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COMPUTATION OF EXTERIOR MODULI OF QUADRILATERALS ∗

HARRI HAKULA †, ANTTI RASILA†, AND MATTI VUORINEN‡

Abstract. We study the problem of computing the exterior modulus of a bounded quadrilateral. We reduce this
problem to the numerical solution of the Dirichlet-Neumann problem for the Laplace equation. Several experimental
results, with error estimates, are reported. Our main method makes use of anhp-FEM algorithm, which enables
computations in the case of complicated geometry. For simple geometries, good agreement with computational
results based on the SC Toolbox, is observed. We also use the reciprocal error estimation method introduced in our
earlier paper to validate our numerical results. In particular, exponential convergence, in accordance with the theory
of Babǔska and Guo, is demonstrated.

Key words. conformal capacity, conformal modulus, quadrilateral modulus, hp-FEM, numerical conformal
mapping

AMS subject classifications.65E05, 31A15, 30C85

1. Introduction. A bounded Jordan curve in the complex plane divides the extended
complex planeC∞ = C ∪ {∞} into two domainsD1 andD2, whose common boundary is
the Jordan curve. One of these domains, sayD1 , is bounded and the other one is unbounded.
The domainD1 together with four distinct pointsz1, z2, z3, z4 in ∂D1 , which occur in this
order when traversing the boundary in the positive direction, is called a quadrilateral and
denoted by(D1; z1, z2, z3, z4) ; see [1, 14, 16, 17].

By Riemann’s mapping theorem, the domainD1 can be mapped conformally onto a
rectanglef : D1 → (0, 1) × (0, h) such that the four distinguished points are mapped onto
the vertices of the rectanglef(z1) = 0 , f(z2) = 1, f(z3) = 1 + ih, f(z4) = ih . The
unique numberh is called the (conformal) modulus of the quadrilateral(D1; z1, z2, z3, z4)
[1, 14, 16, 17]. Apart from its theoretical significance in geometric function theory, the con-
formal modulus is closely related to certain physical quantities which also occur in engineer-
ing applications. In particular, the conformal modulus plays an important role in determin-
ing resistance values of integrated circuit networks; see,e.g., [22, 23]. Similarly, one can
mapD2 , the complementary domain, conformallyg : D2 → (0, 1) × (0, k) such that the
four boundary points are mapped onto the vertices of the rectangleg(z1) = 0 , g(z2) = 1,
g(z3) = 1 + ik, g(z4) = ik , reversing the orientation. Again the numberk is unique and
it is called the exterior modulus of(D1; z1, z2, z3, z4) . In practice, the computation of both
the modulus and the exterior modulus is carried out by using numerical methods such as nu-
merical conformal mapping. Mapping problems involving unbounded domains likewise are
related to some well-known engineering applications such as determining two dimensional
potential flow around a cylinder or an airfoil.

In the case of domains with polygonal boundary, numerical methods based on the Schwarz-
Christoffel formula have been extensively studied; see [8]. One of the pioneers of numerical
conformal mapping was D. Gaier [10, 21]. The literature and software dealing with numeri-
cal conformal mapping problems is very wide; see, e.g., [8, 22]. In our earlier paper [12] we
applied an alternative approach which reduces the problem to the Dirichlet-Neumann prob-
lem for the Laplace equation. Thus any software capable of solving this problem may be
used. We use thehp-FEM method for computing the modulus of a bounded quadrilateral and
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here we will apply the same method for the exterior modulus and another method, AFEM
[5], for the sake of comparison, as in [12]. Our approach also applies to the case of domains
bounded by circular arc boundaries as we will see below. It should be noted that while our
method does not require finding the canonical conformal mapping, it is possible to construct
the mapping from the potential function. An algorithm, withseveral numerical examples, is
presented in [11]. An alternative to FEM would be to use numerical methods forintegral
equations. For recent work on numerical conformal mapping based on such an approach, see
Nasser [19].

In particular, an important example of a quadrilateral(D1; z1, z2, z3, z4) is the case when
D1 is a polygon withz1, z2, z3, z4 as the vertices. Its modulus was computed in [13]; the re-
sulting formula was also applied in [12]. Here we reduce its exterior modulus to the (interior)
modulus by carrying out a suitable inversion which keep three vertices invariant and maps the
exterior to the interior of a bounded plane region whose boundary consists of four circular
arcs.

We apply here three methods to study our basic problem:
(1) Thehp-FEM method introduced in [12] and its implementation by H. Hakula.
(2) The AFEM method of K. Samuelsson; see, e.g., [5] and [12].
(3) The Schwarz-Christoffel Toolbox of T. Driscoll and N. Trefethen [7, 8, 26, 27].

The methods (1) and (2) are based on a reduction of the exterior modulus problem to the
solution of the Dirichlet-Neumann problem for the Laplace equation in the same way as in
[1] and [12], whereas, (3) makes use of numerical conformal mapping methods. Note that
[1] also provides a connection between the extremal length of afamily of curves and its
reciprocal, the modulus of a family of curves, both of which are widely used in geometric
function theory.

We describe the high-orderp-, andhp-finite element methods and report the results of
numerical computation of the exterior moduli of a number of quadrilaterals. In thep-method,
the unknowns are coefficients of some polynomials that are associated with topological en-
tities of elements, nodes, sides, and the interior. Thus, inaddition to increasing accuracy
through refining the mesh, we have an additional refinement parameter, the polynomial de-
greep. For an overview of thehp-method; see, e.g., Babuška and Suri [4]. A more detailed
exposition of the methods is given in [24, 25].

Our study is structured according to a few particular cases.We start out with the case
when the quadrilateral is the complement of a rectangle and the vertices are the distinguished
points of the quadrilateral. In this case we have the formulaof P. Duren and J. Pfaltzgraff [9]
to which we compare the accuracy of each of the above methods (1)-(3). Then we consider
the problem of minimizing the exterior modulus of a trapezoid with a fixed heighth and
fixed lengths for the pair of parallel opposite sides and present a conjecture supported by
our experiments. We also remark that the case of symmetric hexagons can be dealt with
by the Schwarz-Christoffel transformation and we relate its exterior modulus to a symmetry
property of the modulus of a family of curves. Finally, we study the general case and present
comparisons of methods (1)-(3) for this case as well. SC Toolbox does not have a built in
function for computing the exterior modulus. However, we use the functionextermap ,
and an auxiliary M̈obius transformation, to map the exterior of a quadrilateral (D; a, b, c, d)
conformally onto the upper half-plane so that the boundary pointsa, b, c, andd are mapped to
the points∞,−1, 0, andt > 0, respectively. Then the exterior modulus of the quadrilateral
is τ(t)/2, whereτ is the Teichm̈uller modulus function; see [2] and2.2, below. We use the
MATLAB code from [2] to compute values ofτ(t), t > 0.

Our computational workhorse, thehp-FEM algorithm implemented in Mathematica, is
used in all cases involving general curved boundaries. We demonstrate that nearly the optimal
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rate of convergence,C1 exp(−C2N
1/3) in terms of the numberN of unknowns as predicted

by the results of Babǔska and Guo [3], is attained in a number of tests cases. Our results
are competitive with the survey results onhp-adaptive algorithms reported by Mitchell and
MacClain [18] for the L-shaped domain.

At the end of the paper we present conclusions concerning theperformance of these
methods and our discoveries.

2. Building blocks of the method. In this section we give reference results which can
be used in obtaining error estimates. We also present some geometric identities which are
required in our computations.

2.1. The hypergeometric function and complete elliptic integrals. Given complex
numbersa, b, andc with c 6= 0,−1,−2, . . ., the Gaussian hypergeometric functionis the
analytic continuation to the slit planeC \ [1,∞) of the series

F (a, b; c; z) = 2F1(a, b; c; z) =

∞
∑

n=0

(a, n)(b, n)

(c, n)

zn

n!
, |z| < 1 .

Here(a, 0) = 1 for a 6= 0, and(a, n) is theshifted factorial functionor theAppell symbol

(a, n) = a(a+ 1)(a+ 2) · · · (a+ n− 1)

for n ∈ N \ {0}, whereN = {0, 1, 2, . . .} and theelliptic integralsK(r),K
′

(r) of the first
kind are

K(r) =
π

2
F (1/2, 1/2; 1; r2), K

′

(r) = K(r′), andr′ =
√

1 − r2,

and theelliptic integralsE(r),E
′

(r) of the second kind are

E(r) =
π

2
F (1/2,−1/2; 1; r2), E

′

(r) = E(r′), andr′ =
√

1 − r2.

Some basic properties of these functions can be found in [2, 20].

2.2. The modulus of a family of curves.For a family of curvesΓ in the plane, we use
the notationM(Γ) for its modulus [17]. For instance, ifΓ is the family of all curves joining
the oppositeb-sides within the rectangle[0, a] × [0, b], a, b > 0, thenM(Γ) = b/a . If we
consider the rectangle as a quadrilateralQ with distinguished pointsa + ib, ib, 0, a we also
haveM(Q; a+ ib, ib, 0, a) = b/a ; see [1, 17] . Given three setsD,E, F we use the notation
∆(E,F ;D) for the family of all curves joiningE with F in D .

Next consider another example, which is important in the sequel. Fort > 0 let E =
[−1, 0], F = [t,∞) and let∆t be the family of curves joiningE andF in the upper half-
planeC+ = {z ∈ C : Im z > 0} . Then [2], we have

M(∆t) = τ(t)/2 ; τ(t) = 2
K(1/

√
1 + t)

K(
√

t/(1 + t))
.

2.3. The Duren-Pfaltzgraff formula [9, Theorem 5]. Fork ∈ (0, 1) write

ψ(k) =
2(E(k) − (1 − k)K(k))

E
′

(k) − kK
′

(k)
.

Thenψ : (0, 1) → (0,∞) defines an increasing homeomorphism with limiting values0,∞ at
0, 1, respectively. In particular,ψ−1 : (0,∞) → (0, 1) is well-defined. LetR be a rectangle
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FIG. 2.1. Polygonal quadrilateral before (left) and after (right) the inversion transformationz 7→ z/|z|2.
Note that the pointsb, c, d on the unit circle remain invariant.

with sides of lengthsa andb, respectively, and letΓ be the family of curves lying outsideR
and joining the opposite sides of lengthb . Then

(2.1) M(Γ) =
K

′

(k)

2K(k)
, wherek = ψ−1(a/b) .

This formula occurs in different contexts. For instance, W.G. Bickley [6, (1.17), p. 86] used
it in the analysis of electric potentials and W. von Koppenfels and F. Stallmann [15, (4.2.31)
and (4.2.63)], established it in conformal mapping problems. As far as we know, Duren
and Pfaltzgraff were the first authors to connect this formula with the exterior modulus of a
quadrilateral. Recently, Vuorinen and Zhang [28] proved some identities and inequalities for
the functionψ .

2.4. Mapping unbounded onto bounded domains.The transformationz 7→ z/|z|2
maps the complement of the closed unit disk onto the unit disk. This transformation is an
anticonformal mapping and it maps the complement of a polygonal quadrilateral with vertices
a, b, c, dwith |b| = |c| = |d| = 1 onto a bounded domain, bounded by four circular arcs. Note
that the pointsb, c, d remain invariant under this transformation; see Figure2.1. Here we also
make use of the well-known formula for the center of the circle through three given points.

2.5. The Dirichlet-Neumann problem. The following problem is known as theDirichlet-
Neumann problem. LetD be a region in the complex plane whose boundary∂D consists of
a finite number of regular Jordan curves, so that at every boundary point, except possibly
at finitely many ones, a normal is defined. Let∂D = A ∪ B whereA andB are disjoint
unions of Jordan arcs. LetψA, ψB be a real-valued continuous functions defined onA,B,
respectively. Find a functionu satisfying the following conditions:

1. u is continuous and differentiable inD.
2. u(t) = ψA(t), for all t ∈ A.
3. If ∂/∂n denotes differentiation in the direction of the exterior normal, then

∂

∂n
u(t) = ψB(t), for all t ∈ B.
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2.6. Modulus of a quadrilateral and Dirichlet integrals. One can express the mod-
ulus of a quadrilateral(D; z1, z2, z3, z4) in terms of the solution of the Dirichlet-Neumann
problem as follows. Letγj , j = 1, 2, 3, 4 be the arcs of∂D between(z4, z1) , (z1, z2) ,
(z2, z3) , (z3, z4), respectively. Ifu is the (unique) harmonic solution of the Dirichlet-Neumann
problem with boundary values ofu equal to0 on γ2, equal to1 on γ4 and with∂u/∂n = 0
onγ1 ∪ γ3 , then by [1, p. 65, Thm 4.5],

M(D; z1, z2, z3, z4) =

∫∫

D

|∇u|2 dx dy.

2.7. The reciprocal identity. Given a quadrilateralQ = (D; z1, z2, z3, z4) we call
Q̃ = (D; z2, z3, z4, z1) the conjugate quadrilateral. It is a simple basic fact that

M(Q)M(Q̃) = 1 .

It was suggested in [13] and [12] that the quantity

(2.2) r(Q) = |M(Q)M(Q̃) − 1|

might serve as a useful error characteristic. We will continue to use this also in our work.

2.8. Thehp-FEM method and meshing. In this paper, we use thehp-FEM method
for computing for the exterior modulus of a quadrilateral. For a general description of our
method; see [12]. Proper treatment of corner singularities is handled withthe following two-
phase algorithm, typically recursive, where triangles canbe replaced by quadrilaterals or a
mixture of both:

1. Generate an initial mesh (triangulation) where the corners are isolated with a fixed
number of triangles depending on the interior angle,θ, so that the refinements can
be carried out independently:

(a) θ ≤ π/2: one triangle,
(b) π/2 < θ ≤ π: two triangles, and
(c) π < θ: three triangles.

2. Every triangle attached to a corner is replaced by a refinement, where the edges in-
cident to the corner are split as specified by the scaling factor α. This process is re-
peated recursively until the desired nesting levelν is reached. The resulting meshes
are referred to as(α, ν)-meshes. Note that the mesh may include quadrilaterals after
refinement.

Since the choice of the initial mesh affects strongly the refinement process, it is advisable to
test with different choices. Naturally, one would want the initial mesh to be minimal, that
is, having the smallest possible number of elements yet providing support for the refinement.
This is why initial meshes are sometimes referred to as minimal meshes.

In Figure2.2a challenging example is shown. In this case the large variation of the edge
lengths is addressed by adding a refinement step to the construction of the initial mesh. A
detail of the initial mesh is given in Figure2.3along with the final mesh.

3. Applications and numerical results.

3.1. The case of a rectangle.The first tests with thehp-FEM software were made for
the case of the exterior modulus of a rectangle and checked against the Duren-Pfaltzgraff for-
mula (2.1). For a convenient parametrization of the computation, thevertices of the rectangle
were chosen to be the points1, eit,−1,−eit, t ∈ (0, π/2] on the unit circle. In this case, the
“interior” modulus of the rectangle istan(t/2) . It is equal to the modulus of the family of
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FIG. 2.2.The initial mesh and a detail. Note that the three-element rule is satisfied at every corner.

FIG. 2.3.The final(0.15, 14)-mesh used in the actual computation and a detail.

curves joining the sides[1, eit] and[−1,−eit] and lying in the interior of the rectangle. The
formula (2.1) now gives the corresponding exterior modulus as

K
′

(k)

2K(k)
, k = ψ−1

(

1

tan(t/2)

)

.

For the computation, we carried out the inversionz 7→ 1/z = z/|z|2 in the unit circle
which keeps all the points of the unit circle fixed and transforms the exterior modulus prob-
lem for the rectangle to the “interior” modulus problem of a plane domain bounded by four
circular arcs; see Figure3.1. These circular arcs are the images of the sides of the rectangle
under the inversion. The results turned out to be quite accurate, with a typical relative error
of the order10−10 ; see Table3.1.

TABLE 3.1
Exact values of the moduli ofQ(1, eit,−1,−eit) given by (2.1) and the errors of computational results of the

hp-method,p = 20, the AFEM method and the SC Toolbox. The errors are obtained bycomparing with the exact
formula (2.1). The errors are given as⌈log

10
|error|⌉.

k exact(t = kπ/12) Error[hpFEM] Error[AFEM] Error[SCT]
1 1.50290233467 −9 −6 −9
2 1.31044063554 −9 −6 −9
3 1.20035166917 −9 −6 −10
4 1.12114255114 −10 −6 −9
5 1.05681535228 −10 −6 −13
6 1. −10 −6 −15
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(a)k = 1 (b) k = 2 (c) k = 3

(d) k = 4 (e)k = 5 (f) k = 6

FIG. 3.1.Circular arc domains used for thehp-FEM computations of the values in Table3.1. The scale varies
from picture to picture.

3.2. The side sliding conjecture.Consider the problem of finding the minimal exterior
modulus of the polygonal quadrilateral with vertices0, 1, a = t + ih, b = t − s + ih when
h, s > 0 are fixed andt varies. We consider the question of computing the modulus ofthe
family Γ of curves joining the opposite sides[1, a] and [b, 0] outside the quadrilateral. Our
first step is to reduce the problem to an equivalent problem such that three of the points are
on the unit circle. Note that this setting is valid only ifz0 is inside the quadrilateral. Indeed,
for every choice ofh ands this condition defines an upper limit for the value oft.

The least value of the exterior modulus is attained whent = (1+s)/2 . Fort ≤ (1+s)/2
the modulus is a decreasing function oft .

In Figure 3.3 we show a graph of the exterior module as a function of the parameter
t ∈ [0.5, 2.5], whenh = 1, s = 2. The computation was carried out with SC Toolbox,hp-
FEM, and AFEM and for the range of computed values, the respective graphs coincide. For
the SC Toolbox and thehp-FEM the reciprocal estimate for the error was smaller than10−8

and for AFEM10−5.
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FIG. 3.2.The circular arc domains of Figure3.1 in the same scale.

0.5 1 1.5

0.975

0.98

0.985

0.99

0.995

1

1.005

FIG. 3.3. Side Sliding Conjecture: Dependence of the exterior modulus on parametert with h = 1, s = 1.
Maximum is reached att = (1 + s)/2 = 1, as predicted by the conjecture.

3.3. The case of a symmetric hexagon.Suppose thatQ(a, b, 0, 1) is a quadrilateral
in the upper half plane. Then the closed polygonal linea, b, 0, b, a, 1, a defines a hexagon
H = Q ∪ Q symmetric with respect to the real axis. Map the complement of H onto
C \ {−1 − t, 1 + t} by a conformal mapg such thatg(0) = −1 − t, g(b) = g(b) = −1,
g(a) = g(a) = 1, g(1) = 1 + t wheret > 0 depends on the point configurationa, b, 0, 1 . It
is clear by symmetry that

2M(∆+) = M(∆),

where

∆ = ∆
(

[−1 − t,−1], [1, 1 + t]; C
)

and∆+ = ∆
(

[−1 − t,−1], [1, 1 + t]; {z : Im z > 0}
)

.
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Because of the conformal invariance of the modulus we also have

2M
(

g−1(∆+)
)

= M
(

g−1(∆)
)

.

Applying this formula with (2.1) we see that

M(Γ+) =
K

′

(k)

4K(k)
, k = ψ−1

(

1

2h

)

,

where forh > 0,

Γ+ = ∆
(

[0, ih], [1, 1 + ih]; C+ \ [0, 1] × [0, h]
)

.

This formula can be checked by using the SC Toolbox to construct the above conformal
mappingg . In the tests we carried out forh = 0.2, 0.3, 0.4, and0.5 the reciprocal estimate
for the error was smaller than10−9 .

3.4. General quadrilaterals. The exterior modulus of the quadrilateralQ with vertices
a, b, c, d is considered in this section, i.e., we compute

∫∫

Q

|∇u|2 dx dy

over the complement of the quadrilateral whenu is the solution of the Laplace equation
in the complement of the quadrilateral with Dirichlet values 1 and0 on the sides[b, c] and
[d, a] , respectively, and the Neumann value0 on the sides[a, b] and[c, d] . Here we allow the
boundary of the quadrilateral,∂Q, to be a parametrized curveγ(t), t ∈ [−1, 1].

In Figure3.4 an overview of the standard FEM approach is given. Using higher-order
elements one can stretch the domain without introducing a significant number of elements.
Singularities at the corner point must be accounted for in the grading of the mesh. Since
both the circle and the square cases are symmetric, the exterior modulus is exactly 1, and
furthermore the potential value at infinity or the far-field value is exactly 1/2.

In Tables3.2, 3.3, and3.6results for two polygonal quadrilaterals
• Quadrilateral A:{0, 1, (28/25, 69/50), (−19/25, 21/25)},
• Quadrilateral B:{0, 1, (42/25, 4), (−3/25, 21/25)},

are presented. The exterior modulus has been computed usingthree methods as an equiva-
lent interior modulus problem and also in a truncated domain. In the interior case, both SC
Toolbox andhp-FEM give similar results, but AFEM in its standard setting does not reach
the desired accuracy. This is probably due to the adaptive scheme failing in the presence of
cusps in the domain. Tables3.2 and3.3 indicate that large exterior angles are the most sig-
nificant source of errors in the FEM solutions, as expected. In the rather benign setting of the
Quadrilateral A, SC Toolbox and both the internal and external hp-FEM versions have the
same accuracy, but in the case of Quadrilateral B, we see gradual loss of accuracy in the FEM
solutions.

Finally, we consider two flower domains, that is, quadrilateral domains with the boundary
γ(t) = r(t)eit , r(t) = 4/5 + (1/5) cos(nπt) and corners att = −1,−1/4, 0, 1/2. For the
Quadrilateral C we choosen = 4 and for D we choosen = 8. These domains have the
useful property that the exterior problem can easily be converted to a corresponding interior
problem of the domain with boundary1/γ(t). Since these domains cannot be handled using
the SC Toolbox, we take the interior solution as the reference. Tables3.4 and3.5 show that
we can obtain results of high accuracy also for traditionally challenging domains.
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(a) Exterior domain. The computational do-
main has been truncated with radius> 106.

(b) Zoom of the mesh in the case of a circle. (c) Zoom of the mesh in the case of a square.

(d) Zoom of the potential in the case of a
circle. Reciprocal error∼ 8.8 · 10−10.

(e) Zoom of the potential in the case of a
square. Reciprocal error∼ 6.3 · 10−10.

FIG. 3.4.Exterior modulus over the exterior domain.
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TABLE 3.2
Quadrilateral A:{0, 1, (28/25, 69/50), (−19/25, 21/25)}. The values obtained with SC Toolbox are used

as reference. The errors are given as⌈log
10

|error|⌉.

Method Exterior Modulus Error (2.2) Relative Error
SC Toolbox 0.9923416323 -9 –

AFEM 0.9923500126 -4 -5
hp-FEM (Interior) 0.9923416332 -9 -9
hp-FEM (Exterior) 0.9923416332 -9 -9

TABLE 3.3
Quadrilateral B: {0, 1, (42/25, 4), (−3/25, 21/25)}. The values obtained with SC Toolbox are used as

reference. The errors are given as⌈log
10

|error|⌉.

Method Exterior Modulus Error (2.2) Relative Error
SC Toolbox 0.9592571721 -9 –

AFEM 0.9593012739 -4 -4
hp-FEM (Interior) 0.9592571731 -8 -8
hp-FEM (Exterior) 0.9592572007 -7 -7

It turns out that besides the actual value of the exterior modulus one can also determine
the value of the far-field potential. Either one can determine the value of the potential at the
reflection point of the interior problem, i.e., at the origin, or simply evaluate the solution of the
exterior problem at the farthest point. Remarkably, the truncated domain results agree well
with the (theoretically) exact results of the equivalent inner modulus problems; see Table3.6.
In Figures3.5–3.8we show comparisons of the interior and exterior potential fields. For the
two polygonal quadrilaterals, the corresponding contour lines and the location of the origin
in the interior case are indicated. In the general case, prediction of the far-field value based
solely on geometric arguments is an open problem.

We note, that for both Quadrilateral C and D, the interior andexterior capacities are
equal. This invariance is new and has not been reported in theliterature before. It is crucial
that the four corners are chosen from extremal points, that is, local minima and maxima of
the radius.

4. Performance considerations.In this section we study the performance of our ap-
proach in terms of computational cost in time and storage requirements, and convergence of
the capacity, which is shown to be exponential. Here we consider the Quadrilaterals D defined
above, and compare the interior and exterior problems. Thiscomparison is reasonable, since
due to the new invariance, the interior and exterior problems can be solved usingexactly the
same the geometryand thus the singularities are of the same kind.

4.1. Convergence.All experiments have been computed using(α, ν)-meshes, with
α = 0.15, andν = min(16, pmax), where 16 is dictated by double precision arithmetic. This
choice allows us to compare two elementalp-distributions, namely the constantp = pmax,
and the gradedp-vector where the elementalp increases per element layer away from the
singularity, e.g., fromp = 1 up top = pmax. The valuepmax has been chosen so that the rel-
ative error in both approaches is roughly the same and in accordance with the results resported
above,pmax,I = 18 andpmax,E = 22, for the interior and exterior problems, respectively.

The optimal rate of convergence of the relative error in capacity is

∼ C1 exp(−C2N
1/3),

whereN is the number of unknowns andCi are coefficients independent ofN [24]. In
Figure4.1 the convergence plots corresponding to bothp-distributions are shown using two
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TABLE 3.4
Quadrilateral C:γ(t) = r(t)eit, r(t) = 4/5 + (1/5) cos(4πt) and corners att = −1,−1/4, 0, 1/2. The

values obtained withhp-FEM (Interior) are used as reference. The errors are given as⌈log
10

|error|⌉.

Method Exterior Modulus Error (2.2) Relative Error
hp-FEM (Interior) 0.8196441884805177 -14 –
hp-FEM (Exterior) 0.8196441926483611 -8 -8

TABLE 3.5
Quadrilateral D:γ(t) = r(t)eit, r(t) = 4/5 + (1/5) cos(8πt) and corners att = −1,−1/4, 0, 1/2. The

values obtained withhp-FEM (Interior) are used as reference. The errors are given as⌈log
10

|error|⌉.

Method Exterior Modulus Error (2.2) Relative Error
hp-FEM (Interior) 0.9122187602015264 -10 –
hp-FEM (Exterior) 0.9122187628550672 -8 -8

different scalings: (A) in standard loglog-scale, and (B) in semilog-scale withN1/3 as the
abscissa. The first plot shows that solutions to both problems converge exponentially, but
the latter one shows that the exterior approach is not as efficient as the interior one. Using
linear fitting of logarithmic data, we find convergence ratesof typeN1/β , with βI,c = 3.72,
βE,c = 3.8, βI,g = 3.41, andβE,g = 3.55, where the indicesc andg refer to constant and
graded polynomial distributions, respectively.

Two observations should be noted: a) faster convergence rate does not imply more ac-
curate results; b) the convergence behaviour becomes less stable asp > ν as the refinement
strategy is changed.

4.2. Time. Averaged timing results over a set of 30 runs with constantp-distribution are
shown in Table4.1. Note that the hierarchic nature of the problem has not been taken into
account here and runs for different values ofp have been independent. In our implementa-
tion the numerical integration is the most expensive part. The numerical integration routines
are based on a matrix-matrix multiplication formalism which is highly efficient in terms of
flops per memory access, and benefits from BLAS-level parallelism on our test machine with
eight cores; Apple Mac Pro 2009 Edition 2.26 GHz, Mathematica 8.0.4. The time spent in
assembling the matrix is included in the integration time. Mathematica does not support pre-
allocation of sparse matrix structures or autosumming initialization which leads to a lot of
reallocation of sparse matrices.

Interestingly, the time spent on the direct solution of the systems is shorter for the exterior
problem for problems of comparable size. In our opinion thisis the result of the ordering
heuristic used by Mathematica being more efficient over ringdomains.

5. Conclusions. In this study we have shown that three different algorithms,AFEM,
SC Toolbox, andhp-FEM, can all be effectively used for the computation of the exterior
modulus of a bounded polygonal quadrilateral. As far as we know, there are very few nu-
merical or theoretical results on the exterior modulus in the literature. The problem is first
reduced to a Dirichlet-Neumann problem for the Laplace equation. In our earlier paper [12]
we introduced the reciprocal identity as an error estimate for the inner modulus computation
of a quadrilateral and here we demonstrate that the same method applies to error estimation
for the exterior modulus as well. We compare our numerical results to the analytic Duren-
Pfaltzgraff formula for the exterior modulus of a rectangleand observe that our results agree
with it. Moreover, in this case the analytic formula yields results that are within the limits
provided by the reciprocal error estimate from our computational results. The reciprocal error
estimate is also applied to study, for the case of polygonal quadrilaterals, the accuracy of SC
Toolbox and the AFEM method, and mutual accuracy comparisons are given. Finally, for the
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TABLE 3.6
Comparison of the computed values of the potential at infinity. The errors are given as⌈log10 |error|⌉.

Quadrilateral hp-FEM (Interior) hp-FEM (Exterior) Relative Error
A 0.5281867366243582 0.5281867468410989 -7
B 0.6659476737428786 0.6659476800244547 -8
C 0.5873283399651075 0.5873283469398137 -7
D 0.5398927341965689 0.5398927414203410 -7

(a) Contours of the inner problem. Origin is
indicated with a dot.

(b) Contours of the outer problem. Note the
contours extending to infinity.

FIG. 3.5. Quadrilateral A: Correspondence of the potential contoursbetween the inner (A) and outer (B)
solutions. Shown are the potential levelsu(z) = 0, 1/10, . . . , 1, and u(0). Corresponding contours can be
identified by matching the shadings of the regions in between.

case of quadrilaterals with curvilinear boundary, where these two methods do not apply, we
give results obtained by thehp-FEM method, and their error estimates based on the relative
error and the reciprocal error estimate. In this case we alsoanalyze the dependence of the
accuracy on the number of degrees of freedom and demonstratenearly optimal convergence,
compatible with the theory of Babuška and Guo [3].

A problem of independent interest is the value of the potential function at infinity. We
study this problem for the exterior modulus of a polygonal quadrilateral and solve it by map-
ping the exterior domain onto a bounded domain by inversion and then computing the value
of the potential function of the corresponding interior modulus problem at the image point of
the point at infinity.
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(a) Contours of the inner problem. Origin is
indicated with a dot.

(b) Contours of the outer problem. Note the
contours extending to infinity

FIG. 3.6. Quadrilateral B: Correspondence of the potential contoursbetween the inner (A) and outer (B)
solutions. Shown are the potential levelsu(z) = 0, 1/10, . . . , 1, and u(0). Corresponding contours can be
identified by matching the shadings of the regions in between.

(a) Potential field of the inner problem. (b) Potential field of the outer problem.

FIG. 3.7.Quadrilateral C: The potential field of the inner (A) and outer (B) solutions.

(a) [Potential field of the inner problem. (b) Potential field of the outer problem.

FIG. 3.8.Quadrilateral D: The potential fields of the inner (A) and outer (B) solutions.
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(a) Loglog-scale: rel. error in capacity vs.N .
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(b) Semilog-plot: rel. error in capacity vs.N1/3.

FIG. 4.1. Quadrilateral D: Convergence of the relative error in capacity. Constantp: Black, Gradedp: Red;
Interior problem: Solid line; Exterior problem: Dashed line. The number of unknowns isN .

TABLE 4.1
Quadrilateral D: Time spent in the solution process. All times are seconds as reported by Mathematica’s

Timing-function. Time spent in assembly of the linear system is included in that of integration. (Apple Mac Pro 2009
Edition 2.26 GHz, Mathematica 8.0.4.)

(a) Interior Problem.

p N Meshing Integration (Assembly) Solve Total
4 1505 1 2 (0) 0 3
8 10049 4 14 (4) 4 22
12 31777 11 44 (14) 14 69
16 72833 21 136 (52) 42 199

(b) Exterior problem.

p N Meshing Integration (Assembly) Solve Total
4 3456 4 2 (0) 0 6
8 17792 13 19 (6) 3 35
12 49152 26 63 (23) 10 99
16 103680 47 210 (80) 30 287
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