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SPECTRAL DEFLATION IN KRYLOV SOLVERS:
A THEORY OF COORDINATE SPACE BASED METHODS *

MARTIN H. GUTKNECHT

Abstract. For the iterative solution of large sparse linear systemdevelop a theory for a family of augmented
and deflated Krylov space solvers that are coordinate basth isense that the given problem is transformed into
one that is formulated in terms of the coordinates with respethe augmented bases of the Krylov subspaces.
Except for the augmentation, the basis is as usual genebgtesh Arnoldi or Lanczos process, but now with a
deflated, singular matrix. The idea behind deflation is tolieily annihilate certain eigenvalues of the system
matrix, typically eigenvalues of small absolute value. Tedation of the matrix is based on an either orthogonal
or oblique projection on a subspace that is complimentatheaeflated approximately invariant subspace. While
an orthogonal projection allows us to find minimal residuaim solutions, the oblique projections, which we favor
when the matrix is non-Hermitian, allow us in the case of aac#y invariant subspace to correctly deflate both the
right and the corresponding left (possibly generalizedgespaces of the matrix, so that convergence only depends
on the non-deflated eigenspaces. The minimality of the wesid replaced by the minimality of a quasi-residual.
Among the methods that we treat are primarily deflated vessid GMReS, MINRES, and QMR, but we also extend
our approach to deflated, coordinate space based versiaisesfKrylov space methods including variants of CG
and BCG. Numerical results will be published elsewhere.

Key words. Linear equations, Krylov space method, Krylov subspacehatktdeflation, augmented basis,
recycling Krylov subspaces, (singular) preconditioni@GdyiRES, MINRES, QMR, CG, BCG

1. Introduction. Krylov space solvers are the standard tool for solving varge sparse
linear systemdAx = b by iteration. But for many real-world problems they only gerge in
a reasonable number of iterations if a suitable precomditgptechnique is applied. This is
particularly true for problems where the matxhas eigenvalues of small absolute value —
a situation that is very common in practice. A complement@aciinique for dealing with such
problems can be viewed as applying a singular left prectmmdit that deflates the matrix in
the sense that small eigenvalues are replaced by zero algesv We first have to identify
an approximately invariant subspagehat belongs to a set of such small eigenvalues. Ways
to do that have been extensively discussed in the literandewill therefore not be a topic
of this paper; seeg.g.,[1, 3, 6, 9, 12, 37, 42, 43, 44, 45, 48, 57, 62]. By using an orthog-
onal projectionP whose nullspace i€ the Krylov space solver is then applied only to the
orthogonal complemerf+ by restricting the operatok accordingly. The basis constructed
implicitly or explicitly by this restricted operator is aognted by a set of basis vectors for
Z. In some algorithms based on short recurreri€esay also include eigenvectors that the
iteration has identified well already and which in the seauight cause loss of orthogonality
if new basis vectors were not reorthogonalized against thepractice, the dimension of the
deflation spac& may get increased during the solution process or the spaggebadapted,
in particular if a restarted algorithm is employed. In thégpr we assume for simplicity that
Z is fixed.

A relevant detail of the approach discussed here is thatdkis lof Z is assumed to be
given as the columns of a matrix of the folh= AU. So, the preimage of the basis, the
columns ofU, are assumed to be known. In practice this means that we eficgtghe matrix
U, which also spans an approximately invariant subspata the chosen eigenvalues, and
then compute the imagé = AU. This implies that the restrictioA |z of A to Z can be
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inverted trivially: if, say,y = Zk € Z, thenA~'y = A~1Zk = Uk € U.

Applying a Krylov space solver to a linear systéax = b means to construct a sequence
of approximate solutions,, that are of the fornx,, € xo + K,,(A, ro), wherexg is a chosen
initial approximationry := b — Ax is the corresponding residual, af@,(A, ry) is the
nth Krylov subspace generated 8y from ro. (For its definition see Sectiok) Then,
r, € ro + AK, (A, ro), and the goal is to make, small in some norm. Therefore, solving
the linear system with a Krylov space solver can be undedsissuccessively approximating
ro by elements of the subspaca«C,,(A, ry).

In the methods described here first/C,,(A,rg) will be replaced by the subspace
AICn(K,?O), where the deflated operat& := PAP is singular, and, := Pry € 2+,
so that we will haden(K,?o) C Z*. Note that onZ*, and thus also on the Krylov sub-
space, the restrictioniﬁ is equal to the restriction dPA; thus only one application d?P
is needed for applyingv.. On the other hand, as search space for approximate sautign
this Krylov subspace will be augmented#dythat is,

(1.1) Xn € X0+ Kn(A,To) +U, T, €10+ AKL(A,To) + Z.

If 2L+ is A-invariant, AICn(K,fO) C 2+, so we can view the approach chosen here as
splitting upry in its two orthogonal componernis € Z+ andr, — T, € Z. The preimage of
the latter component can be computed in the trivial way netlibefore, while the preimage
of Ty is approximately computed with a Krylov space solver fox = T, acting only in
Z1. However, some complications occurdt’ is not A-invariant, which is the usual case.
Treating these complications suitably is the main aim of gaper. In any case, we will see
that we can first solve the restricted probl&m = r, by a standard method such as GER
[53] and subsequently compute the still ‘missing’ componenthef solution by solving a
small triangular linear system.

While we will quickly also review the ‘symmetric case’, wiegthe linear system is Her-
mitian (or real and symmetric), we are here mostly inteckgtehe ‘non-symmetric case’,
where our main message is that it may be preferable to refilacathogonal decomposition
of rq by a non-orthogonal one. To this erfd,must be chosen as an oblique projection with
the property that when its nullspacggis A—invariant, so is its rang€=. In this way, we
not only can annul eigenvalues, but also deflate the corneipg left and right invariant sub-
spaces. This choice leads then in a straightforward way tauly ‘deflated’ GMRes and to
deflated QMR 2§]. Like in the symmetric case, if is A—invariant, the convergence speed
of the deflated method is then fully determined by the nontiflaigenvalues oA and the
corresponding invariant subspace. There is no need foridgmew convergence estimates
unless we want to estimate the influence of an inexact chéitesubspace.

Our general approach can be used to define deflated versiany &frylov space solver.
But in this paper we concentrate on coordinate space bastwdssuch as GMES, MIN-
REs[49], and QMR, where the Arnoldi or the Lanczos method is usedtttegate a series of
bases of the nested Krylov subspaces. As is well known, Hoiwsus to reformulate a mini-
mum residual problem as an equivalent or approximatelyadgrt least squares problem in
coordinate space, which can be solved by updating the QRwjazsition of a Hessenberg or
tridiagonal matrix.

Orthogonal and biorthogonal residual methods such as3dz;ahd BICG [40, 23] can
also be realized in this way, but are then normally considiégss attractive, perhaps due to
the possible nonexistence of some of the iterates. Hereeadrid, we only introduce related
deflated quasi-(bi)orthogonal residual methods.

A further main goal of this paper is to present all these mashin a common framework
that relies on a splitting of the space into two complemsmgabspaces, which can be cho-
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sen in various ways. We favor here the above mentioned cheilezting a partition of the
spectrum, but in the nonsymmetric case this leads to a cowifiic the choice imposed by
residual minimization. In contrast to our treatment, theatbent general treatment and review
of augmentation methods by Eiermann, Ernst, and Schneiégis] mostly restricted to the
application of orthogonal projections and does not capéaalpon the knowledge of bases for
bothi/ andZ assumed here (unless they areinvariant and thus equal). A further difference
is that their treatment is aiming for augmented minimaldeal methods, in particular GM-
REs, while we will drop optimality in Section§-9 and replace it by some near-optimality.
Another interesting discussion and review of augmentadimh deflation methods is due to
Simoncini and Szyldg5, §9].

Itis a well-known fact about Krylov space solvers that aigiar the smalles2-norm of
the residual, that is, applying G M without restarts, is not only excessively memory con-
suming, but is often also not much faster than using altermatethods that are suboptimal.
In practice, it is not important to find the fastest solvet,touapply an effective precondition-
ing or multilevel method. Augmentation and deflation are pdul options along these lines,
and there are several different ways to apply the basic iddaseover, it is no problem to
combine them with other preconditioning techniques.

Literature. Augmentation and deflation of Krylov space solvers have h@eposed
in various forms in a large number of publications. Many c& thethods differ not only
algorithmically and numerically, but also mathematical§ome keywords associated with
such methods are ‘(spectral) deflation’, ‘augmented basexiycling Krylov subspaces’,
‘spectral preconditioning’, and ‘singular preconditiogl. The primary goal is always to
speed up the convergence of a solver, but the applicatioiméarl systems with multiple
right-hand sides and to systems with slowly changing mainik right-hand side is also often
mentioned.

To our knowledge, the first suggestion of an augmented Krgfmace method that in-
cluded both the deflation of the matrix and the correspongingection of the initial residual
came from Nicolaides4g], who submitted on May 13, 1985, such a deflated CG algorithms
based on the three-term recursions for iterates and rdsidondependently, Dostal B] sub-
mitted in January 1987 a mathematically equivalent defl@@dhlgorithm based on the well-
known coupled two-term recursions; he even gave an estifoathe improvement of the
condition number. In June 1987 Mansfieldl] submitted additional numerical evidence for
what he referred to as Nicolaides’ method of deflation, butas actually using a 2-term CG
algorithm. The same algorithm was more than ten years lg&naliscovered by Erhel and
Guyomarc’h L9 (deflation of a previously constructed Krylov subspacg)Saad, Yeung,
Erhel, and Guyomarc’hd{], and, independently, by Vuik, Segal, and Meijeririk], who
combined it with preconditioning by incomplete Choleskygadmposition. All three papers
refer to Nicolaides48], but not to Dostal 13] and Mansfield 41], whose articles are much
closer to their work. From a Google scholar search one canlede that it was Kolotilina
[39] who ultimately promoted Dostal’s papetd] to a larger audience. But, his two related
papers 14, 15] are not even mentioned by her. Early citations to Mansfielde also had
two follow up papers, are by Fischezq] and Kolotilina [39]. To achieve the optimality of
the CG error vector in thé\-norm an oblique projection has to be used (see Secfidns
and12), which can be viewed as afi-orthogonal projection however, and has nothing to
do with the oblique projections promoted here. Before, iB2,Kharchenko and Yeremin
[37], followed, in 1994, by Erhel, Burrage, and PohB[ suggested GMRs algorithms with
augmented basis and a corresponding nonsingular righopd@oner that moves the small
eigenvalues to a multiple large eigenvalue. Later Bagla@ayetti, Golub, and Reichel
[6] constructed a left preconditioner with the same effect; [§6€, pp. 286—289] for a brief
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comparison of these three preconditioners. Also in the 19i€8l0s, Morgan43] proposed
GMRESs with augmented basis but no explicit deflation of the mataimd de Sturler 1]
suggested an inner-outer GMRGCR algorithm with augmented basis and later, in other
publications, several related methods. S&@d put together a general analysis of Krylov
space methods with augmented basis, which was further glezest in the above mentioned
survey article of Eiermann, Ernst, and Schneided].] Many more publications followed;
see,e.g.,[1, 24, 45, 57, 63] for further references. The starting point for the pregmayer
has been the description of recycledNWRES or RMINRES by Wang, de Sturler, and Paulino
[62], which, after a minor modification that does not change tla¢h@matical properties, fits
exactly into our framework. Their orthogonal projectiBnand the corresponding deflated
matrix A have been used beforeg.,in [16, 11, 12]. They are the basic tools of our approach
in 2—4. But so far the oblique projectidf that is the basis of our approaches of Sectio+ts
only seems to have been used for Ahuja’'s RecyclinG B(RBICG) [4, 5], which does not

fit into our framework; see Sectidr® for how it relates to our work. In particular, the oblique
projection applied by Erlangga and Nabbe&®][for their version of deflated GMREs is dif-
ferent from our. In fact, the projection o2(] generalizes the one that is typical for deflated
CG [48, 13,41]. The connection to some of these alternative choices witplained in Sec-
tion 11. Our approach is also different from the one of Abdel-Reh¥organ, and Wilcox

[2] for their deflated BCGSrAB, and the one of Abdel-Rehim, Stathopoulos, and Orginos
[3] for their Lanczos based combined equation and eigenvaluers

We must also mention that in a series of papers that culngriat@1, 47, 60] it has
been shown recently that deflation, domain decompositiod,naultigrid can be viewed as
instances of a common algebraic framework.

Outline. We start in Sectio2 by introducing the basic setting for a particular version of
augmented and deflated GMRbased on an orthogonal projection that annuls approximate
small eigenvalues, in the sense that they get moved to zempdssibility of breakdowns of
this method and its adaptation to symmetric problems, wiBvERES turns into MNRES,
are then discussed in Sectio®st. In Sectionss—6, we modify the basic setting by intro-
ducing an oblique projection that enables us to deflate appaie (possibly generalized)
eigenspaces and to introduce a truly deflated GddRiethod. By making use of an adjoint
Krylov space generated b we next explain in Sectiong-9 how we can adapt our ap-
proach to the nonsymmetric Lanczos algorithm and introdudeflated QMR method and
a simplified deflated QMR method. The latter hag.,a well-known application in quan-
tum chromodynamics. Moreover, in Sectibbwe describe a different way of computing the
component of the solution that liestify and in Sectiori2 we briefly point out that our frame-
work could in principle also be used to define coordinate sjmased deflated (bi)orthogonal
residual methods that are approximately equivalent to @efl@G and BCG methods.

Notation. We denote the range (or, the image) of a maik by R(M). For the
nullspace (or kernel) d¥I we write '(IM). Sometimes we introduce the additional notation
M := R(M) for the range. As usual, the first column of the< n unit matrix ise;; addi-
tionally,e, € R"*! is e; with a extra zero component appended to it. LikewHg,andT,,
will be (n 4+ 1) x n matrices whose top x n submatrices ar#l,, andT,,, respectively.

2. Deflation by orthogonal projection; deflated GMRES. Consider a nonsingular lin-
ear systemAx = b of size NV x N. LetU € CV** have full rankk, wherel < k < N, and
set

U :=R(U), Z:=AU, Z:=R(Z)= AU,
and
E.=7"7, Q:=ZE'7Z", P=I-Q=1I-ZE'Z".
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The subspacdg and Z will be used to augment the search spaces for the approxsohie
tionsx,, and the corresponding residuals := b — Ax,,, respectively. Note tha@? = Q,
P2 = P, Q" = Q, andP" = P; so,Q is the orthogonal projection ont&, while P is the
orthogonal projection onto the orthogonal complem&ntof Z.

If the columnsu,; of U € CV** are chosen to hbA" A-orthonormal, so that the columns
of Z = AU form an orthonormal basis of, which we will from now on assume, then
E = I, and the formulas fo@ andP simplify to

(2.1) Q=1727", P=1-Q=1I-27z".

Alternatively, we could compute a QR decomposition&dt to find a matrixZ with or-
thonormal columns; see Secti6pwhere we will temporarily apply this.

As mentioned in the introduction, the first basic idea is giriet the Krylov space solver
to Z+ by projecting the initial residual, into this space and by replacing the original oper-
ator A by its restriction to this space:

To:=Pry, A :=PAP.

A corresponding initial approximatioxy is not needed. (Ang, € x¢ + U would satisfy
1o := Prog = P(b — Ax() = P(b — AX), and for theoretical purposes we could even set
X0 := A~1PAx to achieve thaf, = Pb — AXy, orX, := A~} (PAx, + Qb) to achieve
thatty = b — A%,.) Note thatrank A < N — k sincerankP = N — k, soA is always
singular.

Given any initial guessxg, the second basic idea is to approximate the solution

x, := A~ b by iteratesx,, from the following affine space:

(2.2) Xn € X0+ Kn +U,
where
(2.3) Kn = Kn(A,To) := span {Ty, ATo, ..., A" 'y}

is the nth Krylov subspace generated b)ﬁ from ¥,. Sincer, € Z* and

~

R(A) C R(P) = 21, we havek,, C Z*+. The choice2.2) implies that
(2.4) rn=b—Ax, €ro+ AK, + Z.

If we construct a nested sequence of orthogonal bases fdtritev subspacefin by
an Arnoldi process started with, := 7/, whereg := ||Ty]|2, we can express this, for
eachn, by the Arnoldi reIationKVn =V, H, ,withV, = [ Vo ... Vp_1 } and an
extendedn + 1) x n upper Hessenberg mati#,,. But sinceR(V,,) = ;En C 2zt we have
PV, =V,, and therefore

(2.5) AV, = PAPV, = PAV,,,
so that the Arnoldi relation simplifies to
(2.6) PAV, =V, H, .

This means that only one projectiéhis needed for applyin@ in Z+.
In view of (2.2) we can represent,, as

(2.7) x, = xo + V,.k,, + Um,,
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with coordinate vectork,, € C* andm,, € C*. In the usual way, multiplication b and
subtraction fronb yields then for the residuals, := b — Ax,, the representation

(2.8) r, =19 — AV, k, — Zm,, .

Due to the Arnoldi relation4.6) and the orthogonal decompositiep = 19 + Qry =
vofB + Qr, this becomes, witlC,, := Z"AV,, ¢ CF*™» andQ = ZZ", and in analogy
to the derivation for the symmetric case 62[*,

ry, = VOﬁ + QrO - (P + Q)Avnkn —Zm,

(2.9) =[Z Vuulq,,
where

L ZHrO Ik Cn my k+n+1
(2.10) gn.:{glﬁ}—[o HnHkn] eC

may be calledleflatedGMRES quasi-residuain analogy to the terminology oPB. One
option is to choose,, of minimal 2-norm. Then 2.9) is the key relation for a GMRSs-

like approach to this problemr,, is represented in terms of the basis consisting of the
columns ofZ and V,, ;. Since we assumg to have orthonormal columns as i.J),

[ Z V., ] has orthonormal columns too, and the coordinate map is isame the
2-norms ofZ @ R(V,,11) € CV andCF++1, respectively, so that

H
(2.11) Irallz =g, ll2 = H[ Zglg‘) ] - { 1(,; E: ] { 111:: }

As in the original GMRes method p3] the minimization of||r, ||z reduces in theith step

to a least squares problem for minimizing the right-hane sifi(2.11), which can be solved
recursively by updating in each iteration the QR decompmsif the(n + 1) x n Hessenberg
matrix H,,. Note that the firsk columns of the least square problem are in diagonal form,
hencea fortiori in upper triangular form already. Hence, tfle+ n + 1) x (k + n) least
squares problem in2(11) decouples from the beginning into @ + 1) x n least squares
problem fork,, and an explicit formula fom,,:

2

(2.12) min ||r,||2 = min|q |2 = min e —H,kully m,, = Z"'ry — C,k, .
—n ne n

This decomposition of the problem suggests that we searsthfdir a solution of the
reduced least squares problem, that is, determine a suitie®n, the matricesv,, and
H,, resulting from the Arnoldi process, and the correspondisigt®n k,, in coordinate
space. This first stage can be understood as solving thelaitygpreconditioned system
PAx = Pb by standard GMRS, or as solvingAx = 7 in Z+ by GMRES. Subsequently,
we may calculate the related,,. There is no need to compuie,, for all n since the2-norm
of the residuat-, is not affected by the second stagexif, is chosen according t@(12.

We will call the resulting algorithndeflatedGMRES though it is not equivalent to the
methods introduced by Morgan3 and Chapman and Saa@ under this namé.Our pro-
posal also differs from those of Kharchenko and Yererify fnd Erhel, Burrage, and Pohl

1To change to the notation 08f] substitute, in particulatZ ~ C andC,, ~~ B,.

2In both [9] and [43] a cycle of deflated GMRsconsists in first applying a fixed number of GMBsteps with
A starting fromx (instead of using& andXg), and then adding orthogonalization steps to the vectdksi;. This
yields at the end atin + k + 1) x (m + k) least squares problem. So the orthogonal projed®ds only applied
at the end of each cycle. For an alternative interpretatimhrealization of Morgan's method sel[ §4.3] and B4].
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[18], who construct nonsingular preconditioners that movelseigenvalues away from zero.
However, in Sectiorb we will come up with another proposal for the nonsymmetriseca
which we think is better suited to deflate approximate eig@sp

3. Breakdowns of deflated GMRES.Unfortunately, in general, the deflated GM&
method of Sectior? can break down since the Arnoldi process described by tlatiosl
AV, =V, H, , which is used to set up the least squares problen2.it?, is applied
with a singular matrixA. The least squares problem originates from sol\ﬁn?g = 1o by
GMREs for somex € Z+1. SinceR(A) C Z+ andt, € 2+, the linear system and the
Arnoldi process are restricted . Hence, it is the restriction oA to 2+ which matters.
This restriction is singular if and only ifank A < N — k = dim Z*. But recall that in
applications the eigenvalues of this restriction are sepgddo approximate the nondeflated
‘large’ eigenvalues oA\ ; therefore, in practice it is very unlikely that the restiioa is singular
and breakdowns can occur. N

If rank A < N — k, it may happen that, € N(A) N Z+ or that, for somer > 1,
Vpo1 € N(A) R(A) C N(A)n Z+. ThenAv,_, = o and, trivially, the component
orthogonal tok,, = R(V,,) of this vector is also zero and cannot be normalized. Mongove
vH Avn 1 = VHo = o, so the last column oH,, is zero except for its undetermined
(n + 1,n)— element which we may set equal (1(100 In particular, the top square part
H, of H, is singular Hence, the Arnoldi process terminates aftdaecﬂliaﬂg the invariant
subspac®(V,,) = K,, and GMRes breaks down. Note thalim (AIC ) = rank (KVH) =
rank (V,,H,,) = n — 1 sincerank H,, = n — 1. Is this the only type of breakdown?

The application of Krylov space methods to singular systbas been investigated in
detail by Freund and HochbrucRT, §§ 3-4] and others. In particular, the application of
GMRESs to such systems has been analyzed by Brown and WatkeiLpmma 2.1 of §]
adapted to our situation reads as follows.

LEMMA 1. If GMRESsis applied toAX = T, and ifdim K,, = n holds for somes > 1,
then exactly one of the following three statements holds:

() dlm(AIC y=n-—1 andAX # T, for everyx € K,;

(i) dlm(AIC )= dlmlCn_H =n, X, := V, k, is uniquely defined, anAxn =T,

(i) dim(AK,) =n, dimK,11 = n+ 1,%, is uniquely defined, buAx,, # T,.

We call Case (i) aoreakdownof GMRES, Case (ii) theterminationof GMRES, and
Case (iii) thecontinuationof GMRES. (In contrast, Brown and Walke8] and other authors
also call Case (i) a breakdown, although in this case theo&fimding a solution of the linear
system has been achieved.) Note that Case (i) implieslthai’,,;1 = n, hence also in this
case the Krylov space is exhausted.

In the situation wheré\v,,_; = o discussed before, we have obviously Case (i) since
Arnoldi terminates, but the resulting equatien3 = H, k,, has no solution. That this is
more generally a consequencedifn(@l%n) = n — 1 can be seen as follows: if we had
chosen fori%n the so-called Krylov basis, that is

V%K) = [ /I‘\Q A/I‘\Q c. Anil/fo } R

then, in Case (i), the Hessenberg relation resulting aftéeps would baA VY = V(K)H(K)

with a companion matrisH (" that has a zero element in its _upper right corner, so that
e; € R(Hy ) This just reflects the fact that the restrictionfoto iC,, has a zero eigenvalue:
the last column oL contains the coefficients of the characteristic polynonilte also

that the basis transformation frowh, to V(K) is represented by a triangular matrix and leaves
the direction of the first basis vector invariant.
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Clearly,dim(AK,) = n — 1 (i.e., Case (i)) holds if and only ifV'(A) N K, # {o}.
Conversely, if this breakdown condition does not occur foy a, GMREs will ultimately
terminate with Case (i), where the unique solutionAot = 1y is found. At intermediate
steps, where Case (iii) occuss, = V, k,, is the best least squares solution oukof.

In summary we obtain for deflated GMR applied toAx = b the following theorem.

THEOREM2. If Tp € N(A), then as long asV(A) N K,, = {o}, the deflatedlSMRES
method defined bi2.6)—(2.7) and(2.12) yields in thenth step the approximate solutios, €
xo+ K, +U WhoseAresidua:Ln has minimaR-norm. R

However, if V'(A) N Z+ # {o} and if x, is chosen such that, € N(A), then(and
only ther deflatedGMRES breaks down in the first step where= 1. Moreover, at step
n > 1, if (and only ify N(A) N K, # {o}, the method breaks down when attempting to
constructv,,. In case of a breakdown, the search spaget I%n + U does not contain the
exact solutiorx,.

If Z+ is A—invariant, breakdowns cannot happefl, = O, and the Arnoldi relation
(2.6) can be replaced by

(3.1) AV, =V, H .

Proof. It remains to prove the last two sentences. Firstly, for@pby contradiction,
assume that the search space contajnsox, := é—lb = xg + X, +u,, wherex, € K,
andu, € U. Then, sinc€?Au, = o andPAXx, = AX,,

o=b— A(xp+ Xs +u,)
=Pry — PAX, — PAu, + (I-P)(rp — AX, — Au,)
= (Fo — AR,) + Q(ro — AR, — Au,).

Since the first parenthesis iSAEfIJ‘, while the second term is i&, both must be zero. In
particular, we must havé, = AX,. However, this contradicts case (i) of Lemrhawhich
applies when deflated G M breaks down and says that ¢ IC,,.

Secondly, ifZ+ is A—invariant, we have in extension df.f) at thenth step

(3.2) AV, = PAPV, = PAV,, = AV,,.

This implies that solving the systex = T, with GMRES (and starting vectok, = o)
is equivalent to solvingdAx = 1y with GMRES. SinceA is nonsingular, there are no break-
downs (described by Case (i) of Lemrhg and ultimately the solution will be found.é.,
Case (ii) will occur).

Finally, sinceR(V,) C Z+ and the latter set is assumed to Aeinvariant, we have
R(AV,) C Azt = 2z+ sothatC,, = ZHAV,, = 0.0

Egs. 8.1) and @.2 suggest that in the case whefe- is A—invariant we might apply
GMREs with A instead ofPA. But in some cases this might be risky due to round-off
effects: round-off components i may grow fast since\ ~! has large eigenvalues there.

Note that forn = 0 the breakdown conditio, € A/(A) can be written as
N(f&) NKo # {0}, in accordance with the breakdown condition for ttik step.

The following simple2 x 2 example taken frond1] exemplifies a breakdown in the first
step:
(33) A= { !

O =
—_
]
Il
| — |
O =
o O
| I
K
Il
| — |
o O
O =
—_
=
o
Il
| — |
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whereA = PAP = O andvy = Ty = 1o, henceAv, = o. S0,Z = N(P) = span {ey},
ZL = span{e1}, vo € N(A) N Z+ here, and we have a breakdown in the first step.

We will generalize this example in the Appendix, where wd shlow that breakdowns
are also possible at any later step upte: N — 1.

Based on Theorera we may formulate conditions that characterize prossibility of
breakdowns in case of an unlucky choicexgf that is, an unlucky, € Z+.

COROLLARY 3. DeflatedGMRES can break down in the first Arnoldi stéfor deter-
mining v, ) if and only if the following four equivalent conditions hold

(1) N(A)n 2+ # {o},

(2) AZ+ N Z # {o},

(3) Azt +Z#CN,

(4) rank A <n —k.

If these conditions are fulfilled for some givénand Z, then we can choose, (if b is
given), so thatGMRESs breaks down in the first step.

The equivalent Conditior(§)—(4) are also necessary for deflat€&MRESto break down
in a later step.

Conversely, a breakdown cannot occur in any step if equaditsts in Conditiong1)—(4),
or, equivalently, ifA(A) = Z, thatis, if AZ+ @ Z = CV.

Proof. According to Theoren2, Condition (1) characterizes the possibility of a break-
down in the first step. It says that breakdowns are possitdedfonly if there existy =
Py € Z+\{o} with PAy = PAPy = Ay = o, thatis, witho # Ay € N(P) = Z.
This is equivalent to Conditior2]. Moreover, sincelim Z = k anddim AZ+ = dimAZL =
N — k, the second condition is equivalent to the third one. Final= A (P) C A/(A) and
therefore Condition) implies thatdimN(K) > dim Z = k, thatis,rank A < n — k, and
vice versa. R

For a breakdown at step > 1 we need, by Theore, N'(A) N K,, # {o}. Since
K, C span {fo} + R(A) C 2+, Condition () must hold.

Conditions for the impossibility of breakdowns are obtairi®y negating the Condi-
tions (1)—(4), noting that alwaysV'(A) 2 Z, and observing the dimension statements given
abovel

Finally, we point out the following fact.

COROLLARY 4. The assumption thaZ ' is A-invariant is sufficient, but not necessary
for guaranteeing that no breakdown can occur.

Proof. SinceA is nonsingularZ+ is A-invariant if and only ifAZ+ = Z1. This
condition means that on the left-hand side of the negatedii@on (3) of Corollary 3 we
have an orthogonal direct sum:

AztezZz=2tepz=CV.

However,AZ+ @ Z = C¥ will hold wheneverAZ1 N Z = {o}; hence, the condition
that Z+ be A-invariant appears not to be necessary for guaranteeingeakthowns. The
following example proves this clairil

Example We slightly modify the example of3(3) by choosing

11 _[10 11 ~ [107_
A.:[l O}, P._[ ] PA_[O O}, A—[O O]_P.

As before,Z = span {es}, butnowA Z+ = A span{e;} = span{e; + ey} # Z+. Hence,
AZ' @ Z = C?. Consequently, for argy = Pry # o there will be no breakdown.
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Remarks(i) Note that whemA is not Hermitian, then the property that- is A—invariant
does not imply tha is A—invariant, andrice versa

(ii) In case of a breakdown we might restart deflated GMRESh witnew column
Zr+1 = Vv, appended t&. Repeating this measure if needed we will ultimately find a
least square problem of typ&.(1) with residual|r,|= = 0 and with, say, the originak
replaced byt + ¢. However, we cannot find the approximate solutionfrom (2.7) unless
we know the preimagesy.;; satisfyingvy+; = Augti, i =1,..., 7.

(iif) Some further results on breakdowns of deflated Gi$Rnd on how to avoid them
in deflated MNRES are given in 1].2

4. Spectral deflation for symmetric problems. If A is Hermitian, then so i, and
therefore the Arnoldi process can be replaced by a threeggmmetric Lanczos process, and
the extended Hessenberg maldy of the previous section turns into an extended tridiagonal
matrix T, , for which a symmetric Lanczos relation

(4.1) PAV, =V, T,

holds and whose upper square payt is Hermitian. AdeflatedMINRES algorithm called
RMINREs for the so simplified setting has been described in detail bypdVde Sturler, and
Paulino BZ. The same update procedure as in the originak REs method §i9] can be
applied to find the QR decomposition®f,. Wanget al.[62] also show that the approximate
solutionsx,, can still be updated by short recurrences. This is also seanthe fact stressed
here and in 31] that the results of RMVRES can be found by solving first the projected
problemAx =7, in Z+ by MINRES and then adding to the solution a correction terngin
see Sectiord0.

In the Hermitian case the properties of deflated GRiven in Theoren®? and Corol-
lary 3 persist and also hold for deflatedWVRES. In particular, the possibility of a breakdown
in the first step is still illustrated by thzx 2 example in 8.3). The possibility of a breakdown
at a later step is still proven by the example in the Apperglince the matridA there is real
symmetric.

We can reformulate the first part of Theorerfor deflated MNRES as follows.

THEOREMS. Let A be Hermitian; then so id. If To ¢ NV(A) = R(A)*, then as long
asN(A)N K, = {o}, the deflatedlINRES method obtained by adapting deflat@#REs
to the symmetric case yields in théh step the approximate solution), € xg + Kn+U
whose residuat,, hasAminiAmatZ—norm.

Conversely, ifV(A)NK,, # {o} for somen > 1 then(and only thendeflatedV INRES
breaks down in theth step.

Again, breakdowns cannot occur & is A—invariant, and in this case the projected
Lanczos relation4.1) can be replaced by the Lanczos relation

(4.2) AV, =V, T, .

A special feature of the symmetric case is tiat is A—invariant if and only ifZ is
A-—invariant. This is due to the fact that eigenspaces behontgi different eigenvalues are
mutually orthogonal, and higher dimensional eigenspaae$e split up in mutually orthog-
onal ones if needed. The definitida= PAP and the fact thaP is the orthogonal projection
onto Z+ yield then the following result on the spectral deflationAaf

THEOREM 6. Let A be Hermitian. IfZ is A—invariant, thenZ* is also A—invariant
and the restrictions oA, A, andO to Z and Z+ satisfy

4.3) ‘&‘zzo|z’ A‘ZL:A‘ZL'

3Note, however, thal is defined differently in31].
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Of course, 4.3 holds also ifA is non-Hermitian, and, by chance, bathand Z+ are
A-invariant.

5. Deflation by oblique projection: basic setting. So far we have based deflated GM-
REs and MINRES on orthogonal projection§) andP := I — Q, but for GMREs and
other solvers for nonsymmetric linear systems of equatibissmore appropriate to con-
sider oblique projections since the eigenspaceA @fre typically not mutually orthogonal.
Our approach is based on the natural splittingdf into the direct sum of twaA—invariant
subspaces. In general, the corresponding decomposititne sésidual search space will no
longer be an orthogonal one. We therefore modify the settfrRection2 as follows.

LetU € CNV** andZ € CN** have full rankk, and assume they are chosen such that
the matrixE defined by

Z:=AU, E:=27"%Z

is nonsingular. Then set

U:=R(U), Z:=R(Z) =AU, Z:=R(Z),
and
(5.1) Q=ZE'Z", P=1-Q=I1-ZE'Z".
Note that stillQ? = Q andP? = P, but now
(5.2) QzZ=2, QzZ'={o}, PzZ={o}, PZt=3zt,

where, as beforeZ* denotes the orthogonal complementZ)f So, Q is the oblique pro-
jection ontoZ anngZL while P is the oblique projection ontg alongZ. In particular,
N(P) = Z, R(P) = Z+. Again, the subspacésand Z will be used to augment the search
spaces for the approximate solutiogsand the corresponding residuals respectively.

If the & columnsz; of Z are chosen biorthogonal to theolumnsz; of Z, which means
that these two sets of columns form dual base€ aind 2, thenE = ZHZ = I, and the
formulas forQ andP simplify as before:

(5.3) Q=2zz", P=1-Q=1-12z".

Note that this is automatically true if we choose the coluwiri as (right-hand side) eigen-
vectors ofA and the columns dZ as the corresponding left eigenvectors. This property even
generalizes to multiple eigenvalues and defective matricéhe eigenvectors are suitably
chosen.

As in Section2 we further let

To:=Pry, A :=PAP.
Note that still
(5.4) NA)DNP)=2Z, RA)CRP)=2Z",

o) thaﬁ\gu the restriction ofA to 2, is a possibly singular endomorphismﬁf-. Con-

sequently, the Krylov subspac@% defined in 2.3 are all subsets of L sincet, € Z+.
Therefore, we will be able to restrict a Krylov space solwegt-.
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The reason for choosing this subspace lies in the followaregalization of Theorei®
Recall that ssimpleA—invariant subspace an A—invariant subspace with the property that
for any eigenvector it contains, it also contains all theeothigenvectors and generalized
eigenvectors that belong to the same eigenvalue;=#elp other words, choosing a simple
A-invariant subspace induces a splitting of the charatiepslynomial into two co-prime
factors and a related decomposition of the Jordan candioical B

THEOREM 7. Assume thag is a simplek-dimensionalA—invariant subspace ang is
the corresponding\"—invariant subspace, that is, for arg, Z € CV** with 2 = R(Z)
and Z = R(Z) there areG, G € C** such that, witht := ZHZ,

(5.5) AZ=7G, A"Z=7ZG, G=EHG"E".

ThenZ' is also A—invariant andzZ @ ZL — CN. Moreover, the restrictions ok, A, and
O to Z and Z* satisfy

(5.6) Al,=0[,, Alz =Alz.

Proof. To fix our mind, let us first choose a special basisZoand assume that has a
Jordan decomposition
= = J O
(5.7) Alz 7, ]=]z ZLHOJJ,
where despite our notatid, is at this point not yet known to be related 30" Eqn. 6.7)

just reflects the fact thaf is A—invariant in the assumed sense, thé the Jordan canonical
form ofA\Z, and thatZ contains the corresponding eigenvectors and generaligedwec-

tors, whileJ | is the Jordan canonical form GI\R(ZL) and the columns cﬁL are the corre-

sponding eigenvectors and generalized eigenvectorszJSq'ust consists of the ‘remaining’
eigenvectors and generalized eigenvectorslndonsists of the ‘remaining’ Jordan blocks.
Clearly, R(Z, ) is also anA—invariant subspace, anfl ® R(Z_ ) is a direct sum, but in
general not an orthogonal one. (Actually we could weakenagmimption: we need the
separation of the Jordan blocks Afinto two sets, but we need not that the eigenvalues are
necessarily different in the two sets.)

As is well-known, the rows of the inverse pfZ Z, ] are the left-hand side eigen-
vectors and generalized eigenvectorsAaf or, equivalently, the complex conjugate of the
right-hand side eigenvectors and generalized eigenvestax. To allow for another pair of
bases for the induced pair of invariant subspaces'fwe let, for some nonsingul& and
EJ_ c (Ckxk,

ZH] _[E O R
(5.8) [Zi].:[OEL}{Z ZL} ,
so thatE := ZHZ as before, and, in addition,
E, =217, Z"Z, = Opu(np) 27 = O(n_kyxi -

From the last two equations it follows that indeRdZ, ) = Z+ andR(Z,) = Z*, and
by (5.7) the latter space was seen to Aeinvariant. Moreover, multiplyingg.7) from both
sides with the inverse dfZ Z, ] andinserting%.9) yields

so  [m]a-[o s llo n]l% = ]|lm]
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So, the complex-conjugate of the columnsodndZ -+ span left-invariant subspaces. Finally,
taking the Hermitian transpose leads to

(5.10) AH[Z zL}z[Z ZLHE_H © HJH OHEH O},

o E/" o J} o EY

which implies in particular thaA"Z = ZE-HJ"WEM. This establishes5(5) in the case
whereG = J andG = E-HJHE". The general case @ andG follows by noting that
we did nowhere make any use of the Jordan structur® andJ | , but only of the2 x 2
block diagonal structure irb(7), that is, we referred to the Jordan structure just to ease th
discussion.

On the other hand, when indeed starting from a Jordan decsitigro(5.7) of A and
choosingZ andZ, so thatkE = I, andE; = Iy_x, we turn §.10 into a Jordan decompo-
sition (with lower bidiagonal Jordan blocks) Af*.

Finally, it follows from (5.7) and the properties @ that

Alz 7z, |-PaP|z Z, |-PA[O Z, |
(5.11) =P[o 7,3, |=]0 7z |

So,AZ = 0, and by comparison witt6(7) we findAZ, = Z,J, = AZ,, which proves
(5.6.0

But also in the typical situation whe® andZ+ are notA—invariant this pair of spaces
is well chosen, as the following simple fact underlines. B

LEMMA 8. LetZ, Z € CV** be given such thakE := Z"Z is nonsingular, let
Z := R(Z) and Z := R(Z), and chooséZ , Z, € CN*(N=k) sych that their columns
consist of bases of the orthogonal complemehtsand zZ4 respectively. Then

(5.12) [ZEMZ ZL}—[(E)EOJ,

where all three matrices are nonsingular. In particulBx, is nonsingular too, and
(5.13) ZoZt=Zazt=CV

are both decompositions 6 into (in general nonorthogonakcomplements.
Proof. The block diagonal structure of the right-hand side1.9 holds by definition

of Z, andiL, but we need to show that on the left-hand side the matv{icﬁs Z, } and

[ 7 7, } are nonsingular,e., their columns are linearly independent.

Letz, be any nonzero element &*. So,Z"z, = o andz, # o. For a proof by
contradiction, let us assume that is a linear combination of columns &, i.e.,z, = Zk
for somek € CN~*, Then,

o=7Z"z, = Z"7Zk = E"k,

which implies thatk = o, and thusz, = o in contrast to our assumption. It follows that
Z N 2+ = {o}. An analogue argument shows ti#at) Z+ = {o}. [

Remark. Note that, by definitonz @ 2+ = Z @ Z+ = CV are two other decom-
positions ofC", and they even feature orthogonal complements. In coptregeneral, the
decompositions in5.13 are not orthogonal, but they are adapted to the operatifrZ is
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exactly or nearlyA—invariant. In 6.7) we assumed that and Z., contain eigenvectors and
generalized eigenvectors, which, in general, is not trukérsetting of this and the following
sections. In general, we will have

(5.14) A[z ZL]z[Z ZLHG“ G”],

G21 G22

where the block€s1> andGs; can be expected to contain only small elements gndz+
are nearlyA—invariant.

6. Deflation by oblique projection: truly deflated GMRES. Let us now come to the
details of a correctly deflated GM#® based on the observations of the previous section.
Given an initial guessg, we choose as in Sectidnteratesx,, from

(6.1) Xn € X0+ Kn +U ,
where the Krylov subspaceﬁsn are still defined byZ.3). This implies that
(6.2) T, :Eb—AxOEro—i—AEn—i—Z.

We again construct a nested sequence of orthogonal basteefirylov sugspaceﬁn by
an Arnoldi process started with, := To/3, where nowry, := Pry € 2+ andg =
IIToll2- As before, this is expressed by the Arnoldi relatidiv,, = V.,.+1H,,. Since
R(Vy) = /€n C ZL we havePV,, = V,,, and therefore again

(6.3) AV, = PAPV, = PAV,,,
so that the Arnoldi relation still simplifies to
(6.4) PAV, =V, H, .

However, recall thaP and, henceA are now defined differently.
In view of (6.1) we represent,, again as

(6.5) X, = Xo + V,.k,, + Um,,

with coordinate vectork,, € C" andm,, € C*. Regarding the residuals, where we prefer
a representation in terms of an orthonormal basis, we nat&tbannot be expected to have
such columns, whence we propose to QR-decompdsmst:

(6.6) Z = Z.Rqr, Zh7, =1, .
Then, after insertind\U = Z = Z,Rqr, We get
(6.7) r, =r9 — AV, k, — Z,Rqrm,, .

Due to the Arnoldi relationd.4) and the decompositiory = 1o + Qro = v/ + Qry this
becomes now, witlQ = ZZ" = Z,RqrZ" andC,, := ZHAV,,,

r, = VOﬁ + QrO - (P + Q)Avnkn - ZORQRmn
=vo8 + ZoRqrZ "'ty — Vi 1H k,, — ZoRrZM AV, k,, — ZoRgrm,,
(6.8) =[Z Vanlaq,.
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where

— q?z — RQRzHrO _ RQR RQRCn my k+n+1
69 a,:=| gi [=| Pl [-[T6 E ][] e

is thetruly deflatedGMRES quasi-residual

The columns of eacd, andV,,; are still orthonormal, but those &, need no longer
be orthogonal to those 6f 1. So, in general|r,||> # ||g, |2, but since
(6.10) rn = Zoq), + Vysq-  With Zoq), =Qr, € 2, V,q- =Pr,c 2"
we have at least
(6.11) la, 13 = llay |3 + ;15 = [Qrall3 + [Prall3 -

Itis therefore tempting to minimiziy |2 instead of|r, [|2, and as in Sectiod this amounts
to solving am x (n + 1) least squares problem with the extended Hessenberg riBjrior
minimizing ||q; |2, that is, for findingk,, and subsequently choosing,, such thay® = o:

(6.12) min||q ||z = min ||qJ‘||2 = min |e,f—-H k|, , m,, := ZHro—ann.
—Nn —n k G(CH

At this point we see that the QR decompositionZbfs actually not needed since we can
achieve thaty;, = o and thusZ,q;, = o. In other words, we can represantas

(6.13) r, = [ Z V.1 }gﬂ
with
zZ 7H
~ q, — Z Iro _ I Cn my, k4+n-+1
(6.14) gn'_[gﬂ"{glﬁ] {0 H K, ecC

and are then lead to the same solution as giverbby?. Formally there is very little differ-
ence between this algorithm and the one of Secidout there is an essential mathematical
improvement regarding the deflation Af. In view of Theoren we call the new algorithm
truly deflatedGMREs. B

In practice, this algorithm will be applied with restartedathe matriceZ andZ with
the approximate right and left eigenvectors may be upddtedch restart.

Truly deflated GMRS can break down in the same way as deflated GddRHere is
the adaptation of Theore® which only requires very small changes.

THEOREMO. If Ty € N'(A), thenaslong as/(A)NK,, = {o}, the truly deflatedG M-
REs method defined bf6.4—(6.5), (6.9), and (6.12) yields in thenth step the approximate
solutionx,, € xo + KC,, + U whose quasi-residuajn defined by(6.9) has minimabR-norm.

However, if V'(A) N Z+ # {o} and if x, is chosen such that, € A/(A), then(and
only then truly deflatedGMRES breaks down in the first step wheme= 1. Moreover, at
stepn > 1, if (and only if) M(A) N K,, # {o}, the method breaks down when attempting to
constructv,,. In case of a breakdown, the search spaget /En + U does not contain the
exact solutionx,.

If Z+ is A—invariant, breakdowns cannot happefl, = O, and the Arnoldi relation
(6.4) can be replaced by

(6.15) AV, =V, H .

Proof. Essentially we just have to replace in the proof of Theofeewvery occurrence
of Z+ by Z+. This applies also to the last sentence, includ®id®. In that proof we only
made use of andZ" being complimentary subspaces, but not of their orthodynél

Corollaries3 and4 can also be adapted easily.
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7. Deflation by oblique projection: the adjoint Krylov space. Some very efficient,
computing time and memory space reducing alternatives tdR&8/re based on the non-
symmetric Lanczos biorthogonalization process. Our aith@hext two sections is to adapt
the approach of the previous two sections to these alteasatin particular to the quasi-
minimal residual (QMR) method of Freund and Nachtigzd][ which is fully analogous to
GMREs. To this end, we first need to look at the adjoints of the prtapes Q andP of (5.1)
and the adjoint of our restricted operatar:= PAP.

The adjoint projections are defined by
(7.1) Q":=zEHzH, PH=1-Q"=1-ZE Mz",
from which we see that the propertiés?) of Q andP are supplemented as follows:

(7.2a) QzZ=2, Qz* = {o}, PZ = {o}, Pzt =2z",
(7.2b) Q"'z=2, Q"zt={o}, PHz={o}, PHzli=2z!

So,Q" is the oblique projection ontg alongZ+, while PH is the oblique projection onto
Z+ alongZ. In particular,

(7.3) WN(P)=2Z, /\[(PH):g’ R(P):ZNL’ R(PH) = z*.
For the adjoint operatoh™ = PHAHPH this means that
(7.4) NAMO NP =2,  RA") CREPY) = 2",

We define the dual Krylov subspaces (sometimes called théoshapaces) started from
% ezt by

(7.5) Ln =Ko (AR Vo) := span {vo, AMvo, ... (AP 15} C 2+,

Methods based on implicitly or explicitly constructing feschn a pair of biorthogonal bases
should choose the right and left bases, respectively, uath t

(7.6b) R([Z V. |)=ZelicZezt=C".

In the rest of this section let us again consider the caseenfiés A—invariant, which
led to TheorenY and motivated using deflated solvers in the first place. Tdrad@rtranslates
to the adjoint operator as follows. B

THEOREM 10. Under the assumptions of Theoremz and 2+ are AH—invariant, and
the restrictions oA", A", andO to Z and 2+ satisfy

(7.7) ‘&H‘ZZO’Z’ ‘&H‘ZLZAH‘ZL'

Proof We takeZ andZ, as given by the Jordan decompositiéng, and choos& and
7, , as towards the end of the proof of Theorénsuch thalt = I, andE; = Iy _j. Then,
(5.9 simplifies to

(7.8) [ZHA—[g)ﬁHgE]
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while (5.10 becomes

79) stz oz )=z o]y 0l

From the proof of Theorermwe know already thaZ andZ , contain in their columns bases
of Z and Z1, respectively; so these two spaces Aré—invariant. Finally, in analogy to
(5.17) we have

K“[i ZL}:PHAHPH[Z ZL}:PHAH[O z, |
(7.10) =P[O z, 3 ]=[0 Z,37],

from which, by comparison with7(9), we find the result{.7). O

8. Deflation by oblique projection: deflated QMR. Now we are ready to introduce
a deflated QMRmethod that is analogous to our truly deflated G&&Rbut replaces the
Arnoldi process by the nonsymmetric Lanczos process. Titer laas the important feature
that it can provide approximations of both right and leftezigectors. For details about the
QMR method, see Freund and Nachtigzd][ for a presentation in the notation used Here
see B2). Deflated QMR is started with the pair

(8.1) vo :=To/B=Pro/B, B:=|Tol,
(8.2) Vo :=T0/f3, 3= %ol

wherer, must be chosen such that€ Z+ andrtit, # 0. The Arnoldi relation 6.4) is then
replaced by a pair of Lanczos relations

(8.3) PAV, =V, T,, PUA"V, =V, T ,
where we may enforce that all columnsVf, and\anH have2-norm one, and where
Dn+1 = \~77Hl+1Vn+1

is nonsingular diagonal or, if look-ahead ste@$][are needed, block-diagonal. With this
choice {7.639 and (7.6 hold.

So, if we start again from the ansa@z%) for the approximate solutions,, which implies
the representatior®(7) for the residuals, and if we again QR-decompA3é = Z = Z,Rqr
as in 6.6), we obtain exactly as ir6(8)

(84) r, = [ Zo Vn+1 ] gn 5
where

— qa;, — 1:{QRZHI'O o Rqr RqrCh my, k4+n+1
(85) g, = [ i } = [ e 5 o T K, eC

is now thedeflated QMR quasi-residuaNote that formally the only change is the replace-
ment of the extended Hessenberg malfiy by an extended tridiagonal matrik, (or a

block tridiagonal one if look-ahead steps are needed). Mieigns short recurrences (except
for the very unlikely special situation of a long look-ahesaelp) and thus no need to store the

4Except that in $2] v, andv,, were calledy;, andy,, respectively.
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columns ofV,, and\7n since, in fact, the component, k,, of the approximate solutions,
can be updated step by step, as iINRES.

Since we have chosen to QR-decompdse- assuming that the numbkiof its columns
is small — we still have|q! |2 = ||Qr.||2 asin 6.11). However, the other essential change
is that the columns oV, are no longer orthogonal, so, in gened&_ﬁ,ﬂg # ||Pry||2,

unlike in (6.11). And, sinceV,, has changed, so h&3, := ZHAVn.

Nevertheless, as in QMR, we may choose to mininfige|» instead of|r,,||2, and as in
Section2 this amounts to solving first anx (n + 1) least squares problem with the extended
tridiagonal matrixT,, for minimizing ||q;* ||2 and for findingk,,. Next,m,, is chosen such
thatq) = o:

(8.6) min||g, |2 =min|q |l = Juin ey f— Tkl ,  my = ZMro — Cyk,

As in Section6, the QR decomposition & is seen to be unnecessary. Updating the least
squares problenB(6) by updating the QR decomposition ®f, is done as in NNRes and
QMR.

Also deflated QMR can break down in the same way as deflated E8MRhe corre-
sponding adaptation of the first part of Theor@ragain requires only minor changes. But
additionally, QMR may break down due to a serious breakdditheononsymmetric Lanc-
Z0s process; see,g.,[26, 32] for a discussion of these breakdowns. They can nearly away
be circumnavigated by look-ahead. L

THEOREM11.If ¥y ¢ N(A), then aslong a8V (A) N K,, = {o} and as long as there
are no serious Lanczos breakdowns, the deflated QMR mettimedidy(6.5) and (8.3)-
(8.6) yields in thenth step the approximate soluties, € xq + K,, -+ whose quasi-residual
qa, defined by(8.5) has minimabk-norm.

However, apart from Lanczos breakdowns/\/ﬁ(K) N Z+ + {o} and if x, is chosen
such thatry € N(K), then(and only then deflated QMR breaks down in the first step where
n = 1. Moreover, at step. > 1, if (and only ify N'(A)NK,, # {o}, the method breaks down
when attempting to construet,. In case of these two latter types of breakdown, the search
spacex, + K,, + U does not contain the exact solution.

Proof. Here, we have to replace in the proof of Theor2mot only every occurrence
of Z+ by Z+, but alsovVH by VI, H, by T, , ‘orthogonality tokC,,* by ‘orthogonality to
L', and ‘Arnoldi’ by ‘Lanczos’. Then the arguments remain theme as in the proof of
Theoremd. O

9. Deflation by oblique projection: deflated simplified QMR. If A is Hermitian and
the Lanczos biorthogonalization algorithm is started with= v, then it simplifies to the
symmetric Lanczos algorithm sindé,, = V,, andT,, = T,, = T,,. Consequently, QMR
just simplifies to MNRES, where, in particular, only one matrix-vector product isded
per step. As pointed out by FreunzH there are other situations where one can profit from
a similar simplification. In fact, Rutishausex(] made the point that, in theory, the matrix-
vector product byAH in the nonsymmetric Lanczos algorithm can be avoided sfoceyery
square matrixA there exists a nonsingular mati$xsuch thatAT = SAS—!, that is,AT is
always similar toA; see,e.qg.,[35, p. 134] for a proof of this result. Choosing = Sv,
yields thenv,, = Sv,, for n > 0; therefore, the multiplication bA" can be replaced by a
multiplication bysS followed by complex conjugation. The vectars are temporarily needed
to compute the recursion coefficients storedip.

However, in general, the spectral decompositionAofs needed to construd, and
this makes this idea normally unfeasible. But there are soeeesting situations, where
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the matrixS is known and simple to multiply with. Freun@% lists several classes &-
symmetricand S-Hermitian matrices satisfying by definitoA™S = SA, S = ST and
AHS = SA, S = SM, respectively. But we note that the symmetry conditi8ns- ST or
S = SH are not needed for the simplification.

In one popular application of deflated Krylov space methtusWilson formulation of
the lattice Dirac operator in lattice Quantum Chromodyrean(@QCD), the Wilson matrixA
has the formA = I - kW, wherex € R andW is S-Hermitian for a diagonal matri® with
diagonal elements1. See [, 10, 29 for early contributions making use of this feature and
[2, 1, 46, 57] for some samples of the many publications that make useftHtam in lattice
QCD.

So, compared to QMR, simplified QMR reduces the cost in batte tand memory.
Regarding modifications for the deflated version, there ismeach change before one gets to
the details of an implementation. In particula,4—(8.6) remain unchanged.

10. An alternative interpretation of the augmentation compmnent. We have seen
that in each of the deflated Krylov space methods presentedams based on the ansatz
xn = X0 + V. k,, + Um,,, the solution can be found in two steps: first,(@nt 1) x n least-
square problem with an extended Hessenberg or tridiagoagixris solved fork,,, then
an explicit formula form,, is evaluated in order to determine the augmentation comyone
Um,, of the approximate solution and the corresponding augrtientaomponent-Zm,,
of the residual. As mentioned, the first part can be viewedpaéyang the corresponding
standard Krylov space method to the singular linear syséetn= 1. For example, in
deflated GMRS, checking the derivation of the least-square problen2itd),

min |2 = min[ley5—H k|l

we readily see that it is the coordinate space equivaletelitast squares problem
(10.1)  [[Vii1 (e — H k) [l2 = [[Fo — PAV, ky |2 = ||[Fo — AV, k|2 = min!
in the spacez*. On the other handn,, := Z"r, — C, k,, yields in residual space
(10.2) Zm, = ZZ"ry — ZC,k, = Qro — QAV,k, ,
a formula relating three vectors . The corresponding correction for the iterates is
(10.3) Um, = UZ"r;, — UC,k, = UZ"'b — UZ"A(x + V,.k,,).
Now, let us define, with the optiméd,,,

X, =V, k, , X, :=Xo + V. k, =x0+X,,

so thatx,, = x¢ + X,, + Um,, = X,, + Um,,. Then (0.1)—(10.3 take the form

(10.4) H?O ~ A%,| = min ]?0 _ KiH :
2 ek, 2
(10.5) [P(b—AX,)ll; = min_ [[P(b—AX),,
xexo+Kn
(10.6) Zm, = Q(ry — AX,) = Q(b — AX,),
(10.7) Um, = UZ"(ry — AX,) = UZ"(b - AX,).

This clarifies for deflated GMBs the relationship between the problems in coordinate space
and those in the Krylov subspalfeL C Z+,in the affine spacg, + IC Cxo+ 2+, andin
the augmented spasg + K, +U.
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Likewise, with differently defined matrice¥,;, H,, Q, P, C,,, and the new matrix
Z, and thus also with differenA, T, agdl%n, the least squares problem of truly deflated
GMRESsin (6.12 corresponds to one if* that is formally identical with 10.1) and can be
recast as¥0.4 or (10.5. Moreover, the formulan,, := Z"r, — C, k,, yields in the residual
space still £0.6, while in the search space of the approximants we get aoatdgto (L0.7)

(10.8) Um, = UZ"(r; — AX,) = UZ"(b — AX,).

The property that10.4 and (L0.5 remain valid can be understood from the fact that in
(6.19) the term||q;, || = ||Qr.,|| vanishes for the optimal choice &f,, while for the other

term ”ﬂi” = ||Pr,|| the coordinate map is still isometric because the basts,af;, which

consists of the columns &f,, 11, is orthonormal. But, in general, evendf! is A—invariant,
r,, is no longer the minimal residual fromy + AI@L + Z, sinceZ andl%n C Z* need not
be orthogonal to each other.

For deflated QMR, the restricted minimal norm propertiss4) — (10.5 are no longer
valid, but the derivations ofl0.6 and (L0.8§ remain unchanged, although the matridgs, 1,
T,,, andC,, have again new meanings.

Yet another interpretation of the augmentation compohhmt, is found as follows. Let
us consider the oblique projection framework of Sectisrgfirst, with E := ZHZ = I, as
in our presentation of truly deflated GMR and deflated QMR. We further define

(10.9) Ma :=UZ", Qa:=I-MaA=1I-UZ"A,

noting that botiVIio A andQa are projections. Inserting them intd(.8 we obtain
Um, = Ma(b — AX,) = Mab — (I— Qa)X,,

and we end up with

(10.10) Xp =X, + Um, =X, + Mab — (I — Qa)x, = QaX, + Mab.

This formula holds for truly deflated GM&Ss and for deflated QMR. An analogous formula
holds in the situation of Sectior?s4, that is, for GMRes and MINREs deflated with orthog-
onal projections. We have to replaZeby Z and the paiiMi o, Qa by

(10.11) Man = UZM | Qan =1—MuA =1-UZ"'A
to obtain likewise
(10.12) Xp = X, + Um,, = QanX, + Manb.

The last formula s the ‘correction formula’ of Theorem %1Z31] for the case wherB = A
there and our normalizatioB = I, holds. Both (0.10 and (L0.19 relate the approximate
solutionsx,, of the augmented and deflated method to the approximateé@w¥,, of a
deflated but not augmented methég; € xo + £,,. The termUm,, = M (b — AX,,) Or
Um, = M« (b — AX,,), respectively, is the ‘correction’ due to augmentation.

11. Other projections used in augmentation and deflation métods. Many publica-
tions on particular augmentation and deflation methodsyapjections that are different
from the projection® that are the basis of our approach. In this section we intedwo
parameter-dependant projectioRg and Qg that cover many of published proposals, the
parameteB being a nonsingular matrix of the same sizeAasThe most relevant choices for
B are
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| definition | nullspace| range | rangeifB =A
Ps I- AMB Z (BFzf) L Z+
Qs I- MBA U (AHBHZ1)+ (AHZ)L
Ap | PsA = PgAQg = AQg u (BHU)+ zt
TABLE 11.1

The projection®P g and Qg and the projected operatoKB for a generalization of the situation of Sectidhs3 .

1. B = I for deflated CG, BCG, and FOM §1],
2. B = A" for deflated CR, GCRI[7], MINRES, and GMReS,
3. B = A for deflated BCR [56].
We start here from a setting suitable for deflate@B8 and BCR that will be treated fully in
[30]. Then we specialize it to the setting for CG, FOM, CR, GCRNRES, and GMReS
considered in31], which covers most of the published approaches.
Similar to the situation in our SectioBs8 we let

U:=R(U), Z =AU, Z:=R(Z),
U:=RU), Z:=A"U, Z:=R(Z),

but now we exchangE by a more generdlg € C*** and introduce a matrivI € CN*V
that replaces ouR:

Eg = U"BAU, M :=UE;'U".

Of course, we assume thBg is nonsingular. Finally, we introduce two projectidAg and
Qg as well as a corresponding projectiA of A, all defined in Tablé 1.1, which also lists
kernels and ranges of these three operators. In the case Bher I these operators have
been used by Erlangga and Nabb2€] |

In contrast, by comparingg with E we see that in Sectiofthe choice wa$3 = A.
In this case we have

Er=E, AMA=ZE !'Z"=Q, Po=P, Qa=1-MA2?, A,=PA.

Note thatQ 4 is the same as inl(.9 if E = I, sinceMA = UEglﬁ'HA — UE~!Z" =
UZH = MA. However,A #+ A in general. But the following holds:

THEOREM12. For the projected operatorA of Section$-8andAg of Table11.1with
B = A holds

(11.1) A|_=0|,, Al; =A4l; .
Moreover, under the assumptions of TheoiéwhereZ & zL=cV,

(11.2) Al,=A4A|,=0|,, A|;, =Aa|; =A|;.,

and thereforeA = A 5 on CN.
Proof. By definition, A = PAP, whereP is a projection with\/(P) = Z and
R(P) = Z*. ConsequentlyA| , = O/ and

Al;. =PAP|;, =PA|;, =PaAl;, = Axl;..
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definition | null space| range | rangeifB = A"
Pp I- AMB Z (Bu)* zt
Qs I- MBA U (AHBHy/)+ (AHZ)L
Ag | PEA = PgAQg = AQs u (BHU)+ zt
TABLE 11.2

The projection®P g and Qg and the projected operatoA g for a generalization of the situation of Sectiohst.

Moreover, if Z is A—invariant,
ArZ =PAZ C PZ = {o}.
Finally, under the assumptions of Theor@malsoZ~ is A—invariant and, byg.6),
Alz. =4l

Altogether, we obtain1(1.2 and, sinceZ @ Z1 = ¢V under these assumptions, there holds
A=A onCV.O

An analogous result holds in the situation of Secti@né. There is no dual space there,
so we redefine

Ep:=U"BAU, M:=UE;'U".

Pg, QB, andAg can be defined as before, but their ranges slightly diffes; Geblel1.2
This is the situations considered 1]. (But note that ouB is defined differently and equals
B in the notation of $1].) The case wherB = I covers deflated CGIB, 13, 41, 61, 19, 54]
and is also a topic of study ir2], 47, 60] and related work.

ComparingEg with E of Section2 we see thaB = A" here. Then we have

Eai=E, AMA"=ZE'Z"=Q, Pyi =P, Qan=1-MA"A, A, =PA.

Now Qn is the same as irl(.1]) if E = I, sinceMA" = UE [/ U"AH = UE1ZH =
UZM = M u. The following analog of Theorer2 holds: R

THEOREM 13. For the projected operatorA of Section®—4 and A of Table11.2with
B = A" holds

(11.3) Al,=0|,, A, =Aun|,..

Moreover, ifZ and Z+ are A—invariant, then

o~

(11.4) Al_=Am|,=0|,, Al =Axm|.. =4A|_.,

E |2

and thereforeA = A o onCY,

Proof. The proofis fully analogous to the one of Theorg&fand is left out herdl

In summary, the two slightly different projectiod used here in Sectiord<4 and in
Sectionss—8 coincide with the projectionB ,+ andP 4 defined in Tablel1.2(for B = AM)
and Tablell.1(for B = A), respectively, but they differ from the projectioRs defined
there whenB = 1. The latter projections are those used in deflated @& 13, 41] and
deflated BCG [30]. Moreover, even whe® = Pan or P = P4 our deflated operator
A = PAP differs in general from the deflated operatag+ and A 4, respectively, unless
Z andZ+ or Z1 are exactly right and lefA—invariant subspaces.
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12. Deflated quasi-(bi)orthogonal residual methodsThe GMRes algorithm of Saad
and Schultz$3] is just one incidence of a so-called minimal residual (MRthod: a Krylov
space solver whose iterates and residuals restricted by

(121) Xp € X0 + ’CH(A, I‘Q) R r, €rog+ A’CH(A, I‘Q)
have the minimal norm properf,, |2 = min!, which is equivalent to the Galerkin condition
(12.2) r, L AK,(A,ro).

Other methods with the same mathematical properties ar@eheralized Minimum Resid-
ual (GCR) method17], the MINRES algorithm of Paige and Saunder9[ for Hermitian
matrices, and, the Conjugate Residual (CR) method of ${ig€ for Hpd matrices. While
MINREs and GMRes transplant the problem into coordinate space, CG and GCRliuse
rectly recursions fok,, andr,,.

There is an analogue family of so-called orthogonal resi@DR) methods, wherel@.2
is replaced by another Galerkin condition,

(123) In 1 Icn(Aa I‘O) )

which implies that the residuals are mutually orthogonaisTamily includes the ubiquitous
conjugate gradient (CG) method of Hestenes and Stigfgf¢r Hpd matrices, which has the
property that the residuals have mininzat'—norm, or, equivalently, the error vectors have
minimal A—norm. Another one is the Full Orthogonalization Method KHf Saad p1].
Of course, ifA is not Hpd, there is n& ~'—norm, and therefore no minimal norm property.
Moreover, for some: an iterate characterized by4.1) and (L2.3 need not exist. Therefore
there is little interest in this method.

Of much greater importance is the biconjugate gradien€®) method of Lanczosi[]
and Fletcher 23], where the Galerkin conditionl@.3 is replaced by the Petrov-Galerkin
condition

(12.4) r, L Ko (AR F),

with a freely selectable,. There is still the drawback that iterates may not exist amthér
breakdown problems lurk (see,g.,[32]), but this is balanced by the enormous advantage
of short recurrences for iterates and residuals. Eg.4 implies that the residuals, and

the so-called shadow residuals of the fictitious linear systerA"x = 7, (with initial
approximatiorx, := o) are mutually biorthogonal.

If we consider a transplantation of an OR method to coordispace, it follows imme-
diately thatr,, = ro + AV, k,, is a scalar multiple of,,, the(n + 1)th basis vector generated
by the Arnoldi or the nonsymmetric Lanczos process, resmdgt Moreover, inserting the
ArnoldirelationAV,, = V,,;1H,, or the Lanczos relatioAV,, = V,,;1T,, we see that the
coordinate vectok,, satisfies

(12.5) Hyk, =e s or T,k,=ef,

respectively, with thes x n matricesH,, andT,, that are the ‘upper parts’ of the matrices
H, andT, used in the coordinate space based MR methods. Solvingreelyrthese linear
systems by LR or QR factorization we obtain coordinate ba3Bdmethods. In the case
of the tridiagonal matriceT,, it is possible to derive short recurrences for the iteratebs a
residuals, but this means essentially that we apply a C&dlikB CG-like algorithm.
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In this section we want to point out that we can define augnteatel deflated meth-
ods that are not quite (bi)orthogonal residual methodsntight be calleddeflated quasi-
(bi)orthogonal residual methodsnd have the property that they turn inteflated (bi)orthog-
onal residual methodi$ K is A—invariant. We start again from

(12.6) X, = X0 + V. k, + Um,, , r, =ro — AV, k, — Zm,, .

and a representation of in terms of the basis df,, .1 & Z given by[ Vo Z ] . Deflated
CG [48, 13,41, 61, 19, 54] and deflated FOM are normally characterized by

(12.7) r, LK, ®U.

For CG,i.e.,for Hpd A, it has been implicitly shown in various ways3 36, 48] (see also
[19, Thm. 4.1] and$4, Thm 4.2]) that this implies the following optimality resuflor which
we provide the sketch of a straightforward proof.

THEOREM 14. AssumeA is Hpd, definelC,, and i/ as in Sectior2, and let again
x, := A~'b. Then the conditiof12.7) implies thatx,, is optimal in the sense thdt,, —
X4||a is minimal under the restrictior,, € x¢ + /En dU.

Proof. Assumex,, andr,, are represented as ih4.6, and let

U(k,,m,) = % %, — X, [|2 = % %o + V, k, + Um,, — x,|/4 .

Then straightforward differentiation shows that

m = —rnV,“ 8mn = I‘nU,
and
020 y el el y
i VIAV,, G- =0, G U"AU.

Any stationary point is characterized by zero gradientt iy byr,, L R(V,,) = K, and
r, L R(U) = U. Moreover, we have there a minimum sifé& AV,, andU" AU are Hpd.
O

The deflated CG algorithms ofi§, 13, 41, 61, 19, 54] fulfill condition (12.7), and thus
maintain global optimality. For deflation they implicitly explicitly apply oblique projec-
tions, namelyP; or Q of Table11.2(with B = TandAT = A, so thatP; = Q] ). Dostal
[13] calls M A a conjugate projection Moreover, these algorithms are all based on recur-
rences for iterates and residuals, so they are not cooedstce based. But unlessis
exactly A—invariant, the approach promoted in this paper which l¢éadise decomposition
K, & Z is in conflict with a global optimization criteria valid fdt,, @ U. To obtain simple
coordinate space based methods we may drop global optyraalit replacel2.7) by

(12.8) r, LK, ®Z.

We will call a method with this propertydeflated quasi-orthogonal residual (DQOR) method
For such a method we have the following trivial corollary.

COROLLARY 15. Under the assumptions of Theorddy if Z is A—invariant, the con-
dition (12.8 implies thatx,, is optimal in the sense thdk,, — x.||a is minimal under the
restriction(12.1).

Proof. If Zis A—invariantl{ = A~'Z = Z. So, (12.8 implies (12.7 here.l
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With the quasi-residua_jn of (2.10, the condition {2.8 transforms into

(12.9) q LCkFm
if we considelC*+™ as the subspace 6F+"*! characterized by a zero last component. This
means that the firgt + » components Of_ln must be zero, that is,

I, C, m, | ZMr
wo (5 2](w]-[2]
This system is upper block triangular with a ufit 1) block, and therefore it reduces to

a linear system with thé2, 2) block for computingk,, and an explicit formula fom,,, in
complete analogy to the least squares problemlj that we solved before:

(12.11) H,k, =ei[, m, := Z"ry — C,k,, .

In the setting of deflated GM®ESs of Section2 these two formulas define a corresponding
particular DQOR method. IA is Hermitian, we can repladd,, by the tridiagonall’,, and
profit from short recurrences for updatirg.

In the setting of truly deflated GMMES of Section6, Whereq is defined by §.9), the
conditions (2.8 and (L2.9 are no longer equivalent. For 5|mpI|C|ty we may just fulfiet
latter, which yields 12.10, except tha#Z" is replaced b)ZH so that (2.17) turns into

. nKnp = €10, ngZNrO_ n¥n .
(12.12) H,k J&; VAL C,k

This defines another particular DQOR method.
Finally, in the setting of deflated QMR of Secti@rcondition (L2.9 leads to

(12.13) T,k, =e 3, m,:=2Z"'ry— Cyk,.
As can be readily verified, in this setting conditidr?(9 is equivalent to
(12.14) Ll L,®Z,

which characterizes deflated quasi-biorthogonal residudDQBIOR) method The Recy-
cling BICG (RBICG) method of Ahuja4, 5] seems to be of this type.

DQOR and DQBOR methods are in general not optimal. But we think that thia i
minor disadvantage. It is shared by the class of orthog@sadual methods, whose residual
norms depend in a well-known way discovered by Paige andd&aaft9] from those of the
corresponding MR method; seeg.,[16] and [33].

Conclusions. We have described several augmented and deflated Krylovoshefior
solving Ax = b that all fit into a common theoretical framework. They are rdimate
space based in the sense that we generate recursively basies Augmented search spaces
K, &Uand, 1 & Z for the iteratex,, and the corresponding residugl, respectively,
and determine the coordinatesxf. Here,Z = AlU. The typical examples are deflated
MINRES, GMRES, and QMR. Details differ from the proposals in the literatuior MINRES
a little, for GMRes much more.

We assume that a basis faris given, and that typically, but not necessarily, this sub-
space is close to aA—invariant subspace belonging to eigenvalues of smalllatesealue.
Deflation replaces these by zero. We point out that the ddf@eratorA PAP and the
corresponding Krylov subspacbfa =K, (A 7o) generated frori, := Pr( can be chosen
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in different ways. For deflated MRES an orthogonal projectio on Z+ is appropriate.
The same projection is also the standard for deflated GMRV/e sug~gest for non-Hermitian
A another choice: an oblique projection ongd along Z. Here Z is an approximately
left A—invariant subspace corresponding to the same eigenvasdésnd Z. This choice
has the major advantage that in the case of eAagtvariance, these eigenspaces are really
deflated in the sense that the kerneldfcontains/ = Z, while on Z* the operatorsk
and A coincide. The so deflated methods are based on the nonortabdecomposition
Zd ICn+1 C Z@® Z+ = CV, which needs to be complimented by an analogous nonorthog-
onal decomposmor}Z & Enﬂ C Z@ 2L = CY for the shadow residual search space if
the nonsymmetric Lanczos algorithm is applied to genehstdases. These decompositions
lead to truly deflated GMRs and deflated QMR.

As further alternatives we suggest deflated quasi-orthalgesidual (DQOR) methods
and deflated quasi-biorthogonal residual (DIQBR) methods that are simple analogs of the
deflated MR and QMR methods discussed before.

While the deflated operatoﬁs we promote are defined differently from those in most of
the literature (except for the one ie.g.,[62], which coincides in the symmetric case), we can
show that in the case whei® is exactly A—invariant our deflated operators are equivalent
with those (for Hermitian and non-Hermitian problems, exgjvely) that are discussed in two
companion papers3[, 30] and have the widely used standard form, but are geared dswar
different Petrov-Galerkin conditions.
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Appendix: An example where deflatedVINRES and GMRES break down after any
given number of steps. Let us consider examples of si2é x N that are of the following
form:

0 1 of 1 0 of
A=|1 0 o' |, P=|0 0 of ,
o o M o o Iy

whereM is a symmetric nonsinguld®V — 2) x (N — 2) matrix whose minimal polynomial
is of degrees, wherel < k < N — 2. Clearly,A is real symmetric and nonsingular too. We
obtain

oT
0T

0
A=PAP=| 0
M o

o oo

0 1

PA=|0 0

o o
so that in the notation of Sectidwe have in particular
N(P) = span{ez},

R(P) =C" © span{es},

AZl R(AP) = CN © span{e;},

) =

( = span{ey, e},

N(A)N Z+ = span{e;}.
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We can choosb andx, suchthaty =g =Pro=[1 0 w' ]T, wherew satisfies
(12.15) w=> BMw
=1

with 8., # 0. Here,1 — >"F | 3;¢" is a comonic representation of the minimal polynomial
of M. Relation (2.15 is achieved by choosing in general position with respect to the
eigenvectors oM. For example, we could choose

M =diag{1,1,...,1,2,..., Kk}
——

N—r—1
andw as a vector of ones. R N
The firstk + 1 Krylov vectorsry, ATy, ..., A®Ty are
1 0 0 0
01, 0 , 0 ey 0
w Mw M3w M-w

They are linearly independent, hence a basiE,@,il. In view of (12.15 they satisfy

To — Zﬁi;‘xi?o —e; espanfe;} =N(A)NZ*.

i=1

Consequently/,\/(ﬁ) N K1 # {0}, whence according to Theorerasnd5 deflated GM-
Resand deflated MNRESs (and thus also RMIRES of [62]) break down when attempting to
constructv, 1, while, obviously, they do not break down before. To underdtthis better
consider the image of the Krylov basis under the mapﬁmgvhich spans&l@,{ﬂ:

0 0 0 0
0o |, o | ... 0o |, 0
Mw M3w M*rw M-r+lw

Due to (L2.19 thesex + 1 vectors are linearly dependent, dian KIEHH = k only, which
shows that we have Case (i) of Lemranamely a breakdown during step+ 1 of the
Arnoldi process. Her& < x+ 1 < N.

For a breakdown in the first step we could, for example, candite same type oA
with an arbitraryM combined withP = e;e] and an arbitraryw. ThenA = O, and the
method will fail for any initialty # o.

However, as we mentioned in the beginning of Seclioa breakdown is very unlikely if
Z is chosen such that an approximately invariant subspaadleteld and the deflated eigen-
values are well separated from the not deflated ones. In @mpbeA Z = span {Aey} =
span {e; }, SOZ is not at all approximately invariant.
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