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TRIGONOMETRIC GAUSSIAN QUADRATURE ON
SUBINTERVALS OF THE PERIOD *

GASPARE DA FIES AND MARCO VIANELLO T

Abstract. We construct a quadrature formula with+ 1 angles and positive weights which is exact in
the (2n + 1)-dimensional space of trigonometric polynomials of degreen on intervals with length smaller
than27. We apply the formula to the construction of product Gaussgigdrature rules on circular sectors, zones,
segments, and lenses.
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1. Introduction. In the recent papef], trigonometric interpolatiorof degree< n at
the2n 4+ 1 angles

(1.1) 0; :=0;(n,w) = 2arcsin(sin (%) 75) € (~w,w), j=1,2,...,2n+1,
was studied, whereé < w < 7 and

(2j — 1)

VIZ TN e (C1,1), j=12,.... 20+ 1,
2@n+n> (=L, J m

Tj += Tj2n+1 = COS (
are the zeros of thn + 1)-th Chebyshev polynomidls,, .1 (x). Moreover, it was proved
that the Lebesgue constant of such angle®(kgn) and that the associated interpolatory
trigonometric quadrature formula hpesitiveweights. This topic has been termed “subperi-
odic” trigonometric interpolation and quadrature, sirtogoincerns subintervals of the period
of trigonometric polynomials.

Denoting by

Topy1()
TVQInJrl(Tj)(z - Tj)

li(z) =

the j-th algebraic Lagrange polynomial (of degt®e) for the nodeqr;}, £; (%) = 0;, the
cardinal functiongor trigopnometric interpolation at the anglek {) can be written explicitly
as

(1.2) Lp1(0) = Loy (2)

andforj #n+1

1 77 sin(f)
(L3) Li(0) = 5 (65(2) + tans2-5(2)) <1+ sin(f;) a2 > ’
where
(1.4) o —a(0) = G ¢y g

: sin(%) ’
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with inverse
(1.5) 0 = 0(x) = 2arcsin(sin(§)z) € [~w,w].

There is an explicit formula for the weights of the assodadtgonometric interpolatory
quadrature rule, namely

1 - .
(16) w; = o1 (m()‘i’QI;WLQkTWC(Tj)) y J = 1,,27L+ 1;
where
1 2 w
a.7) msz/ To(@) 2sin(3) dr, s=0,1,2,...,

-1./1— s1n2(%)x2

are the Chebyshev moments (observe that the odd momenséyaiith respect to the weight
function

(1.8) w(z) =

The possibility of a “subperiodic” trigonometric quadragdiormula with positive weights
opens the way to construct stalgeoduct quadrature formulagl7, Chapter 2], which are
exact for total-degree algebraic polynomials on domaifeted to circular arcs. Indeed, a
suitable change of variables, such as polar, sphericalylordcical coordinates, can trans-
form an algebraic polynomial into a product trigonometniarixed algebraic/trigonometric
polynomial on arc-related sections of disks and of surf@odigls of rotation. To this purpose,
itis convenient to find subperiodic trigonometric quadratiormulas with a small number of
nodes. In this framework, it is also worth quoting the workdisn and Reichel on anti-Szég
quadrature ruleslp] in the case of measures supported on a subinterval of thedper

In this paper, using the algebraic Gaussian quadraturdautbe weight function1.8),
we provide a trigonometric “Gaussian” quadrature formuild\positive weights that is exact
in the (2n + 1)-dimensional space of trigonometric polynomials

T, ([~w,w]) = spad 1, cos(kf),sin(kh), 1 <k <n, 0 € [-w,w|}.

We also provide a Matlab functiotrjgauss , for the computation of angles and weights
of such a formula (cf. 4, 5]). Then we make an application to the construction of préduc
Gaussian quadrature formulas which are exact for algepadyniomials on some examples of
arc-related domains in a disk. Indeed, while several foamwith polynomial exactness are
known for the whole diskd], these seem to be missing apart from special cases (£5)., [
for relevant disk subregions, such @scular sectors circular zones(the portion of a disk
included between any two parallel chords and their intdembprcs) withcircular segments
as a special case, anttcular lensegintersection of two disks).

The corresponding product formulas could be useful in thé iEmeshless methods for
PDEs, when Galerkin-type methods are applied with compattpported basis functions,
which require integration on circular segments, sectard lenses; cf., e.g.1[ 6].
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2. Subperiodic trigonometric Gaussian quadrature. The main result is the following:
ProposITION2.1. Let {(§;,\j)}1<j<n+1, be the nodes and positive weights of the
algebraic Gaussian quadrature formula for the weight fumet1.8). Then

n+1

(2.1) /f )do =" Xf(¢;), VfETn(~ww]), 0<w<m,

7j=1

where

¢j = 2arcsin(sin($)§;) € (~w,w), j=1,2,...,n+ 1.

Proof. Let the Gaussian nodes be in increasing ordér< & < --- < &,41 < 1. Itis
well known that, the weight functionl(8) being even, such nodes are symmetric, namely
& = —&nqa—j (cf. [9, Chapter 1]) and that; = A, 12—, since the corresponding Lagrange
polynomials satisfy; (x) = l,4o—;(—x).

For convenience, let us rename the nogles- §;, k = j—| 5 | —1, suchthaty, = —n_x
and the corresponding weights, say, satisfyuy = u_, —[ 5] <k < [5].

Now, if we prove that the quadrature formula 1) is exact on the cardinal functions
(1.2-(1.3), then it will be exact for every € T, ([—w,w]). Observe that by the change of
variables [.4)-(1.5) and the definition of the cardinal functions, it holds that

/w L;(0)do = /1 1 (li(x) + lopyoi(x))w(x)de, i=1,2,...,2n+ 1,

—w -1 2
since the functionr; (z) = 1 (£;(x)+{2n42—:(z)) is even for every and thefuncuon‘M
is odd. Butr;(x) is a polynomial of degre2n in x, thus

1 n+1 \.%J
/ dxfz/\ mi(&5) = Z wpT; (MK
]

—1 n
k=—|75

On the other hand, since (7)) is even andr;(n;) S‘“(‘f?% is odd with respect to the
index k by symmetry of the nodes, we get with.9)-(1.3)

n
n+1 ij w

L3)
ZAL )= > wLi0(m) = > wxmi(ng) / Li(0)do. O

h=—13] h=—13] -

REMARK 2.2. The trigonometric quadrature formulal) is a sort of “Gaussian” for-
mula in view of the degree of exactness and the positivithefiweights. On the other hand,
the quadrature angles are the zerog,of; (z(9)), where{py }+>( are the algebraic orthogo-
nal polynomials with respect to the weight functidng); the functionspy (x(6))} are indeed
orthogonal indf, but they are not all trigonometric polynomials, singeis an odd function
for k odd (cf. B, §1.2]).

REMARK 2.3. It is worth observing that fav = 7 the underlying algebraic Gaussian
qguadrature is just the Gauss-Chebyshev formula and thdtiggmmometric quadrature an-
gles{¢; } becomen+1 equally spaced angles {r-, 7) with the Gauss-Chebyshev weights
that correspond to a trapezoidal composite rule.
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2.1. Computational issues.From the practical point of view, the problem is now to
compute the nodes and weights of the algebraic Gaussianfafor the weight function(.8).
This can be done efficiently, for example in Matlab, by resgrto themodified Chebyshev
algorithmby Gautschi, cf. §, 9, 10].

This algorithm, implemented by the Matlab functioimebyshev in the OPQ suiteq],
computes the recurrence coefficients for the monic orthalgaolynomials with respect to the
weight function (..8), say{px }o<k<n+1, USiNg the so-calledhodified Chebyshev moments
that are those defined iri.¢) for s = 0,1,...,2n + 1 (normalized in the monic case).
As Gautschi says (cf.9] § 2.1.7]), “the success of the algorithm depends on the wlidit
compute all required modified moments accurately and rigliab

One possibility is to compute all the moments by numericaldyature, for example by
the Matlab functiorquadvgk , which is an adaptive Gauss-Kronrod quadrature methoe (lik
the basiquadgk , [13)]) tailored to manage vector-valued functions (6fg]). This approach
works, but in view of efficiency we found it better to compute moments using the fact that
the even ones (the odd ones vanish) satisfy a three-terar Im@ homogeneous recurrence
relation,a,,mon12 + bnmon + cpmaon—o = dy, n = 1,2,..., as shown in16], where the
recurrence coefficients,, b, ¢,, d, are provided.

Such a recurrence is, however, unstable when used forwaddnaorder to stabilize it,
various algorithms are known; cf.7]f A simple and effective method is to compute the
even moment$mea, . .., ma,_2) by solving a linear system with a tridiagonal matrix (of the
recurrence coefficients) and the veat@r — cymo, da, . . ., dp—2,dp—1 — an—1Mmay,) as right-
hand side. We immediately get thaty = 2w, whereas the last momennt,,, can be computed
accurately by thejuadgk Matlab function (using an adaptive Gauss-Kronrod quadetu
In such a way, we use numerical integration for only one mdnt&ince the matrix turns out
to be diagonally dominant, the system can be solved quiteiesftly with anO(n) cost by
the well-known Thomas algorithm (Gaussian eliminatiorhwiit pivoting) implemented by
the Matlab functiontridisolve (cf. [14]). The reduction of computing time with respect
to the use ofjuadvgk for the vector of moments is experimentally around a factdrQo

Once the recurrence coefficients for the orthogonal polyatsp,} are at hand, one
can easily compute the Gaussian quadrature nodes and svéiglainother function of the
OPQ suite, namelgauss , which performs a spectral decomposition of the Jacobiiratr
the relevant weight function. It is worth quoting that areattative method for the computa-
tion of the recurrence coefficients could resort to the memegal sub-range Jacobi polyno-
mials approach studied in]].

Clearly, the quadrature formula.() can be extended to any angular interjval 5] with
f—a < 27 by usingw = 252 and the shifted angle; + 2+ }. In [5] we provide a Matlab
function namedrigauss , whose call is of the formtw=trigauss(n,alpha,beta)
that accepts the trigpnometric degree and the endpointeafrigular interval and returns the
(n+ 1) x 2 array of the quadrature angles and weights.

In order to test numerically the exactness of our quadrdturaula 2.1), we have com-
puted the integrals of the nonnegative (to avoid any caabef problem) trigonometric basis

(2.2) {1,1 4 cos(k0),1 +sin(kf), 1 <k <n, 0 € [-w,w]},

forn = 5,10,15,...,95,100 and several values of. The reference values of the integrals
are known analytically. In Figurg.1we report the maximum of the componentwise relative
errors for eacn. We see that the error tend to increase withnd withw, ranging from
about10~15 to aboutl 0~ 14,
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The computing time of the quadrature angles and weightsigéa degree turns out to be
essentially invariant i, ranging from10—2 seconds for: in the tens (it is stil3. 10~2 sec-
onds forn. = 100) to less than half a second fatin the hundreds. The numerical experiments
also show that for, > 60 the computing cost of the Chebyshev moments rapidly becomes
a small fraction of the overall cost. These and the followiests have been made in Mat-
lab 7.7.0 with an Athlon 64 +3800 2.40GHz processor.
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FiG. 2.1. Maximal quadrature errors on the trigonometric basks2) for n = 5,10, 15, ..., 95, 100, with
w= 50w = 50 w=5(0)w=50)w=3(A)w= () w=TFx).

2.2. Circular sectors. As a first application, we consider the integration of a bater
function on a circular sector. Up to translation and rotgtiove can always take a sector
centered at the origin and symmetric with respect tartlaxis, say

(2.3) Q={(z,y) = (rcos(f),rsin(h)), 0<r <R, 0 € [—w,w]}.

The key observation is that in polar coordinates?), a polynomialf € P2 (Q) (the space
of bivariate polynomials of total degree n) becomes a mixed algebraic/trigonometric poly-
nomial in the tensor-product spaé, ([0, R]) @ T,,([—w,w]). Then, we get the product
Gaussian formula on circular sectors (&.1))

//Q flz,y)dedy = /U; /OR f(rcos(0),rsin(0)) rdrdd

il VL22

(2.4) = Z Z Wij f(@ij, i), Vf € PL(Q),

j=1 =1
_ .GL GL
Wij =i~ wi™ Ay,

(245, yij) = (rT cos(¢;), rET sin(g;)),

where{(r&F wl)} are the nodes and weights of the Gauss-Legendre formulayoéelef
exactness + 1 on [0, R] (cf. [9]). Observe thatZ.4) has approximateléw ~ ”72
nodes. Note that2(4) is indeed exact not only for polynomials but also for evamgdtion
f(z,y) such thatf (r cos(0), rsin(6)) € P, ([0, R]) @ T\, ([~w, w]).
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The extension to annular sectofs € Ry < r < R») is immediate simply by using
the corresponding Gauss-Legendre formuld Bn, R»]. We notice that there is a classical
product quadrature formula for complete annuli (cf5]), but formulas with polynomial
exactness on general annular sectors seem to be missirgylitetature. In §] we provide a
Matlab function,gqcircsect , that computes the product Gaussian nodes and weights for
(annular) sectors. In Figur22, we show an example of product quadrature nodes for two
circular sectors. The computing time of nodes and weighésgiten degree turns out to be
of somel0~2 seconds up ta = 100, independently of.
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FiG. 2.2. 60 = 6 x 10 product quadrature nodes of algebraic exactness degree @rounlar sectors with
Ry =1, Ry=1,w=7Z (left andR; =0, Rz = 1,w = 3F (right).

In order to test the polynomial exactness of the product 8angormula 2.4), we have
computed the integral of the positive polynomiaH y + 2)™ on the sectord.3) with R = 1
for several values of andw, that is by Green'’s formula

2n+1
I(w,n) // (x+y+2)"dedy = f ( rHy+2) d
a0 TL+1

[ (cos(f) + sin(0) + 2)" ! sin(w)
_/_w nt1 s T D19
(cos(w) — sin(w) + 2)"*F2 — 272 (cos(w) + sin(w) + 2)"+2 — 2n+2
8 ( cos(w) — sin(w) + cos(w) + sin(w) ) ’

In Table2.1we report the maximal and average relative errors of theymo@aussian
formula with respect to the reference valued @b, n) obtained by applying to the trigono-
metric polynomial cos(#)+sin(#)+2)™ the quadrature formula with angleks ) and weights
(1.6), implemented by the Matlab functiangquad  in [5] (where the Chebyshev moments
are computed by recurrence agdrigauss ).

TABLE 2.1
Maximal and average relative errors in the integration of fholynomialz + y + 2)™ on the sectorZ.3) with
R =1,forn=15,10,15,...,95,100.

s s s s 3T T 157

‘ 16 ‘ B ‘ 4 ‘ 2 ‘ 4 ‘ 8 ‘ 16
Frae | 1.9e-14| 1.3e-14| 1.3e-14| 2.7e-14| 1.3e-14| 1.4e-14| 1.8e-14
FE,, | 4.1e-15| 4.8e-15| 5.5e-15| 5.6e-15| 3.8e-15| 4.0e-15| 4.5e-15

As a second numerical test, see Fighr& we have integrated two parametric functions,
one of infinite and the other of finite regularity (it exhibagiscontinuity of the fifth partial
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derivatives at a point of the sector). Observe that we olietter results when such a sin-
gularity is located at the regions where the quadrature siolisster more rapidly (the origin

and a curve corner of the sector). In particular, ferb) = (0,0) we have that the second
test function is the purely radial functigfi(z, y) = exp(r®).

FIG. 2.3. Relative errors in the integration of two parametric furmets on the sector2(3) with R = 1 and
w = 7, forn =5,10,15,...,95,100; left: f(z,y) = exp(k(z +y)), k = 1(0), k = 10(x), k = 100(0);

fight: f(z,y) = exp([(z — a)2 + (y — )2]3), (a,b) = (0.3,0)(0), (a,b) = (1,0)(D), (a,b) = (4, %3)(0),
(a,b) = (0,0)(%).

2.3. Circular zones and segmentsA circular zoneis the portion of a disk included
between any two parallel chords and their intercepted &tpsto translation and rotation, it
can be represented as

(2.5) Q ={(z,y) = (Rcos(9), Rtsin()), t € [-1,1], 0 € [a, 8]},

where0 < a < 3 < 7. Now, in the coordinate§, 6), a bivariate polynomiaf € P2 (1)
becomes a mixed algebraic/trigonometric polynomidt,ii[—1, 1]) @ T, ([e, ]). Since the
transformatior(t, 0) — (z,y) is injective with Jacobiah/| = R?sin?(#), we get the product
Gaussian formula on circular zones

n+3 "TLTH]
(2.6) / /Q faydrdy =S S Wiy i), VF € PA(Q),
j=1 i=1
Wij = R* sin®(p;) wi'™ A,
(xmay?]) = (RCOS(QOJ)’Rt?L bln(@]))v

wherep; = ¢; +*3+Ta, (¢4, A;)} being the angles and weights of the trigonometric Gaussian
formula @.1) of degree of exactnesst 2 on [—ﬁ%‘“, [’*TO‘], and{(t$F, wfT)} the nodes and
weights of the Gauss-Legendre formula of degree of exagtnes [—1, 1]. Note that formu-
la (2.6) has approximatel)ﬁ'w ~ "; nodes and is exact not only for polynomials but
also for every functiorf (z, y) such thatf (R cos(8), Rtsin(6)) € P, ([—1,1]) @ T, ([a, £])-

A circular segmentone of the two portions of a disk cut by a chord, can be seen as
a special degenerate case of a circular zone, and up todtiansand rotation corresponds
to (2.5 with o = 0.

In [5] we provide a Matlab functiorgqcirczone , that computes the product Gaussian
nodes and weights for circular zones (and circular segments special case). Also here,
the computing time of nodes and weights at a given degree somie10~2 seconds up



ETNA
Kent State University
http://etna.math.kent.edu

TRIGONOMETRIC GAUSSIAN QUADRATURE 109

FIG. 2.4.60 = 5 x 12 product quadrature nodes of algebraic exactness degreed@roular segments2.5)
(a=0),withR =1andg = 7 (left), 8 = ij (right).

ton = 100, independently ofy, 5. In Figures2.4 and 2.6 (left), we show an example of
product quadrature nodes for two circular segments anctalairzone.

We have tested the polynomial exactness of the product @aufssmula @.6) by com-
puting the integral of the positive polynomiat + y +2)™ on circular segment2(5) (o = 0)
with R = 1 for several values aof andg, that is

I(ﬁ,n):/gz(w+y+2)”dwdy

2.7) _ /Oﬂ (cos(0) + sin(0) + 2)n+1 — (cos(f) — sin(0) + 2)n+1

1 sin(#) do.
n

In Table2.2 we report the maximal and average relative errors of theymo@aussian
formula with respect to the reference values/ 0f, n) obtained by integrating the trigono-
metric polynomial in 2.7) by the Matlab functiortrigquad  in [5].

TABLE 2.2
Maximal and average relative errors in the integration oétpolynomial(z 4+ y + 2)™ on circular seg-
ments 2.5) (o = 0) with R = 1, forn = 5,10, 15, ..., 95, 100.

s s s s 3T T s

Pl % | 5 | F | 5 | F | F | 5F
Frae | 4.8e-15| 8.4e-15| 1.3e-14| 1.6e-14| 1.3e-14| 1.5e-14| 1.5e-14
FEay 1.4e-15| 2.7e-15| 3.9e-15| 4.2e-15| 3.9e-15| 3.8e-15| 4.2e-15

In Figure2.5, we show the results of a numerical integration test on theegaarametric
functions as in Figur@.3. Again, we obtain better results for the finite regularitgeavhen
the singularity is located where the quadrature nodesegiusore rapidly (the pointl, 0)
and a corner of the circular segment).

2.3.1. Circular lenses.lIt is worth observing thatA.6) specialized to circular segments
(o = 0) can be used straightforwardly to construct Gaussian @i formulas otenses
(intersection of two disks), which are the union of two clezulsegments of possibly differ-
ent angle with the chord in common. The number of quadratades doubles, becoming
approximately(n + 1)(n + 3) ~ n?.

These formulas could be useful whenever one has to intetjrateroduct of two func-
tions supported on disks, for example in the field of meshiasthods for PDEs, when
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0 10 20 30 40 50 60 70 8 9 100

FiG. 2.5.Relative errors in the integration of two parametric furocts on the circular segmerit.§) (o = 0),
withR = landg = 7, forn = 5,10,15,...,95,100; left: f(z,y) = exp(k(z + y)), k = 1(o), k = 10(x),
k = 100(0); right: f(z,y) = exp([(z — a)? + (y — b)?]2), (a,b) = (0.7,0)(c), (a,b) = (1,0)(D),
(a,b) = (5, $)(0).

Galerkin-type methods are applied with compactly supjpldstesis functions centered at scat-
tered points. Indeed, integration of the product of sucletions or of their derivatives (with
possibly different radii of the support disks) reduces tegnation on (generally asymmetric)
lenses; cf., e.g. 1} 6].

In the case oymmetric lensethat are the intersection of two disks with equal ra-
dius R and distance between the centerf)ir2 R), we can even reduce the number of product
guadrature nodes. Indeed, a symmetric lens can be repedsaptto translation and rotation,
as

(2.8) Q={(x,y) = (Rt(cos(f) — cos(w)), Rsin(9)), t € [-1,1], 0 € [~w,w]},

where0 < w < Z. In the coordinatest, §), a bivariate polynomiaf < P2 () becomes
a mixed algebraic/trigonometric polynomial in the sp&gé[—1,1]) ® T, ([—w, w]). Since
the injective transformatiof, 6) — (x,y) has Jacobiah/| = R? cos(6)(cos(f) — cos(w)),

we get the product Gaussian formula for symmetric lenses

TL+3 "n~2l»1

j=1 i=1

Wi; = R? cos(¢;)(cos(¢;) — cos(w)) w™ A,
(w7, i) = (RtT"(cos(¢;) — cos(w)), Rsin(¢;)),

with {(¢;,\;)} being the angles and weights i8.7), and {(t¥%, wFL)} the nodes and
weights of the Gauss-Legendre formula of degree of exastnes [—1,1]. This formula
has approximatel)g"’“)zM ~ "72 nodes.

In [5] we provide a Matlab functions, namgdsymmlens , which computes the product
Gaussian nodes and weights for symmetric lenses. The catigndl costs and the numer-
ical results on test functions are similar to those obtafieedircular segments, and are not
reported for brevity. In Figur€.6 (right) we show an example of product quadrature nodes
for a symmetric lens.

3. Conclusion. We have constructed a quadrature formula withl nodes (angles) and
positive weights which is exact on tlign+1)-dimensional space of trigonometric polynomi-
als of degree not greater thanrestricted to an angular intervgtw, w| of length2w < 27.
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0.4 0.6 08

FIG. 2.6.60 = 5 x 12 product quadrature nodes of algebraic exactness degreesameular zone 2.5) with
R=1a= Fandg = 7 (left), and24 = 3 x 8 product cubature nodes of exactness degree 5 on a symmetric
lens Q.8 with R = 1 andw = 7 (right).

Such a formula is related by a simple nonlinear transfomwnato an algebraic Gaussian
quadrature formula op-1, 1] and can be implemented efficiently by Gautschi's OPQ Matlab
suite B]. This gives an improvement with respect to a recent resuiterning a quadra-
ture formula with positive weights arzh + 1 angles, based on subperiodic trigonometric
interpolation P].

We have applied the new subperiodic trigonometric quadedtirmula to product Gaus-
sian quadrature on relevant sections of the disk, such@dairsectors, zones, segments, and
lenses. All the corresponding Matlab codes are availabie®{b].

Subperiodic trigonometric Gaussian quadrature and etfatenulas could be useful in
several applications, for example within Galerkin-typesiiiess methods for PDEs or in the
construction of product Gaussian rules on arc-relatedaecof surfaces/solids of rotation.
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