. As can be seen, we have
to work in variable precision arithmetic. In our case we used50 decimal digits for the man-
tissa, which is in accordance with the number of decimal digits employed in the compu-
tation of Gauss-Tuŕan nodes. Also note that we compute a Gaussian quadrature rule hav-
ing ADP = ns+ n+ 1. If xG

i , wG
i , i = 1, . . . , ns + n + 1, are the constructed nodes and

weight of the Gaussian quadrature rule for the weight functionω, we compute
∫ b

a

tk(πn(t))
2sω(t)dt =

ns+n+1
∑

i=1

wG
i (x

G
i )

k(πn(x
G
i ))

2s, k = 0, . . . , 2n+ 1.

When moments are computed, we use the functionaChebyshevAlgorithm, to find the
coefficients of the three-term recurrence relation.
aChebyshevAlgorithm[mom,WorkingPrecision->50]

The application of Chebyshev’s algorithm requires high precision arithmetic. Actually, it
can be observed that we have used50 decimal digits precision in the calls to the functions
aTuranNodes andaChebyshevAlgorithm in order to obtain20 decimal digits of the
coefficients of the three-term recurrence. This is generally the case in computations involv-
ing Chebyshev’s algorithm when the number of requested three term recurrence coefficients
is larger than ten. It should be mentioned here that there exists a modified Chebyshev algo-
rithm (see [13, p. 76]) which has—with good tuning—a much better numerical characteristics
than the ordinary Chebyshev algorithm. However, there is a serious problem finding good se-
quences of modified moments. The interested user is referredto [1] for more information.
An implementation of the modified Chebyshev algorithm can befound in both software pack-
ages. However, due to limited space, we are not going into details.

However, there is an alternative approach which can be used and is based on the ap-
plication of Christoffel modifications of the measure with the quadratic factors. For further
information, the reader might consult [13, pp. 135] or the original works of Christoffel pre-
sented in [6, 7], which are reformulated as algorithms in [11, 12]. Letω be the weight function
with three-term recurrence coefficientsαk andβk, k ∈ N0, then the three-term recurrence
coefficientsα̂k, β̂k, k ∈ N0, for the weight(t− c)2ω(t) can be computed numerically stable
using the above mentioned Christoffel algorithm. We can construct three-term recurrence
coefficients for the weight function(πn)

2sω usingns applications of Christoffel modifica-
tions. Assume that the three-term recurrence coefficients for the measureω are known and
setw := ω. We apply a series of Christoffel modifications to compute the three-term recur-
rence coefficients for the weightsw(t) := (t − τν)

2w(t), ν = 1, . . . , n, j = 1, . . . , s. The
packageOrthogonalPolynomials has implemented the Chistoffel modification with a
quadratic factor in the functionaChristoffelAlgorithm. For example, the following
sequence of code can be used for the construction of three-term recurrence coefficients of the
weight(πn)

2sωH , whereωH is Hermite weight function.
{alH,beH}=Transpose[aHermite["ttr"]/@Table[k,{k,0,nn}];
For[i=1,i<=n,++i,

For[j=1,j<=s,++j,
{alH,beH}=aChristoffelAlgorithm[nn--,

{aQuadraticReal,nT[[i]]},
alH,beH,
WorkingPrecision->$MachinePrecision];

];
];

Note that we are working in double precision arithmetic, andwe assume that the variablenT
holds a list of Tuŕan nodes for the Hermite weight function. Assuming this formof the
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TABLE 4.2
Error estimation using the difference of the Gauss-Turán quadrature rule and its Kronrod extension for the

integral (4.1).

s = 2 n = 6
n estimate error s estimate error
6 .35174(−5) .35253(−5) 2 .35174(−5) .35253(−5)
10 .95272(−10) .952815(−10) 4 .95027(−9) .95177(−9)
14 .23752562(−14) .2375268(−14) 6 .28504(−12) .28539(−12)
18 .5796464(−19) .5796466(−19) 8 .90176(−16) .90264(−16)
22 .1401631557(−23) .1401631596(−23) 10 .29464(−19) .29488(−19)

construction of three-term recurrence coefficients withn = 8 ands = 2, we obtain three-term
recurrence coefficients with14 decimal digits precision while working with double precision
numbers. In the same manner, even better results can be obtained for the Legendre weight
function.

Nowadays, an application of higher precision arithmetic issimply a matter of choice.
There is wide variety of software packages which implement arbitrary precision arithmetic.
Starting with high level languages such as Mathematica and ending with C software pack-
ages such as the GNU multiprecision package (GMP). More about GMP can be found at
http://gmplib.org. GMP is actually the working horse used in Mathematica for the implemen-
tation of arbitrary precision arithmetic. According to these trends, we decided to present a
construction based on Chebyshev’s algorithm since it is quite simple and gives some sense of
uniformity. This is especially convenient for the non-specialists in the area of the computa-
tional theory of orthogonal polynomials.

We just need to apply Laurie’s algorithm for the construction of Gauss-Kronrod quadra-
ture rules (see [23]) to compute the Jacobi matrix, whose eigenvalues are nodesfor the quadra-
ture rule (2.3). The packageOrthogonalPolynomials can be used for this purpose with
the command
aLaurie[n,al,be,WorkingPrecision->50]

whereal andbe are three-term recurrence coefficients for the weight(πn)
2sω. After an

application of Laurie’s algorithm, we can construct the missing nodes for the Gauss-Kronrod
quadrature rule by using the functionaZero, which computes eigenvalues of the Gauss-
Kronrod matrix. The missing nodes of the Gauss-Kronrod quadrature rule are presented in
the Table4.1. As for the Gaussian nodes, the nodes are given with20 decimal digits precision.

Finally, we can compute weights of the quadrature rule (2.4) using an interpolation prop-
erty. For example, the functionaInterpolationWeights in the Mathematica package
OrthogonalPolynomials can be used. The computed weights are given in the Ta-
ble4.1. Numbers in parentheses represent exponents in the base10.

To illustrate the possibility of an error estimation, we calculate the integral

I1 =

∫ 1

−1

dt

t+ 11
10

= log 21 ≈ 3.0445224377234229965005979803657054343...(4.1)

Table4.2displays the results of the error estimation using differences between Gauss-Turán
quadrature rule represented by equation (1.2) and Kronrod extension of the Gauss-Turán
quadrature rule represented by equation (2.1). In the first two columns, we present results
for variablen and fixeds = 2; the second two columns show the behavior of the error esti-
mate for fixedn = 6 and variables. As can be seen, the error estimate is quite accurate.
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TABLE 4.3
Quadrature rule (2.1), n = 8, s = 2, for the Hermite weight function based on the Anti-Gaussianquadrature

formula.

nodes
Gauss-Tuŕan τν τν

±.51681136909405826789(1) ±.34836231485926327975(1)
±.20317347623297887471(1) ±.66893558851736928468

Anti-Gaussian τ̂ν τ̂ν
±.63342943088252741257(1) ±.42938819278505047838(1)
±.27471245421883808223(1) ±.13464957031164851511(1)

0

weights
i Bi,ν Bi,ν

0 .36175515137157045962(−10) .16750466449875911971(−4)
0 .22298920872663214573(−1) .59073792759942283728
1 ∓.10156104835511174186(−10) ∓.41614132181940995042(−5)
1 ∓.41438045323230060806(−2) ∓.42505466030715357444(−1)
2 .12253977340516115977(−11) .54025501379426880713(−6)
2 .67462832585667770868(−3) .16841301453891941760(−1)
3 ∓.73364318178749481946(−13) ∓.34862739064811316798(−7)
3 ∓.38565517760469799699(−4) ∓.41767093230057802043(−3)
4 .19217294376648553599(−14) .13257166120337859521(−8)
4 .24969557547643169509(−5) .81926585192629552560(−4)

Cj Cj

.33157509907727129273(−17) .50643909703274783901(−8)

.23467083711191469645(−3) .68090277501526014491(−1)

.40969674615003533584

The construction of the quadrature formula (2.1) under the assumption that the un-
derlying formula is Anti-Gaussian can be achieved using similar techniques. The Pack-
ageOrthogonalPolynomials has the functionaAntiGaussianNodesWeights,
which can be used for the construction of the nodes and weights in the formula (2.3). For
the successful construction, we need the three-term recurrence coefficients for the weight
function(πn)

2sω. These recurrence coefficients can be constructed using similar methods as
above. Once the nodesτν , ν = 1, . . . , n, τ̃j , j = 1, . . . , n + 1, are found, we can apply the
functionaInterpolationWeights to compute the missing weights for the quadrature
rule (2.4). Table4.3displays the results of the construction for the Hermite weight function.

The feasibility of an error estimation in Gauss-Turán quadrature rules is presented in
Table4.4. The integral used for this demonstration is

I2 =

∫

∞

−∞

e−t2

1 + t2
dt = eπErfc(1) ≈ 1.34329342164673517043712359441059...(4.2)

As can be seen from the table, the error estimate is quite accurate, as it happened with the
previous quadrature formula.

During the performed numerical constructions with the Hermite weight function, one
interesting theoretical result appeared. We present it in the next theorem.
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TABLE 4.4
Error estimation using the difference of the Gauss-Turán quadrature rule and its Anti-Gaussian extension for

the integral (4.2).

s = 2 n = 6
n estimate error s estimate error
6 .6819(−3) .6734(−3) 2 .6819(−3) .6734(−3)
10 .2403(−4) .2377(−4) 4 .1954(−3) .1957(−3)
14 .1498(−5) .1484(−5) 6 .9441(−4) .9530(−4)
18 .1333(−6) .1323(−6) 8 .5847(−4) .5931(−4)
22 .1521(−7) .1511(−7) 10 .4159(−4) .4233(−4)

THEOREM 4.1. Let n ∈ N be fixed. Letπk, k ∈ N0, be the sequence of monics-
orthogonal polynomials with respect to the weight function(πn(t))

2se−t2 supported on the
real line and letαk = 0 andβk, k ∈ N0, be the coefficients in the recurrence relation

πk+1(t) = t πk(t)− βkπn−1(t), k ∈ N.

Then

βn = n

(

s+
1

2

)

.

Proof. The proof relies on the fact that the weight function(πn(t))
2se−t2 is semiclassi-

cal. It can be easily shown that

(

(πn(t))
2s+1e−t2

)

′

= ((2s+ 1)(πn)
′(t)− 2tπn(t))(πn(t))

2se−t2 .

If we integrate the previous equation multiplied bytk, k = 0, . . . , n, over the real line, we
get, due to orthogonality,

∫

∞

−∞

((2s+ 1)(πn)
′(t)− 2tπn(t))t

k(πn(t))
2se−t2dt =

∫

∞

−∞

(

(πn(t))
2s+1e−t2

)

′

tk dt

= −k

∫

∞

−∞

πn(t)t
k−1(πn(t))

2se−t2 dt = 0, k = 0, . . . , n.

Hence, it must hold that

(2s+ 1)(πn)
′ − 2tπn = −2πn+1 = −2(tπn − βnπn−1), (2s+ 1)(πn)

′ = 2βnπn−1.

Using this equation we getβn = (2s+ 1)n/2.
This theorem can be used to measure the efficiency of the Chebyshev algorithm since we

can compare results of the Chebyshev algorithm and the exactvalue forβn for the Hermite
weight function.
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pp. 72–147.

[13] , Orthogonal Polynomials: Computation and Approximation, Oxford University Press, New York,
2004.

[14] , OPQ: a Matlab suite of programs for generating orthogonal polynomials and related quadrature
rules, Walter Gautschi 2002 Code Archive, (2002).
www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

[15] W. GAUTSCHI AND G. V. MILOVANOVI Ć, S-orthogonality and construction of Gauss-Turán-type quadra-
ture formulae, J. Comput. Appl. Math., 86 (1997), pp. 205–218.

[16] A. GHIZZETTI AND A. OSSICINI, Quadrature Formulae, Akademie-Verlag, Berlin, 1970.
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