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TRIGONOMETRIC GAUSSIAN QUADRATURE ON
SUBINTERVALS OF THE PERIOD ∗
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Abstract. We construct a quadrature formula withn + 1 angles and positive weights which is exact in
the (2n + 1)-dimensional space of trigonometric polynomials of degree≤ n on intervals with length smaller
than2π. We apply the formula to the construction of product Gaussianquadrature rules on circular sectors, zones,
segments, and lenses.
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1. Introduction. In the recent paper [2], trigonometric interpolationof degree≤ n at
the2n + 1 angles

(1.1) θj := θj(n, ω) = 2 arcsin(sin
(

ω
2

)

τj) ∈ (−ω, ω), j = 1, 2, . . . , 2n + 1,

was studied, where0 < ω ≤ π and

τj := τj,2n+1 = cos

(

(2j − 1)π

2(2n + 1)

)

∈ (−1, 1), j = 1, 2, . . . , 2n + 1,

are the zeros of the(2n + 1)-th Chebyshev polynomialT2n+1(x). Moreover, it was proved
that the Lebesgue constant of such angles isO(log n) and that the associated interpolatory
trigonometric quadrature formula haspositiveweights. This topic has been termed “subperi-
odic” trigonometric interpolation and quadrature, since it concerns subintervals of the period
of trigonometric polynomials.

Denoting by

ℓj(x) =
T2n+1(x)

T ′
2n+1(τj)(x − τj)

thej-th algebraic Lagrange polynomial (of degree2n) for the nodes{τj}, ℓj(τk) = δjk, the
cardinal functionsfor trigonometric interpolation at the angles (1.1) can be written explicitly
as

(1.2) Ln+1(θ) = ℓn+1(x)

and forj 6= n + 1

(1.3) Lj(θ) =
1

2
(ℓj(x) + ℓ2n+2−j(x))

(

1 +
τ2
j

sin(θj)

sin(θ)

x2

)

,

where

(1.4) x = x(θ) =
sin( θ

2 )

sin(ω
2 )

∈ [−1, 1]
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with inverse

(1.5) θ = θ(x) = 2 arcsin(sin(ω
2 )x) ∈ [−ω, ω].

There is an explicit formula for the weights of the associated trigonometric interpolatory
quadrature rule, namely

(1.6) wj =
1

2n + 1

(

m0 + 2
n

∑

k=1

m2k T2k(τj)

)

, j = 1, . . . , 2n + 1,

where

(1.7) ms =

∫ 1

−1

Ts(x) 2 sin(ω
2 )

√

1 − sin2(ω
2 )x2

dx, s = 0, 1, 2, . . . ,

are the Chebyshev moments (observe that the odd moments vanish) with respect to the weight
function

(1.8) w(x) =
2 sin(ω

2 )
√

1 − sin2(ω
2 )x2

, x ∈ (−1, 1).

The possibility of a “subperiodic” trigonometric quadrature formula with positive weights
opens the way to construct stableproduct quadrature formulas[17, Chapter 2], which are
exact for total-degree algebraic polynomials on domains related to circular arcs. Indeed, a
suitable change of variables, such as polar, spherical, or cylindrical coordinates, can trans-
form an algebraic polynomial into a product trigonometric or mixed algebraic/trigonometric
polynomial on arc-related sections of disks and of surfaces/solids of rotation. To this purpose,
it is convenient to find subperiodic trigonometric quadrature formulas with a small number of
nodes. In this framework, it is also worth quoting the work byKim and Reichel on anti-Szegő
quadrature rules [12] in the case of measures supported on a subinterval of the period.

In this paper, using the algebraic Gaussian quadrature rulefor the weight function (1.8),
we provide a trigonometric “Gaussian” quadrature formula with positive weights that is exact
in the(2n + 1)-dimensional space of trigonometric polynomials

Tn([−ω, ω]) = span{1, cos(kθ), sin(kθ), 1 ≤ k ≤ n , θ ∈ [−ω, ω]}.

We also provide a Matlab function,trigauss , for the computation of angles and weights
of such a formula (cf. [4, 5]). Then we make an application to the construction of product
Gaussian quadrature formulas which are exact for algebraicpolynomials on some examples of
arc-related domains in a disk. Indeed, while several formulas with polynomial exactness are
known for the whole disk [3], these seem to be missing apart from special cases (e.g., [15])
for relevant disk subregions, such ascircular sectors, circular zones(the portion of a disk
included between any two parallel chords and their intercepted arcs) withcircular segments
as a special case, andcircular lenses(intersection of two disks).

The corresponding product formulas could be useful in the field of meshless methods for
PDEs, when Galerkin-type methods are applied with compactly supported basis functions,
which require integration on circular segments, sectors, and lenses; cf., e.g., [1, 6].
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2. Subperiodic trigonometric Gaussian quadrature. The main result is the following:
PROPOSITION 2.1. Let {(ξj , λj)}1≤j≤n+1, be the nodes and positive weights of the

algebraic Gaussian quadrature formula for the weight function (1.8). Then

(2.1)
∫ ω

−ω

f(θ) dθ =
n+1
∑

j=1

λjf(φj), ∀f ∈ Tn([−ω, ω]), 0 < ω ≤ π,

where

φj = 2arcsin(sin(ω
2 )ξj) ∈ (−ω, ω), j = 1, 2, . . . , n + 1.

Proof. Let the Gaussian nodes be in increasing order,−1 < ξ1 < · · · < ξn+1 < 1. It is
well known that, the weight function (1.8) being even, such nodes are symmetric, namely
ξj = −ξn+2−j (cf. [9, Chapter 1]) and thatλj = λn+2−j , since the corresponding Lagrange
polynomials satisfylj(x) = ln+2−j(−x).

For convenience, let us rename the nodesηk = ξj , k = j−⌊n
2 ⌋−1, such thatηk = −η−k

and the corresponding weights, sayuk, satisfyuk = u−k, −⌊n
2 ⌋ ≤ k ≤ ⌊n

2 ⌋.
Now, if we prove that the quadrature formula in (2.1) is exact on the cardinal functions

(1.2)-(1.3), then it will be exact for everyf ∈ Tn([−ω, ω]). Observe that by the change of
variables (1.4)-(1.5) and the definition of the cardinal functions, it holds that

∫ ω

−ω

Li(θ) dθ =

∫ 1

−1

1

2
(ℓi(x) + ℓ2n+2−i(x))w(x) dx, i = 1, 2, . . . , 2n + 1,

since the functionπi(x) = 1
2 (ℓi(x)+ℓ2n+2−i(x)) is even for everyi and the functionsin(θ(x))

x2

is odd. Butπi(x) is a polynomial of degree2n in x, thus

∫ 1

−1

πi(x)w(x) dx =

n+1
∑

j=1

λjπi(ξj) =

⌊
n
2 ⌋

∑

k=−⌊
n
2 ⌋

ukπi(ηk).

On the other hand, sinceπi(ηk) is even andπi(ηk) sin(θ(ηk))
η2

k

is odd with respect to the

indexk by symmetry of the nodes, we get with (1.2)-(1.3)

n+1
∑

j=1

λjLi(φj) =

⌊
n
2 ⌋

∑

k=−⌊
n
2 ⌋

ukLi(θ(ηk)) =

⌊
n
2 ⌋

∑

k=−⌊
n
2 ⌋

ukπi(ηk) =

∫ ω

−ω

Li(θ) dθ.

REMARK 2.2. The trigonometric quadrature formula (2.1) is a sort of “Gaussian” for-
mula in view of the degree of exactness and the positivity of the weights. On the other hand,
the quadrature angles are the zeros ofpn+1(x(θ)), where{pk}k≥0 are the algebraic orthogo-
nal polynomials with respect to the weight function (1.8); the functions{pk(x(θ))} are indeed
orthogonal indθ, but they are not all trigonometric polynomials, sincepk is an odd function
for k odd (cf. [9, §1.2]).

REMARK 2.3. It is worth observing that forω = π the underlying algebraic Gaussian
quadrature is just the Gauss-Chebyshev formula and that thetrigonometric quadrature an-
gles{φj} becomen+1 equally spaced angles in(−π, π) with the Gauss-Chebyshev weights
that correspond to a trapezoidal composite rule.
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2.1. Computational issues.From the practical point of view, the problem is now to
compute the nodes and weights of the algebraic Gaussian formula for the weight function (1.8).
This can be done efficiently, for example in Matlab, by resorting to themodified Chebyshev
algorithmby Gautschi, cf. [8, 9, 10].

This algorithm, implemented by the Matlab functionchebyshev in the OPQ suite [8],
computes the recurrence coefficients for the monic orthogonal polynomials with respect to the
weight function (1.8), say{pk}0≤k≤n+1, using the so-calledmodified Chebyshev moments
that are those defined in (1.7) for s = 0, 1, . . . , 2n + 1 (normalized in the monic case).
As Gautschi says (cf. [9, § 2.1.7]), “the success of the algorithm depends on the ability to
compute all required modified moments accurately and reliably”.

One possibility is to compute all the moments by numerical quadrature, for example by
the Matlab functionquadvgk , which is an adaptive Gauss-Kronrod quadrature method (like
the basicquadgk , [13]) tailored to manage vector-valued functions (cf. [18]). This approach
works, but in view of efficiency we found it better to compute the moments using the fact that
the even ones (the odd ones vanish) satisfy a three-term linear non homogeneous recurrence
relation,anm2n+2 + bnm2n + cnm2n−2 = dn, n = 1, 2, . . . , as shown in [16], where the
recurrence coefficientsan, bn, cn, dn are provided.

Such a recurrence is, however, unstable when used forward, and in order to stabilize it,
various algorithms are known; cf. [7]. A simple and effective method is to compute the
even moments(m2, . . . ,m2n−2) by solving a linear system with a tridiagonal matrix (of the
recurrence coefficients) and the vector(d1−c1m0, d2, . . . , dn−2, dn−1−an−1m2n) as right-
hand side. We immediately get thatm0 = 2ω, whereas the last momentm2n can be computed
accurately by thequadgk Matlab function (using an adaptive Gauss-Kronrod quadrature).
In such a way, we use numerical integration for only one moment. Since the matrix turns out
to be diagonally dominant, the system can be solved quite efficiently with anO(n) cost by
the well-known Thomas algorithm (Gaussian elimination without pivoting) implemented by
the Matlab functiontridisolve (cf. [14]). The reduction of computing time with respect
to the use ofquadvgk for the vector of moments is experimentally around a factor of 10.

Once the recurrence coefficients for the orthogonal polynomials {pk} are at hand, one
can easily compute the Gaussian quadrature nodes and weights by another function of the
OPQ suite, namelygauss , which performs a spectral decomposition of the Jacobi matrix of
the relevant weight function. It is worth quoting that an alternative method for the computa-
tion of the recurrence coefficients could resort to the more general sub-range Jacobi polyno-
mials approach studied in [11].

Clearly, the quadrature formula (2.1) can be extended to any angular interval[α, β] with
β−α ≤ 2π by usingω = β−α

2 and the shifted angles{φj + β+α
2 }. In [5] we provide a Matlab

function namedtrigauss , whose call is of the form:tw=trigauss(n,alpha,beta)
that accepts the trigonometric degree and the endpoints of the angular interval and returns the
(n + 1) × 2 array of the quadrature angles and weights.

In order to test numerically the exactness of our quadratureformula (2.1), we have com-
puted the integrals of the nonnegative (to avoid any cancellation problem) trigonometric basis

(2.2) {1, 1 + cos(kθ), 1 + sin(kθ), 1 ≤ k ≤ n , θ ∈ [−ω, ω]},

for n = 5, 10, 15, . . . , 95, 100 and several values ofω. The reference values of the integrals
are known analytically. In Figure2.1we report the maximum of the componentwise relative
errors for eachn. We see that the error tend to increase withn and withω, ranging from
about10−15 to about10−14.
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The computing time of the quadrature angles and weights at a given degree turns out to be
essentially invariant inω, ranging from10−2 seconds forn in the tens (it is still3. 10−2 sec-
onds forn = 100) to less than half a second forn in the hundreds. The numerical experiments
also show that forn > 60 the computing cost of the Chebyshev moments rapidly becomes
a small fraction of the overall cost. These and the followingtests have been made in Mat-
lab 7.7.0 with an Athlon 64 +3800 2.40GHz processor.
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−16
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FIG. 2.1. Maximal quadrature errors on the trigonometric basis (2.2) for n = 5, 10, 15, . . . , 95, 100, with
ω = π

16
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16
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2.2. Circular sectors. As a first application, we consider the integration of a bivariate
function on a circular sector. Up to translation and rotation, we can always take a sector
centered at the origin and symmetric with respect to thex-axis, say

(2.3) Ω = {(x, y) = (r cos(θ), r sin(θ)) , 0 ≤ r ≤ R , θ ∈ [−ω, ω]}.

The key observation is that in polar coordinates(r, θ), a polynomialf ∈ P
2
n(Ω) (the space

of bivariate polynomials of total degree≤ n) becomes a mixed algebraic/trigonometric poly-
nomial in the tensor-product spacePn([0, R])

⊗

Tn([−ω, ω]). Then, we get the product
Gaussian formula on circular sectors (cf. (2.1))

∫∫

Ω

f(x, y) dx dy =

∫ ω

−ω

∫ R

0

f(r cos(θ), r sin(θ)) r drdθ

=

n+1
∑

j=1

⌈n+2

2
⌉

∑

i=1

Wij f(xij , yij), ∀f ∈ P
2
n(Ω),(2.4)

Wij = rGL
i wGL

i λj ,

(xij , yij) = (rGL
i cos(φj), r

GL
i sin(φj)),

where{(rGL
i , wGL

i )} are the nodes and weights of the Gauss-Legendre formula of degree of
exactnessn + 1 on [0, R] (cf. [9]). Observe that (2.4) has approximately(n+1)(n+2)

2 ∼ n2

2
nodes. Note that (2.4) is indeed exact not only for polynomials but also for every function
f(x, y) such thatf(r cos(θ), r sin(θ)) ∈ Pn([0, R])

⊗

Tn([−ω, ω]).
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The extension to annular sectors (0 < R1 ≤ r ≤ R2) is immediate simply by using
the corresponding Gauss-Legendre formula on[R1, R2]. We notice that there is a classical
product quadrature formula for complete annuli (cf. [15]), but formulas with polynomial
exactness on general annular sectors seem to be missing in the literature. In [5] we provide a
Matlab function,gqcircsect , that computes the product Gaussian nodes and weights for
(annular) sectors. In Figure2.2, we show an example of product quadrature nodes for two
circular sectors. The computing time of nodes and weights ata given degree turns out to be
of some10−2 seconds up ton = 100, independently ofω.
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FIG. 2.2. 60 = 6 × 10 product quadrature nodes of algebraic exactness degree 9 oncircular sectors with
R1 = 1

3
, R2 = 1, ω = π

4
(left) andR1 = 0, R2 = 1, ω = 3π

4
(right).

In order to test the polynomial exactness of the product Gaussian formula (2.4), we have
computed the integral of the positive polynomial(x+ y +2)n on the sector (2.3) with R = 1
for several values ofn andω, that is by Green’s formula

I(ω, n) =

∫∫

Ω

(x + y + 2)n dx dy =

∮

∂Ω

(x + y + 2)n+1

n + 1
dy

=

∫ ω

−ω

(cos(θ) + sin(θ) + 2)n+1

n + 1
cos(θ) dθ −

sin(ω)

(n + 1)(n + 2)

×

(

(cos(ω) − sin(ω) + 2)n+2 − 2n+2

cos(ω) − sin(ω)
+

(cos(ω) + sin(ω) + 2)n+2 − 2n+2

cos(ω) + sin(ω)

)

.

In Table2.1 we report the maximal and average relative errors of the product Gaussian
formula with respect to the reference values ofI(ω, n) obtained by applying to the trigono-
metric polynomial(cos(θ)+sin(θ)+2)n the quadrature formula with angles (1.1) and weights
(1.6), implemented by the Matlab functiontrigquad in [5] (where the Chebyshev moments
are computed by recurrence as intrigauss ).

TABLE 2.1
Maximal and average relative errors in the integration of the polynomial(x+ y +2)n on the sector (2.3) with

R = 1, for n = 5, 10, 15, . . . , 95, 100.

ω π
16

π
8

π
4

π
2

3π
4

7π
8

15π
16

Emax 1.9e-14 1.3e-14 1.3e-14 2.7e-14 1.3e-14 1.4e-14 1.8e-14
Eav 4.1e-15 4.8e-15 5.5e-15 5.6e-15 3.8e-15 4.0e-15 4.5e-15

As a second numerical test, see Figure2.3, we have integrated two parametric functions,
one of infinite and the other of finite regularity (it exhibitsa discontinuity of the fifth partial
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derivatives at a point of the sector). Observe that we obtainbetter results when such a sin-
gularity is located at the regions where the quadrature nodes cluster more rapidly (the origin
and a curve corner of the sector). In particular, for(a, b) = (0, 0) we have that the second
test function is the purely radial functionf(x, y) = exp(r5).
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FIG. 2.3. Relative errors in the integration of two parametric functions on the sector (2.3) with R = 1 and
ω = π

3
, for n = 5, 10, 15, . . . , 95, 100; left: f(x, y) = exp(k(x + y)), k = 1(◦), k = 10(∗), k = 100(♦);

right: f(x, y) = exp([(x − a)2 + (y − b)2]
5
2 ), (a, b) = (0.3, 0)(◦), (a, b) = (1, 0)(¤), (a, b) = (1

2
,
√

3

2
)(♦),

(a, b) = (0, 0)(∗).

2.3. Circular zones and segments.A circular zoneis the portion of a disk included
between any two parallel chords and their intercepted arcs.Up to translation and rotation, it
can be represented as

(2.5) Ω = {(x, y) = (R cos(θ), Rt sin(θ)), t ∈ [−1, 1] , θ ∈ [α, β]},

where0 ≤ α < β ≤ π. Now, in the coordinates(t, θ), a bivariate polynomialf ∈ P
2
n(Ω)

becomes a mixed algebraic/trigonometric polynomial inPn([−1, 1])
⊗

Tn([α, β]). Since the
transformation(t, θ) 7→ (x, y) is injective with Jacobian|J | = R2 sin2(θ), we get the product
Gaussian formula on circular zones

∫∫

Ω

f(x, y) dx dy =
n+3
∑

j=1

⌈n+1

2
⌉

∑

i=1

Wij f(xij , yij), ∀f ∈ P
2
n(Ω),(2.6)

Wij = R2 sin2(ϕj)wGL
i λj ,

(xij , yij) = (R cos(ϕj), RtGL
i sin(ϕj)),

whereϕj = φj+
β+α

2 , {(φj , λj)} being the angles and weights of the trigonometric Gaussian
formula (2.1) of degree of exactnessn+2 on [−β−α

2 , β−α
2 ], and{(tGL

i , wGL
i )} the nodes and

weights of the Gauss-Legendre formula of degree of exactnessn on [−1, 1]. Note that formu-
la (2.6) has approximately(n+1)(n+3)

2 ∼ n2

2 nodes and is exact not only for polynomials but
also for every functionf(x, y) such thatf(R cos(θ), Rt sin(θ)) ∈ Pn([−1, 1])

⊗

Tn([α, β]).
A circular segment, one of the two portions of a disk cut by a chord, can be seen as

a special degenerate case of a circular zone, and up to translation and rotation corresponds
to (2.5) with α = 0.

In [5] we provide a Matlab function,gqcirczone , that computes the product Gaussian
nodes and weights for circular zones (and circular segmentsas a special case). Also here,
the computing time of nodes and weights at a given degree is ofsome10−2 seconds up
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FIG. 2.4. 60 = 5 × 12 product quadrature nodes of algebraic exactness degree 9 oncircular segments (2.5)
(α = 0), with R = 1 andβ = π

4
(left), β = 3π

4
(right).

to n = 100, independently ofα, β. In Figures2.4 and2.6 (left), we show an example of
product quadrature nodes for two circular segments and a circular zone.

We have tested the polynomial exactness of the product Gaussian formula (2.6) by com-
puting the integral of the positive polynomial(x+y+2)n on circular segments (2.5) (α = 0)
with R = 1 for several values ofn andβ, that is

I(β, n) =

∫

Ω

(x + y + 2)n dx dy

=

∫ β

0

(cos(θ) + sin(θ) + 2)n+1 − (cos(θ) − sin(θ) + 2)n+1

n + 1
sin(θ) dθ.(2.7)

In Table2.2 we report the maximal and average relative errors of the product Gaussian
formula with respect to the reference values ofI(β, n) obtained by integrating the trigono-
metric polynomial in (2.7) by the Matlab functiontrigquad in [5].

TABLE 2.2
Maximal and average relative errors in the integration of the polynomial(x + y + 2)n on circular seg-

ments (2.5) (α = 0) with R = 1, for n = 5, 10, 15, . . . , 95, 100.

β π
16

π
8

π
4

π
2

3π
4

7π
8

15π
16

Emax 4.8e-15 8.4e-15 1.3e-14 1.6e-14 1.3e-14 1.5e-14 1.5e-14
Eav 1.4e-15 2.7e-15 3.9e-15 4.2e-15 3.9e-15 3.8e-15 4.2e-15

In Figure2.5, we show the results of a numerical integration test on the same parametric
functions as in Figure2.3. Again, we obtain better results for the finite regularity case when
the singularity is located where the quadrature nodes cluster more rapidly (the point(1, 0)
and a corner of the circular segment).

2.3.1. Circular lenses.It is worth observing that (2.6) specialized to circular segments
(α = 0) can be used straightforwardly to construct Gaussian quadrature formulas onlenses
(intersection of two disks), which are the union of two circular segments of possibly differ-
ent angle with the chord in common. The number of quadrature nodes doubles, becoming
approximately(n + 1)(n + 3) ∼ n2.

These formulas could be useful whenever one has to integratethe product of two func-
tions supported on disks, for example in the field of meshlessmethods for PDEs, when
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FIG. 2.5.Relative errors in the integration of two parametric functions on the circular segment (2.5) (α = 0),
with R = 1 andβ = π

3
, for n = 5, 10, 15, . . . , 95, 100; left: f(x, y) = exp(k(x + y)), k = 1(◦), k = 10(∗),

k = 100(♦); right: f(x, y) = exp([(x − a)2 + (y − b)2]
5
2 ), (a, b) = (0.7, 0)(◦), (a, b) = (1, 0)(¤),

(a, b) = ( 1

2
,
√

3

2
)(♦).

Galerkin-type methods are applied with compactly supported basis functions centered at scat-
tered points. Indeed, integration of the product of such functions or of their derivatives (with
possibly different radii of the support disks) reduces to integration on (generally asymmetric)
lenses; cf., e.g., [1, 6].

In the case ofsymmetric lensesthat are the intersection of two disks with equal ra-
diusR and distance between the centers in[0, 2R), we can even reduce the number of product
quadrature nodes. Indeed, a symmetric lens can be represented, up to translation and rotation,
as

(2.8) Ω = {(x, y) = (Rt(cos(θ) − cos(ω)), R sin(θ)), t ∈ [−1, 1] , θ ∈ [−ω, ω]},

where0 < ω ≤ π
2 . In the coordinates(t, θ), a bivariate polynomialf ∈ P

2
n(Ω) becomes

a mixed algebraic/trigonometric polynomial in the spacePn([−1, 1])
⊗

Tn([−ω, ω]). Since
the injective transformation(t, θ) 7→ (x, y) has Jacobian|J | = R2 cos(θ)(cos(θ) − cos(ω)),
we get the product Gaussian formula for symmetric lenses

∫∫

Ω

f(x, y) dx dy =

n+3
∑

j=1

⌈n+1

2
⌉

∑

i=1

Wij f(xij , yij), ∀f ∈ P
2
n(Ω),

Wij = R2 cos(φj)(cos(φj) − cos(ω))wGL
i λj ,

(xij , yij) = (RtGL
i (cos(φj) − cos(ω)), R sin(φj)),

with {(φj , λj)} being the angles and weights in (2.1), and {(tGL
i , wGL

i )} the nodes and
weights of the Gauss-Legendre formula of degree of exactness n on [−1, 1]. This formula
has approximately(n+1)(n+3)

2 ∼ n2

2 nodes.
In [5] we provide a Matlab functions, namedgqsymmlens , which computes the product

Gaussian nodes and weights for symmetric lenses. The computational costs and the numer-
ical results on test functions are similar to those obtainedfor circular segments, and are not
reported for brevity. In Figure2.6 (right) we show an example of product quadrature nodes
for a symmetric lens.

3. Conclusion. We have constructed a quadrature formula withn+1 nodes (angles) and
positive weights which is exact on the(2n+1)-dimensional space of trigonometric polynomi-
als of degree not greater thann, restricted to an angular interval[−ω, ω] of length2ω < 2π.
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FIG. 2.6.60 = 5× 12 product quadrature nodes of algebraic exactness degree 9 ona circular zone (2.5) with
R = 1, α = π

6
andβ = π

2
(left), and24 = 3 × 8 product cubature nodes of exactness degree 5 on a symmetric

lens (2.8) with R = 1 andω = π

4
(right).

Such a formula is related by a simple nonlinear transformation to an algebraic Gaussian
quadrature formula on[−1, 1] and can be implemented efficiently by Gautschi’s OPQ Matlab
suite [8]. This gives an improvement with respect to a recent result concerning a quadra-
ture formula with positive weights and2n + 1 angles, based on subperiodic trigonometric
interpolation [2].

We have applied the new subperiodic trigonometric quadrature formula to product Gaus-
sian quadrature on relevant sections of the disk, such as circular sectors, zones, segments, and
lenses. All the corresponding Matlab codes are available online [5].

Subperiodic trigonometric Gaussian quadrature and related formulas could be useful in
several applications, for example within Galerkin-type meshless methods for PDEs or in the
construction of product Gaussian rules on arc-related sections of surfaces/solids of rotation.
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