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THE MR 3-GK ALGORITHM FOR THE BIDIAGONAL SVD ∗

PAUL R. WILLEMS† AND BRUNO LANG‡

Abstract. Determining the singular value decomposition of a bidiagonalmatrix is a frequent subtask in numer-
ical computations. We shed new light on a long-known way to utilize the algorithm of multiple relatively robust
representations, MR3, for this task by casting the singular value problem in terms of a suitable tridiagonal symmetric
eigenproblem (via the Golub–Kahan matrix). Just running MR3 “as is” on the tridiagonal problem does not work,
as has been observed before (e.g., by B. Großer and B. Lang [Linear Algebra Appl., 358 (2003), pp. 45–70]). In this
paper we give more detailed explanations for the problems withrunning MR3 as a black box solver on the Golub–
Kahan matrix. We show that, in contrast to standing opinion, MR3 canbe run safely on the Golub–Kahan matrix,
with just a minor modification. A proof including error bounds is given for this claim.
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1. Introduction. The singular value decomposition (SVD) is one of the most funda-
mental and powerful decompositions in numerical linear algebra. This is partly due to gener-
ality, since every complex rectangular matrix has a SVD, butalso to versatility, because many
problems can be cast in terms of the SVD of a certain related matrix. Applications range from
pure theory to image processing.

The principal algorithm for computing the SVD of an arbitrary dense complex rectan-
gular matrix is reduction to real bidiagonal form using unitary similarity transformations,
followed by computing the SVD of the obtained bidiagonal matrix. The method to do the re-
duction was pioneered by Golub and Kahan [18]; later improvements include reorganization
to do most of the work within BLAS3 calls [1, 2, 27].

We call the problem to compute the singular value decomposition of a bidiagonal ma-
trix BSVD. There is a long tradition of solving singular value problems by casting them into
related symmetric eigenproblems. ForBSVD this leads to a variety of tridiagonal symmetric
eigenproblems (TSEPs). Several methods are available for solving theTSEP, including QR
iteration [15, 16], bisection and inverse iteration (BI), divide and conquer[3, 22], and, most
recently, the algorithm ofmultiple relatively robust representations[6, 7, 8], in short MRRR
or MR3. The latter offers to computek eigenpairs(λi, qi), ‖qi‖ = 1, of a symmetric tridiag-
onal matrixT ∈ R

n×n in (optimal) timeO(kn), and thus it is an order of magnitude faster
than BI. In addition, MR3 requires no communication for Gram–Schmidt reorthogonaliza-
tion, which opens better possibilities for parallelization. It is therefore natural and tempting
to solve theBSVD problem using the MR3 algorithm, to benefit from its many desirable fea-
tures. How to do so stably and efficiently is the focus of this paper.

The remainder of the paper is organized as follows. In Section 2 we briefly review
the MR3 algorithm for the tridiagonal symmetric eigenproblem and the requirements for its
correctness. The reader will need some familiarity with thecore MR3 algorithm, as described
in Algorithm 2.1 and Figure2.1, to follow the arguments in the subsequent sections. In
Section3 we turn to theBSVD. We specify the problem to be solved formally, introduce the
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associated tridiagonal problems, and set up some notational conventions. Invoking MR3 on
symmetric tridiagonal matrices of even dimension that havea zero diagonal, so-calledGolub–
Kahan matrices, will be investigated in Section4. Finally, Section5 contains numerical
experiments to evaluate our implementation.

The idea of using the MR3 algorithm for theBSVD by considering suitableTSEPs is not
new. A previous approach [19, 20, 21, 39] “couples” the threeTSEPs involving the normal
equations and the Golub–Kahan matrix in a way that ensures good orthogonality of the sin-
gular vectorsandsmall residuals; see also Section3.3.1. For a long time the standing opinion
was that using MR3 (or any otherTSEPsolver) on the Golub–Kahan matrix alone is funda-
mentally flawed. In this paper we refute that notion, at leastwith regard to MR3. Indeed
we provide a complete proof, including error bounds, showing that just a minor modifica-
tion makes using MR3 on the Golub–Kahan matrix a valid solution strategy forBSVD. This
method is much simpler to implement and analyze than the coupling-based approach; in par-
ticular, all levels in the MR3 representation tree (Figure2.1) can be handled in a uniform way.

Before proceeding we want to mention that an alternative andhighly competitive solu-
tion strategy for the SVD was only recently discovered by Drmač and Veselíc [10, 11]. Their
method first reduces a general matrixA to non-singular triangular form via rank-revealing
QR factorizations, and then an optimized version of Jacobi’s iteration is applied to the trian-
gular matrix, making heavy use of the structure to save on operations and memory accesses.
Compared to methods involving bidiagonal reduction, this new approach can attain better ac-
curacy for certain classes of matrices (e.g., ifA = ÃD with a diagonal “scaling” matrixD,
then the achievable precision for the tiny singular values is determined by the condition num-
berκ2(Ã) instead ofκ2(A), which may be considerably worse). Numerical experiments in
[10, 11] also indicate that the new method tends to be somewhat faster than bidiagonal reduc-
tion followed by QR iteration on the bidiagonal matrix, but slightly slower than bidiagonal
reduction and bidiagonal divide and conquer, in particularfor larger matrices. As multi-step
bidiagonalization (similarly to [2]) and replacing divide and conquer with the MR3 algorithm
may further speed up the bidiagonalization-based methods,the increased accuracy currently
seems to come with a penalty in performance.

2. The MR3 algorithm for the tridiagonal symmetric eigenproblem. The present
paper relies heavily on the MR3 algorithm forTSEPand on its properties. A generic version
of the algorithm has been presented in [35, 37], together with a proof that the eigensystems
computed by MR3 feature small residuals and sufficient orthogonality if fivekey requirements
are fulfilled. In order to make the following exposition self-contained we briefly repeat some
of the discussion on MR3 from [37]; for details and proofs the reader is referred to that paper.
Along the way we also introduce notation that will be used in the subsequent sections.

2.1. The algorithm. The “core” of the MR3 method is summarized in Algorithm2.1.
In each pass of the main loop, the algorithm considers a symmetric tridiagonal matrix, which
is represented by some dataM, and tries to compute specified eigenpairs(λi, qi), i ∈ I. First,
the eigenvalues of the matrix are determined to such precision that they can be classified as
singletons(with sufficient relative distance to the other eigenvalues, e.g., agreement to at
most three leading decimal digits ifgaptol ∼ 10−3) andclusters. For singletonsλi, a vari-
ant of a Rayleigh quotient iteration (RQI) and inverse iteration yields an accurate eigenpair.
Clustersλi ≈ . . . ≈ λi+s cannot be handled directly. Instead, for each cluster one chooses
a shift τ ≈ λi very close to (or even inside) the cluster and considers the matrix T − τ I.
The eigenvaluesλi − τ , . . . , λi+s − τ of that matrix will then feature much larger relative
distances thanλi, . . . , λi+s did, and therefore they may be singletons forT − τ I, meaning
that now eigenvectors can be computed in a reliable way. If some of these eigenvalues are
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´

FIG. 2.1.Example for a representation tree. The leaves corresponding to the computation of eigenvectors are
not considered to be nodes. Thus the tree contains only four nodes, and the eigenpair(λ̄3, q̄3) is computed at node
(M1, [3 : 6], τ̄).

still clustered, then the shifting is repeated. (To avoid special treatment, the original matrix
T is also considered to be shifted with̄τ = 0.) Proceeding this way amounts to traversing
a so-calledrepresentation treewith the original matrixT at the root, and children of a node
standing for shifted matrices due to clusters; see Figure2.1for an example. The computation
of eigenvectors corresponds to the leaves of the tree.

2.2. Representations of tridiagonal symmetric matrices.The name MR3 comes from
the fact that the transition from a node to its child,M− τ =: M+, must not change the invari-
ant subspace of a cluster—and at least some of its eigenvalues—by too much (see Require-
ment RRR in Section2.5). In general, this robustness cannot be achieved if the tridiagonal
matrices are represented by their2n − 1 entries because those do not necessarily determine
small eigenvalues to high relative precision. Therefore other representations are used, e.g.,
lower (upper) bidiagonal factorizationsT = LDL∗ (T = URU∗, resp.) with

D = diag(d1, . . . , dn) diagonal,

L = diag(1, . . . , 1) + diag−1(ℓ1, . . . , ℓn−1) lower bidiagonal,

R = diag(r1, . . . , rn) diagonal, and

U = diag(1, . . . , 1) + diag+1(u2, . . . , un) upper bidiagonal.

Note that we write∗ for the transpose of a matrix. The so-calledtwistedfactorizations

T = NkGkN∗
k
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Input: Symmetric tridiagonalT ∈ R
n×n, index setI0 ⊆ {1, . . . , n}

Output: Eigenpairs(λ̄i, q̄i
), i ∈ I0

Parameter: gaptol , the gap tolerance

1. Find a suitable representationM0 for T, preferably definite, possibly by shiftingT.

2. S :=
˘

(M0, I0, τ̄ = 0)
¯

3. while S 6= ∅ do

4. Remove one node(M, I, τ̄) from S
5. Approximate eigenvalues[λloc

i ], i ∈ I, of M such that they can be classified into
singletons and clusters according togaptol ; this gives a partitionI = I1 ∪ · · · ∪ Im.

6. for r = 1 to m do

7. if Ir = {i} then // singleton

8. Refine eigenvalue approximation[λloc
i ] and use it to computēq

i
.

If necessary iterate until the residual ofq̄
i

becomes small enough,
using a Rayleigh quotient iteration (RQI).

9. λ̄i := λloc
i + τ̄

10. else // cluster

11. Refine the eigenvalue approximations at the borders of (and/or inside) the
cluster if desired for more accurate selection of shift.

12. Choose a suitable shiftτ near the cluster and compute a representation
of M+ = M − τ .

13. Add new node(M+, Ir, τ̄ + τ) to S.

14. endif

15. endfor

16. endwhile

Algorithm 2.1: MR3 for TSEP: Compute selected eigenpairs of a symmetric tridiagonalT.

generalize the bidiagonal factorizations. They are built by combining the upper part of an
LDL∗ factorization and the lower part of aURU∗ factorization, together with thetwist element
γk = dk + rk − T(k, k) at twist indexk.

Twisted factorizations are preferred because, in additionto yielding better relative sen-
sitivity, they also allow to compute highly accurate eigenvectors [6]. qd algorithms are used
for shifting the factorizations, e.g.,LDL∗ − τ I =: L+D+(L+)∗, possibly converting between
them as inURU∗ − τ I =: L+D+(L+)∗.

The bidiagonal and twisted factorizations can rely on different data items being stored.
To give an example, the matrixT = LDL∗ with unit lower bidiagonalL and diagonalD is de-
fined by fixing the diagonal entriesd1, . . . , dn of D and the subdiagonal entriesℓ1, . . . , ℓn−1

of L. We might as well use the offdiagonal entriesT(1, 2), . . . ,T(n − 1, n), together with
d1, . . . , dn, to describe the tridiagonal matrix and the factorization because theℓi can be re-
covered from the relationT(i, i + 1) = ℓidi. The question of which data one should actually
use to define a matrix leads to the concept of representations.

DEFINITION 2.1. A representationM of a symmetric tridiagonal matrixT ∈ R
n×n is a

set ofm ≤ 2n−1 scalars, called theprimary data, together with a mappingf : R
m → R

2n−1

that generates the entries ofT.
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A general symmetric tridiagonal matrixT hasm = 2n−1 degrees of freedom; however,
m < 2n − 1 is possible if the entries ofT obey additional constraints (e.g., a zero main
diagonal).

2.3. Perturbations and floating-point arithmetic. In the following we often will have
to consider the effect of perturbations on the eigenvalues (or singular values) and vectors.

Suppose a representationM of the matrixT is given by dataδi. Then anelementwise
relative perturbation(erp) of M to M̃ is defined by perturbing eachδi to δ̃i = δi(1 + ξi) with
“small” |ξi| ≤ ξ̄. To express this more compactly we will just writẽM = erp(M, ξ̄), δi Ã δ̃i,
and although it must always be kept in mind that the perturbation applies to the data of the
representation and not to the entries ofT, we will sometimes writeerp(T) for brevity.

A (partial) relatively robust representation (RRR)of a matrixT is one where small erps,
bounded by some constantξ̄, in the data of the representation will cause only relative changes
proportional toξ̄ in (some of) the eigenvalues and eigenvectors.

The need to consider perturbations comes from the rounding induced by computing in
floating-point arithmetic. Throughout the paper we assume the standard model for floating-
point arithmetic, namely that, barring underflow or overflow, the exact and computed results
x andz of an arithmetic operation (+, −, ∗, / and√) applied to floating-point numbers can
be related as

x = z(1 + γ) = z/(1 + δ), |γ|, |δ| ≤ ǫ⋄,

with machine epsilonǫ⋄. For IEEEdouble precision with 53-bit significands and
eleven-bit exponents we haveǫ⋄ = 2−53 ≈ 1.1 · 10−16. For more information on binary
floating-point arithmetic and the IEEE standard we refer thereader to [17, 23, 24, 26].

2.4. Eigenvalues and invariant subspaces.The eigenvalues of a symmetric matrixA

are real, and therefore they can be ordered ascendingly,λ1[A] ≤ . . . ≤ λn[A], where the
matrix will only be indicated if it is not clear from the context. The associated (orthonormal)
eigenvectors are denoted byqi[A], and the invariant subspace spanned by a subset of the
eigenvectors isQI [A] := span{qi[A] : i ∈ I}.

The sensitivity of the eigenvectors depends on the eigenvalue distribution—on the overall
spread, measured by‖A‖ = max{|λ1|, |λn|} or thespectral diameterspdiam[A] = λn−λ1,
as well as on the distance of an eigenvalueλi from the remainder of the spectrum. In a slightly
more general form, the latter aspect is quantified by the notion of gaps, either in an absolute
or a relative sense,

gapA(I;µ) := min
{
|λj − µ| : j 6∈ I

}
,

relgapA(I) := min
{
|λj − λi|

/
|λi| : i ∈ I, j 6∈ I

}
;

see [37, Sect. 1]. Note thatµ may, but need not, be an eigenvalue.
The following Gap Theorem [37, Thm. 2.1] is applied mostly in situations whereI cor-

responds to a singleton (|I| = 1) or to a cluster of very close eigenvalues. The theorem states
that if we have a “suspected eigenpair”(µ, x) with small residual, thenx is indeed close to
an eigenvector (or to the invariant subspace associated with the cluster) provided thatµ is
sufficiently far away from the remaining eigenvalues. For a formal definition of the (acute)
angle see [37, Sect. 1].

THEOREM 2.2 (Gap Theorem for an invariant subspace).For every symmetric matrix
A ∈ R

n×n, unit vectorx, scalarµ and index setI, such thatgapA(I;µ) 6= 0,

sin∠
(
x , QI [A]

)
≤ ‖Ax − xµ‖

gapA(I;µ)
.
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For singletons, the Rayleigh quotient also provides alower bound for the angle to an
eigenvector.

THEOREM 2.3 (Gap Theorem with Rayleigh’s quotient, [30, Thm. 11.7.1]).For sym-
metricA ∈ R

n×n and unit vectorx with θ = ρA(x) := x∗Ax, let λ = λi[A] be an eigenvalue
of A such that no other eigenvalue lies between (or equals)λ and θ, and q = qi[A] the
corresponding normalized eigenvector. Then we will havegapA({i}; θ) > 0 and

‖Ax − θx‖
spdiam[A]

≤ sin∠
(
x, q

)
≤ ‖Ax − θx‖

gapA({i}; θ) and |θ − λ| ≤ ‖Ax − θx‖2

gapA({i}; θ) .

2.5. Correctness of the MR3 algorithm and requirements for proving it. In the anal-
ysis of the MR3 algorithm in [37] the following five requirements have been identified, which
together guarantee the correctness of Algorithm2.1.

REQUIREMENTRRR (relatively robust representations).There is a constantCvecs such
that for any perturbatioñM = erp(M, α) at a node(M, I), the effect on the eigenvectors can
be controlled as

sin∠
(
QJ [M] , QJ [M̃]

)
≤ Cvecs nα

/
relgapM(J),

for all J ∈ {I, I1, . . . , Ir} with |J | < n.
This requirement also implies that singleton eigenvalues and the boundary eigenvalues

of clusters cannot change by more thanO(Cvecsnα|λ|) and therefore are relatively robust.
REQUIREMENT ELG (conditional element growth).There is a constantCelg such

that for any perturbationM̃ = erp(M, α) at a node(M, I), the incurred element growth
is bounded by

‖M̃ − M‖ ≤ spdiam[M0],

‖(M̃ − M)q̄i‖ ≤ Celgnα spdiam[M0] for eachi ∈ I.

This requirement concerns theabsolutechanges to matrix entries that result fromrela-
tive changesto the representation data. For decomposition-based representations this is called
element growth (elg). Thus the requirement is fulfilled automatically if the matrix is repre-
sented by its entries directly. The two conditions convey that even large element growth is
permissible (first condition), but only in those entries where the local eigenvectors of interest
have tiny entries (second condition).

REQUIREMENT RELGAPS (relative gaps). For each node(M, I), the classification
of I into child index sets in step 5 of Algorithm2.1 is done such that forr = 1, . . . ,m,
relgapM(Ir) ≥ gaptol (if |Ir| < n).

The parametergaptol is used to decide which eigenvalues are to be considered single-
tons and which ones are clustered. Typical values aregaptol ∼ 0.001 . . . 0.01. Besides
step 5, where fulfillment of the requirement should not be an issue if the eigenvalues are ap-
proximated accurately enough and the classification is donesensibly, this requirement also
touches on theouter relative gaps of the whole local subset at the node. The requirement
cannot be fulfilled ifrelgapM(I) < gaptol . This fact has to be kept in mind when the node is
created, in particular during evaluation of shifts for a newchild in step 12.

REQUIREMENT SHIFTREL (shift relation). There exist constantsα↓, α↑ such that for
every node with matrixH that was computed using shiftτ as child ofM, there are perturba-
tions

`

M = erp(M, α↓) and
a

H = erp(H, α↑)
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with which the exact shift relation
`

M − τ =
a

H is attained.
This requirement connects the nodes in the tree. It states that the computations of the

shifted representations have to be done in a mixed relatively stable way. This is for example
fulfilled when using twisted factorizations combined with qd-transformations as described
in [8]. Improved variants of these techniques and a completely new approach based on block
decompositions are presented in [35, 36, 38]. Note that the perturbation

`

M = erp(M, α↓) at
the parent will in general be different for each of its child nodes, but each child node has just
one perturbation governed byα↑ to establish the link to its parent node.

REQUIREMENT GETVEC (computation of eigenvectors).There exist constantsα‡, β‡
andRgv with the following property: Let(λ̄leaf , q̄) with q̄ = q̄i be computed at node(M, I),
whereλ̄leaf is the final local eigenvalue approximation. Then we can find elementwise per-
turbations to the matrix and the vector,

M̃ = erp(M, α‡), q̃(j) = q̄(j)(1 + βj) with |βj | ≤ β‡,

for which the residual norm is bounded as
∥∥rleaf

∥∥ :=
∥∥(M̃ − λ̄leaf)q̃

∥∥/∥∥q̃
∥∥ ≤ Rgvnǫ⋄ gapeM

(
{i}; λ̄leaf

)
.

This final requirement captures that the vectors computed instep 8 must have residual
norms that are small, even when compared to the eigenvalue. The keys to fulfill this require-
ment are qd-type transformations to compute twisted factorizationsM − λ̄ =: NkGkN∗

k

with mixed relative stability and then solving one of the systemsNkGkN∗
kq̄ = γkek for the

eigenvector [8, 12, 31].
In practice, we expect the constantsCvecs andCelg to be of moderate size (∼ 10), α↓,

α↑, and α‡ should beO(ǫ⋄), whereasβ‡ = O(nǫ⋄), and Rgv may become as large as
O(1/gaptol). Thus the following theorems provide boundsresidM0

= O(nǫ⋄‖M0‖/gaptol)
for the residuals andorthM0

= O(nǫ⋄/gaptol) for the orthogonality.
THEOREM 2.4 (Residual norms for MR3 [37, Thm. 3.1]). Let the representation tree

traversed by Algorithm2.1satisfy the requirementsELG, SHIFTREL, andGETVEC. For given
indexj ∈ I0, let d = depth(j) be the depth of the node whereq̄ = q̄j was computed (cf.
Figure2.1) andM0,M1, . . . ,Md be the representations along the path from the root(M0, I0)
to that node, with shiftsτi linking Mi andMi+1, respectively. Then

∥∥(M0 − λ∗)q̄
∥∥ ≤

(∥∥rleaf
∥∥ + γ spdiam[M0]

) 1 + β‡
1 − β‡

=: residM0
,

whereλ∗ := τ0 + · · · + τd−1 + λ̄leaf andγ := Celg n
(
d(α↓ + α↑) + α‡

)
+ 2(d + 1)β‡.

The following theorem confirms the orthogonality of the computed eigenvectors and
bounds their angles to the local invariant subspaces. It combines Lemma 3.4 and Theorem 3.5
from [37].

THEOREM 2.5. Let the representation tree traversed by Algorithm2.1fulfill the require-
mentsRRR, RELGAPS, SHIFTREL, andGETVEC. Then for each node(M, I) in the tree with
child index setJ ⊆ I, the computed vectors̄qj , j ∈ J , will obey

sin∠
(
q̄j , QJ [M]

)
≤ Cvecs

(
α‡ + (depth(j) − depth(M))(α↓ + α↑)

)
n/gaptol + κ,

whereκ := Rgvnǫ⋄ + β‡. Moreover, any two computed vectorsq̄i and q̄j , i 6= j, will obey

1
2 q̄∗i q̄j ≤ Cvecs

(
α‡ + dmax(α↓ + α↑)

)
n/gaptol + κ =: orthM0

,

wheredmax := max{depth(i) | i ∈ I0} denotes the maximum depth of a node in the tree.



ETNA
Kent State University 

http://etna.math.kent.edu

8 P. R. WILLEMS AND B. LANG

3. The singular value decomposition of bidiagonal matrices. In this section we briefly
review the problemBSVD and its close connection to the eigenvalue problem for tridiagonal
symmetric matrices.

3.1. The problem. Throughout this paper we considerB ∈ R
n×n, an upper bidiagonal

matrix with diagonal entriesai and offdiagonal elementsbi, that is,

B = diag(a1, . . . , an) + diag+1(b1, . . . , bn−1).

The goal is to compute the fullsingular value decomposition

(3.1) B = UΣV∗ with U∗U = V∗V = I, Σ = diag(σ1, . . . , σn), andσ1 ≤ · · · ≤ σn.

The columnsui = U(:, i) andvi = V(:, i) are calledleft andright singular vectors, respec-
tively, and theσi are thesingular values. Taken together,(σi, ui, vi) form asingular triplet
of B. Note that we order the singular valuesascendinglyin order to simplify the transition
betweenBSVD andTSEP.

For any algorithm solvingBSVD, the computed singular triplets(σ̄i, ūi, v̄i) should be
numerically orthogonalin the sense

(3.2) max
{
|Ū∗

Ū − I|, |V̄∗
V̄ − I|

}
= O(nǫ⋄),

where|·| is to be understood componentwise. We also desire smallresidual norms,

(3.3) max
i

{
‖Bv̄i − ūiσ̄i‖, ‖B∗ūi − v̄iσ̄i‖

}
= O(‖B‖nǫ⋄).

In the literature the latter is sometimes stated as the singular vector pairs being “(well) cou-
pled.”

3.2. Singular values to high relative accuracy.In [4] Demmel and Kahan established
that every bidiagonal matrix (represented by entries) determines its singular values to high
relative accuracy.

The current state-of-the-art for computing singular values is the dqds-algorithm by Fer-
nando and Parlett [14, 32], which builds upon [4] as well as Rutishauser’s original qd-
algorithm [34]. An excellent implementation of dqds is included in LAPACK in the form of
routinexLASQ1. Alternatively, bisection could be used, but this is normally much slower—
in our experience it becomes worthwhile to use bisection instead of dqds only if less than
ten percent of the singular values are desired (dqds can onlybe used to compute all singular
values).

The condition (3.3) alone does merely convey that each computedσ̄i must lie within
distanceO(‖B‖nǫ⋄) of someexact singular value ofB. A careful but elementary argument
based on the Gap Theorem2.2 (applied to the Golub–Kahan matrix, see below) shows that
(3.2) and (3.3) combined actually provide forabsolute accuracyin the singular values, mean-
ing each computed̄σi lies within distanceO(‖B‖nǫ⋄) of the exactσi. To achieverelative
accuracy, a straightforward modification is just to recompute the singular values afterwards
using, for example, dqds. It is clear that doing so cannot spoil (3.3), at least as long as̄σi was
computed with absolute accuracy. The recomputation does not even necessarily be overhead;
for MR3-type algorithms like those we study in this paper one needs initial approximations
to the singular values anyway, the more accurate the better.So there is actually a gain from
computing them up front to full precision.

3.3. Associated tridiagonal problems.There are two standard approaches to reduce
the problemBSVD to TSEP, involving three different symmetric tridiagonal matrices.
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3.3.1. The normal equations.From (3.1) we can see the eigendecompositions of the
symmetric tridiagonal matricesBB∗ andB∗B to be

BB∗ = UΣ2U∗, B∗B = VΣ2V∗.

These two are callednormal equations, analogously to the linear least squares problem. The
individual entries ofBB∗ andB∗B can be expressed using those ofB:

BB∗ = diag
(
a2
1 + b2

1, . . . , a
2
n−1 + b2

n−1, a
2
n

)
+ diag±1

(
a2b1, . . . , anbn−1

)
,

B∗B = diag
(
a2
1, a

2
2 + b2

1, . . . , a
2
n + b2

n−1

)
+ diag±1

(
a1b1, . . . , an−1bn−1

)
.

Arguably the most straightforward approach to tackle theBSVD would be to just employ
the MR3 algorithm for TSEP (Algorithm 2.1) to compute eigendecompositions ofBB∗ and
B∗B separately. This gives both left and right singular vectorsas well as the singular values
(twice). A slight variation on this theme would compute justthe vectors on one side, for
exampleBB∗ = UΣ2U∗, and then get the rest through solvingBv = uσ. As BB∗ andB∗B
are already positive definite bidiagonal factorizations, we would naturally take them directly
as root representations, avoiding the mistake to form either matrix product explicitly.

In short, this black box approach is a bad idea. While the matricesŪ andV̄ computed
via the twoTSEPs are orthogonal almost to working precision, the residuals‖Bv̄i− ūiσ̄i‖ and
‖B∗ūi − v̄iσ̄i‖ may beO(σi) for clustered singular values, which is unacceptable for large
σi. Roughly speaking, this comes from computingŪ andV̄ independently – so there is no
guarantee that the correspondingūi andv̄i “fit together.” Note that this problem is not tied to
taking MR3 as eigensolver but also occurs if QR or divide and conquer areused to solve the
two TSEPs independently.

With MR3 it is, however, possible to “couple” the solution of the twoTSEPs in a way
that allows to control the residuals. This is done by runningMR3 on only one of the matrices
BB∗ or B∗B, sayBB∗, and “simulating” the action of MR3 on B∗B with the same sequence
of shifts, that is, with an identical representation tree; cf. Figure2.1. The key to this strategy
is the observation that the quantities that would be computed in MR3 on B∗B can also be
obtained from the respective quantities in theBB∗-run via so-calledcoupling relations. For
several reasons the Golub–Kahan matrix (see the following discussion) is also involved in the
couplings. See [19, 20, 21, 39] for the development of the coupling approach and [35] for a
substantially revised version.

In our experiments, however, an approach based entirely on the Golub–Kahan matrix
turned out to be superior, and therefore we will not pursue the normal equations and the
coupling approach further in the current paper.

3.3.2. The Golub–Kahan matrix. Given an upper bidiagonal matrixB we obtain a
symmetric eigenproblem of twice the size by forming theGolub–Kahan (GK) matrixor
Golub–Kahan formof B [13],

TGK(B) := Pps

[
0 B

B∗ 0

]
P∗

ps,

wherePps is theperfect shufflepermutation onR2n that maps anyx ∈ R
2n to

Ppsx =
[
x(n + 1), x(1), x(n + 2), x(2), . . . , x(2n), x(n)

]∗
,

or, equivalently stated,

P∗
psx =

[
x(2), x(4), . . . , x(2n), x(1), x(3), . . . , x(2n − 1)

]∗
.
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It is easy to verify thatTGK(B) is a symmetric tridiagonal matrix with a zero diagonal and the
entries ofB interleaved on the offdiagonals,

TGK(B) = diag±1(a1, b1, a2, b2, . . . , an−1, bn−1, an),

and that its eigenpairs are related to the singular tripletsof B via

(σ, u, v) is a singular triplet ofB with ‖u‖ = ‖v‖ = 1

iff (±σ, q) are eigenpairs orTGK(B), where‖q‖ = 1, q = 1√
2
Pps

[
u

±v

]
.

Thusv makes up the odd-numbered entries inq andu the even-numbered ones:

(3.4) q =
1√
2

[
v(1), u(1), v(2), u(2), . . . , v(n), u(n)

]∗
.

It will frequently be necessary to relate rotations of GK eigenvectorsq to rotations of
theiru andv components. This is captured in the following lemma. The formulation has been
kept fairly general; in particular the permutationPps is left out, but the claim does extend
naturally if it is reintroduced.

LEMMA 3.1. Letq, q′ be non-orthogonal unit vectors that admit a conforming partition

q =

[
u

v

]
, q′ =

[
u′

v′

]
, u, v 6= o.

Letϕu := ∠
(
u, u′

)
, ϕv := ∠

(
v, v′

)
andϕ := ∠

(
q, q′

)
. Then

max
{
‖u‖ sin ϕu, ‖v‖ sin ϕv

}
≤ sin ϕ,

max
{∣∣‖u′‖ − ‖u‖

∣∣,
∣∣‖v′‖ − ‖v‖

∣∣
}

≤ sinϕ + (1 − cos ϕ)

cos ϕ
.

Proof. Definer such that

q =

[
u

v

]
= q′ cos ϕ + r =

[
u′ cos ϕ + ru
v′ cos ϕ + rv

]
.

The resulting situation is depicted in Figure3.1. Consequently,

‖u‖ sin ϕu ≤ ‖ru‖ ≤ ‖r‖ = sinϕ.

Now u′ cos ϕ = u − ru implies(u′ − u) cos ϕ = (1 − cos ϕ)u − ru. Use the reverse triangle
inequality and‖u‖ < 1 for
∣∣‖u′‖ − ‖u‖

∣∣ cos ϕ ≤ ‖(u′ − u) cos ϕ‖ = ‖(1 − cos ϕ)u − ru‖ ≤ (1 − cos ϕ)‖u‖ + ‖ru‖
≤ (1 − cos ϕ) + sin ϕ

and divide bycos ϕ 6= 0 to obtain the desired bound for
∣∣‖u′‖ − ‖u‖

∣∣. The claims pertaining
to thev components are shown analogously.

Application to a given approximationq′ for an exact GK eigenvectorq merely requires
to exploit ‖u‖ = ‖v‖ = 1/

√
2. In particular, the second claim of Lemma3.1 will then

enable us to control how much the norms ofu′ andv′ can deviate from1/
√

2, namely ba-
sically by no more thansinϕ + O(sin2 ϕ), providedϕ is small, which will be the case in
later applications. (For largeϕ, the bound in the lemma may be larger than the obvious
max

{∣∣‖u′‖ − ‖u‖
∣∣,

∣∣‖v′‖ − ‖v‖
∣∣} ≤ 1, given that all these vectors have length at most1.)
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o
q′, ‖q′‖ = 1

q, ‖q
‖ =

1

r

ϕ
o

ϕu

u

u′

ru

‖u′‖ cos ϕ

‖u‖ sin ϕu

FIG. 3.1.Situation for the proof of Lemma3.1. The global setting is on the left, the right side zooms in just on
theu components. Note that in generalϕu 6= ϕ andru will not be orthogonal tou, nor tou′.

3.4. Preprocessing.Before actually solving theBSVD problem, the given input matrix
B should be preprocessed with regard to some points. In contrast to TSEP, where it suffices
to deal with the offdiagonal elements, now all entries ofB are involved with the offdiagonals
of TGK(B), which makes preprocessing a bit more difficult.

If the input matrix is lower bidiagonal, work withB∗ instead and swap the roles ofU

andV. Multiplication on both sides by suitable diagonal signature matrices makes all entries
nonnegative, and we can scale to get the largest elements into proper range. Then, in order to
avoid several numerical problems later on, it is highly advisable to get rid of tiny entries by
setting them to zero and splitting the problem. To summarize, we should arrive at

(3.5) nǫ⋄‖B‖ < min{ai, bi}.

However, splitting a bidiagonal matrix to attain (3.5) by setting all violating entries to zero is
not straightforward. Two issues must be addressed.

If an offdiagonal elementbi is zero,B is reducible and can be partitioned into two smaller
bidiagonal problems. If a diagonal elementai is zero thenB is singular. An elegant way to
“deflate” one zero singular value is to apply one sweep of the implicit zero-shift QR method,
which will yield a matrixB′ with b′i−1 = b′n−1 = a′

n = 0, cf. [4, p. 21]. Thus the zero singular
value has been revealed and can now be removed by splitting into three upper bidiagonal parts
B1:i−1, Bi:n−1 andBn,n, the latter of which is trivial. An additional benefit of the QR sweep
is a possible preconditioning effect for the problem [19], but of course we will also have to
rotate the computed vectors afterwards.

The second obstacle is that using (3.5) as criterion for setting entries to zero will impede
computing the singular values to high relative accuracy with respect to the input matrix. There
are splitting criteria which retain relative accuracy, forinstance those employed within the
zero-shift QR algorithm [4, p. 18] and the slightly stronger ones by Li [28, 32]. However, all
these criteria allow for less splitting than (3.5).

To get the best of both, that is, extensive splitting with allits benefits as well as relatively
accurate singular values, we propose a 2-phase splitting asfollows:
1) Split the matrix as much as possiblewithout spoiling relative accuracy. This results in a

partition ofB into blocksB(1)
rs , . . . ,B(N )

rs , which we call therelative splitof B.
2) Split each blockB(i)

rs further aggressively into blocksB(i,1)
as , . . . , B(i,ni)

as to achieve (3.5).
We denote the collection of subblocksB

(i,j)
as asabsolute splitof B.

3) SolveBSVD for each block in the absolute split independently.
4) Use bisection to refine the computed singular values of each blockB

(i,j)
as to high relative

accuracy with respect to the parent blockB
(i)
rs in the relative split.

Since the singular values of the blocks in the absolute splitretain absolute accuracy with
respect toB, the requirements (3.2) and (3.3) will still be upheld. In fact, if dqds is used to
precompute the singular values (cf. Section3.2) one can even skip steps 1) and 4), since the
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singular values that are computed for the blocks of the absolute split are discarded anyways.
The sole purpose of the separate relative split is to speed upthe refinement in step 4).

We want to stress that we propose the 2-phase splitting also when only a subset of sin-
gular triplets is desired. Then an additional obstacle is toget a consistent mapping of triplet
indices between the blocks. This can be done efficiently, butit is not entirely trivial.

4. MR3 and the Golub–Kahan matrix. In this section we investigate the approach to
use MR3 on the Golub–Kahan matrix to solve the problemBSVD.

A black boxapproach would employ MR3 “as is,” without modifications to its internals,
to compute eigenpairs ofTGK(B) and then extract the singular vectors via (3.4). Here the
ability of MR3 to compute partial spectra is helpful, as we need only concern ourselves with
one half of the spectrum ofTGK(B). Note that using MR3 this way would also offer to
compute only a subset of singular triplets at reduced cost; current solution methods forBSVD

like divide-and-conquer or QR do not provide this feature.
The standing opinion for several years has been that there are fundamental problems in-

volved which cannot be overcome, in particular concerning the orthogonality of the extracted
left and right singular vectors. The main objective of this section is to refute that notion.

We start our exposition with a numerical experiment to indicate that using MR3 as a pure
black box method on the Golub–Kahan matrix is indeed not a sound idea.

EXAMPLE 4.1. We used LAPACK’s test matrix generatorDLATMS to construct a bidiag-
onal matrix with the following singular values, ranging between0.9 · 10−8 and110.

σ13 = 0.9, σ14 = 1 − 10−7, σ15 = 1 + 10−7, σ16 = 1.1,

σi = σi+4/100, i = 12, 11, . . . , 1,

σi = 100 · σi−4, i = 17, . . . , 20.

Then we formed the symmetric tridiagonal matrixTGK(B) ∈ R
40×40 explicitly. The MR3

implementationDSTEMR from LAPACK 3.2.1 was called to give us the upper20 eigenpairs
(σ̄i, q̄i) of TGK(B). The matrix is well within numerical range, so thatDSTEMR neither splits
nor scales the tridiagonal problem. The singular vectors were then extracted via

[
ūi

v̄i

]
:=

√
2P∗

psq̄i.

The results are shown in Figure4.1. The left plot clearly shows thatDSTEMR does its
job of solving the eigenproblem posed byTGK(B). But the right plot conveys just as clearly
that the extracted singular vectors are far from being orthogonal. In particular, the small
singular values are causing trouble. Furthermore, theu andv components have somehow lost
their property of having equal norm. However, their norms are still close enough to one that
normalizing them explicitly would not improve the orthogonality levels significantly.

This experiment is not special—similar behavior can be observed consistently for other
test cases with small singular values. The explanation is simple: MR3 does neither know,
nor care, what a Golub–Kahan matrix is. It will start just as always, by first choosing a shift
outside the spectrum, sayτ . −σn, and computeTGK(B)− τ = L0D0L

∗
0 as positive definite

root representation. From there it will then deploy furthershifts into the spectrum ofL0D0L
∗
0

to isolate the requested eigenpairs.
What happens is that the first shift to the outside smears all small singular values into

one cluster, as shown in Figure4.2. Consider for instance we have‖B‖ ≥ 1 and are working
with the standardgaptol = 0.001. We can even assume the initial shift was done exactly; so
let λ(0)

±i = σ±i − τ be the eigenvalues ofL0D0L
∗
0. Then for all indicesi with σi . 0.0005 the
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FIG. 4.1. Data for Example4.1, on a per-vector basis,i = 1, . . . , 20. Left: scaled orthogonality
‖Q̄

∗
q̄

i
− e

i
‖∞/nǫ⋄ with e

i
= (0, . . . , 0, 1, 0, . . . , 0)∗ denoting thei-th unit vector, and scaled residuals

‖TGK(B)q̄
i
− q̄

i
σ̄i‖/2‖B‖nǫ⋄ for TSEP. Right: scaled orthogonality‖U∗ūi − e

i
‖∞/nǫ⋄, ‖V∗v̄i − e

i
‖∞/nǫ⋄

and scaled deviation from unit length,
˛

˛‖ūi‖
2 − 1

˛

˛/nǫ⋄,
˛

˛‖v̄i‖
2 − 1

˛

˛/nǫ⋄, for BSVD.

0 σi σn−σi−σn 0.0005−0.0005

Spectrum ofTGK(B):

√
2P∗

psq−i =
[

ui

−vi

] [
ui

+vi

]
=

√
2P∗

psq+i

relgap>1

τ

−τ σi − τ σn − τ−σi − τ−σn − τ 0.0005 − τ−0.0005 − τ

Spectrum ofL0D0L
∗
0 = TGK(B) − τ :

√
2P∗

psQI =
{

. . . ,
[

ui

−vi

]
, . . . ,

[
ui

+vi

]
, . . .

}

clustered

0

FIG. 4.2.Why the naive black box approach of MR3 onTGK is doomed.

correspondingλ(0)
±i will belong to the same cluster ofL0D0L

∗
0, since theirrelativedistance is

|λ(0)
+i − λ

(0)
−i |

max
{
|λ(0)

+i |, |λ
(0)
−i |

} =
(σi − τ) − (−σi − τ)

σi − τ
=

2σi

σi − τ
< gaptol .

Therefore, for such a singular triplet(σi, ui, vi) of B, bothof Pps

[
ui

±vi

]
will be eigenvectors

associated with that cluster ofTGK(B). Hence, further (inexact) shifts based on this config-
uration cannot guarantee to separate them again cleanly. Consequently, using MR3 as black
box on the Golub–Kahan matrix in this fashion could in principle even produce eigenvectors
q with identicalu or v components.

This problem is easy to overcome. After all we know that the entries ofTGK(B) form an
RRR, so the initial outside shift to find a positive definite root representation is completely
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Input: Upper bidiagonalB ∈ R
n×n, index setI0 ⊆ {1, . . . , n}

Output: Singular triplets(σ̄i, ūi, v̄i), i ∈ I0

1. Execute the MR3 algorithm forTSEP(Algorithm 2.1), but takeM0 := TGK(B) as root
representation in step 1, using the entries ofB directly.
This gives eigenpairs(σ̄i, q̄i

), i ∈ I0.

2. Extract the singular vectors via

»

ūi

v̄i

–

:=
√

2P∗
psq̄i

.

Algorithm 4.1: MR3 on the Golub–Kahan matrix. Compute specified singular triplets of
bidiagonalB using the MR3 algorithm onTGK(B).

unnecessary—we can just takeM0 := TGK(B) directly as root. For shifting, that is, for com-
puting a child representationM+ = TGK(B)−µ on the first level, a special routine exploiting
the zero diagonal should be employed. IfM+ is to be a twisted factorization this is much
easier to do than standarddtwqds; see [13, 25] and our remarks in [38, Sect. 8.3]. With this
setting, small singular values can be handled by a (positive) shift in one step, without danger
of spoiling them by unwanted contributions from the negative counterparts. This solution
method is sketched in Algorithm4.1. Note that we now have heterogeneous representation
types in the tree, as the rootTGK(B) is represented by its entries. In any case, our general
setup of MR3 and its proof in [35, 37] can handle this situation.

One can argue that the approach is still flawed on a fundamental level. Großer gives an
example in [19] which we want to repeat at this point. In fact his argument can be fielded
against usinganyTSEP-solver on the Golub–Kahan matrix forBSVD.

EXAMPLE 4.2 (cf. Beispiel 1.33 in [19]). Assume the exact GK eigenvectors

P∗
psqi =

1√
2

[
ui

vi

]
=

1

2




1
1
1

−1


 , P∗

psqj =
1√
2

[
uj

vj

]
=

1

2




1
−1

1
1


 ,

form (part of) the basis for a cluster. The computed vectors will generally not be exact, but
might for instance beGrotP

∗
ps

[
qi | qj

]
, whereGrot is a rotation[ c s

−s c ], c2 + s2 = 1, in the
2-3 plane. We end up with computed singular vectors

√
2ūi =

[
1

c + s

]
,
√

2ūj =

[
1

s − c

]
,

√
2v̄i =

[
c − s
−1

]
,
√

2v̄j =

[
c + s

1

]
,

that have orthogonality levels|u∗i uj | = |v∗i vj | = s2.
However, this rotation does leave the invariant subspace spanned byqi andqj (cf. Lem-

ma4.4below), so ifs2 is large, the residual norms ofq̄i andq̄j would suffer, too.
That the extracted singular vectors can be far from orthogonal even if the GK vectors are

fine led Großer to the conclusion that there must be a fundamental problem. Until recently
we believed that as well [39, p. 914]. However, we will now set out to prove that with just
a small additional requirement, Algorithm4.1 will actually work. This is a new result and
shows that there is nofundamentalproblem in using MR3 on the Golub–Kahan matrix. Of
particular interest is that the situation in Example4.2—which, as we mentioned, would apply
to all TSEPsolvers onTGK—can be avoided if MR3 is deployed as in Algorithm4.1.
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The following definition will let us control the danger that the shifts within MR3 lose
information about the singular vectors.

DEFINITION 4.3. A subspaceS of R
2n×2n with orthonormal basis(qi)i∈I is said to

haveGK structureif the systems(ui)i∈I and(vi)i∈I of vectors extracted according to
[
ui

vi

]
:=

√
2P∗

psqi, i ∈ I,

are orthonormal each.
The special property of a GK matrix is that all invariant subspaces belonging to (at most)

the first or second half of the spectrum have GK structure. As eigenvectors are shift-invariant,
this property carries over to any matrix that can be written asTGK(B)−µ for suitableB, which
is just any symmetric tridiagonal matrix of even dimension with aconstant diagonal.

The next lemma reveals that theu andv components of every vector within a subspace
with GK structure have equal norm. Thus the actual choice of the orthonormal system(qi) in
Definition4.3 is irrelevant.

LEMMA 4.4. Let the subspaceS ⊆ R
2n×2n have GK structure. Then for eachs ∈ S,

√
2s = Pps

[
su

sv

]
with ‖su‖ = ‖sv‖.

Proof. AsS has GK structure, we have an orthonormal basis(q1, . . . , qm) for S such that

√
2P∗

psqi =

[
ui

vi

]
, i = 1, . . . ,m,

with orthonormalui andvi. Eachs ∈ S can be written ass = α1q1 + · · · + αmqm, and
therefore

√
2P∗

pss =

[
α1u1 + · · · + αmum

α1v1 + · · · + αmvm

]
=:

[
su
sv

]
.

Since theui andvj are orthonormal we have‖su‖2 =
∑

α2
i = ‖sv‖2.

Now comes the proof of concrete error bounds for Algorithm4.1. The additional require-
ment we need is that the local subspaces are kept “near” to GK structure. We will discuss
how to handle this requirement in practice afterwards.

For simplicity we assume that the call to MR3 in step 1 of Algorithm4.1 produces per-
fectly normalized vectors,‖q̄i‖ = 1, and that the multiplication by

√
2 in step 2 is done

exactly.
THEOREM 4.5 (Proof of correctness for Algorithm4.1). Let Algorithm4.1be executed

such that the representation tree built by MR3 satisfies all five requirements listed in Sec-
tion 2.5. Furthermore, let each node(M, I) have the property that a suitable perturbation
M̃GK = erp(M, ξGK) can be found such that the subspaceQI [M̃GK] has GK structure. Fi-
nally, letresidGK andorthGK denote the right-hand side bounds from Theorem2.4and from
the second inequality in Theorem2.5, respectively. Then the computed singular triplets will
satisfy

max
{

cos∠(ūi, ūj), cos∠(v̄i, v̄j)
}

≤ 2
√

2A, i 6= j,

max
{
|‖ūi‖ − 1|, |‖v̄i‖ − 1|

}
≤

√
2A + O(A2),

max
{
‖Bv̄i − ūiσ̄i‖, ‖B∗ūi − v̄iσ̄i‖

}
≤

√
2 residGK,

whereA := orthGK + CvecsnξGK

/
gaptol .
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Proof. As all requirements for MR3 are fulfilled, Theorems2.4 and2.5 apply for the
computed GK eigenpairs(σ̄i, q̄i).

We will first deal with the third bound concerning the residual norms. Invoke the defini-
tion of the Golub–Kahan matrix to see

TGK(B)q̄i − q̄iσ̄i = 1√
2
Pps

[
Bv̄i − ūiσ̄i

B∗ūi − v̄iσ̄i

]

and then use Theorem2.4to obtain

‖Bv̄i − ūiσ̄i‖2 + ‖B∗ūi − v̄iσ̄i‖2 = 2‖TGK(B)q̄i − q̄iσ̄i‖2 ≤ 2resid2
GK

.

For orthogonality, consider indicesi andj and let(M, N) be the last common ancestor
of i andj, i.e., the deepest node in the tree such thati ∈ I andj ∈ J for different child
index setsI, J ⊆ N . The boundorthGK on the right-hand side in the second inequality in
Theorem2.5is just the worst-case for the first inequality in that theorem, taken over all nodes
in the tree. Hence we have

sin∠
(
q̄i , QI [M]

)
≤ orthGK.

As we assume that the representationM fulfills Requirements RRR and RELGAPS, we can
link q̄i to the nearby matrix̃MGK by

sin∠
(
q̄i , QI [M̃GK]

)
≤ sin∠

(
q̄i , QI [M]

)
+ sin∠

(
QI [M] , QI [M̃GK]

)

≤ orthGK + CvecsnξGK

/
gaptol = A.

This means we can find a unit vectorq ∈ QI [M̃GK] with sin∠
(
q̄i, q

)
≤ A.

NowQI [M̃GK] ⊆ QN [M̃GK] has GK structure. By Lemma4.4we can therefore partition

√
2q = Pps

[
u

v

]
with ‖u‖ = ‖v‖ = 1.

LetUI [M̃GK] denote the subspace spanned by theu components of vectors inQI [M̃GK]. Thus
u ∈ UI [M̃GK], and Lemma3.1gives

sin∠
(
ūi , UI [M̃GK]

)
≤ sin∠

(
ūi, u

)
≤

√
2A,

as well as the desired property|‖ūi‖ − 1| ≤
√

2A + O(A2) for the norms. Repeat the steps
above forj to arrive atsin∠

(
ūj , UJ [M̃GK]

)
≤

√
2A. We can write

ūi = x + r, x ∈ UI [M̃GK], r ⊥ x, ‖r‖ = ‖ūi‖ sin∠
(
ūi , UI [M̃GK]

)
,

ūj = y + s, y ∈ UJ [M̃GK], s ⊥ y, ‖s‖ = ‖ūj‖ sin∠
(
ūj , UJ [M̃GK]

)
.

SinceQN [M̃GK] has GK structure andI ∩ J = ∅, the spacesUI [M̃GK] andUJ [M̃GK] are
orthogonal, and in particularx ⊥ y. Therefore

|ū∗i ūj | = |x∗(y + s) + r∗ūj | ≤ |x∗s| + |r∗ūj | ≤ ‖x‖‖s‖ + ‖r‖‖ūj‖,
where we made use ofx∗y = 0 for the first inequality and invoked the Cauchy–Schwartz
inequality for the second one. Together with‖x‖ ≤ ‖ūi‖, this yields

cos∠
(
ūi, ūj

)
=

|ū∗i ūj |
‖ūi‖ ‖ūj‖

≤ ‖s‖
‖ūj‖

+
‖r‖
‖ūi‖

≤ 2
√

2A.

The bounds for the right singular vectorsvi are obtained analogously.
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One conclusion from Theorem4.5 is that it really does not matter if we extract the sin-
gular vectors as done in step 2 of Algorithm4.1by multiplying theq subvectors by

√
2, or if

we normalize them explicitly.
The new requirement that was introduced in Theorem4.5is stated minimally, namely that

the representationsM can be perturbed to yield local invariant subspaces with GK structure.
In this situation we say that the subspace ofM “nearly” has GK structure. At the moment
we do not see a way to specifically test for this property. However, we do know that any
even-dimensioned symmetric tridiagonal matrix with a constant diagonal is just a shifted
Golub–Kahan matrix, so trivially each subspace (within onehalf) has GK structure. Let us
capture this.

DEFINITION 4.6. If for a given representation of symmetric tridiagonalM there exists
an elementwise relative perturbation

M̃ = erp(M, ξ) such that M̃(i, i) ≡ c,

then we say thatM has anearly constant diagonal, in shortM is ncd, or, if more detail is to
be conveyed,M ∈ ncd(c) or M ∈ ncd(c, ξ).

Clearly, the additional requirement for Theorem4.5 is fulfilled if all representations in
the tree are ncd. Note that a representation being ncd does not necessarily imply that all
diagonal entries are about equal, because there might be large local element growth. For
example,LDL∗ can be ncd even if|di| ≫ |(LDL∗)(i, i)| for some indexi, cf. Example4.8
below.

Thencd property can easily and cheaply be verified in practice, e.g., for anLDL∗ fac-
torization with the condition|(LDL∗)(i, i) − const| = O(ǫ⋄) · max{ |di|, |ℓ2i−1di−1| } for all
i > 1. Note that the successively shifted descendants of a Golub–Kahan matrix can only
violate the ncd property if there was large local element growth at some diagonal entries on
the way.

REMARK 4.7. Since Theorem4.5 needs the requirement SHIFTREL anyway, the shifts
TGK(B) − µ = M+ to get to level one must be executed with mixed relative stability. There-
fore, all representations on level one will automatically be ncd and as such always fulfill the
extra requirement of having subspaces near to GK structure,independent of element growth
or relative condition numbers.

The preceding theoretical results will be demonstrated in action by numerical experi-
ments in Section5. Those will confirm that Algorithm4.1 is indeed a valid solution strategy
for BSVD. However, it will also become apparent that working with a Golub–Kahan matrix
as root can sometimes be problematic in practice. The reasonis that Golub–Kahan matrices
are highly vulnerable to element growth when confronted with a tiny shift.

EXAMPLE 4.8. (Cf. [36, Example 1.2]) Letα ≪ 1 (e.g.,α ∼ ǫ⋄) and consider the

bidiagonal matrixB =

[
1 1

α

]
with singular valuesσ1 ≈ α, σ2 ≈ 2. ShiftingTGK(B) by

−α gives




−α 1
1 −α 1

1 −α α
α −α


 = LDL∗

with D = diag
(
− α, 1−α2

α
, −α 2−α2

1−α2 , −α 1
2−α2

)
. Clearly there is huge local element

growth in D(2). This LDL∗ still is ncd, but if we had to shift it again the property would
probably be lost completely.
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The thing is that we really have no way to avoid a tiny shift if clusters of tiny singular
values are present. In [35, 36] a generalization to twisted factorizations calledblock factor-
izationsis investigated. The latter are especially suited for shifting Golub–Kahan matrices
and essentially render the above concerns obsolete.

5. Numerical results. In this section we present the results that were obtained with our
prototype implementation of Algorithm4.1, XMR-TGK, on two test setsPract andSynth.
We also compare toXMR-CPL, which implements the coupling approach for running MR3

on the normal equations; cf. Section3.3.1.
Most of the bidiagonal matrices in the test sets were obtained from tridiagonal problems

T in two steps: (1)T was scaled and split to enforceei > ǫ⋄‖T‖, i = 1, . . . , n − 1. (2) For
each unreduced subproblem we chose a shift to allow a Cholesky decomposition, yielding an
upper bidiagonal matrix.

The Pract test set contains 75 bidiagonal matrices with dimensions upto 6245. They
were obtained in the above manner from tridiagonal matricesfrom various applications. For
more information about the specific matrices see [5], where the same set was used to evaluate
the symmetric eigensolvers in LAPACK.

TheSynth set contains 19240 bidiagonal matrices that stem from artificially generated
tridiagonal problems, including standard types like Wilkinson matrices as well as matrices
with eigenvalue distributions built into LAPACK’s test matrix generatorDLATMS. In fact, all
artificial types listed in [29] are present.

For each of these basic types, all tridiagonal matrices up todimension100 were gener-
ated. Then these were split according to step (1) above. For the resulting tridiagonal subprob-
lems we made two further versions by gluing [9, 33] them to themselves: either two copies
with a small glue& ‖T‖nǫ⋄ or three copies with two mediumO(‖T‖n√ǫ⋄) glues. Finally,
step (2) above was used to obtain bidiagonal factors of all unreduced tridiagonal matrices.

Further additions toSynth include some special bidiagonal matricesB that were orig-
inally devised by Benedikt Großer. These were glued as well.However, special care was
taken that step (1) above would not affect the matrixB∗B for any one of these extra additions.

The codeXMR-TGK is based on aprototypeMR3 TSEPsolver,XMR, which essentially
implements Algorithm4.1. XMR differs from the LAPACK implementationDSTEMR mainly
in the following points.

• DSTEMR relies on twisted factorizationsT = NkGkN∗
k, represented by the non-

trivial entriesd1, . . . , dk−1, γk, rk+1, . . . , rn from the matrixGk in (2.1) and the
offdiagonal entriesℓ1, . . . , ℓk−1, uk+1, . . . , un from Nk, whereasXMR uses the
same entries fromGk, together with then − 1 offdiagonalsℓ1d1, . . . , ℓk−1dk−1,
uk+1rk+1, . . . ,unrn of the tridiagonal matrix T. This “e–representation” provides
somewhat smaller error bounds at comparable cost; see [35, 38] for more details.

• Even if the relative robustness (Requirement RRR) and moderate element growth
(Requirement ELG) cannot always be guaranteed before actually performing a shift,
sufficient a priori criteria are available. These have been improved inXMR.

• Several other modifications have been incorporated to enhance robustness and effi-
ciency, e.g., in the interplay of Rayleigh quotient iteration and bisection, and in the
bisection strategy.

An optimizedproductionimplementation ofXMR is described in [37].
XMR-TGK adapts the tridiagonalXMR to theBSVD by usingTGK(B) as root representa-

tion. To cushion the effect of moderate element growth on thediagonal we also switched to
using “Z–representations” for the children nodes. These representations again use the entries
of Gk, together with then− 1 quantitiesℓ21d1, . . . ,ℓ2k−1dk−1, u2

k+1rk+1, . . . ,u2
nrn, and they

provide even sharper error bounds, albeit at higher cost; cf. [35, 38]. In addition to the checks
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in XMR, a shift candidate has to bencd(−µ̄, 32nǫ⋄) in order to be considered acceptable a
priori; see the discussion following Theorem4.5.

As the coupled approach is not discussed in the present paper, we can only briefly hint
at the main features of the implementationXMR-CPL; see [35] for more details.XMR-CPL
essentially performsXMR on the Golub–Kahan matrix (“central layer”) and uses coupling
relations to implicitly run the MR3 algorithm simultaneously on the matricesBB∗ andB∗B
as well (“outer layers”). Just likeXMR-TGK we use Z–representations in the central layer,
and the representations there have to fulfill the same ncd-condition, but the other a priori
acceptance conditions inXMR are only checked for the outer representations. Eigenvalue
refinements are done on the side that gives the better a prioribound for relative condition. To
counter the fact that for the coupled approach we cannot prove that SHIFTREL holds always,
appropriate consistency checks with Sturm counts are done for bothouter representations.

Table 5.1 summarizes the orthogonality levels and residual norms ofXMR-TGK and
XMR-CPL on the test sets.XMR-TGK works amazingly well. Indeed, the extracted vec-
tors have better orthogonality than what LAPACK’s implementationDSTEMR provides for
B∗B alone, and they are not much worse than those delivered byXMR.

The coupled approach works also well onPract, but has some undeniable problems with
Synth. Indeed, not shown in the tables is that for 24 of the cases inSynth, XMR-CPL failed
to produce up to2.04% of the singular triplets. The reason is that for those cases there were
clusters where none of the tried shift candidates satisfied the aforementioned consistency
checks for the child eigenvalue bounds to replace the missing SHIFTREL. Note that these
failures are not errors, since the code did flag the triplets as not computed.

Finally let us consider the matrix from Example4.1, which yields unsatisfactory orthog-
onality with a “black box” MR3 on the Golub–Kahan matrix (see Example4.1) and large
residuals with black box MR3 on the normal equations (not shown in this paper). By contrast,
bothXMR-TGK andXMR-CPL solve this problem with worst orthogonality levels of1.15nǫ⋄
andBSVD-residual norms0.68‖B‖nǫ⋄. Interestingly these two numbers are identical for both
methods, whereas the computed vectors differ.

The accuracy results would mean that the coupled approach isclearly outclassed by
using MR3 on the Golub–Kahan matrix in the fashion of Algorithm4.1, if it were not for
efficiency. Counting the subroutine calls reveals thatXMR-CPL does more bisections (for
checking the couplings) and more RQI steps (to compute the second vector), but these oper-
ations are on size-n matrices, whereas the matrices inXMR-TGK all have size2n. Thus we
expectXMR-CPL to perform about20 − 30% faster thanXMR-TGK.

These results give in fact rise to a third method forBSVD, namely a combination of the
first two: Use MR3 on the Golub–Kahan matrixTGK(B) like in Algorithm 4.1, but employ
the coupling relations to outsource the expensive eigenvalue refinements to smaller matrices
of half the size. This approach would retain the increased accuracy ofXMR-TGK at reduced
cost, without the need for coupling checks. The catch is thatwe still need the “central layer”
(translates ofTGK) to be robust forXMR-TGK, but to do the eigenvalue computations with
one “outer layer” (translates ofBB∗ or B∗B) the representation there has to be robust as well.
This would be a consequence of Theorem 5.2 in [21], but its proof contains a subtle error.
The combined method is new and sounds promising, in particular if block factorizations(in-
troduced in [35, 36]) are used to increase the accuracy. At the moment we favorXMR-TGK
because it leads to a much leaner implementation and can profit directly from any improve-
ment in the underlying tridiagonal MR3 algorithm.

Acknowledgments. The authors want to thank Osni Marques and Christof Vömel for
providing them with thePract test matrices and the referees for their helpful suggestions.
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TABLE 5.1
Comparison of the orthogonality levelsmax

˘

|U∗U − I|, |V∗V − I|
¯

/nǫ⋄ and the residual norms
maxi

˘

‖Bv̄i − ūiσ̄i‖, ‖B
∗ūi − v̄iσ̄i‖

¯

/‖B‖nǫ⋄ of XMR-TGK and XMR-CPL. The lines belowMAX give the
percentages of test cases with maximum residual and loss of orthogonality, respectively, in the indicated ranges.

Pract (75 cases) Synth (19240 cases)

XMR-TGK XMR-CPL XMR-TGK XMR-CPL

Orthogonality level max
˘

|U∗U − I|, |V∗V − I|
¯ ‹

nǫ⋄

5.35 10.71 AVG 5.34 6.33
2.71 2.44 MED 1.38 1.01

48.40 154 MAX 3095 27729

81.33 % 82.67 % 0 . . . 10 92.59% 91.04 %
18.67 % 14.67 % 10 . . . 100 7.04 % 8.61 %

2.67 % 100 . . . 200 0.12 % 0.21 %
200 . . . 500 0.11 % 0.10 %
500 . . . 103 0.07 % 0.02 %
103 . . . 106 0.06 % 0.03 %

Residual norms maxi

˘

‖Bv̄i − ūiσ̄i‖, ‖B∗ūi − v̄iσ̄i‖
¯ ‹

‖B‖nǫ⋄

0.35 15.78 AVG 0.45 3.14
0.07 1.37 MED 0.13 0.72
4.19 453 MAX 118 6873

92.00 % 34.67 % 0 . . . 1 84.96% 57.45 %
8.00 % 50.67 % 1 . . . 10 15.03% 35.50 %

8.00 % 10 . . . 100 7.00 %
6.67 % > 100 0.01 % 0.06 %
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