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Abstract. For Hermitian matrices and generalized definite eigenproblems, theLDL
H factorization provides

an easy tool to slice the spectrum into two disjoint intervals. In this note we generalize this method to nonlinear
eigenvalue problems allowing for a minmax characterization of(some of) their real eigenvalues. In particular we
apply this approach to several classes of quadratic pencils.

Key words. eigenvalue, variational characterization, minmax principle, Sylvester’s law of inertia

AMS subject classification.15A18, 65F15

1. Introduction. The inertia of a Hermitian matrixA is the triplet of nonnegative inte-
gers In(A) := (np, nn, nz), wherenp, nn, andnz are the number of positive, negative, and
zero eigenvalues ofA (counting multiplicities). Sylvester’s classical law of inertia states that
two Hermitian matricesA,B ∈ C

n×n are congruent (i.e.,A = SHBS for some nonsingular
matrixS) if and only if they have the same inertia In(A) = In(B).

An obvious consequence of the law of inertia is the followingcorollary: if A has
an LDLH factorizationA = LDLH , thennp andnn equal the number of positive and
negative entries ofD, and if a blockLDLH factorization exists whereD is a block diagonal
matrix with 1 × 1 and indefinite2 × 2 blocks on its diagonal, then one has to increase the
number of positive and negative1 × 1 blocks ofD by the number of2 × 2 blocks to getnp

andnn, respectively. Hence, the inertia ofA can be computed easily. This is particularly
advantageous if the matrix is banded.

If B ∈ C
n×n is positive definite, andA − σB = LDLH is the block diagonalLDLH

factorization ofA − σB for someσ ∈ R, we get the inertia In(A− σB) = (np, nn, nz) as
described in the previous paragraph. Then, the generalizedeigenvalue problemAx = λBx
hasnn eigenvalues smaller thanσ. Hence, the law of inertia yields a tool to locate eigen-
values of Hermitian matrices or definite matrix pencils. Combining it with bisection or the
secant method, one can determine all eigenvalues in a given interval or determine initial ap-
proximations for fast eigensolvers, and it can be used to check whether a method has found
all eigenvalues in an interval of interest or not.

The law of inertia was first proved in 1858 by J. J. Sylvester [19], and several different
proofs can be found in textbooks [3, 6, 11, 13, 15], one of which is based on the minmax
characterization of eigenvalues of Hermitian matrices. Inthis note we discuss generalizations
of the law of inertia to nonlinear eigenvalue problems allowing for a minmax characterization
of their eigenvalues.

2. Minmax characterization. Our main tools in this paper are variational characteriza-
tions of eigenvalues of nonlinear eigenvalue problems generalizing the well known minmax
characterization of Poincaré [16] or Courant [2] and Fischer [5] for linear eigenvalue prob-
lems.
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We consider the nonlinear eigenvalue problem

(2.1) T (λ)x = 0,

whereT (λ) ∈ C
n×n, λ ∈ J , is a family of Hermitian matrices depending continuously on

the parameterλ ∈ J , andJ is a real open interval which may be unbounded.
To generalize the variational characterization of eigenvalues, we need a generalization of

the Rayleigh quotient. To this end we assume that
(A1) for every fixedx ∈ C

n, x 6= 0, the scalar real equation

(2.2) f(λ;x) := xHT (λ)x = 0

has at most one solutionλ =: p(x) ∈ J .
Then the equationf(λ;x) = 0 implicitly defines a functionalp on some subsetD ⊂ C

n,
which is called the Rayleigh functional of (2.1), and which is exactly the Rayleigh quotient
in case of a monic linear matrix functionT (λ) = λI −A.

Generalizing the definiteness requirement for linear pencils T (λ) = λB−A, we further
assume that

(A2) for everyx ∈ D and everyλ ∈ J with λ 6= p(x) it holds that

(λ− p(x))f(λ;x) > 0.

If p is defined onD = C
n \ {0}, then the problemT (λ)x = 0 is called overdamped.

This notion is motivated by the finite dimensional quadraticeigenvalue problem

T (λ)x = λ2Mx+ λCx+Kx = 0,

whereM , C, andK are Hermitian and positive definite matrices. IfC is large enough such
thatd(x) := (xHCx)2 − 4(xHKx)(xHMx) > 0 for everyx 6= 0, thenT (·) is overdamped.
Generalizations of the minmax and maxmin characterizations of eigenvalues were proved by
Duffin [4] for the quadratic case and by Rogers [17] for general overdamped problems.

For nonoverdamped eigenproblems, the natural ordering to call the smallest eigenvalue
the first one, the second smallest the second one, etc., is notappropriate. This is obvious if
we make a linear eigenvalue problemT (λ)x := (λI −A)x = 0 nonlinear by restricting it to
an intervalJ which does not contain the smallest eigenvalue ofA. Then the conditions(A1)
and(A2) are satisfied,p is the restriction of the Rayleigh quotientRA to

D := {x 6= 0 : RA(x) ∈ J},

andinfx∈D p(x) will in general not be an eigenvalue.
If λ ∈ J is an eigenvalue ofT (·), thenµ = 0 is an eigenvalue of the linear prob-

lemT (λ)y = µy, and therefore there exists anℓ ∈ N such that

0 = max
V ∈Hℓ

min
v∈V \{0}

vHT (λ)v

‖v‖2
,

whereHℓ denotes the set of allℓ–dimensional subspaces ofCn. In this case,λ is called
anℓth eigenvalue ofT (·).

With this enumeration the following minmax characterization for eigenvalues was proved
in [20, 21].

THEOREM 2.1. Let J be an open interval inR, and letT (λ) ∈ C
n×n, λ ∈ J , be a

family of Hermitian matrices depending continuously on theparameterλ ∈ J such that the
conditions (A1) and (A2) are satisfied. Then the following statements hold.
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(i) For everyℓ ∈ N there is at most oneℓth eigenvalue ofT (·) which can be character-
ized by

(2.3) λℓ = min
V ∈Hℓ, V ∩D6=∅

sup
v∈V ∩D

p(v).

(ii) If

λℓ := inf
V ∈Hℓ, V ∩D6=∅

sup
v∈V ∩D

p(v) ∈ J

for someℓ ∈ N, thenλℓ is theℓth eigenvalue ofT (·) in J , and(2.3) holds.
(iii) If there exist thekth and theℓth eigenvalueλk andλℓ in J (k < ℓ), thenJ contains

thejth eigenvalueλj (k ≤ j ≤ ℓ) as well withλk ≤ λj ≤ λℓ.
(iv) Let λ1 = infx∈D p(x) ∈ J and λℓ ∈ J . If the minimum in(2.3) is attained for

an ℓ-dimensional subspaceV , thenV ⊂ D ∪ {0}, and(2.3) can be replaced by

λℓ = min
V ∈Hℓ, V⊂D∪{0}

sup
v∈V, v 6=0

p(v).

(v) λ̃ is anℓth eigenvalue if and only ifµ = 0 is theℓth largest eigenvalue of the linear
eigenproblemT (λ̃)x = µx.

(vi) The minimum in(2.3) is attained for the invariant subspace ofT (λℓ) corresponding
to its ℓ largest eigenvalues.

3. Sylvester’s law for nonlinear eigenvalue problems.We first consider the over-
damped case. ThenT (·) has exactlyn eigenvaluesλ1 ≤ · · · ≤ λn in J [17].

THEOREM 3.1. Assume thatT : J → C
n×n satisfies the conditions of the minmax

characterization in Theorem2.1, and assume that the nonlinear eigenvalue problem(2.1) is
overdamped, i.e., for everyx 6= 0 Equation(2.2) has a unique solutionp(x) ∈ J .

For σ ∈ J, let (np, nn, nz) be the inertia ofT (σ). Then the nonlinear eigenprob-
lem T (λ)x = 0 hasn eigenvalues inJ , np of which are less thanσ, nn exceedσ, and
for nz > 0, σ is an eigenvalue of geometric multiplicitynz.

Proof. The invariant subspaceW of T (σ) corresponding to its positive eigenvalues
has dimensionnp, and it holds thatf(σ;x) = xHT (σ)x > 0 for everyx ∈ W , x 6= 0.
Hencep(x) < σ by (A2), and therefore thenpth smallest eigenvalue ofT (·) satisfies

λnp
= min

dimV=np

max
x∈V,x 6=0

p(x) ≤ max
x∈W,x 6=0

p(x) < σ.

On the other hand for every subspaceV of Cn of dimensionnp + nz + 1, there exists a
vectorx ∈ V such thatf(σ;x) < 0. Thusp(x) > σ, and it holds that

λnp+nz+1 = min
dimV=np+nz+1

max
x∈V,x 6=0

p(x) > σ,

which completes the proof.
Next we consider the case that an extreme eigenvalue, i.e., either λ1 := infx∈D p(x)

or λn := supx∈D p(x), is contained inJ .
THEOREM 3.2. Assume thatT : J → C

n×n satisfies the conditions of the minmax
characterization, and let(np, nn, nz) be the inertia ofT (σ) for someσ ∈ J .

(i) If λ1 := infx∈D p(x) ∈ J , then the nonlinear eigenproblemT (λ)x = 0 has ex-
actlynp eigenvaluesλ1 ≤ · · · ≤ λnp

in J which are smaller thanσ.
(ii) If supx∈D p(x) ∈ J , then the nonlinear eigenproblemT (λ)x = 0 has exactlynn

eigenvaluesλn−nn+1 ≤ · · · ≤ λn in J exceedingσ.
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Proof. (i): We first show thatf(λ;x) < 0 for everyλ ∈ J with λ < λ1 and for
every vectorx 6= 0. Assume thatf(λ;x) ≥ 0 for someλ < λ1 and x 6= 0, let x̂ be
an eigenvector of (2.1) corresponding toλ1, and letw(t) := tx̂ + (1 − t)x, 0 ≤ t ≤ 1.
Thenφ(t) := f(λ;w(t)) is continuous in[0, 1],φ(0) = f(λ;x) ≥ 0, andφ(1) = f(λ; x̂) < 0
by (A2). Hence, there exists a valuêt ∈ [0, 1) such thatf(λ;w(t̂)) = 0, i.e., w(t̂) ∈ D
andp(w(t̂)) = λ < λ1 contradictingλ1 := infx∈D p(x).

Fornp = 0, the matrixT (σ) is negative semidefinit, i.e.,xHT (σ)x ≤ 0 for x 6= 0, and
it follows from (A2) thatp(x) ≥ σ holds true for everyx ∈ D. Hence, there is no eigenvalue
less thanσ.

For np > 0, let W denote the invariant subspace ofT (σ) corresponding to its positive
eigenvalues. Thenf(σ;x) = xHT (σ)x > 0 for x ∈ W , x 6= 0, and fromf(λ;x) < 0
for λ < λ1, it follows thatx ∈ D andp(x) < σ. Hence,W ⊂ D ∪ {0} and as in the proof of
Theorem3.1we obtain

λnp
= min

dimV=np, V ∩D6=∅
max

x∈V ∩D
p(x) ≤ max

x∈W,x 6=0
p(x) < σ,

i.e.,T (·) has at leastnp eigenvalues less thanσ.
Assume that there exists an(np + 1)th eigenvalueλnp+1 < σ of T (·), and letW be

the invariant subspace ofT (λnp+1) corresponding to its nonnegative eigenvalues. Then this
implies thatdimW ≥ np + 1, W \ {0} ⊂ D, andp(x) ≤ λnp+1 < σ for everyx ∈ W
with x 6= 0, contradicting the fact that for every subspaceV with dimV = np + 1 there
exists a vectorx ∈ V with xHT (σ)x ≤ 0, i.e., eitherx 6∈ D or p(x) ≥ σ.

(ii) S(λ) := −T (−λ) satisfies the conditions of Theorem2.1in the interval−J , and−J
contains the smallest eigenvalue−λn of S.

For the general case the law of inertia has the following form:
THEOREM 3.3. LetT : J → C

n×n satisfy the conditions of the minmax characteriza-
tion, and letσ, τ ∈ J , σ < τ .

Let (npσ
, nnσ

, nzσ ) and(npτ
, nnτ

, nzτ ) be the inertias ofT (σ) andT (τ), respectively.
Then the inequalitynpσ

≤ npτ
holds, and the eigenvalue problem(2.1) has exactlynpτ

−npσ

eigenvaluesλnpσ+1 ≤ · · · ≤ λnpτ
in (σ, τ).

Proof. LetW be the invariant subspace ofT (σ) corresponding to its positive eigenvalues.
Then by the positive definiteness,xHT (σ)x > 0, for everyx ∈ W , x 6= 0, it follows
from (A2) thatxHT (τ)x > 0 holds as well, hence,npσ

≤ npτ
.

Let V be a subspace ofCn with V ∩ D 6= ∅ anddimV = npσ
+ 1. We first show that

there exits ax ∈ V ∩ D with p(x) > σ, from which we then obtain

λnpσ+1 := inf
dimV=npσ+1, V ∩D6=∅

sup
x∈V ∩D

p(x) > σ.

From the hypothesisdimV > npσ
, it follow that there exists a vectorx ∈ V , x 6= 0

such thatxHT (σ)x < 0. If x ∈ D, then it follows from(A2) that we are done. Otherwise,
we choosey ∈ V ∩ D andω > min(p(y), σ). ThenxHT (ω)x < 0 < yHT (ω)y, and
with w(t) := tx + (1 − t)y it follows in the same way as in the proof of Theorem3.2 that
there exist a valuêt ∈ [0, 1] such thatw(t̂) ∈ V ∩ D andp(w(t̂)) = ω > σ.

If U denotes the invariant subspace ofT (τ) corresponding to its positive eigenvalues,
thenxHT (τ)x > 0 holds for everyx ∈ U , x 6= 0.

If U ∩ D = ∅, thenxHT (λ)x > 0 holds for everyλ ∈ J andx ∈ U , x 6= 0 and in
particular forλ = σ. Hence,U ⊂ W and fromσ < τ the equalitynpσ

= npτ
follows. In

this case,T (·) has no eigenvalue in(σ, τ) because otherwise a corresponding eigenvectorx
would satisfyxHT (σ)x < 0 < xHT (τ)x, i.e.,x 6∈ W andx ∈ U contradictingU ⊂ W .
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86 ALEKSANDRA KOSTIĆ AND HEINRICH VOSS

If U ∩ D 6= ∅, thenp(x) < τ holds for everyx ∈ U ∩ D and therefore

λnpτ
= inf

dimV=npτ , V ∩D6=∅
sup

x∈V ∩D
p(x) ≤ sup

x∈U∩D
p(x) < τ.

Hence,λnpσ+1 andλnpτ
are both contained in(σ, τ) and so are the eigenvaluesλj

for j = npσ
+ 1, . . . , npτ

.
REMARK 3.4. Without using the minmax characterization of eigenvalues, Neumaier [13]

proved Theorem3.3 for matricesT : J → C
n×n which are Hermitian and (elementwise)

differentiable inJ with positive definite derivativeT ′(λ), λ ∈ J . Obviously, suchT (·)
satisfy the conditions of the minmax characterization.

EXAMPLE 3.5. Consider the rational eigenvalue problem

T (λ) := −K + λM +

p
∑

j=1

λ

σj − λ
CjC

T
j ,

whereK,M ∈ R
n×n are symmetric and positive definite, the matrixCj ∈ R

n×kj has
rankkj , and0 < σ1 < · · · < σp. This problem models the free vibrations of certain fluid–
solid structures; cf. [1].

In each intervalJℓ := (σℓ, σℓ+1), ℓ = 0, . . . , p, σ0 = 0, σp+1 = ∞, the func-
tion fℓ(λ, x) := xHT (λ)x is strictly monotonically increasing, and therefore all eigenvalues
in Jℓ are minmax values of the Rayleigh functionalpℓ.

For the first intervalJ0, Theorem3.2 applies. Hence, ifτ ∈ J0 and(np, nn, nz) is the
inertia ofT (τ), then there are exactlynp eigenvalues inJ0 which are less thanτ . Moreover,
if τ1 < τ2 are contained in one intervalJj , then the number of eigenvalues in the inter-
val (τ1, τ2) can be obtained from the inertias ofT (τ1) andT (τ2) according to Theorem3.3.

4. Quadratic eigenvalue problems.We consider quadratic matrix pencils

(4.1) Q(λ) := λ2A+ λB + C,

with Hermitian matricesA,B,C ∈ C
n×n under several conditions that guarantee that (some

of) the real eigenvalues allow for a variational characterization and hence for slicing of the
spectrum using the inertia.

4.1. C < 0 and A ≥ 0. Let C be negative definite andA positive semidefinite. Multi-
plyingQ(λ)x = 0 by λ−1, one gets the equivalent nonlinear eigenvalue problem

Q̃(λ)x := λAx+Bx+ λ−1Cx = 0.

Differentiatingf(λ;x) := xHQ̃(λ)x with respect toλ yields

∂

∂λ
f(λ;x) = xHAx− λ−2xHCx > 0 for everyx 6= 0 and everyλ 6= 0.

Hence, Q̃ satisfies the conditions of the minmax characterization forboth inter-
valsJ− := (−∞, 0) andJ+ := (0,∞).

For the corresponding Rayleigh functionalp± with domain D±, it holds
thatλ+

1 = infx∈D+
p+(x) ∈ J+ andλ−

n = supx∈D
−

p−(x) ∈ J−, and therefore the follow-
ing statement follows from Theorem3.2.

THEOREM 4.1. LetC be negative definite andA positive semidefinite.
(i) For σ > 0 let In(Q̃(σ)) = (np, nn, nz) be the inertia ofQ̃(σ). Then the quadratic

pencil(4.1) hasnp positive eigenvalues less thanσ.
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(ii) For σ < 0 let In(Q̃(σ)) = (np, nn, nz) be the inertia ofQ̃(σ). Then(4.1) hasnn

negative eigenvalues exceedingσ.
If A is positive definite, theñQ is overdamped with respect toJ+ andJ−, and therefore

there exist exactlyn positive andn negative eigenvalues. IfA 6= 0 is positive semidefinite
andr = rank(A), then∞ is an infinite eigenvalue of multiplicityn−r, and there are onlyn+r
finite eigenvalues.

If B is positive definite, then the Rayleigh functional

p+(x) = −2
xHCx

xHBx+
√

(xHBx)2 − 4(xHAx)(xHCx)

is defined onCn \ {0}. Hence,(Q̃, J+) is overdamped, and there existn positive andr
negative eigenvalues. Theorem4.1can be strengthened according to the following result.

THEOREM 4.2. Assume thatA is positive semidefinite,B is positive definite, andC is
negative definite.

(i) For σ > 0 let In(Q̃(σ)) = (np, nn, nz) be the inertia ofQ̃(σ). Then the quadratic
pencil (4.1) hasnp positive eigenvalues less thanσ, nn eigenvalues exceedingσ,
and ifnz 6= 0, thenσ is an eigenvalue ofQ(·) with multiplicitynz.

(ii) For σ < 0 let In(Q̃(σ)) = (np, nn, nz) be the inertia ofQ̃(σ). Then(4.1) hasnn

negative eigenvalues exceedingσ,np−r finite eigenvalues less thanσ, and ifnz 6= 0,
thenσ is an eigenvalue ofQ(·) with multiplicitynz.

4.2. Hyperbolic problems. The quadratic pencilQ(·) defined by the Hermitian ma-
tricesA,B,C ∈ C

n×n is called hyperbolic ifA is positive definite and for everyx ∈ C
n,

x 6= 0, the quadratic polynomial

f(λ;x) := λ2xHAx+ λxHBx+ xHCx = 0

has two distinct real roots

(4.2) p±(x) = −
xHBx

2xHAx
±

√

(

xHBx

2xHAx

)2

−
xHCx

xHAx
.

A hyperbolic quadratic matrix polynomialQ(·) has the following properties (cf. [12]):
the rangesJ̃± := p±(C

n \ {0}) are disjoint real closed intervals withmax J̃− < min J̃+,
moreoverQ(λ) is positive definite forλ < min J̃− andλ > max J̃+, and it is negative
definite forλ ∈ (max J̃−,min J̃+).

Let J+ be an open interval with̃J+ ⊂ J+ and J̃− ∩ J+ = ∅, and letJ− be an open
interval withJ̃− ⊂ J− andJ̃+ ∩ J− = ∅. Then(Q, J+) and(−Q, J−) satisfy the conditions
of the variational characterization of eigenvalues and they are both overdamped. Hence, there
exist2n eigenvalues

λ1 ≤ · · · ≤ λn < λn+1 ≤ · · · ≤ λ2n

and

λj = min
dimV=j

max
x∈V,x 6=0

p−(x) and λn+j = min
dimV=j

max
x∈V,x 6=0

p+(x), j = 1, . . . , n.

If In(Q(σ)) = (np, nn, nz) is the inertia ofQ(σ) andnn = n, thenQ(σ) is neg-
ative definite and there aren eigenvalues smaller thanσ andn eigenvalues exceedingσ.
If np = n holds, thenQ(σ) is positive definite,f(σ;x) > 0 is valid for everyx 6= 0, and
if ∂

∂λ
f(σ;x) < 0 holds, then it follows thatσ < λ1, andσ > λ2n otherwise.
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If np 6= n andnn 6= n, thenσ ∈ J− ∪ J+ and Theorem3.1 applies. We only have
to find out which of these intervalsσ is located in. To this end we determinex 6= 0 such
thatf(σ;x) := xHQ(σ)x > 0 (this can be done by a few steps of the Lanczos method which
is known to converge first to extreme eigenvalues). If∂

∂λ
f(σ;x) = 2σxHAx+ xHBx < 0,

then it follows thatp−(x) > σ, and thereforeσ < λn = maxx 6=0 p−(x). Similarly, the
inequalitesf(σ;x) > 0 and2σxHAx + xHBx > 0 imply σ > λn+1 = minx 6=0 p+(x).
Hence we obtain the following slicing of the spectrum ofQ(·).

THEOREM 4.3. Let

Q(λ) := λ2A+ λB + C

be hyperbolic, and let(np, nn, nz) be the inertia ofQ(σ) for σ ∈ R.
(i) If nn = n then there aren eigenvalues smaller thanσ andn eigenvalues greater

thanσ.
(ii) Let np = n.

If 2σxHAx + xHBx < 0 for an arbitrary x 6= 0, then there are2n eigenvalues
exceedingσ.
If 2σxHAx + xHBx > 0 for an arbitrary x 6= 0, then all2n eigenvalues are less
thanσ.

(iii) For np = 0 and nz > 0 let x 6= 0 be an element of the null space ofQ(σ).
If 2σxHAx + xHBx < 0, thenQ(λ)x = 0 hasn − nz eigenvalues in(−∞, σ), n
eigenvalues in(σ,∞) andσ = λn with multiplicitynz.
If 2σxHAx + xHBx > 0, thenQ(·) hasn eigenvalues in(−∞, σ), n − nz eigen-
values in(σ,∞), andσ = λn+1 with multiplicitynz.

(iv) For np > 0 andnz = 0 let x 6= 0 be such thatf(σ;x) > 0.
If 2σxHAx+xHBx < 0, thenQ(·) hasn−np eigenvalues in(−∞, σ) andn+np

eigenvalues in(σ,∞).
If 2σxHAx+xHBx > 0, thenQ(·) hasn+np eigenvalues in(−∞, σ) andn−np

eigenvalues in(σ,∞).
(v) For np > 0 andnz > 0 let x 6= 0 be such thatf(σ;x) > 0.

If 2σxHAx + xHBx < 0, thenQ(·) hasn − np − nz eigenvalues in(−∞, σ)
andn+ np eigenvalues in(σ,∞).
If 2σxHAx + xHBx > 0, thenQ(·) hasn + np eigenvalues in(−∞, σ) and
n− np − nz eigenvalues in(σ,∞).
In either caseσ is an eigenvalue with multiplicitynz.

REMARK 4.4. These results on quadratic hyperbolic pencils can be generalized to a
hyperbolic matrix polynomial of higher degree

P (λ) =
k

∑

j=0

λjAj , Aj = AH
j , j = 0, . . . , k, Ak > 0,

which is hyperbolic ifAk is positive definite and for everyx 6= 0 the corresponding polyno-
mial f(λ;x) := xHP (λ)x hask real and distinct roots.

In this case there existk disjoint open intervalsJj ⊂ R, j = 1, . . . , k such thatP (·) has
exactlyn eigenvalues in eachJj , and these eigenvalues allow for a minmax characterization;
cf. [12, 14]. To fix the numeration letsup Jj+1 < inf Jj for j = 1, . . . , k − 1.

For σ ∈ R, let (np, nn, nz) be the inertia ofP (σ), and letx ∈ C
n be a vector such

thatxHP (σ)x > 0. If f(·;x) has exactlyj roots which exceedσ, then it holds that

σ ∈ Jj+1 or σ ∈ [sup Jj+1, inf Jj ] or σ ∈ Jj .
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Which one of these situations occur can be deduced from the inertia (nn = n or np = n) and
the derivative ∂

∂λ
f(σ;x) as for the quadratic case.

4.3. Definite quadratic pencils. In a recent paper, Higham, Mackey, and Tisseur [10]
generalized the concept of hyperbolic quadratic polynomials waiving the positive definiteness
of the leading matrixA.

A quadratic pencil (4.1) is definite if A, B, andC are Hermitian, there exists a real
valueµ ∈ R ∪ {∞} such thatQ(µ) is positive definite, and for everyx ∈ C

n, x 6= 0 the
scalar quadratic polynomial

f(λ;x) := λ2xHAx+ λxHBx+ xHCx = 0

has two distinct roots inR ∪ {∞}.
The following theorem was proved in [10].
THEOREM 4.5. The Hermitian matrix polynomialQ(λ) is definite if and only if any two

(and hence all) of the following properties hold:
• d(x) := (xHBx)2 − 4(xHAx)(xHCx) > 0 for everyx ∈ C

n \ {0},
• Q(η) > 0 for someη ∈ R ∪ {∞},
• Q(ξ) < 0 for someξ ∈ R ∪ {∞}.

For ξ < η (otherwise considerQ(−λ)) it was shown in [14] that there aren eigenvalues
in (ξ, η) which are minmax values of a Rayleigh functional, and the remainingn eigenvalues
in [−∞, ξ) and (η,∞] are maxmin and minmax values of a second Rayleigh functional.
Hence, ifξ andη are known, then the slicing of the spectrum using theLDLH factorization
follows similarly to the hyperbolic case. However, givenσ and theLDLH factorization
of Q(σ), we are not aware of an easy way to decide in which of the intervals[−∞, ξ), (ξ, η),
or (η,∞] the parameterσ is located. The articles [7, 8, 14] contain methods to detect whether
a quadratic pencil is definite and to compute the parametersξ andη, however they are much
more costly than computing anLDLH factorization of a matrix. For the Examples4.6and4.8
at least one of these parameters are known and the slicing canbe given explicitly.

EXAMPLE 4.6. Duffin [4] called a quadratic eigenproblem (4.1) an overdamped network,
if A, B, andC are positive semidefinite and the so called overdamping condition

d(x) = (xHBx)2 − 4(xHAx)(xHCx) > 0 for everyx 6= 0

is satisfied.
So, actuallyB has to be positive definite, and thereforeQ(µ) is positive definite for

everyµ > 0, andQ(·) is definite.
If r denotes the rank ofA, then (4.1) hasn+ r finite real eigenvalues, the largestn ones

of which (called primary eigenvalues by Duffin) are minmax values of

p+(x) := −2
xHCx

xHBx+
√

d(x)
,

and the smallestr ones (called secondary eigenvalues) are maxmin values

λn+1−j = max
dimV=j, V ∩D

−
6=∅

min
x∈V ∩D

−

p−(x),

whereD− := {x ∈ C
n : xHAx 6= 0} andp−(x) =

(

−xHBx−
√

d(x)
)

/(2xHAx)

for x ∈ D−.
Hence, the following slicing of the spectrum can be derived.
THEOREM 4.7. LetA,B,C ∈ C

n×n be positive semidefinite and assume thatd(x) > 0
for x 6= 0. Let r be the rank ofA and In(Q(σ)) = (np, nn, nz) be the inertia ofQ(σ) for
someσ ∈ R. Then the following holds.
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(i) If nn = n, then there arer eigenvalues smaller thanσ andn eigenvalues greater
thanσ.

(ii) For np = 0 andnz > 0 let x 6= 0 be an element of the null space ofQ(σ).
If 2σxHAx + xHBx < 0, thenQ(·) hasr − nz eigenvalues in(−∞, σ) and n
eigenvalues in(σ, 0].
If 2σxHAx + xHBx > 0, thenQ(·) hasr eigenvalues in(−∞, σ), andn − nz

eigenvalues in(σ, 0]. In either case,σ is an eigenvalue ofQ(·) with multiplicitynz.
(iii) For np > 0 let x 6= 0 be such thatf(σ;x) > 0.

If 2σxHAx + xHBx < 0, thenQ(λ)x = 0 hasr − np eigenvalues in(−∞, σ)
andn+ np − nz eigenvalues in(σ, 0].
If 2σxHAx+xHBx > 0, thenQ(λ)x = 0 hasr+np−nz eigenvalues in(−∞, σ)
andn− np eigenvalues in(σ, 0].

EXAMPLE 4.8. Free vibrations of fluid–solid structures are governedby the nonsym-
metric eigenvalue problem [9, 18]

(4.3)

[

Ks C
0 Kf

] [

xs

xf

]

= λ

[

Ms 0
−CT Mf

] [

xs

xf

]

whereKs ∈ R
s×s, Kf ∈ R

f×f are the stiffness matrices, andMs ∈ R
s×s, Mf ∈ R

f×f

are the mass matrices of the structure and the fluid, respectively, andC ∈ R
s×f describes the

coupling of structure and fluid. The vectorxs is the structure displacement vector, andxf is
the fluid pressure vector.Ks, Ms, Kf , andMf are symmetric and positive definite.

Multiplying the first line of (4.3) by λ, one obtains the quadratic pencil

Q(λ) := λ2

[

Ms 0
0 0

]

+ λ

[

−Ks −C
−CT Mf

]

+

[

0 0
0 −Kf

]

.

It can easily be seen that forxs 6= 0 the quadratic equation[xT
s , x

T
f ]Q(λ)

[

xs

xf

]

= 0 has

one positive solutionp+(xs, xf ) and one negative solutionp−(xs, xf ), and forxs = 0 it has
one positive solutionp+(xs, xf ) := xT

f Kfxf/(x
T
f Mfxf ) and the solutionp−(xs, xf ) := ∞.

Moreover the positive eigenvalues of (4.3) are minmax values of the Rayleigh functionalp+.
Hence, one gets the following result for the (physically meaningful) positive eigenvalues:
if In(Q(σ)) = (np, nn, nz) for σ > 0, then there are exactlynp eigenvalues in(0, σ), nn

eigenvalues in(σ,∞), and ifnz 6= 0, thenσ is an eigenvalue of multiplicitynz.

4.4. Nonoverdamped quadratic pencils.We consider the quadratic pencil (4.1) where
the matricesA, B, andC are positive definite. Then forx 6= 0, the two complex roots
of f(λ;x) := xHQ(λ)x are given in (4.2).

Let us define

δ− := sup{p−(x) : p−(x) ∈ R}, δ+ := inf{p+(x) : p+(x) ∈ R},

J− := (−∞, δ+), J+ = (δ−, 0), and

D± := {x ∈ C
n : p±(x) ∈ J±}.

If f(λ, x) > 0 for x 6= 0 andλ ∈ R, then it follows thatδ− = −∞ andδ+ = ∞. The
eigenvalue problemQ(λ)x = 0 has no real eigenvalues, but this does not have to be known
in advance. Theorem4.9applies to this case as well.

It is obvious that−Q andQ satisfy the conditions of the minmax characterization of
its eigenvalues inJ− andJ+, respectively. Hence, all eigenvalues inJ− are minmax-values
of p−:

λ−
j = min

dimV=j, V ∩D
−
6=∅

max
x∈V ∩D

−

p−(x), j = 1, 2, . . . .
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Taking advantage of the minmax characterization of the eigenvalues ofQ̃(λ) := −Q(−λ)
in J̃ := J+ with the Rayleigh functional̃p := −p+, we obtain the following maxmin char-
acterization

λ+
2n+1−j = max

dimV=j, V ∩D+ 6=∅
min

x∈V ∩D+

p+(x), j = 1, 2, . . . .

of all eigenvalues ofQ in J+.
Hence, forσ < δ+ and forσ > δ−, we obtain slicing results for the spectrum ofQ(·)

from Theorem3.2. If In(Q(σ)) = (np, nn, nz) andσ < δ+, then there existnn eigenvalues
of Q(·) in (−∞, σ), and ifσ ∈ (δ−, 0), then there arenn eigenvalues in(σ, 0). However,δ+
and δ− are usually not known. The following theorem contains upperbounds ofδ− and
lower bounds ofδ+, thus yielding subintervals of(−∞, δ+) and (δ−, 0) where the above
slicing applies.

THEOREM 4.9. LetA,B,C ∈ C
n×n be positive definite, and letp+ andp− be defined

in (4.2). Then it holds that
(i)

δ̃+ := −

√

max
x 6=0

xHCx

xHAx
≤ δ+ = inf{p+(x) : p+(x) ∈ R}

and

δ− = sup{p−(x) : p−(x) ∈ R} ≤ −

√

min
x 6=0

xHCx

xHAx
=: δ̃−.

(ii)

δ̂+ := −2max
x 6=0

xHCx

xHBx
≤ δ+ and δ− ≤ −2min

x 6=0

xHCx

xHBx
=: δ̂−.

Proof: (i): The valueδ̃+ is a lower bound ofδ+ if for everyx 6= 0 such thatp+(x) ∈ R

it holds thatp+(x) ≥ δ̃+. The following proof takes advantage of the facts thatp+(x) < 0
and ∂

∂λ
f(p+(x);x) ≥ 0.

The equationf(p+(x);x) = xHQ(p+(x))x = 0 is satisfied if and only if

xHBx = −p+(x)x
HAx−

1

p+(x)
xHCx.

Hence,

∂

∂λ
f(p+(x);x) = 2p+(x)x

HAx+ xHBx = p+(x)x
HAx−

1

p+(x)
xHCx ≥ 0

if and only if

p+(x)
2 ≤

xHCx

xHAx
, i.e., δ+ ≥ −

√

max
x 6=0

xHCx

xHAx
= δ̃+,

and analogously we obtain

δ− ≤ −

√

min
x 6=0

xHCx

xHAx
= δ̃−.
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(ii): Solving f(p+(x);x) = 0 for xHAx, one gets from∂
∂λ

f(p+(x);x) ≥ 0 that

p+(x) ≥ −2
xHCx

xHBx
, i.e.,δ+ ≥ −2max

x 6=0

xHCx

xHBx
= δ̂+,

and analogously

δ− ≤ −2min
x 6=0

xHCx

xHBx
= δ̂−.

From Theorem3.2we obtain the following slicing of the spectrum ofQ(·).
THEOREM 4.10. Let A, B, andC be positive definite matrices, and for someσ ∈ R

let In(Q(σ)) = (np, nn, nz).
(i) If

σ ≤ max

{

−

√

max
x 6=0

xHCx

xHAx
,−2max

x 6=0

xHCx

xHBx

}

,

then there existnn eigenvalues ofQ(λ)x = 0 in (−∞, σ).
(ii) If

σ ≥ min

{

−

√

min
x 6=0

xHCx

xHAx
,−2min

x 6=0

xHCx

xHBx

}

,

then there existnn eigenvalues ofQ(λ)x = 0 in (σ, 0).
EXAMPLE 4.11. In a numerical experiment, the matricesA, B, andC were generated

by the following MATLAB statements:
randn(’state’,0);
A=eye(20); B=randn(20);B=B’*B; C=randn(20);C=C’*C;.

It was found thatQ(λ)x = 0 has26 real eigenvalues,13 in the domain ofp− and13 in
the domain ofp+. So, Sylvester’s theorem can be applied to all of them.12 eigenvalues are
less than−

√

max(λ(C,A)) and6 eigenvalues exceed−
√

min(λ(C,A)).

Conclusions. We have considered a given family of Hermitian matricesT (λ) depend-
ing continuously on a parameterλ in an open real intervalJ which allows for a variational
characterization of its eigenvalues. We proved slicing results for the spectrum ofT (·), where
at first general nonlinear eigenvalue problems are considered, which are then specialized to
various types of quadratic eigenproblems.
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