
Electronic Transactions on Numerical Analysis.
Volume 40, pp. 311-320, 2013.
Copyright 2013, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University

http://etna.math.kent.edu

CHEBYSHEV ACCELERATION OF THE GENERANK ALGORITHM
�

MICHELE BENZI
�

AND VERENA KUHLEMANN
�

Abstract. The ranking of genes plays an important role in biomedical research. The GeneRank method of
Morrison et al. [BMC Bioinformatics, 6:233 (2005)] ranks genes based on the results of microarray experiments
combined with gene expression information, for example from gene annotations. The algorithm is a variant of the
well known PageRank iteration, and can be formulated as the solution of a large, sparse linear system. Here we show
that classical Chebyshev semi-iteration can considerably speed up the convergence of GeneRank, outperforming
other acceleration schemes such as conjugate gradients.

Key words. GeneRank, computational genomics, Chebyshev semi-iteration, polynomials of best uniform ap-
proximation, conjugate gradients

AMS subject classifications. 65F10, 65F50; 9208, 92D20

1. Introduction. Advances in biotechnology make it possible to collect a vast amount
of genomic data. For example, using gene microarrays, it is now possible to probe a person’s
gene expression profile over the more than 30,000 genes of the human genome. Biomedical
researchers try to link signals extracted from these gene microarray experiments to genetic
factors underlying disease. One of the most important problems is to identify key genes that
play a role in a particular disease.

A gene microarray consists of a large number of known DNA probe sequences that are
put in distinct locations on a slide. Gene microarrays can be used for gene expression profil-
ing. The DNA in a cell does not change, but certain derivatives of the DNA, the mRNA and
tRNA, are produced as stimulation occurs through environmental conditions, and in response
to treatments. For further details, see [1, 3].

A promising approach is to use bioinformatics methods that can analyze a variety of
gene-related biological data and rank genes based on potential relevance to a disease; such
methods can be invaluable in helping to prioritize genes for further biological study. We refer
the reader to [12] and [18] for discussions of the many challenges arising in this important
research area.

In 2005 Morrison et al. proposed a new model called GeneRank [12]. It is a modification
of Google’s PageRank algorithm [13, 11]. The model combines gene expression information
with a network structure derived from gene annotations (gene ontologies) or expression pro-
file correlations [12]. This makes errors in the microarray experiments less likely to influence
the results than in methods which are based on expression levels alone. The resulting gene
ranking algorithm shares many of the mathematical properties of PageRank; in particular, the
ranking of genes can be reduced to the solution of a large linear system [18].

In two papers ([18] and [17]), Wu and coworkers have carried out a systematic matrix
analysis of the GeneRank algorithm, together with a comparison of different iterative solvers
for the resulting large sparse linear systems. In particular, they showed that the problem
can be formulated as the solution of a symmetric positive definite linear system, and they
obtained bounds on the extreme eigenvalues of the coefficient matrix when diagonal scaling
(Jacobi preconditioning) is used. These bounds are independent of the size of the matrix, and
they only depend on the value of a parameter used in the GeneRank model (analogous to the
parameter used in PageRank). The numerical experiments in [17] indicate that the conjugate�

Received December 3, 2012. Accepted June 5, 2013. Published online on August 15, 2013. Recommended by
R. Nabben. Work supported in part by National Science Foundation Grant DMS 1115692.�

Department of Mathematics and Computer Science, Emory University, Atlanta, GA 30322, USA
(� benzi,vkuhlem � @mathcs.emory.edu).

311

ETNA
Kent State University

http://etna.math.kent.edu

312 M. BENZI AND V. KUHLEMANN

gradient (CG) algorithm with diagonal scaling is the most effective solver, among all those
tested, in terms of solution times.

In this note we further investigate properties of the GeneRank system and we consider
a few alternative solution methods. In particular, we show that in conjunction with diagonal
scaling, Chebyshev acceleration can significantly outperform CG in terms of solution times.

2. Definitions and auxiliary results. Connections between genes can be constructed
via the Gene Ontology (GO) database.1 Let the set ���	��
����
�������������
���� consist of � genes
in a microarray. Two genes
�� and
�� are connected if they share an annotation in GO.
Similar to PageRank, the idea of GeneRank is that a gene is significant if it is connected to
many highly ranked genes. In contrast to PakeRank, the connections are not directed. Thus,
instead of a nonsymmetric hyperlink matrix, GeneRank considers the symmetric adjacency
matrix � of the gene network. � is given by �!� � "$# %'&
�� and
��)(+*-,�/.10 share an annotation in GO,2 3�46587�96: %<; 7 �
Note that � is unweighted, while the hyperlink matrix in PageRank is weighted so that each
row sums up to one. A diagonal matrix = is constructed to provide such a scaling. Since a
gene might not be connected to any of the other genes, � may have zero rows. We let deg �
denote the degree (number of immediate neighbors) of gene * in the underlying graph; this is
just the sum of the entries in the * th row (or column) of � , that is,

deg � � �>�@? � �A� � �>�@? � �@� �
The diagonal matrix = is defined by =B�DC %FE�G (IH8���������J�6H��K0 , whereH � � "

deg � %L&
deg �NM 2 �# 3�4@587�9@: %F; 7 �

Note that = is nonsingular and nonnegative by construction. Now, (I=PO � �Q0�R corresponds
to the weighted hyperlink matrix in PageRank. In the case of GeneRank we do not need to
modify the matrix further, since irreducibility is not needed.

So far only the connections between genes are considered, but not the results from the
gene microarray experiment. Let S8TU�WV X�YZ�[�\X�Y����Z�������8X�Y��1] R be a vector that is obtained
from such an experiment. The entry X�Y �N^ 2 is the absolute value of the expression change of
gene
 � . In addition, a damping factor _ with

2a` _ ` # that controls the relative weighting
of expression change vs. connectivity is introduced. Then, GeneRank can be written as a
large linear system:

(2.1) (Ibdce_f�g= O � 0�Th�U(# ci_j0�S8Tk�
where b denotes the �Plm� identity matrix. The solution vector T is called GeneRank vector,
and its entries provide information about the significance of a gene. Note that for _�� 2
genes are ranked solely on the basis of the microarray experiment. If _n� #

, then a ranking
is constructed using only the connectivity information, and the results from the microarray
experiments are ignored. The problem of how to choose the value of _ will not be discussed
here, but typically values in the interval V 2 � o8� # 0 are used.

1http://geneontology.org

http://geneontology.org

ETNA
Kent State University

http://etna.math.kent.edu

CHEBYSHEV ACCELERATION OF THE GENERANK ALGORITHM 313

3. Symmetric formulation of GeneRank. The matrix � is symmetric, but bKcp_f�g=qO �
is not. Thus, for the solution of the linear system (2.1), nonsymmetric methods have to be
used. The symmetry of � cannot be exploited. In [17], however, Wu et al. recognized that the
GeneRank problem can be rewritten as a symmetric linear system. The main idea is simply
to write the linear system (2.1) as(r=sce_f�Q0�= O � Ti�U(# ce_f0�SKTk�(3.1)

or equivalently, as (r=sce_f�Q01tTh�U(# ce_f0�SKTk�(3.2)

with tTi�D=mO � T . The matrix =ucv_f� is symmetric. With this modification, methods that are
suitable for symmetric systems can be used for the GeneRank problem. In the next section
we will see that the symmetric GeneRank matrix enjoys additional useful properties.

4. Properties of the symmetric GeneRank matrix. In [17], Wu et al. also showed that
the matrix =Dcw_j� has some nice properties besides symmetry. First of all, they showed that=Bcx_f� is positive definite for

2m` _Dy #
. Thus, the conjugate gradient (CG) method [8]

can be used to solve the linear system (3.2). We note in passing that for _D� #
this matrix

reduces to the (combinatorial) graph Laplacian z{�|=Bcx� of the network, and is positive
semidefinite (singular). If the network is connected, the null space of z is one-dimensional
and is spanned by the constant vector with all entries equal to 1.

Wu et al. investigated the effectiveness of the Jacobi preconditioner (symmetric diagonal
scaling) on =sce_f� . In that case, the preconditioned matrix is given by= O ��}6� (I=sci_j�Q0�= O �@}6� �~bdce_j= O �@}6� �g= O �@}@� �
Thus, the preconditioned linear system reads

(4.1) (rb�ci_�= O �@}6� �g= O �@}@� 0��Th�U(# ce_f0�= O �@}@� S8T��
with �Th�D= ��}6� tTi�{= ��}6� (I=mO � T�0��D=mO �@}6� T .

Since =�O �@}@� �g=mO �@}6� is doubly stochastic, the eigenvalues of the preconditioned matrix
satisfy: �K�N��� (Ibdce_j= O ��}6� �g= O �@}6� 0 ` #�� _��� �N� � (Ibdce_j= O ��}6� �g= O �@}6� 0�� # ce_��(4.2)

The range of eigenvalues increases as _ increases from
2

to
#
. Moreover, the matrix becomes

increasingly ill-conditioned. Thus, the rate of convergence of CG can be expected to decrease
as _ increases. Using Gershgorin’s Circle Theorem [16], we can also bound the eigenvalues
of =	ci_f� as follows: � �N�@� (r=sce_f�Q0 ` (#�� _j0v� E����� � ��� ��H������8�N� � (r=sce_f�Q0 ^ (# ci_j0q� %L���� � ��� ��H � ���(4.3)

Next, we show that both =Bcn_j� and bvc/_j=�O ��}6� �g=mO �@}6� are Stieltjes matrices (that is,
symmetric nonsingular M-matrices).

PROPOSITION 4.1.
1. =	ci_f� is a nonsingular M-matrix, for

2v` _hy # .

ETNA
Kent State University

http://etna.math.kent.edu

314 M. BENZI AND V. KUHLEMANN

2. b�ci_�=�O �@}@� �g=mO ��}6� is a nonsingular M-matrix, for
2�` _/y # .

Proof. We can rewrite the first matrix as =sch_f������b�c~(��= � _j�Q0 , where � is the
maximum degree of the underlying graph of � . That is, ����� E�� ��H �N� *�� # �������J�@�f� . The
matrix �= is diagonal with �H � ����cxH � on the diagonal. Thus, �= is nonnegative, and from_ M 2 and � ^ 2 it follows that �= � _f� ^ 2 . Note that �vb)cx(�= � _j�Q0 is a nonsingular
M-matrix if �(�= � _j�Q0¡yQ� . The spectral radius is bounded above by the 1-norm. Thus, ¢(Z�= � _j�Q0 ` �L� �= � _j� �<� � � max £¥¤@�[�UceH� � _jH�����y¦� , for

2 yn_/y # .
With regard to the second matrix, the conclusion follows from the fact that = O �@}@��§ = O �@}@�

is a nonsingular M-matrix if § is a nonsingular M-matrix and = is a positive diagonal matrix.

There are several important consequences of the property just shown. First of all, the
right-hand side vector S8T is nonnegative; hence, the GeneRank vector T is also guaran-
teed to be nonnegative, since the inverse of a nonsingular M-matrix is nonnegative. More-
over, whenever the underlying graph is connected the GeneRank matrices =¨cx_f� or bvc_j=mO �@}6� �g=mO ��}6� are irreducible; therefore, they have a positive inverse, thus making the
ranking vector T strictly positive, as it should be if the vector is to be used for ranking pur-
poses.

Additionally, the M-matrix property ensures that various classical iterations based on
matrix splittings are guaranteed to converge, including the Jacobi and Gauss–Seidel methods
and their block variants [16], as well as Schwarz-type methods. Moreover, the existence and
stability of various preconditioners, like incomplete factorizations, is guaranteed.

5. Methods tested. In [17], Wu and coworkers successfully employed the Jacobi pre-
conditioner together with CG for the solution of the linear system (3.2). They compared the
method with the original GeneRank scheme (essentially a power iteration), Jacobi’s method,
and a (modified) Arnoldi algorithm. CG preconditioned with Jacobi was faster for every ex-
ample tested. The rate of convergence was found to be essentially independent of the problem
size � , consistent with the uniform bounds on the eigenvalues of the preconditioned matrices.
The number of iterations, on the other hand, increases as _ approaches 1.

In an attempt to improve on the results of Wu et al., we tested a number of other meth-
ods. First of all, we tried the sparse direct solver in Matlab (“backslash”). This is a sparse
implementation of the Cholesky algorithm which uses an approximate minimum degree or-
dering; see [4]. An obvious advantage of the direct approach is that its cost is independent of_ . However, we found this approach to be extremely time-consuming due to the enormous
fill-in in the factors; see Section 7 below. Preconditioners based on incomplete Cholesky fac-
torization or SSOR (symmetric SOR) were also found to be inefficient in comparison to CG
with a simple diagonal preconditioner. Additional experiments were performed with additive
Schwarz-type preconditioners with overlapping blocks [2, 10]. For several of the tested ex-
amples, we found that these preconditioners achieve fast convergence independent of the pa-
rameter _ ; unfortunately, however, the additional complexity of these preconditioners makes
them not competitive with simple diagonal scaling [10].

A close look at the eigenvalues of the diagonally preconditioned GeneRank matrices re-
veal that they are more or less uniformly distributed in the spectral interval V � �N� � � � �N���] , with
no clustering within the spectra. As is well known, such a spectral distribution is essentially
the worst possible for CG. This suggests investigating the performance of other methods,
such as methods based on (shifted and scaled) Chebyshev polynomials [5, 16], or methods
based on polynomials of best approximation [9].

An advantage of these techniques is that the cost per iteration is very low. Also, they
do not require inner products, which makes them attractive on some parallel architectures. A
potential disadvantage is that they require bounds on the eigenvalues. But, as we saw earlier,

ETNA
Kent State University

http://etna.math.kent.edu

CHEBYSHEV ACCELERATION OF THE GENERANK ALGORITHM 315

Algorithm 1 Chebyshev iteration
1: ©«ª~¬+L®°¯²±N³´<®°µ ¶�·�¸�¹ , º�ª¦¬+L®°¯²±�»¼<®°µ ¶�·�¸�¹
2: ½dªi½¿¾ , ÀkªiÁf»mÂ�½
3: for Ã°ªuÄ�Å�¹�Å�Æ¥Æ¥Æ¥Å²Ç do
4: Èpª/É~Ê\Ë�À
5: if Ã¢ª¦Ä then
6: ÌdªhÈ
7: ÍÎª/¹�¸�©
8: else
9: Ï�ª¦¬ÐºfÑ¥Í°¸�¹�·�Ò

10: ÍÎªuÄJ¸�¬Ð©«»wÏ°·
11: ÌdªhÈ�³�ÏvÑ�Ì
12: end if
13: ½�ªh½-³´ÍaÑ�Ì
14: ÀkªiÁf»¼Â�½
15: if Ó8Ô�À�ÇÎ¬ÐÀ[·jÕ´Ö²Ô� then
16: break;
17: end if
18: end for

here we do have bounds on the largest and smallest eigenvalue of bdce_j=PO �@}@� �g=mO �@}6� .
The Chebyshev (semi-)iteration is a classical method for solving linear systems based

on the properties of Chebyshev polynomials. It can be regarded as a polynomial scheme for
accelerating the convergence of a standard linear stationary iteration

(5.1) Y�×<Ø�Ù ��Ú �~Y�×<Ø Ú �nÛ O � (ÝÜ�c § YZ×<Ø Ú 0��ßÞa� 2 � # �������
for solving a linear system § YP�QÜ , with

Û
nonsingular. If b�c Û O � § is similar to a sym-

metric matrix with eigenvalues lying in an interval V à �N� � �@à �N�@�] , the Chebyshev acceleration
of the stationary method (5.1) can be written asá ×<Ø�Ù ��Ú � â Ø�Ù �ã c¦(Ià �N� � � à �N��� 0«ä ã Û O � (ÝÜåc § á ×FØ Ú 0 � V ã c¦(Ià �N� � � à �N�@� 0²]�(á ×<Ø Ú c á ×<Ø O ��Ú 0�æ� á ×<Ø O ��Ú �ßÞa� # � ã �������J�
with á ×'ç Ú �~Y ×'ç Ú , á × ��Ú �¦Y × ��Ú and

â Ø�Ù � � ## céè1êëì¥í ê � â � � ã �ã � c # � â � � # � � ã c¦(Ià �N� � � à �N�@� 0à �N�@� cià �N� � î
see, e.g., [5, pages 514–516]. This acceleration can be employed, for instance, when § andÛ

are symmetric positive definite (SPD). In particular, if § is symmetric positive definite andÛ �s=ï�sC %<E�G (§ 0 , the diagonally preconditioned Chebyshev iteration can be interpreted
as a polynomial acceleration scheme applied to Jacobi’s method.

An algorithmic description of the Chebyshev iteration is given in Algorithm 1 (using a
slightly different noation). The input parameters à �N� � and à �N��� are bounds on the smallest and
largest eigenvalue of the preconditioned matrix. In our case, à �N� � � # c�_ and à �N��� � #j� _ .
The algorithm is applied to § �D={cw_f� , with the right-hand side Ü��{SKT . Also,

Û
denotes

the preconditioner; in our case,
Û �D= .

It is known [14] that when à �N� � � �8�N� � (§ 0 and à �N��� � �K�N�@� (§ 0 , the shifted and scaled
Chebyshev polynomial of degree ÞNc # minimizes the condition number of the preconditioned

ETNA
Kent State University

http://etna.math.kent.edu

316 M. BENZI AND V. KUHLEMANN

Algorithm 2 Polynomial of best uniform approximation method
1: ð ¾ ªuÄJ¸�<®°¯²± , ð Ë ªuÄJ¸�L®°µ ¶
2: ñ¡ª¦¬+ ®°¯²± ³q ®°µ ¶ ·�¸�¬+ ®°¯²± »m ®°µ ¶ ·
3: ò Ë ª~¬Ðñ-»mó ñ Ò »qÄJ·�Ò
4: ò Ò ª ô6õ ö�÷¥ö�øùAú ö�÷6û ú ö�ø@ü êJý5: ½dªh½1¾ , ÀkªhÁf»ÎÂ�½
6: þ Ë ªhÿ�Æ ��Ñ[¬Fð ¾ ³¼ð Ë ·¢Ñ�À
7: þ Ò ªhÿ�Æ ��Ñ[¬ ó ð ¾ ³ ó ð Ë · Ò Ñ¥À�»Îð ¾ ð Ë Ñ¥Â�À
8: for Ã¢ª/¹�Å¥Æ�Æ¥Æ6Å�Ç do
9: ÀkªiÀå»¼Â�þ Ò

10: if Ó8Ô�À�Ç¼¬ÐÀ�·jÕ´Ö²Ô� then
11: ½dªi½«³´þ Ò
12: break;
13: end if
14: þ���ªiþ Ò ³�ò Ë Ñ�¬Ðþ Ò »Îþ Ë ·K³�ò Ò Ñ6À
15: þ Ë ªiþ Ò , þ Ò ªiþ �
16: end for

matrix � Ø (§ 0 § over all polynomials � Ø (� 0 of degree not exceeding ÞÎc # ; when diagonal
scaling is used, of course, the same holds with =qO � § in place of § . In principle, however,
there may be other polynomials that result in faster convergence. Similar to [9], we consider
an alternative approach based on the use of polynomials of best uniform approximation to the
function

#�� �
. These are the polynomials of prescribed degree Þ such that the approximation

error, � E�� � � Ø (� 0kc �� � , is minimized over all polynomials of degree not exceeding Þ , the
maximum being taken over an interval V à �N� � �@à �N�@�] containing the spectrum of =´O � § . These
polynomials, which were found by Chebyshev in 1887, can be generated by a three-term
recurrence, as discussed in [9]. Here we use again à �N� � � # c-_ and à �N�@� � #�� _ as endpoints,
and the algorithm is applied to the preconditioned matrix § ��b�cx_j=qO �@}@� �g=mO ��}6� . The
details can be seen in Algorithm 2. We mention that we tried using the “true” eigenvalue
�K�N���

, both with Chebyshev and with the polynomials of best approximation, but the results
were essentially unchanged. Hence, little (if anything) is lost by using the freely available
estimate

� �N�@�
� #�� _ .

6. Description of test problems. As in [17], we use two different types of test data
(real and synthetic) for our experiment. The first matrix is a SNPa adjacency matrix (single-
nucleotide polymorphism matrix). This matrix has �n� # o ã �¥o ã�2 rows and columns, and is
very sparse with only �
	
�K� ã��� nonzeros. The sparsity pattern of the SNPa matrix can be seen
in Figure 6.1. The degree distribution in the underlying graph ranges from 1 to 40, and is
highly irregular.

The second type is a class of matrices from a range-dependent random graph model
called RENGA. Two vertices * and . are connected with probability �

�
� � O � � O � , where

2 y� y #
and � M 2

are given parameters. These networks capture the connectivity structure
seen in proteome interaction data [7, 6]. MATLAB code for generating these and other net-
works is available as part of the CONTEST package [15]. In our experiments we set

� � 2 � �
and �/� #

, the default values in RENGA. Note that with �/� #
node * is connected to node* �{# for *f� # �������J�@�Îc # .

7. Numerical experiments. The implementation was done in Matlab 7.8.0 on a 2.3
GHz Intel Core i7 Processor with 4GB main memory. We compare the Chebyshev method
and the method based on polynomials of best approximation (“Poly”) with the conjugate
gradient method and a Jacobi-preconditioned conjugate gradient.

ETNA
Kent State University

http://etna.math.kent.edu

CHEBYSHEV ACCELERATION OF THE GENERANK ALGORITHM 317

Student Version of MATLAB

FIG. 6.1. Nonzero pattern of the SNPa matrix.

TABLE 7.1
Results for the SNPa matrix. The matrix has ����������������� rows and columns. The tolerance used is ��� Ê\Ë ¾ .

Here ��� �"!#�%$&�(')� , where � is the vector of all ones. The number of iterations and the CPU time in seconds (in
brackets) are given.

_ 2 �!o 2 2 �+*�o 2 � ��2 2 � �
�
CG 86 (1.06) 116 (1.33) 129 (1.46) 470 (6.11)

PCG 17 (0.26) 27 (0.36) 30 (0.42) 91 (1.28)
Poly 17 (0.11) 28 (0.17) 32 (0.20) 149 (0.89)

Chebyshev 17 (0.10) 28 (0.16) 31 (0.18) 130 (0.73)

We use the same stopping criteria for each of the methods tested, based on the 1-norm
of the residual. That is, we stop iterating as soon as ,�-.,��Py0/21�à . The initial guess is the
zero vector. We use two different choices for S8T : S8T|�ï(#�� ��0�S , where S is the vector of
all ones, and S8TQ�43 , where � is a randomly chosen probability vector—that is, a random
vector with entries in (2 � # 0 , normalized to have ,%35,[�/� #

. For each adjacency matrix,
we use four different values of _ to form the corresponding GeneRank matrices =¨cn_j� :_P� 2 �!o�� 2 �+*�o�� 2 � ��2 � 2 � ��� .

The results for the SNPa matrix are given in Tables 7.1 and 7.2, and the results for the
RENGA matrices (with ��� # 2�2 � 2�2�2 and ��� o 2�2 � 2�2�2) are given in Tables 7.3 and 7.4.
Note that, as stated earlier, the rate of convergence depends only on _ and not on � .

The results for the SNPa matrix show that diagonal scaling dramatically accelerates the
convergence of CG; also, this is the fastest method among those tested in terms of number

ETNA
Kent State University

http://etna.math.kent.edu

318 M. BENZI AND V. KUHLEMANN

TABLE 7.2
Results for the SNPa matrix. The matrix has �6��������������� rows and columns. The tolerance used is ��� Ê�Ë ¾ .

Here ���7�98 , where 8 is a random probability vector. The number of iterations and the CPU time in seconds (in
brackets) are given.

_ 2 �!o 2 2 �:*�o 2 � ��2 2 � �
�
CG 87 (1.07) 118 (1.34) 130 (1.49) 484 (5.54)

PCG 17 (0.23) 27 (0.36) 30 (0.40) 90 (1.19)
Poly 17 (0.11) 28 (0.17) 32 (0.20) 152 (0.91)

Chebyshev 17 (0.10) 28 (0.16) 31 (0.18) 131 (0.73)

TABLE 7.3
Results for the RENGA matrices. The tolerance used is ��� Ê\Ë ¾ . Here �;�<�=!#�%$&�(')� , where � is the vector of

all ones. The number of iterations and the CPU time in seconds (in brackets) are given.

_ 2 �!o 2 2 �:*�o 2 � ��2 2 � �
���� # 2�2 � 2�2�2
CG 20 (0.21) 27 (0.28) 30 (0.30) 105 (1.07)

PCG 13 (0.15) 21 (0.24) 23 (0.27) 92 (1.06)
Poly 16 (0.12) 26 (0.19) 29 (0.20) 131 (0.86)

Chebyshev 17 (0.11) 27 (0.18) 30 (0.20) 125 (0.81)����o 2�2 � 2�2�2
CG 22 (1.38) 28 (1.77) 30 (1.91) 108 (6.87)

PCG 13 (0.92) 21 (1.48) 23 (1.62) 92 (6.56)
Poly 16 (0.67) 26 (1.04) 29 (1.15) 131 (4.92)

Chebyshev 17 (0.63) 27 (0.99) 30 (1.11) 125 (4.49)

of iterations. However, the method based on the polynomials of best approximation, while
often requiring more iterations, is faster in terms of solution time, sometimes more than twice
as fast, and Chebyshev iteration is even faster. Similar conclusions apply to the RENGA
matrices, except that now the effect of diagonal scaling on CG is less pronounced, probably
due to the fact that the distribution of nonzeros in these matrices is much more regular than
for the SNPa example, thus leading to matrices =sci_j� which are better conditioned. Here
again we find that Chebyshev outperforms the competition, albeit by a smaller margin than
in the SNPa examples.

Also note that in all cases, the results are essentially independent of the right-hand side
used.

Finally, use of a direct solver (sparse Cholesky in MATLAB) is not competitive for these
problems, due to tremendous fill-in, even with the best available fill-reducing orderings. For
example, the Cholesky factor for the SNPa matrix contains over

ã�2�2 � 2�2�2 � 2�2�2 non-zeros.

8. Conclusions. We investigated several methods for the solution of the linear system
arising from the gene ranking problem. Good results were obtained with (diagonally scaled)
Chebyshev iteration. While the number of iterations is higher than for CG with the same
scaling, the cost per iteration is much lower and leads to faster convergence in terms of CPU
time. We note that Chebyshev iteration is more desirable in a parallel setting, as it avoids
computing dot products.

ETNA
Kent State University

http://etna.math.kent.edu

CHEBYSHEV ACCELERATION OF THE GENERANK ALGORITHM 319

TABLE 7.4
Results for the RENGA matrices. The tolerance used is ��� Ê�Ë ¾ . Here �;�>�?8 , where 8 is a random probability

vector. The number of iterations and the CPU time in seconds (in brackets) are given.

_ 2 �!o 2 2 �:*�o 2 � ��2 2 � ������ # 2�2 � 2�2�2
CG 23 (0.24) 28 (0.29) 31 (0.31) 116 (1.19)

PCG 14 (0.16) 22 (0.25) 25 (0.29) 98 (1.13)
Poly 17 (0.13) 26 (0.19) 30 (0.21) 141 (0.95)

Chebyshev 17 (0.11) 27 (0.18) 30 (0.20) 125 (0.81)����o 2�2 � 2�2�2
CG 23 (1.45) 29 (1.86) 32 (2.03) 118 (7.50)

PCG 14 (0.99) 22 (1.55) 25 (1.77) 99 (7.03)
Poly 17 (0.72) 26 (1.03) 30 (1.18) 141 (5.23)

Chebyshev 17 (0.62) 27 (1.02) 30 (1.09) 125 (4.48)

The question remains open whether it is possible to develop preconditioners for the Gen-
eRank problem which result in converge rates independent of _ and are competitive with
simple diagonal scaling.

Acknowledgement. We would like to thank Prof. Yimin Wei of Fudan University for
providing the SNPa data to us.

REFERENCES

[1] D. E. BASSETT, M. B. EISEN, AND M. S. BOGUSKI, Gene expression informatics—it’s all in your mine,
Nat. Genet., 21 (1999), pp. 51–55.

[2] M. BENZI AND V. KUHLEMANN, Restricted additive Schwarz methods for Markov chains, Numer. Linear
Algebra Appl., 18 (2011), pp. 1011–1029.

[3] P. O. BROWN AND D. BOTSTEIN, Exploring the new world of the genome with DNA microarrays, Nat.
Genet., 21 (1999), pp. 33–37.

[4] T. A. DAVIS, Direct Methods for Sparse Linear Systems, SIAM, Philadelphia, 2006.
[5] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, 3rd edition, Johns Hopkins University Press,

Baltimore, 1996.
[6] P. GRINDROD, Range-dependent random graphs and their application to modeling large small-world pro-

teome datasets, Phys. Rev. E (3), 66 (2002), 066702 (7 pages).
[7] , Modeling proteome networks with range-dependent graphs, Amer. J. Pharmacogenomics, 3 (2003),

pp. 1–4.
[8] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Research

Nat. Bur. Standards, 49 (1952), pp. 409–436.
[9] J. KRAUS, P. VASSILEVSKI, AND L. ZIKATANOV, Polynomial of best uniform approximation to �%$&@ and

smoothing in two-level methods, Comput. Methods Appl. Math., 12 (2012), pp. 448–468.
[10] V. KUHLEMANN, Iterative methods and partitioning techniques for large sparse problems in network analy-

sis, Ph.D. Thesis, Department of Mathematics and Computer Science, Emory University, 2012.
[11] A. N. LANGVILLE AND C. D. MEYER, Google’s PageRank and Beyond—The Science of Search Engine

Rankings, Princeton University Press, Princeton, 2006.
[12] J. L. MORRISON, R. BREITLING, D. J. HIGHAM, AND D. R. GILBERT, GeneRank: Using search engine

technology for the analysis of microarray experiments, BMC Bioinformatics, 6:233 (2005).
[13] L. PAGE, S. BRIN, R. MOTWANI, AND T. WINOGRAD, The PageRank citation ranking: bringing

order to the Web, Technical Report, Stanford InfoLab, Stanford University, 1998. Available at
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf.

[14] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd edition, SIAM, Philadelphia, 2003.
[15] A. TAYLOR AND D. J. HIGHAM, CONTEST: A controllable test matrix toolbox for MATLAB, ACM Trans.

Math. Software, 35 (2009), pp. 26:1–26:17.

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

ETNA
Kent State University

http://etna.math.kent.edu

320 M. BENZI AND V. KUHLEMANN

[16] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, 1962.
[17] G. WU, W. XU, Y. ZHANG, AND Y. WEI, A preconditioned conjugate gradient algorithm for GeneRank

with application to microarray data mining, Data Min. Knowl. Discov., 26 (2013), pp. 27–56.
[18] G. WU, Y. ZHANG, AND Y. WEI, Krylov subspace algorithms for computing GeneRank for the analysis of

microarray data mining, J. Comput. Biol., 17 (2010), pp. 631–646.

