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Abstract. Let A be a positive self-adjoint linear operator on a real separdibert spaceH. Our aim is to
build estimates of the trace ¢f¢, for ¢ € R. These estimates are obtained by extrapolation of the moments o
Applications of the matrix case are discussed, and numegsalts are given.
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1. Introduction. Let A be a positive self-adjoint linear operator frathto H, where
H is a real separable Hilbert space with inner product denoyed, -). Our aim is to build
estimates of the trace of?, for ¢ € R. These estimates are obtained by extrapolation of the
integer momentsz, A" z) of A, forn € N. A similar procedure was first introduced i for
estimating the Euclidean norm of the error when solving &esyof linear equations, which
corresponds tg = —2. The casg = —1, which leads to estimates of the trace of the inverse
of a matrix, was studied ird]; on this problem, seel[]].
Let us mention that, when only positive powers/bére used, the Hilbert spaéé could
be infinite dimensional, while, for negative powersAfit is always assumed to be a finite
dimensional one, and, obviously, is also assumed to be invertible. With this convention,
the two cases could be treated simultaneously. Moreovere siome of our results are valid
in the infinite dimensional case, the mathematical concepéxled are given in their full
generality in Sectioi2.
Traces of powers of matrices arise in several fields of magiiess More specifically
e Network analysis: triangle counting in a grapWhen analyzing a complex net-
work, an important problem is to compute the total numberiahgles of a con-
nected simple graph. This number is equallt9A4?)/6 where A is the adjacency
matrix of the graph{]. For many networks, even if the matrik is sparse A can
be rather dense and, thus, it is not possible to computertits tlirectly.
e Number theory and combinatorics: Euler congruenteaces of powers of integer
matrices are connected with the Euler congrued& n important phenomenon
in mathematics, stating that

Tr(AP") = Te(4P ) (mod p"),

for all integer matricesd, all primesp, and allr € N. The diversity of proofs of
the Euler congruence indicates its universality and its moldifferent branches of
mathematics.

e Statistics: specification of classical optimality crit@ri In optimal design of ex-
periments 15], the ultimate purpose of any optimality criterion is to raeee the
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“largeness” of a nonnegative definite matrixof dimensions. One of the most
prominent criteria is the average variance criteribn, (C') = (Tr(C~1)/s)71,
if C'is positive definite. Invariance under reparametrizatmses its appeal if the
parameters of interest have a definite physical meaning. aboge average vari-
ance criterion provides a reasonable alternative. Moregdly, for positive defi-
nite matricesC, the matrix meanp, can be defined for every real parameteoy
®,(C) = (Tx(CP)/s)'/P, for p # 0, +o0.

e Dynamical systems: determination of their invarian®&e invariants of dynami-
cal systems are described in terms of the traces of powergexfer matrices, for
example in studying the Lefschetz numbet8][

e p-adic analysis: determination of the Witt vectBor any integer matri¥/ and any
prime numberp, the entries of the unique Witt vector consistingpeddic integers
are expressed from the traces of powers of the integer matrit8].

e Matrix theory: extremal eigenvalue$here are many applications in matrix theory
and numerical linear algebra. For example, in order to alapproximations of the
smallest and the largest eigenvalues of a symmetric matrxprocedure based on
estimates of the trace of” andA~", n € N, was proposed inl{].

o Differential equations: solution of Lyapunov matrix eoat These equations can
be solved by using matrix polynomials and characteristiympamials where the
computation of the traces of matrix powers are nee@gd [

The computation of the trace of matrix powers has receivedhnattention. In @], an
algorithm for computindlr(A*), k € 7Z, is proposed, wherl is a lower Hessenberg matrix
with a unit codiagonal. In7], a symbolic calculation of the trace of powers of tridiagbn
matrices is presented.

The mathematical tools needed are described in Segtidime extrapolation procedure
for estimating the moments of an operator is presented itidbe® Estimates for the trace
of powers of a matrix are derived in Sectidn Numerical results are given in Sectién
Concluding remarks end the paper.

2. The mathematical background. Let A be a compact positive self-adjoint operator
over a separable infinite dimensional Hilbert spateThe eigenvalues, of A are real and
positive, and it exists an orthonormal basigbtonsisting of its corresponding eigenelements
{ux} (the operatord can be diagonalized by an orthonormal set of eigenvectors).

We have

Aug = Mgug, k=1,2,...,
and also
A = (ug, Aug) = (Auk,Auk)1/2 and (ug, Au,) =0, n#k.

A bounded linear operatot over a separable Hilbert spaékis said to be in thérace
classif the sum

D (A Py, )

k

is finite, where{u;} is any orthonormal basisl§, p. 32]. In this case, the trace &f is
defined by the absolutely convergent sum

Tr(A) = Z(Auk, uk),

k
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which is independent of the choice of the basis. Lidskiisdtem [L3] states that, ifd is a
positive compact operator and{if.; } is any orthonormal basis d, its trace is equal to the
sum of its non-zero eigenvalues, each of them enumeratédte/ilgebraic multiplicity.

We remind the canonical form of a compact self-adjoint ofperan a Hilbert space

Ve H, Az= Z)\k(z,uk)uk.
k

3. The extrapolation procedure for the moments.For ¢ € R, the canonical form of
the powers of the operatot will be defined by

Alz = Z AL (2, k),
k
and its moments by

(3.1) cq(2) = (2,A%) =Y Maj(2),

whereay (z) = (2, ug).

We will now provide estimates of the trace dfl. These estimates are based on the
integer moments oft which are defined by3(1), with ¢ = n € N. Obviously, in practice,
only the moments withh > 0 can be computed.

The moments;,(z) defined in 8.1) are given by a sum. Starting from some moments
cn(2) with a nonnegative integer index we want to estimate the momenig =) for any
fixed indexq € R. For this purpose, we will interpolate thesg(z)’s by a conveniently
chosen function defined by keeping only one or two terms irsttramation 8.1), and then
extrapolate this function at the poigt This idea was introduced ir8] for estimating the
norm of the error in the solution of a system of linear alg@bemuations, and it was used
in [4] for estimating the trace of the inverse of a matrix.

3.1. One-term estimates.We want to estimate,(z), ¢ € R, by keeping only one term
in formula (3.1), that is by a function of the form

cg(2) = eq(2) = s9a*(2).
Thus, knowing the values @f)(z) andc; (z), the interpolation conditions
co(2) ~ eo(2) = a?(2), c1(z) ~ e1(z) = sa®(2).

give us the 2 unknownsanda(z), and we have the
PrRoOPOSITION3.1. The moment,(z) can be estimated by the direct one-term formula

c(2)

A7 (z)

(3.2) cq(2) ey(z) = , geR.

REMARK 3.2. The estimate,(z) of formula 3.2) is real sinceA is a positive self-
adjoint operator and, thus, (z) is positive.

REMARK 3.3. Forg = —1, we havec_1(z) ~ e_1(2) = ¢3(z)/c1(z), which is the one-
term estimate of_1 (z) given in [4], which leads to the estimate of the trace of the inverse of
a matrix.
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Let us now assume that~! exists, and lek be the Euclidean condition number df
defined byx = || 4] - [|A~!]|. We have the

PROPOSITION3.4. If A is self-adjoint positive definite, then, for any vectothe one-
term estimate,, (z) given by(3.2) satisfies the following inequalities fare Z, n # 0,

uls) < eal2) < (“j)) enl),

where

d— n—1, n>1,
In|, n<0,n=1.

Proof. We have, by an inequality given iB,[Theorem 4],
e (2) < ein(2) cg_l(z), 1=0,%£1,+2,..., n>0.
Thus, fori = 1, it follows
(3.3) ¢ (2) /e (2) < enl2)-
Moreover, from b, Theorem 1], it holds

1+r)?2 2

3.4 in(2) <
(3.4) cnt1(z) < " o

We will prove by induction that

n > 1.

1+ 5)2)2“—1 & (2)

i @)

This inequality is true when = 2, since it is the inequality3.4) for n = 1. Assume that
(3.5 holds forn € N, and let us prove that it still holds fer+ 1. From 3.4) we have,

(3.5) en(2) < (

(1+r)?*  ci(2)
4k cn-1(2)’

Cn+1(z) <

wherec? (z) can be upper bounded frorfi.p) since all the quantities;(z) are positive and
the inequality can be squared. As ;(z) can be lower bounded fron33) by replacingn
by n — 1, we have

(1 8)2 (14 1)2/40)C" D30 2) (372 (2)
1n AT @G ) |

Cn+41 (Z) S

and the result immediately follows, because

(40 (404006 2(e) (e >> G
i TG ) I &)

The inequality fom < 0 andn = 1 can be proved in a similar wall.
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3.2. Two-term estimates.We want now to estimate; (z), ¢ € R, by keeping two terms
in formula @.1), that is by a function of the form

(3.6) cq(2) = e4(2) = sfa}(2) + sda3(z).

The four unknowns, s2, a?(z), anda3(z), will be computed by imposing the interpolation
conditions

(3.7) cn(2) = sTai(2) + s3a3(2),

for four different values of the integer, namelyn = 0, . .., 3. Writing this relation fom = 0
and1 gives a system of two equations in the two unknowfs) anda2(z) if s; ands, are
known. But the interpolation condition8.() mean, in fact, the,,(z)’s satisfy the difference
equation of order 2

cnt2(2) = scnt1(2) + pen(z) =0,

wheres = s1 + s andp = s;1s2. Using this relation forn = 0 and1 givess andp. Then,
we obtain

_ co(2)es(z) — e1(2)ea(2) 2(,) = co(2)s2 — ¢1(2)
co(z)ea(z) —3(z) 7t S2 — 81 7

(3.8) . ce1(2)es(z) — c2(z) 2(2) = c1(z) —eo(2)s1
co(2)ea(z) — c3(z2)’ 2 S92 — 81 7

and the estimate3(6) for ¢, (z) follows with s1 2 = (s £ /s2 — 4p)/2. Thus, we have the
following result
PrROPOSITION3.5. The moment,(z) can be estimated by threct two-term formula

cq(2) = eq(2) = siai(z) + s3a3(2),  ¢€R,

wheresy, s, a?, anda3, are given by the formulag.9).

REMARK 3.6. The direct two-term estimatg(z) of this Proposition is real if € R.
Indeed, ifs?> — 4p < 0, s; ands, are complex conjugate, and it is easy to see taand
a3 are also complex conjugate and, thag(z) € R. In cases? — 4p > 0, thens; and
so are real. Alsos; and s, are positive, becauge = s;s2, as defined by relations3(9),
is positive; this can be deduced from considering the inggugiven in [5, Theorem 1],
Z.1(2) < ci(2)ciya(z),i=0,£1,£2,..., fori = 0 andi = 1. Moreover,s = s; + sz, as
defined by relations3(8), is positive; this follows from the inequality given iB,[Theorem 4],
c1(2)/co(z) < c3(2)/ca(z). Thus,eq(2) € R.

Looking at 38.6), thee,, (z)’s also satisfy the difference equation
ent2(2) — sept1(2) + pen(z) = 0.

Thus, using again the formula®.8) for s andp, thee,, (z)’s can be recursively computed, for
integer values of the index, and we obtain the
ProPOSITION3.7. The moment, (z) can be estimated by tHerward iterative formula

en(2) = sep_1(2) — pen—a(2), n=23,...,
or by thebackward iterative formula

en(2) = (sen+1(2) — ent2(2))/p; n=-1-2,...,
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with eg(z) = (2, z) ande; (z) = (z, Az).
REMARK 3.8. Takingn = —1 in the backward iterative formula, and usingndp from
(3.9), we obtain the formula

~o () = ) F 0’ (2)es(2) — 2c0(2)er(2)ea(z)
c1lz) =ea(z) = c1(2)es(z) — ca?(z) ’

which leads to the two-term estimate givendihfor the trace of the inverse of a matrix.

The results of this Section will now be used for estimating titace of the powers of a
symmetric positive definite matrix. Although not indicatedl sums run from 1 up to the
dimension of the matrix.

4. Estimates for traces. Let A be a symmetric positive definite matrix, and {et; }
denote its eigenvalues. Fore R, A? is also symmetric positive definite, and it hold<]

Tr(A7) = > AL
k

Our estimates for the trace df! are based on the following result proved by Hutchinsid;[
see alsof] and [10, p. 170].

PROPOSITION4.1. LetM = (m;;) be a symmetric matrix of dimensipmvith Tr(M) #
0. Let X be a discrete random variable taking the valuesnd —1 with the equal probability
0.5, and letz be a vector op independent samples froM; for simplicity, we write, in this
casex € XP. Then(x, Mx) is an unbiased estimator @fr()/), and it holds

E((z,Mz)) = Tr(M)
and

Var((x, Mz)) =2 Z m3;,
i£]

whereE(-) and Var(-) denote the expected value and the variance respectively.

This Proposition tells us théfr(A?) = E((z, A%z)) = E(c,(z)), for z € XP. Thus,
for the one-term estimate8.¢), it immediately follows from Propositio.4.

COROLLARY 4.2. If the matrix A is symmetric positive definite, then, for the direct
one-term estimatg8.2), we have the bounds

(1+ k)

241
i ) E(e,(x)), ne€Z, n+#0,

E(en(x)) < Tr(A™) < <

where

d— n—1, n>1,
~]inl, n<0,n=1.

Notice that, ifA is orthogonal, ther(A) = 1, andTr(A") = E(e,(x)).
For the direct one-term formul& () of Proposition3.1, the expectatior (e, (z)) ap-
pearing in the bounds of the inequality of Coroll@r?is given by the formula

(4.1) E(en(r)) = B(c!(x)/c5~ ' () = E(c} () /N"™", we€ XP.
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In practice, the computation ef'(x) needs quite tedious algebraic developments. In-
deed,c; (z) = Zm‘ a;;&:€;, wherex = (&1,...,&,)T. Its nth power has first to be ex-
panded, noticing that each termf(z) has the formC¢y™ - - - €%, with & # ¢; for i # j,
ni + --- + ng = 2n, and whereC' is a coefficient which is the product efelements of the
matrix A. Then, E(c}(z)) has to be computed taking into account that, sincetflseare
independent random variables, the expectation of thetymris equal to the product of the
expectations, and that, for all £(£) is equal to 1 ifm is even and to 0 ifn is odd. Unless
a general formula could be obtained, the use of a computebedgsoftware is required for
n > 2. A closed formula and numerical results foe= 2 are given in Examplé.4.

Wheng € R, estimates ofr( A7) can be obtained by realizin§y experiments, and then
computing the mean value of the quantitigéx; ), for x; € X?. We set

1 N
(4.2) ty = > eql),
i=1

where ther;'s are realizations of € X?. Thus, formula 8.2) gives us the direct one term
trace estimates,,

N
1 —1
tg = N thlz(wz)/cg (x%)’ q €R,
i=1
while, from formula B.6), we have the following direct two term trace estimates
1 N
ty = N Z s{ad(x;) + sda3(z;), q€R,
i=1

together with 8.8). Similarly, estimates for the variance are given by

Zﬁvzl (eq(xi) - tq)2
N -1 '

4.3) Vg =

Proposition3.7leads us to the following result
PROPOSITION4.3. For n > 2, estimates oflr(AY), ¢ € R, are given by the forward
iterative formula

tn = Stn—1 — ptn—2,

with the initial valuest; = Tr(A) andt, = p (since A° = I). Forn < 0, estimates of
Tr(A%), ¢ € R, are given by the backward iterative formula

tn - (Stn+1 - tn+2)/pa

with the same initial values.

The following result specifies the confidence interval fer titace estimatg, of the trace
of powers of symmetric positive definite matrices. Let usirehthat the amount of evidence
required to accept that an event is unlikely to arise by ceasd&nown as thasignificance
level The lower the significance level, the stronger the evideridee choice of the level
of significance is arbitrary, but for many applications, &ueaof 5% is chosen, for no better
reason than that it is conventional.
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Let Z,,, be the upper/2 percentage point of the normal distributidn(0, 1). Then,
the following result is a classical one about the probabdithaving a good estimate.

PROPOSITION4.4.
< Za/2> =1- a,

( ‘ t, — Tr(A9)
Pr
\/Var((x, Alx))/N

whereN is the number of trialsg is the significance level, and, /, the critical value of the
standard normal distribution defined above.

For a significance level = 0.01, we haveZ,,, = 2.58, and Propositios.4 gives us a
confidence interval foir(A?) with probability 100(1 — a)% = 99%. Thus, we expect, for
any sample’s size, the trace estimat¢o be in this interval with a probability af9%.

If, in Proposition4.4, Var((z, A%z)) is replaced by, given by formula 4.3), an ap-
proximation of the confidence interval is obtained.

5. Numerical results. Let us now give some numerical results for illustrating ttaee
estimates,. Each realization of, requires only few matrix-vector products and some inner
products. For areal dense symmetric mattiaf dimensiorp, the one-term estimatg needs
O(p?) flops, whereas the two-term one requit@&€p?) flops. In the case of a banded ma-
trix the complexity is reduced. Specifically, the one-teistiraatee, requiresO(mp) flops,
wherem is the bandwidth. The two-term estimate has twice this cexipl. Obviously, the
computation of, by (4.2) and ofy, by (4.3) needsV times these flops.

TABLE 5.1
Estimations ofTr(P3/2).

Dim. Exact  1-term est. rell conf. interval

100 2.461e2 2.454e2 2.628e-3 [2.420e2, 2.489¢e2]
200 4.923e2 4.878e2 9.275e-3 [4.823e2, 4.932e2]
500 1.231e3 1.211e3 1.647e-2 [1.202e3, 1.220e3]
1000 2.462e3 2.421e3 1.700e-2 [2.409e3, 2.432e3]

TABLE 5.2
Estimations oflr(P3/2).

Dim. Exact  2-term est. rel2 conf. interval

100 2.461e2 2.465e2 1.769e-3 [2.426€2, 2.504€2]
200 4.923e2 4.923e2 1.350e-4 [4.869e2, 4.976€2]
500 1.231e3 1.231e3  4.156e-5 [1.223e3, 1.239e3]
1000 2.462e3 2.464e3 6.400e-4 [2.453e3, 2.475e3]

TABLE 5.3
Estimations oflr(P1/2).

Dim. Exact  1-term est. rell conf. interval

100 1.332e2 1.340e2 6.505e-3 [1.332e2, 1.349e2]
200 2.663e2 2.676e2  4.603e-3 [2.664e2, 2.687e2]
500 6.657e2 6.698e2 6.160e-3 [6.682e2, 6.714€2]
1000 1.331e3 1.341e3 7.535e-3 [1.339e3, 1.344e3]
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For the vectors:; € X?, we used the uniform generator of random numbers between 0
and 1 ofMATLAB . If the random number obtained is less or equdl.t the corresponding
component ofr; is set to—1; if it is greater thar).5 and smaller or equal to, the corre-
sponding component af; is set to+1.

The relative errors for the one-term and two-term estimateglenoted byell andrel2,
respectively. The condition number of the matrix is dendigdond The confidence intervals
for Tr(A?) of Proposition4.4 were obtained using the numerical variangecomputed by
4.3.

All computations were performed MATLAB , the test matrices were given by thallery
function, and we tookV = 50. The so-calledgxactvalues reported in this section are those
given by the functiortrace of MATLAB . The matrix powersi?, if ¢ is an integer, are com-
puted by repeated multiplication. If the integer is negativis inverted first. For other values
of ¢, the calculation involves eigenvalues and eigenvectard) that if[V, D] = eig(A), then
A? =V x D7« inv(V'), where *%ig"” and “inv” are theMATLAB internal functions for the
computation of the eigenvalues and the inverse of the ma&spectively.

EXAMPLE 5.1 (the Prolate matrix). We consider the Prolate maixt is a symmetric
Toeplitz matrix depending on a parameter If 0 < w < 0.5, it is positive definite, its
eigenvalues are distinct, lie in (0,1], and tend to clusteuad0 and1. It is ill-conditioned
if w is close to 0. In our examples we take= 0.9 for which cond(P) = 2. In Tables5.1
and5.2, we give the results fofr(P3/2) and, in Table$.3and5.4, those forTr(P/?).

TABLE 5.4
Estimations ofTr(P1/2).

Dim. Exact  2-term est. rel2 conf. interval

100 1.332e2 1.332e2 3.4839e-5 [1.325e2, 1.339e2]
200 2.663e2 2.662e2 3.0015e-4 [2.651e2, 2.674e2]
500 6.657e2 6.656e2 2.0770e-4 [6.634e2, 6.678e2]
1000 1.331e3 1.332e3 1.2375e-4 [1.329e3, 1.334e3]

Let us now see the behavior of our estimates for a higher pditner results foflr( P12)
are presented in Tablé&s5and5.6. For the power1/2, we obtain the results of Tabfe7.

TABLE 5.5
Estimations oflr(P12).

Dim. Exact  1-term est. rell conf. interval

100 3.219e5 1.266e5  6.065e-1 [1.098e5, 1.435€e5]
200 6.490e5 2.485e5 6.171e-1 [2.250e5, 2.719e5]
500 1.631e6 5.957e5 6.348e-1 [5.640e5, 6.274e5]
1000 3.269e6 1.189e6  6.363e-1 [1.139e6, 1.239€6]

TABLE 5.6
Estimations oflr(P12).

Dim. Exact 2-term est. rel2 conf. interval

100 3.219e5 3.220e5 2.716e-4 [3.114e5, 3.325e5]
200 6.490e5 6.492e5  3.231le-4 [6.366€5, 6.618€5]
500 1.631e6 1.629e6 1.183e-3 [1.609e6, 1.650€e6]
1000 3.269e6 3.263e6 1.803e-3 [3.233e6, 3.293€6]




ETNA
Kent State University
http://etna.math.kent.edu

ESTIMATIONS OF THE TRACE OF OPERATOR POWERS 153

TABLE 5.7
EstimatingTr(P~1/2).

Dim. Exact 2-term est. rel2 conf. interval

100 7.647el  7.619el  3.710e-3 [7.568el,7.670el]
200 1.530e2 1.531e2  3.926e-4 [1.522e2,1.539€e2]
500 3.827e2  3.826e2  2.642e-4 [3.811e2, 3.841e2]
1000 7.656e2  7.645e2 1.314e-3 [7.626€2, 7.665e2]

EXAMPLE 5.2 (dense matrices). We consider tRarter matrix P whose elements
arep;; = 1/(i —j + 0.5). P is a Cauchy and a Toeplitz matrix. We sét= P7P.
The condition number for the matrid of dimension100, 200, 500, 1000 has the values
10.997, 12.892, 15.638, 17.898, respectively. The results for the trace4f° are given in
Tables5.8and5.9.

TABLE 5.8
Estimations ofTr(A').

Dim. Exact 1-term est. rell conf. interval

100 7.934el6 7.348el6 7.395e-2 [7.128e16, 7.568e16]
200 1.612el7 1.530el7 5.052e-2 [1.507el7,1.554el7]
500 4.072el7 3.984el7 2.161le-2 [3.954el7,4.014el7]
1000 8.176el7 8.067el7 1.339e-2 [8.031el7,8.102el7]

TABLE 5.9
Estimations ofTr( A1%).

Dim. Exact 2-term est. rel2 conf. interval

100 7.934el6 7.937el6 3.652e-4 [7.884el6, 7.991el6]
200 1.612el7 1.611el7 5.764e-4 [1.603el7,1.619el7]
500 4.072el7 4.071el7 4.145e-4 [4.064el7,4.078el7]
1000 8.176el7 8.177el7 1.463e-4 [8.170el7,8.185el7]

ExamPLE 5.3 (ill-conditioned sparse matrices). The followingathnditioned matri-
ces, denoted by and whose dimensions are indicated into parenthesis inghkeg, come
from theFlorida Sparse Matrix Collectiofi9]. We tested two matrices for the pow&f2 in
Table5.10 and five of them for the power 3 in Tabtell These matrices appear in stiff-
ness problems, except the matigxirnalsin Table5.11which corresponds to an undirected
weighted graph.

ExampPLE 5.4 (bounds of Corollaryt.2). Let us give some numerical results for illus-
trating the bounds given in Corollary2 for the trace ofA2. In that caseF(ex(x)) can be
exactly computed by Formuld () with n = 2, where

B(ci(x) =4 a};+2) awa;; + Y aj.
i<j i<j i

This formula was already given by Hutchinsat?]. Its interest lies in the fact that it only
implies the knowledge ofl, and that4? does not have to be computed. Let us remind that, for
a symmetric matrix, the trace of? is the square of its Frobenius norm. The Frobenius norm
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TABLE 5.10
Estimations oflr(B3/2).

Matrix cond Exact 2-term est. rel2 conf. interval
bcsstk20(485)  7.48el2 8.610e24  8.664e24  6.199e-3 [72849e384e24]
bcsstk21(3600) 4.49e7  9.105e14  9.020e14  9.339e-3 [8l929€ll17el4]

TABLE 5.11
Estimations oflr(B3).

Matrix cond Exact 2-term est. rel2 conf. interval
bcsstk20(485) 7.483el12 9.145e48 9.226e48  8.763e-3  [$4861.019e49]
bcsstk21(3600) 4.497e7  8.750e26 8.759e26  9.774e-4  [&618.905e26]
bcsstm06(420) 3.457e6  2.581el3 2.581el3 0 [2.581e13,188
bcsstm08(1074) 8.266e6  6.415e18 6.415e18 1.724e-14 561816.415e18]
journals(124) 1.938e4  3.70lel4 3.455el4  6.640e-2 [1183E079el4]

has application in obtaining lower and upper bounds for tted&nius condition number on
the cone of symmetric and positive definite matricgsl[/].

As an illustration, we first consider the Kac-Murdock-Sz€gMS) Toeplitz matrix/,
whose elements adg; = y/"=7l, y € R. If 0 < |y| < 1, the matrix is positive definite. It is
ill-conditioned fory close to 1. We choosg= 0.2, for which(K) is around 2.25 when the
dimension ranges between 100 and 1000. We also consideedinly orthogonal Chebyshev
Vandermonde-like matrix), which is given by thegallery function, using the test matrix
orthog with the parametek = —1. Its elements, based on the extrema of the Chebyshev
polynomialT;,_1, areg;; = cos((i — 1)(j — 1)x/(n — 1)), and we setd = QT Q. Their
condition number lies in the intervét.045,2.147] for dimensions between 100 and 1000.
Finally, we consider thearter matrix P whose elements ayg; = 1/(: — j + 0.5). Pisa
Cauchy and a Toeplitz matrix. We consider the mattix= P” P whose condition number is
10.997 for p = 100 and17.898 for p = 1000. In Table5.12 we give the lower and the upper
bounds forTr(A?) for these matrices obtained from Corolla¥y.

TABLE 5.12
Bounds forTr(A2).

Matrix Dim. lower bound Exact upperbound
Prolate 100 3.243e2 3.394e2 3.649e2
Prolate 1000 3.240e3 3.399e3 3.645e3
KMS 100 1.002e2 1.083e2 1.175e2
KMS 1000 1.000e3 1.083e3 1.174e3
QTQ 100 2.652e5 2.748e5 3.059e5
QTQ 1000 2.515e8 2.525e8 2.851e8
PTP 100 9.446e3 9.544e3 3.091e4
PTP 1000 9.702e4 9.715e4 4.840e5

6. Concluding remarks. In this paper, we extended the technique presented] ifof
estimating the trace of the inverse of a matrix to the tracésopowers. As explained in
Sectionl, such estimates have applications in various branches thfemetics. According
to the numerical tests we performed, it seems that our egrare not very sensitive to
perturbations on the initial matrix. Probably, they coukl farther improved by statistical
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techniques such as trimmed values or bootstrapping, azdgirdone in 4]. We also per-
formed some tests with € R, which proved to be conclusive. The ideas presented in this
paper could be extended to a complex Hilbert space. Alsgptksible extension of the ex-
trapolation technique for obtaining estimateg.of f (4)x), wheref is some function, has to
be studied. Although the numerical results presented hdyedeal with matrices, they could
be extended, under convenient assumptions, to the tracenadrp of a positive self-adjoint
operator in a Hilbert space.

Acknowledgments. We would like to thank Michele Benzi and Christos Koukouwsno
for constructive discussions and advice, and for providisguseful information. We are
grateful to the reviewers of this paper whose remarks heljgeid extend some results. The
second author (P. F.) acknowledges financial support freete SScholarships Foundation
(IKY), following a procedure of individualised assessmédnnded by the European Social
Fund (ESF) and NSRF of 2007-2013.

REFERENCES

[1] H. AvroN, Counting triangles in large graphs using randomized matir@ce estimationin Proceedings of
KDD-LDMTA'10, ACM, 2010.
[2] Z. BAI, M. FAHEY, AND G. GOLUB, Some large-scale matrix computation problersComput. Appl.
Math., 74 (1996), pp. 71-89.
[3] C. BREzINSKI, Error estimates for the solution of linear syster8$AM J. Sci. Comput., 21 (1999), pp. 764—
781.
[4] C. BREZzINSKI, P. FKA, AND M. MITROULI, Moments of a linear operator on a Hilbert space, with ap-
plications to the trace of the inverse of matrices and thetsmh of equationsNumer. Linear Algebra
Appl., to appear, 2012.
[5] C.BREZzINSKI AND M. RAYDAN, Cauchy-Schwartz and Kantorovich type inequalities fotacand matrix
moment sequence&dv. Comput. Math., 26 (2007), pp. 71-80.
[6] J.-P. G4HEHAB AND M. RAYDAN, Geometrical properties of the Frobenius condition numiwzergdositive
definite matricesLinear Algebra Appl., 429 (2008), pp. 2089—-2097.
[7] M. T. CHu, Symbolic calculation of the trace of the power of a tridiagbmatrix, Computing, 35 (1985),
pp. 257-268.
[8] B. N. DATTA AND K. DATTA, An algorithm for computing powers of a Hessenberg matrix imdpplica-
tions Linear Algebra Appl., 14 (1976), pp. 273-284.
[9] T. A. DAvIS AND Y. Hu, The University of Florida Sparse Matrix CollectipACM Trans. Math. Software,
38 (2011), 1 (25 pages). Available at
http://ww. ci se. ufl.edu/ research/sparse/ matrices/.
[10] G. H. GoLuB AND G. MEURANT, Matrices, Moments and Quadrature with ApplicatipRsinceton Univer-
sity Press, 2010.
[11] N. HiGHAM, Functions of Matrices: Theory and Computati®AM, Philadelphia, 2008.
[12] M. HUTCHINSON, A stochastic estimator of the trace of the influence matrix éplacian smoothing splines
Comm. Statist. Simulation Comput., 18 (1989), pp. 1059-1076.
[13] V. B. Lipskil, Non self-adjoint operators with a trac®okl. Akad. Nauk SSSR, 125 (1959), pp. 485-487
(in Russian).
[14] V. PaN, Estimating the extremal eigenvalues of a symmetric ma@axnput. Math. Appl., 20 (1990), pp. 17—
22.
[15] F. PUKELSHEIM, Optimal Design of ExperimentgViley, New York, 1993.
[16] B. SIMON, Trace Ideals and their Application&nd ed., Amer. Math. Soc., Providence, 2005.
[17] R. TURKMEN AND Z. ULUK OK, On the Frobenius condition number of positive definite neafiJ. Inequal.
Appl., (2010), 897279 (11 pages).
[18] A. V. ZARELUA, On congruences for the traces of powers of some mafriRex. Steklov Inst. Math., 263
(2008), pp. 78-98.


http://www.cise.ufl.edu/research/sparse/matrices/

