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AN ITERATIVE SUBSTRUCTURING ALGORITHM FOR
A C° INTERIOR PENALTY METHOD *

SUSANNE C. BRENNER AND KENING WANG#

Abstract. We study an iterative substructuring algorithm fo€’8 interior penalty method for the biharmonic
problem. This algorithm is based on a Bramble-Pasciak-Sqiratonditioner. The condition number of the pre-

2
conditioned Schur complement operator is shown to be boun;déﬂ(bl + ln(%)> , whereh is the mesh size of

the triangulation H represents the typical diameter of the nonoverlapping sulidits, and the positive constatit
is independent ok, H, and the number of subdomains. Corroborating numerical resdtalso presented.

Key words. biharmonic problem, iterative substructuring, domain decasitipm, C interior penalty methods,
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1. Introduction. Consider the following weak formulation of a fourth order aeb

problem on a bounded polygonal domé&irin R2.
Findu € HZ(Q) such that

(1.2) /v%;v%dx:/fvdx
Q JQ

for all v € H3(Q), wheref € Ly(Q) andV2w : V2o = Y7 afjg;j 3225;]- is the inner
product of the Hessian matrices of the functiananduv.

The model problemi(.1) can be solved by interior penalty methodsLD, 17, 25, 29].
For simplicity we assume th& has a quasi-uniform triangulatidf, consisting of rectangles,
and we takd’, C H}(Q) to be theQ, Lagrange finite element space associated &jthThe
discrete problem forl(.1) is to findu; € V}, such that

(1.2) Ap(up,v) = / fudx Yo € Vp,
JQ
where

Ap(up,v) = /VQuh V2 dx
DeTy,

(1.3) *;/(%wﬂu {WHMD ’
salls] 5] -

& is the set of all edges @, |¢| is the length of the edge ando > 0 is a penalty parameter.
The jump[-] and the averagg-}} are defined as follows.

* Received April 16, 2011. Accepted July 20, 2012. Publish@the on October 15, 2012. Recommended by
U. Langer. This work was supported in part by the NationaéBSo¢ Foundation under Grant No. DMS-10-16332
and by the Institute for Mathematics and its Applicationdwfitnds provided by the National Science Foundation.

fDepartment of Mathematics and Center for Computation and Toby, Louisiana State University, Baton
Rouge, LA 70803l§r enner @rat h. | su. edu).

tDepartment of Mathematics and Statistics, University of Noflorida, Jacksonville, FL 32224
(keni ng. wang@unf . edu).

313



ETNA
Kent State University
http://etna.math.kent.edu

314 S. C. BRENNER AND K. WANG

If e is an interior edge of}, shared by two element®_ and D of 7,, andn,. is the
unit normal vector pointing fronb_ to D, , then we define on

du] _ dvy  Ou- 82v+ 0%v_
onll  On. ne 8712 on2 ang ’
wherevy = U|Di. Note that the values of the jumps and averages are indepeaftithe

choices ofD... For an edge on the boundary of?, we taken. to be the outward pointing
unit normal vector and define

@ o ov 20
on|  One 8712 8n2'

The CY interior penalty method is consistent in the sense that

Ah(u,v):/fvd:c Yo e V.
Q

Moreover, fore > 0 sufficiently large (which is assumed to be the case), thast pgsitive
constants”; andCs independent of such that

(1.4) C1 AR (v,v) < |v\?{2(9,7—h) < CoAp(v,v) Vv e Vi,

where

2
|U|§{2(sz,7h,) Z |”|H2 (o)t Z el H[[ ]]HLg(e)'

DeTy, ecty,

Consequently, the errdiu — up || g2, 7, is quasi-optimal 17].

C? interior penalty methods, which belong to the class of diiooious Galerkin meth-
ods, have certain advantages over the usual finite elemehbdwefor fourth order problems.
They are simpler tha@'* finite element methods. They come in a natural hierarchydwisi
not the case for classical nonconforming finite element odd}) and they preserve the sym-
metric positive definite property of the continuous probl@vhich is not the case for mixed
finite element methods). They have also been applied to méngy &urth order problems
[11, 12,18, 25, 33, 38, 39].

As an approximation of a fourth order differential operatbe condition number of the
discrete problem grows at the ratetof?; cf. [31]. Thus a good preconditioner is essential for
solving the discrete problem efficiently and accuratelgvitiusly we have shown i p] that
the two-level additive Schwarz preconditioner for clagkfimite element method&§] can be
extended ta”? interior penalty methods with similar performance. In thiger we will ex-
tend the Bramble-Pasciak-Schatz preconditioBetd C° interior penalty methods and show
that the preconditioned system satisfies similar conditiomber estimates as in the case
of classical finite element methods. This extension reguareew treatment of the degrees
of freedom on the interface of the subdomains, which is dised in Sectio2. The tech-
niques developed in this paper can be applie@tanterior penalty methods on general do-
mains with simplicial triangulations, and they are alsduldier other discontinuous Galerkin
methods for fourth order problemsg,[34]. We note that domain decomposition algorithms
for other discontinuous Galerkin methods can be found.j2,[3, 5, 13, 22, 23, 26, 27, 30].

The rest of this paper is organized as follows. We introdbesiterative substructuring
algorithm in Sectior?2. In Section3 we construct a trace norm that plays a key role in the
analysis of the preconditioned system. The condition nurabgmates are then derived in
Section4, and numerical results are presented in SeciioAppendixA contains the proof
of a lemma that is crucial for the analysis in Sectibn
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2. An iterative substructuring algorithm. We begin with a nonoverlapping domain
decomposition of2 consisting of rectangular (open) subdomalns -, ..., 2, aligned
with 7;, such that

QN =0 it i+,

J B
Ue.

1

Q

J
0Q; N oYy = 0, avertex, or an edge if j # 1.

We assume the subdomains are shape regular and denoteita typmeter of the subdo-
mains byH. The interface of the subdomains is the Bet U;.]:l I';, wherel'; = 09;.

REMARK 2.1. Note thad)) is part of the interface because the boundary condition for
the normal derivative is only enforced weakly through thegey term in (L.3).
The off-interface spac&, (2 \ ') C V}, is defined by

Vih(2\T) = {v € V}, : v vanishes to first order oRi},

i.e.,v € V}, belongs toV;,(Q2 \ T') if and only if v and its normal derivative vanish dn
Since the condition that the normal derivativerofanishes o™ is implicit in terms of the
standard degrees of freedom (dofs) of g finite element, it is more convenient for both
implementation and analysis to modify the dofs ¥gras follows.

(i) For an elemenD away from the interfac€, we keep the standard dofs, namely the
values ofv € V;, at the four vertices oD, at the four midpoints alongD, and at
the center ofD (cf. the left-hand side of Figure.1).

(iiy For an elemenD that is away from the corners of the subdomains but has aneedge
onT', we take the dofs to be the valueswénd its normal derivative at the vertices
and the midpoint ot and the values of at the vertices and midpoint of the edge
parallel toe (cf. the middle of Figure.1).

(i) Finally, suppose a corner of the subdomain is also #&exar of an elemenD ande;
ande, are the two edges db that share» as a common vertex (i.eeg,es C T).
In this case we take the dofs to be the value @t p, the values of its first order
derivatives and second order mixed derivativp,ahe values of at the other three
vertices of D, and the values of the normal derivativeoht the endpoints of;
ande, that are different fronp (cf. the right-hand side of Figur21).

A A y
1»—1—0 e
e €1 p
€2
e e e [

FIG. 2.1.Dofs for theQQ2 element.

The dofs for the three cases are depicted in Figutewhere the solid doé denotes the
pointwise evaluation of the shape functions, the arrbwdenotes the pointwise evaluation

of the directional derivatives of the shape functions, draldouble arron/’ denotes the
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pointwise evaluation of the mixed second order derivatiih® shape functions. Itis easy to
check that in each case a biquadratic polynomial is unigdetgrmined by the dofs.

REMARK 2.2. If one of the edges adP is on the boundary of the subdomain, then the
values ofv and % are uniquely determined by the dofs associated with the s1odethat
edge (cf. the middle and the right-hand side in FiguB.

The modified (global) dofs fol/, are depicted on the left of Figuz2 for a square
divided into four subdomains.

/

0 70 O i

N

Val

Py

44$$4 .$$$$

1 N7 O O
RN

t
2!

VAT T AT AR Y IR

FiG. 2.2. Modified dofs fov, and V;, (T").

Letv € V. The dofs ofv associated with the nodes that are noffoare standard. The
dofs of v associated with the nodes drcan be divided into the following cases.

() There are three dofs associated with a nodé& d¢imat is interior tof2 and not the cor-
ner of any subdomain, namely the values@nd the values of the normal derivatives
of v from the two sides.

(ii) At a node onof2 that is not the corner of any subdomain, there is only one dof,
namely the value of the normal derivativewof
(iif) There is also only one dof at a node that is one of the emof(2, namely the value

of the mixed second order denvatl\gg%

(iv) Atanode onl’ N oS that is the common corner of two subdomains, there are three
dofs, namely the value of the normal derivativevand the values of the two mixed
second order derivatives offrom the two subdomains.

(v) There are nine dofs associated with a nodd'dhat is the common vertex of four
subdomains: the value of the values OP from left and right, the values o}
from below and above, and the values of the mixed second detératives ofv
from the four subdomains.

In terms of the new dofs; € V;,(©2\ T') if and only if the dofs ofv alongI" are identically 0.
We will use these new dofs far, in the rest of the paper.

REMARK 2.3. SinceV, is a subspace off}(2), the dofs represented by solid dots
on 90N are not included in the global dofs. On the other hand, thenabderivative and
mixed second order derivative of a finite element functioljjrare not constrained alorii§2
and therefore the dofs represented by arrows and doublesaalongos? are included in the
global dofs.

Next we define the interface spakg(T") to be the orthogonal complement®df(2\ T')
with respect ta4,, (-, -), i.e.,

Vh(l“) = {’U eV Ah(v,w) =0, Vw e Vh(Q\F)}
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The functions ifV/;, (T") will be referred to as discrete biharmonic functions. Theyaiquely
determined by the dofs associated wiitt{cf. the right-hand side of Figur2.2 for the case
where a square is divided into four subdomains). The disdrigiarmonic functions enjoy the
following minimum energy property.

LEMMA 2.4.We have

A}L(U, U) S -Ah(w7 U))

for anyv € V,(I") andw € V}, that have identical dofs along.
Proof. Sincew — v € V3,(2\ T'), we have by orthogonality

Ap(w,w) = Ap((w — v) + v, (w —v) +v)
= Ap(w —v,w—v)+ Ap(v,v) > Ap(v,v). d

The solution of the discrete problerh.®) can be decomposed as
up, = Up + Up,

whereuy, € V,(Q\T') anday, € V;,(T), and then1.2) is equivalent to the following problem.
Finda, € V,(Q\T) anday, € V;,(T) such that

Ap (g, v) = / fvdx Vo e Vi (Q\IN),
Q
(2.2) Ap(ap,v) = / fode Yo eV, (T).
Q

Let V3,(©2,) be the space o finite element functions of2; that vanish to first order
on 0%, i.e., it is the restriction of/, (2 \ ') to ;. Theniy, ; = 1|, € Vi(€2;) and we
have

(2.2) Ah(ﬂh,j,v) = /fo) dx Yov e Vh(Qj),

wherev € V}, is the trivial extension ob. Therefore, fod < j < J, @, ; can be computed by
solving the subdomain problem3.9) in parallel, and it only remains to construct an efficient
solver for @.1).

Let Sy, : V3 (T') — V,(T")’ be the Schur complement operator defined by

(23) (Shv1,v2) = Ah(vl,vg) VUl,UQ S Vh(F),

where (-, -) is the canonical bilinear form between a vector space andu&. We can
rewrite 2.1) as

(2.4) Sntn = fn,

wheref, € V,,(T') is defined by(fy,v) = [, fvdax forallv € V3,(I'). The last ingredient
of the iterative substructuring algorithm is provided byraqonditioner forS}, introduced by
Bramble-Pasciak-Schatg][for classical finite element methods. Equati@j can then be
solved efficiently by the preconditioned conjugate gratieathod.

The Bramble-Pasciak-Schatz (BPS) preconditioner ingleeal edge spaces and a
global coarse space. Lét, Es, ..., Ey be the (closed) edges of the subdomains. The edge
spaceV, (C V,,(T")) associated with the eddg is defined as follows. A discrete biharmonic
functionwv belongs tal; if and only if
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(i) v vanishes identically outside the subdomains that corifaias a boundary edge,
(i) the dofs ofv at the nodes o \ E, are identically O.
Thus the discrete biharmonic functions in an edge spaceegdeenined by the dofs depicted
in Figure2.3 where on the left we have an edge shared by two subdomainsratie right
we have an edge a¥f) that belongs to the boundary of only one subdomain.

N /
PN N

FiG. 2.3.Dofs for edge spaces.

The edge spack, is connected td}, (") by the natural injectiod,, and there is an SPD
operatorS, : V; — V, defined by

(2.5) (Sev,w) = Ap (v, w) Vv, w € V.

For the BPS preconditioner, the global communication ansuigdlomains is provided
by the coarse spacé, = Vi C H{(Q2), which is theQ; Lagrange finite element space
associated with the subdomaifis, ..., ;. (The dofs for the); Lagrange finite element
are depicted on the left-hand side of Figdré.) We defineS, : Viy — V}; by

(2.6) (Sov,w) = Ay (v, w) Yo, w € Vi,

where Ay is the analog of4,,.

The connection betweeVy andV,(I") is given by an operatof, constructed by the
following procedure. LeVy C HZ(Q) be theQs; Bogner-Fox-Schmit finite element space
associated witlfz;. (The dofs for thisC* element are depicted in the middle of Figré.)
First we define an enriching operaf®y; : Vi; — Vi by averaging, i.e., we define the dof
of Eyv at a node to be the average of the dofs at the same node from all the subdomains
sharing that node. More precisely, we take

(Erv)(p) = v(p),

VEW =7 Y Vi),
Q€T .,

aQ(EHU) 1 82vj
3:1718952 P Z Z )

wherep is any subdomain vertex in the interior Qf 7y ,, is the set of the four subdomains
sharingp as a vertex, and; = v|Q . The following result can be easily obtained by a direct
calculation; cf. p, 17, 20| for similar estimates.

LEMMA 2.5. There exists a positive constari depending only on the shape regularity
of 7y such that

Emv| g2y < Csv/Au(v,v) Vo€ Va.
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FiG. 2.4. H' conformingQ; Lagrange finite element and 2-conforming Bogner-Fox-Schmit elemens (
andQy).

We takelpv € V,(I') to be the discrete biharmonic function whose dofsloftf. the
right-hand side of Figur@.2) are identical with the corresponding dofslyf v.

REMARK 2.6. If we define the dofs ofgv directly from v, then the performance of
the preconditioner will be adversely affected by the déferscalings that appear in the
penalty terms fotdy (-, ) and.Ax(-,-). This problem is avoided by, defined above be-
causeE yv € HZ(2) and the penalty term associated widh (-, -) has no effect odyv.

We can now define the BPS preconditiod&),s : V3 (T')) — V;(T') by

L
Bes = 1Sy ' I§ + Y 1S, '},
(=1

wherel} : V,(I') — V/ is the transpose df, : V, — V;,(T"), i.e.,
(Iip,v) = (¢, L) YveV, ¢eVy(l).

It is easy to see thdf, (T') = Zf:o 1,V,. It then follows from the theory of additive
Schwarz preconditioner§[14, 24, 28, 32, 35, 36, 37, 40, 41] that the eigenvalues d? ;.5 .S},
are positive and that the maximum and minimum eigenvalués,pf.S;, are characterized by
the following formulas:

S

(27) /\Inax(BBPSSh) = maXx < h/vzv> B
veVy
ev;é(gr) min Z(ngg, vg)

v=3"L T ¢=0
ve€Vy

S
(2.8) Ausin(BarsS3) = min (Sho:v)
veEVL (T
E’U;Z(g ) min Z<S@’U@,'Ug>
v="po Teve =0
ve €V

3. Atrace norm. In this section we construct a trace normigi(I") that only involves
integrals defined o, and which is equivalent to the energy nogvfﬂh(-, -). Itwill play an
important role in the derivation of a lower bound iy, (BsrsSh)-

To avoid the proliferation of constants, from now on we use tiotationA < B to
represent the statement < (constant)x B, where the positive constant does not depend
onh, H, andJ. The notationd ~ B is equivalenttod < B andB < A.

Let V35, 1 < j < J, be the restrictions o}, to the subdomaii);, i.e., it is theQ,
finite element space associated wii); (the restriction of7;, to ©2;) whose members vanish
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ondQ N 0€2;. We introduce a seminori || 2o, 7, ;) on Vi ; defined by

1
||\U|||§12(Qj,7h,j) = Z ‘Uﬁﬁﬂ(D) + Z H || [[%]] Hi(e) Vo e Vi
DeTy, ec&y,
DCQJ' ECQj

We can then write

J
1
6D e = 5 m &+ Ellieamn,  Yoeb
ecy Jj=1
ecll’

wherev; = v], .
- J

Let f/h,j be theQs Bogner-Fox-Schmit finite element space ©@passociated withyy, ;
such that its members vanish 6f2 N 9€2;. (The dofs for thisC'! element are depicted on
the right-hand side of Figur2.4.) Our construction of the trace norm d#,(T") uses the
enriching magg; : V,; — Vhﬁj defined by averaging: at any nodeﬁj{j, we assign a
dof of E;v to be the average of the corresponding dofs &bom the elements that share that
node. More precisely, for a givanc V, ;, the dofs ofE;v € V, ; are defined as follows.

(i) E;v equalsv at all nodes (vertices, midpoints, centersygf;.

(if) At an interior vertex of7;, ;, V(E,;v) (respectively‘;i(f%{:g) is the average oVv

(respectively; i2gx2) at that vertex from the four elements sharjmgs a common
vertex. )

(iii) At a vertex of 7, ; on 0); that is not a corner of2;, d(g:jl”) = 22 while the tan-
gential (respectively mixed second order) derivativeigh is the average of the
tangential (respectively mixed second order) derivatofesfrom the two elements
sharingp as a common vertex.

(iv) At the midpoint of an interior edge, the normal derivatiof E;v is the average of
the two normal derivatives af (from the two sides) at that midpoint.

(v) At the midpoint of an edge o0d<;, the normal derivativef ;v equals the normal
derivative ofv.

(vi) The dofs ofE;v at the four corners of2; are identical with the dofs of at the
corners.

REMARK 3.1. In view of Remark2.2, the dofs ofE;v on 9Q2; are determined by the

dofs ofv on 9%2;.
The following result again can be obtained by a direct calboih.
LEMMA 3.2.We have, foll < j < J,

(3.2) [Ejvlm2,) S Wllaze, 7,y Yo € Vi

We can also define a mdj : V;, ; — V4, ; by assigning the dofs d&;v € V;, ; to be
identical with the corresponding dofs ofc V;, ;. The following result can be derived by a
simple element-wise calculation.

LEMMA 3.3.We have, foll < j < J,

IF;wll 2,7, S w2, — Yw e Vi

From the definitions oE; andF}, it is easy to see thd;(E;v) = v forallv € V}, ;.
The lemma below follows directly from Lemn$&a2and Lemmé3.3.
LEMMA 3.4.We have, fod < j < J,

Iz, 7. 5) = Ejvlaz,) Vv € Vi,
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Given anyv; € V;, ;, we define the function®,v; andDsyv; on 02, by

I(Ejv;)

‘ I(E;v )
Oxry log;

Oxy oo,

(33) Dl'Uj = and DQ’UJ‘ =

In view of Remark3.1, the functionsD;v and D,v can be computed from the dofs of
associated witl';. Recall that the Sobolev seminorHﬂ/Q(aﬂj) is given by

[w(@) —w(y)|*
|w‘H1/2 ;) — /()Q /dQ |17 7 y|2 ds( )ds(y)'

The following result shows that on the spaGgT’), the energy norm/ Ay (-, -) is equivalent
to a trace norm that only involves integrals definedorts proof is given in AppendiA.
LEMMA 3.5.We have

J
2
(34)  Aun(v,v) Z el H[[ ]]HLZ(e) + Z (|Dlvj|12r{1/2(aszj) + |D2Uj|§11/2(aﬂj))
ec&p Jj=1
eCl’
for all v € V,,(I"), wherew; is the restriction ofv to 2, for 1 < j < J.

4. Condition number estimates. First we consider an upper bound for the eigenvalues
of the operato3 ;5 S}, .
LEMMA 4.1. The maximum eigenvalue Bf;.5S;, satisfies the following estimate

(4.2) )‘maX(BBPSSh) S

Proof. Letv € V;,(T") be arbitrary, and let, € V, for 0 < ¢ < L satisfy

L
(4.2) v=> I

It follows from (2.3) and the Cauchy-Schwarz inequality that

L L

(43) (Shv ’U .Ah ZI@’U@,ZI}A@ Io’U Io’U +Ah ZIIU[’Z[kUk

£=0 k=0 (=1 k=1

Letz € Vj, be defined by:|, = F;(Exwol,, ). Thenz andlyv have identical dofs along
and hence

An(Tovo, Tovo) < An(z, 2) = |2l32(9 13,

(4.4) J
= Nzil320, 73, ) S Ervoltz 0y S (Sovo, vo)
J=1
by Lemma2.4, (1.4), (3.1), Lemma3.3 Lemma2.5 and @.6). Here we have also used the
fact that[[ 2] = 0onT. Finally sincey, (I,ve, Irv,) = 0 unless the subdomaiy and;,
are sufﬂmently close, we have bg.6)

L L
(4.5) ZI(’U@,ZIH% 5 Z.Ah Igl}g,[gvg Z ngg,vg
k=1 =1 =1
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Putting the estimatesl (3)—(4.5) together, we find Sy, v, v) < ZZL:O<S(4W, vg) and therefore

L
(4.6) (Spv,v) < min Z(Sgw,vg) Vv e V(D).
v=3"7_0 Teve =0
v €Vl

The bound 4.1) then follows from £.7) and @.6). a

In order to obtain a lower bound for the eigenvaluesBgfs.S;,, we need to construct
a particular decompositiort(2) for any givenv € V4 (I") so that the energy of the func-
tionsv, € V, can be estimated in terms of the energy of

First of all, vy € Vyy is defined by the condition that (p) = v(p) at the vertices of ,
i.e., at the corners of the subdomalns, ..., ;. We can treal/, as theQ; interpolant of
the functionE,v € HZ(2), whereE,, : Vi, — V;, € HZ(9Q) is defined using averaging
and theQ, Bogner-Fox-Schmit finite element spaide The operatol,,, which is an analog
of Ey : vy — Vy, satisfies (by a direct calculation) the following analoghaf estimate in
Lemmaz2.5

4.7) [Envlmz) S [vla2@,m) Vv e V.

REMARK 4.2. The operatorg), : Vj, — Vj, andE; : Vj, ; — V}, ; are not related.
LEmMMA 4.3. The following estimate holds

(48) <S()7)0, v0> <Sh’U ’U> Vv e Vh(F)
Proof. By the standard interpolation error estimate for@eelement, we have
(4.9) [lvo — Envllr,(0,) + Hlvo — Envlmia,) + H?vo — Bnvlaza,) S H?[Eav| 2o,

for1 < j < J. Let E belong tofy, the set of the edges of the subdomains. It follows
from (4.9) and the trace theorem with scaling that

2
w810 = g I[2e722])

Lay(E)
(410) 5 Z |: _2|Uo — Eh’l}|?{1(Qj) + |U0 — Eh”@["’(ﬂj)}
Q€T E
S D Ewlieg,),
QjGTH,E

where7y i is the set of the subdomains shariigas a common edge.
Summing up 4.9 overQ; € 7y and @.10 over E € &g, we find by (.4), (2.6),

and ¢.7),

1
(Sovo,vo) ~ |vo|?qz(g,TH Z \U0|H2 o)t Z |E| H dvo] HL2
E€éy

S |EhU|H2(Q) < [olfe .7, = An(v,0) = (Spo,0). O
Letw = v — Iyvy. It follows from (4.4) and @.8) that

(4.11) |w|§12(Q’Th) ~ Ap(w,w) < Ap(v,v) + Ap(Lovo, Igvo) S Ap(v,v) = (Spov,v).
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We also have a discrete Sobolev inequality.
LEMMA 4.4.We have, foil < j < Jandw; = w|, = (v—Iowo)|, ,
J J

1
||V]ijj HLeo(an) S (1 + hl(%)) 2 |ijj|H2(Qj).

Proof. SinceVE;w; € H'(Q2;), by a standard discrete Sobolev inequality 6], we
have

IVE jwj| L. 00, S (1+W(E) (HHIVE w;llLy00,) + [VEw;|g1/20;))-
Furthermore, sinc&;w; = w; = 0 at the corners of);, we also havel5, Lemma 4.8]
“NVEjw;llLy00,) + IVEwil gz, S [Bjwjla2@,y. O

Now we chooses, € V;, for 1 < ¢ < L, so that ¢.2) holds, i.e.,w = Y1, v;.
By comparing the dofs fo¥/}, (") (cf. the right-hand side of Figurg.2) and the dofs for
the edge spaces (cf. Figu?e3d), we see that the dofs af, are uniquely determined by the
corresponding dofs aofy except the mixed second order derivatives at a common cofner
four subdomains. At such a node we choose the mixed secoed @edvative ofv, to be%
of the corresponding mixed second order derivative of

It follows from Lemma3.5that

L
S (s~ 3| S I
=1

=1 “e€&y
(4.12) ol

+ Z (‘Dl’l)él%{uz(aﬂk) + ‘DQ'Uél?:[l/z(@Qk)) :|7
Q0 €Tn B,

where7y, i, is the set of the subdomains that shajeas a common edge.
We begin by estimating the first sum on the right-hand side Gfj.
LEMMA 4.5.We have

L
Z Z H aw]] HL2 (e) ~ (1 "’hl(%)) |w|?{2(9,7h)-

(=1 e€cé&y
eCI’

Proof. We will focus on the estimate far, associated with an interior vertical (closed)
edgeFy (cf. the left-hand side of Figurg.3). The cases of horizontal edges and boundary
edges can be handled in a similar fashion.

Let(2;, andQ};, be the two subdomains sharifig as a common edge aadbe a (closed)
edge in&, ande C 09, U 05);,. There are several possibilities.

(i) If e does not intersecty, then [[%] = 0 because the normal derivative of is
identically 0 from both sides af.

(i) If e C E, but does not touch either endpointsif, then[2] = [22] one.

(i) If e C E, does touch the endpoiptof E,, then[22] # [22] on e because

the derlvatlves% and d“ 2 have been set t0 at p and the mixed second order

derlvatlvesa “uea -(p) and I "g; (p) equal one half of the corresponding mixed

second order derlvatlves of at p. In this case we have by scaling

Sz < 13211 -
le]

= o1
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(iv) If e is one of the four horizontal edges that toughsaye C 09, then we
have|[%2]| = }dw L| one becausey, is identically 0 on the other side. SméDéL

one is determined by the values 6§+ and gm'”a‘; atp, we have by scaling and a
standard inverse estimate

vy Owg,q 0wy
_= < | 5= o| | ————
|[3n]l ~ | Oxzg (p)’ el 0x10x4 (p)
_ 8Ej1wg71 82Ej1wg,1
= | Pt )+ 1o | 2 )
< ’8]Ejlwg71
~ 3x2 Loo(e)

on the edge. Note that we have used the defining properties (i) andqiB; that
appear just before RemaBskl
Summing up the contributions over all the cases, we find

81)[ TOw] 2 J )
Z 2 s e] Z on + D IVEw;l7_ o,
=1 ec&), La(e) = L Il zse) o
ecl’ ecT’
1 ow |I? ()
SEZ on ]|l + (1+1In(4) Z|ij|H2(Q)
ec& - = 2(€
cct'
1 ow |?
S 2 ||Fn)],,, T O Z|||w]n|m<9 )
ec& - = 2(€
cct'

S (L+ (D) [wlfre 0.7,
by using Lemmat.4, (3.2), and @.1). a

We now turn to the second sum on the right-hand sidé df4.
LEMMA 4.6. We have

Y D> (Pt + IDevelte o))
(4.13) (=1 Q1€TH, R,

J
(1+In(F)) lelelllﬂzmj,fh,,.)~

Proof. This time we will focus on a horizontal edgé, (cf. Figure4.l). Let Q; be
a subdomain that shards, as a common edgey , = W|Qk andw, = w\Qk. First we
considerD; vy ;, 0N 0€Y,. Sinceuv, ;, andw;, have identical dofs that define them as piecewise
quartic polynomials orE, in the z; variable (cf. Figuret.1), we havev, ;, = wy on E, and
hence

& E
(414) Dive g = 9 kULk = OB g wi on FEy.
' 81'1 (91'1

The dofs ofDlw,k|m4 are identically zero outsid&, except those at the endpoints and
midpoints ofe; ander (cf. Figure4.1). It follows that

(4.15) Dl’l}g}k =0 on 99y \ (66 Ues UE,Uer U 68).
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Noftititititity AN frititititity 4
‘85 €1 €2 Eg €3 €q e; = Eg >
€6 eg <+ —>
Qk -~ Qk e
-~ — T T &>

FIG. 4.1.Dofs forv ;, (left) andwy, (right) onQy, € Ty, g, .

Moreover, the dofs of the piecewise quartic polynonihaby ; (in the z, variable) at these
nodes are determined by the valueslsf = 2Z:2t gand 6‘92’55 = gQ]E’g‘fk at the endpoints
1 Tl T20%1 L2071

of E,. Therefore, by scaling, we have

Ex E
(4.16) Ha KOGk < Hakwk |
8:1:1 Lo (esUegUerUes) 81‘1 Lo (09 \E¢)
and hence, in view of4(14),
8Ekwk
(4.17) [D1vekllpo 00, S H 3 :
L1 Lo (090%)

Let £y, = e Ues U EyUer Ues. By (4.19 and a standard estimate for truncated piecewise
polynomials (cf. B, Section 3], B7, Section 4.6], 14, Section 7.5]), we have

(4.18)  |D1venliepan S Prveklineg, o + (L)) 1Dverlt s, .-
Furthermore, we have by the relatiods1(4)—(4.16) and scaling
|D1W,HH1/2(EM)
E ELwg

< |Drvek — OBty ‘8 KT
(4.19) Oy HY/2(Ey ) dy H/2(Eq )

< H&Ekwk 8Ekwk

B ICE R AT TSR L AVIEN S

Combining ¢.17—-(4.19, Lemma4.4, the trace theorem, and Lemr@&, we conclude that

|D1ve e |12Hl/2(am)

6Ekwk
81’1

2 2

8E;€wk
al’l

+ (1+1In(£)) H

(4.20) <
H1/2(Qy)

2 2
< (1+ ()" [Erwrlfq,) < (1+() lwkllze @, 7. ,)-

Next we consideD,uv, j, = 8%:“ on 99Q. The dofs of the piecewise quartic polyno-

2

mial % on E, (in the 2, variable) are identical with those for the piecewise qaarti

2
polynomial % except at the vertices and midpointseqf ande4 (cf. Figure4.1). It
follows that

OE OE,
(4.21) Dovp . = KULE = Kk on Ey \ (61 UeaUesz U 64).
’ 8.1‘2 8.1‘2
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Moreover, the difference betwe§§M and%ﬁ:k one; Uey U ez U ey is determined by

the values o% 8%“”’“ and ai 15;2 = %fg;”k at the two endpoints af,. Therefore we
have

8Ekwk
8$2

aEkwk
6.2?2

(4.22) HngLk -

= .
Lo (e1UzUegUey) H Lo (Ey)

Finally we observe that

(4.23) the functiorDyv 5, = % =00ndQ; \ E,.

Using @.20)—(4.23 and arguments similar to the ones for the derivatiomal(), we have

|Dovei|® S (1+n({h)) 2oc(Ee)
O wy | OEwy, ||
(4.24) < ‘a’““”“ + (1+n(4)) H 8kwk
T2 gi/2(604) L2 Lo (090%)

2
S (U m(D)) [Brwi b,y S (1+CG0) okl 20

The estimate4.13 follows by summing up4.20 and @.24) over the edged’,, ..., Ey.
O
We can now establish a lower bound for the eigenvalugs,f S}, .
LEMMA 4.7. The minimum eigenvalue &f.5.5), satisfies the following estimate:

)\min( BPsSh) (1 Jrln(%))

Proof. Letv € V},(I") be arbitrary, and let, € V, for0 < ¢ < L be the particular decom-
position ofv that we have constructed. It follows fror.(2), Lemma4.5 Lemma4.6, (3.1),
and @.11), that

L
Z Seve,ve) S (1+ 111(%))\10@2(9,7@ + (1+1In(4)) lelwg H|H2(Q,,Th i)
=0

2
< (1 Jrln(%)) |w\§{2(917h) ~ (1 Jrln(%)) (Spv,v)
and hence

L
min Z<S£'Ue,1)g> (1+ 1n(%))2<Shv,v>,
UIZfzo Tyve =0
v eV

which together with%Z.8) implies the lower bound. 0O

Lemma4.1 and Lemma4.7 immediately imply the following bound on the condition
number of the preconditioned systdn<S},.

THEOREM4.8. We have

/\max (BBPS Sh)

< O(1+In(2))?
Amin(BsrsSn) — ( T n(h)) )

KJ(BBPSSh) =

where the positive constaatis independent of, H, andJ.
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5. Numerical results. In this section, we report some numerical results for our @hod
problem on the unit square. We take the penalty paramdte;,, Ay, and.A, to bes in the
numerical experiments, and we compute the maximum eigeaytie minimum eigenvalue,
and the condition number @ ,.S;, for different values of,, H and.J.

For each choice of, H, andJ, we generate a vectoy, € V}, (") randomly as our exact
solution and compute the right-hand sigle Then we apply the preconditioned conjugate
gradient algorithm to the linear systefiy = = ¢ with the Bramble-Pasciak-Schatz precon-
ditioner and0 as the initial value. The iteration is stopped when the gnaeaym error is
reduced by a factor of0~% and the minimum and maximum eigenvalues are estimated by
the Lanczos algorithm. The average results over 5 randoicehofv;, are reported in the
tables below.

REMARK 5.1. Since we are solving a fourth order problem, the cooriiumber ofS,
is very large for smalk. This is the reason why we use a more stringent stoppingiorite
than the usual criterion based on the residual error.

The results for the eigenvalues and condition number$ smbdomains] 6 subdomains,
and64 subdomains are reported in Talilel, Table5.2, and Table5.3 respectively. They
agree with the estimates in Lemmal, Lemma4.7, and Theorend.8. The average number
of iterations in these computations are presented in Taldlewhere the scalability of the
preconditioner can be observed.

TABLE 5.1
Eigenvalues and condition numbers fir= 1/2 (4 subdomains).
)\maX(BBPSSh) Amin(BBPSSh> K;(BBPSSh) KJ(BBPSSh)
h=1/4 6.6170 0.4945 13.3825 3.6582
h=1/8 6.5345 0.2617 24.9672 4.9967
h=1/16 6.5354 0.1675 39.0163 6.2463
h=1/32 6.5359 0.1157 56.5020 7.5168
h=1/64 6.5360 0.0845 77.3800 8.7966
TABLE 5.2

Eigenvalues and condition numbers fir= 1/4 (16 subdomains

‘ )\maX(BBPSSh) ‘ Amin(BBPSSh) ‘ K;(BBPSSh) ‘ H(BBPSSh)

h=1/8 6.8434 0.2235 30.6210 5.5336

h=1/16 6.6952 0.1387 48.2550 6.9466

h=1/32 6.6847 0.0978 68.3611 8.2681

h=1/64 6.6808 0.0725 92.1217 9.5980
TABLE 5.3

Eigenvalues and condition numbers fir= 1/8 (64 subdomains

‘ )\maX(BBPSSh) ‘ )\lnin(BBPSSh) ‘ H(BBPSSh) ‘ H(BBPSSh)
h=1/16 6.8785 0.1742 39.4859 6.2838
h=1/32 6.7239 0.1173 57.3270 7.5715
h=1/64 6.7102 0.0825 81.3200 9.0178
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TABLE 5.4
Average number of iterations for reducing the energy norrardsy a factor of10=6.

H=1/2 | H=1/4 | H=1/8 | H=1/16 | H = 1/32
H/h =2 22 37 43 43 43
H/h=4 21 36 41 41 —
H/h =8 20 38 42 — —
H/h =16 21 39 — — —
H/h =32 22 — — — —

To illustrate the practical performance of the precond#io we present in Tabke5the
number of iterations required to reduce the energy error factor of 10-2 for varioush
andH.

TABLE 5.5
Average number of iterations for reducing the energy norrardsy a factor of10—2.

H=1/2 | H=1/A | H=1/8 | H=1/16 | H=1/32
H/h=2 9 13 14 14 14
H/h =4 9 10 11 11 —
H/h =8 9 10 10 — —
H/h =16 8 8 — — —
H/h =32 7 — — — —

Appendix A. Proof of Lemma 3.5, We need two technical results for the proof of
Lemma3.5. The first one is a trace theorem provenis,[Lemmas 4.1-4.3].
LEMMA A.1. We have, fol < j < J,

|V’w|H1/2(an) 5 |w|H2(Qj) Vw € HQ(Q]').
Furthermore, given any € H?(12;), there existsi € H?(2;) such that
w|an :w|aﬂj’ V1Z)|aﬂj :Vw|89j and |@‘H2(Qj) g |Vw|H1/2(an).

The second result concerns@, Bogner-Fox-Schmit quasi-interpolant for a funct-
ion¢ € H?(9;). Suppose that for each edge &, such that C €, a unit normal vecton,
has been chosen. Lét € P4(e) and(* € P4(e) be theLs(e) projections oft|. andaa—ri o
respectively. We then assign the dofs of an quasi-intenpolain the Q, Bogner-Fox-Schmit
space associated wiffy, ; as follows.

If m is the midpoint of an edge € &, ; (the set of the edges &, ;), we define

(A1) ve(m) =((m) and (Vue(m)) - ne = (m).

If p is a vertex in7;,_;, then we choose an edges &, ; with p as an endpoint and define
(A.2) ve(p) = C(p), te (V2uc(p))ne = (¢)' (),

and(Vu¢)(p) to be the vector satisfying

(A-3) (Voe) () - ne = C(p),

(A.4) (Voe)(p) - te = C(p),
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wheret, is a unit tangent vector of and (. (respectively(¢})’) is the derivative of, (re-
spectively(}) in the direction oft.. Finally, for the center of an elementD € 7, we
define

(A.5) ve(e) = ((c).

Note that the choice of the dofs of at a vertexp is not unique since there are many
edges sharing as a common endpoint. In order to control the behavios.06n 052; for
anyp on 0f2;, we choose: to be an edge off2;. Furthermore, we chooseto be an edge
on 02 N 0Q; if p belongs tod2 N 0£2;. (Admissible edges represented by thick lines for
various vertices represented by bullets are depicted iaréiy.1.)

£

| .

Fic. A.1. Admissible edges in the definition of the dofs oht vertices.

REMARK A.2. If both ¢ andg—fL belong toP4(e) on all the boundary edgeson 0S2;,
then(, = ¢ and(} = aa—fe on all the boundary edges, which implies = ¢ to first order
onof).

REMARK A.3. If = 0 0n 92 N 99, thenve = 0 ondQ N 0Q; and hence: € Vj, ;.

LEMMA A.4. We have, fod < j < J,

(A.6) lelaz,) S ¢,y V¢ € HA Q).

Proof. Let D.. € 7;, ; be arbitrary, and let;, e; be the two edges ab, sharingp as a

common endpoint. Suppo$® v, ., )(p) and gzg;; (p) are defined byA.2)—(A.4) using(.,

and¢;, and(Vue e,)(p) and gzg;i (p) are defined byA.2)—(A.4) using(., and(;,.

If ¢ € P1(D.), thenitis clear that

Pvce, , 0Pvge,

(VUC751)(p) = (VUC762)(p) and amlaxz p) = am18m2 p).

Hence, by the Bramble-Hilbert Lemmd][and scaling, we have

(A7) (Vog.e) () = (Voee) DI < o2,
and
82% 62’()< 2
A.8 CL(p) — 02 < (diam D,) % [¢[52(p. -
(A8) 0x10% P 0x102 (p)| < (diam D) ™"|Cly (Dx)

The estimatesA.7) and (A.8) measure the effect of choosing different edges (from theesa
element) in the definition of the quasi-interpolagpt
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Suppose now the interpolant p, of ¢ is defined onD., by (A.1)—(A.5) in a particu-
lar way, namely the dofs of: p, at a vertexp of D, are defined by using the edge that
precede® in the counterclockwise direction. The triangle inequyadind a standard inverse
estimate 21, 14] imply that

|UC|%12(D*) S lve,p. ?‘I"’(D*) + [ve — UC,D*‘%IZ(D*)

(A.9)

Fr2(p,y + (diam D)~ Joe — e p,

2
S |UC7D* Lo(D.)"

First we claim that

(A.10) ‘UC,D*‘H2(D*) N ‘C|H2(D*)'

Indeed, since all the dofs af; p, defined by A.1)—(A.5) are bounded by|(||z2(p,), the

seminorm|ve, p, |g2(p,) is bounded by a multiple ofi(|| z2(p,). Moreover,v¢p, = ¢

if ¢ € P1(D.), and the seminorfuve p, |g2(p,) is invariant under addition of linear polyno-

mials. Therefore the estimaté.(0) follows from the Bramble-Hilbert Lemma and scaling.
Secondly it follows from the definitions ef andv¢ p, and (.7)—(A.8) that

o = ve.p. |13, (p,y S(diam D.)* >~ |Voe(p) — Voe,p. (p)]?
pED,
2 2 2
(A.11) diam D)6 Qv+ Ovep,
+( ram *) pEZD 8.1’18.’172 P 83:18302 N

S(diam D) (¢l (s(p. )
whereS(D.,) is the union of allD € 7, ; that share at least one common vertex with.
Combining @A.9)—(A.11), we have
(A.12) el B2,y S 112 (s(p.))-

The estimateA.6) is obtained by summing up\(12) over all D, € 7y, ;. a
Proof of Lemma.5. Letv € V;,(T) be arbitraryp; = v|,, €Vj,; andw; = E;v; €V, ;.
It follows from (3.3), LemmaA.1, and LemmeB.4 that
(A13) 1 D1vjla1/200,) + D205 H1/2000,) = VWil H1/2(00;)
S lwilmze,) ~ villm2e,,7, )

Combining @A.13), (3.1), and (L.4), we find

J
1 o7 112
Z @ || [%]] HLg(e) + Z (‘Dlvjﬁ{l/?(aﬂj) + |D2”j|§11/2(aﬂj))

ecéy, J=1
ecIl’ 1 9 J
A.14 ¢
(A14) ST I+ Wl 5,
eeecé,‘lﬁ J=1

= |’U|%12(Q,Th) ~ Ap(v,v).

On the other hand, it follows from Lemn¥a 1 that there exist functions; € H?(9;)
for1 < j < J such that

(A.15) and V¢ = V|,

G ’an =W ’aﬂj ’an

(A.16) Gila2(0,) S IVwjlgi200,)-
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Letve, € Vi ; be aQq Bogner-Fox-Schmit quasi-interpolant ¢f. In view of (A.15)
and Remarld.2, we have

(A17) v, ’aﬂj = Cj|an = Ej”j|afzj and v“Cj|an = VCJ‘L‘)QJ = V(Ejvj)’aszj'

Letz; = v, € V}, ;. Itfollows from the definition off;, Lemma3.3 LemmaA.4, (A.16),
and A.17) that

(A.18) Zj‘BQ :Uj’a§2~ and VZj’aQAZVUij,y
A19) Nzl g S Il S Gz, S 1Vwilmen,)-

Now we takez € V}, such thatz]Q = z;. It follows from (A.18) thatz = v up to first

order onI'. Therefore we can apply Lemnia4, (1.4), (3.1), (A.18), (A.19), and 3.3 to
obtain

Ap(v,v) < Ap(z,2) = |Z‘%I2(Q,Th)

J
2
Z | H[[ :I]HLQ(G) +Z|||Zj||‘§{2(gjvTh,j)
(A.20) = i=1
J
< Z Tl II[[O”]]HLQ(@ +> (|D1vj|§p/2(a@j) + |D2”j|§fl/2<anj>)'
s i=1

The equivalence3(4) follows from (A.14) and (A.20). a
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