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ERROR ESTIMATES FOR GENERAL FIDELITIES *

MARTIN BENNINGT AND MARTIN BURGER'

Abstract. Appropriate error estimation for regularization methodsmaging and inverse problems is of enor-
mous importance for controlling approximation propertesl understanding types of solutions that are particularly
favoured. In the case of linear problems, i.e., variatianathods with quadratic fidelity and quadratic regulariza-
tion, the error estimation is well-understood under sdecedource conditions. Significant progress for nonquadrat
regularization functionals has been made recently afeiritroduction of the Bregman distance as an appropriate
error measure. The other important generalization, narfieelgonquadratic fidelities, has not been analyzed so far.

In this paper we develop a framework for the derivation obeastimates in the case of rather general fidelities
and highlight the importance of duality for the shape of thneates. We then specialize the approach for several
important fidelities in imaging®, Kullback-Leibler).
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1. Introduction. Image processing and inversion with structural prior infation (e.g.,
sparsity, sharp edges) are of growing importance in pralcéipplications. Such prior infor-
mation is often incorporated into variational models witipeopriate penalty functionals used
for regularization, e.g., total variation ét-norms of coefficients in orthonormal bases. The
error control for such models, which is of obvious relevanse¢he subject of this paper.

Most imaging and inverse problems can be formulated as timpatation of a function
@ € U($2) from the operator equation,

(1.2) Ku=y,

with given datayg € V(X). Herel/(§2) andV(X) are Banach spaces of functions on bounded
and compact sefg, respectively:, andK denotes a linear operatéf : ¢/(Q) — V(). We
shall also allowX to be discrete with point measures, which often corresptmtie situation
encountered in practice. In the course of this work we warbtbg the exact dataandu the
exact solution

Most inverse problems are ill-posed, i.& ,usually cannot be inverted continuously (due
to compactness of the forward operator). Furthermore,aklife applications the exact data
g are usually not available. Hence, we face to solve the ieversblem,

(1.2) Ku=F,

instead of (.1), with w € U(2) and f € V(X), while g and f differ from each other by a
certain amount. This difference is referred to as beiogse(or systematic and modelling
errors, which we shall not consider here). Therefore, tghmut this work we want to call

f thenoisy data Although in generaf is not available, nevertheless in many applications a
maximum noise boundlis given. This “data error” controls the maximum differetegween

g and f in some measure, depending on the type of noise. For instantee case of the
standard.2-fidelity, we have the noise bound,

lg = fllogs) < 0.
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In order to obtain a robust approximatiorof ¢ for (1.2) many regularization techniques
have been proposed. Here we focus on the particularly irapband popular class of convex
variational regularization, which is of the form

(1.3) G € argmin {Hy(Ku) + aJ(u)} ,
ueEW(Q)

with H; : V(£) — RU{cc} andJ : W(Q2) — R U {oo}, W(R2) C U(R2), being con-
vex functionals. The scheme contains the general fidelity & ¢ (K «), which controls the
deviation from equality ofX.2), and the regularization termJ (u), with o > 0 being the reg-
ularization parameter, which guarantees certain smosthfeatures of the solution. In the
literature, schemes based dn3) are often referred to asariational regularization schemes
Throughout this paper we shall assume thad chosen such that a minimizer df.§) exists,
the proof of which is not an easy task for many important césiof H;; cf., e.g., [L, 2].
Notice that if H;(Ku) + oJ(u) in (1.3) is strictly convex, the set of minimizers is indeed a
singleton.

Variational regularization of inverse problems based onegal, convex—and in many
cases singular—energy functionals has been a field of gmpimierest and importance over
the last decades. In comparison to classical Tikhonov eeaition (cf. [L3]) different regu-
larization energies allow the preservation of certaindesd, e.g., preservation of edges with
the use of Total Variation (TV) as a regularizer (see foranse the well-known ROF-model
[29]) or sparsity with respect to some bases or dictionaries.

By regularizing the inverse probler.@), our goal is to obtain a solutiofaclose toz in
a robust way with respect to noise. Hence, we are interestedor estimates that describe
the behaviour of the “data errod and optimal choices for quadratic fitting; se&3[. A
major step for error estimates in the case of regularizatitm singular energies has been the
introduction of (generalized) Bregman distances (¢f2[)]) as an error measure; cB]f The
Bregman distance for general convex, not necessarilyrdifeable functionals, is defined as
follows.

DEeFINITION 1.1 (Bregman Distance).eti/ be a Banach space antl: f — RU {co}
be a convex functional with non-empty subdifferendidl Then, the Bregman distance is
defined as

Dj(u,v) :={J(u) — J(v) = (p,u —v)yy |p € 0J(v)} .

The Bregman distance for a specific subgradiént 9.J(v), v € U, is defined aSDS. :
U x U — RT with

Dg(uw) = J(u) — Jw) = ({,u—v)y.

Since we are dealing with duality throughout this work, we going to write
<a’ b>u = <aa b>u*><u = <ba a>Z/l><Z/l* ]

fora € U* andb € U, as the notation for the dual product, for the sake of sinitylic

The Bregman distance is no distance in the usual sense; sitl¥gu,«) = 0 and
Dg(u, v) > 0 hold for all ¢ € 9.J(v), the latter due to convexity of. If .J is strictly convex,
we even obtairDS.(u,v) > 0 foru # vand¢ € dJ(v). In general, no triangular inequality
nor symmetry holds for the Bregman distance. The latter @mebe achieved by introducing
the so-called symmetric Bregman distance.
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DEFINITION 1.2 (Symmetric Bregman Distance).et/ be a Banach space and :
U — R U {oo} be a convex functional with non-empty subdiffererilidl Then, a symmetric
Bregman distance is defined B§"™™™ : U/ x U — R* with

DY™™ (uy, uz) := DY (ug, u1) + DY (ur, u2) = (u1 — u2, p1 — p2)u-
with

pi € 0J(u;) for ie{1,2}.

Obviously, the symmetric Bregman distance depends on theifgpselection of the
subgradientg;, which will be suppressed in the notation for simplicityabighout this work.

Many works deal with the analysis and error propagation hysatering the Bregman
distance betwee satisfying the optimality condition of a variational regtization method
and the exact solution; cf. [7, 9, 17, 21, 22, 28]. The Bregman distance turned out to be an
adequate error measure since it seems to control only throses ¢hat can be distinguished
by the regularization term. This point of view is supportgdtbe need of so-called source
conditions, which are needed to obtain error estimatesaBtiegman distance setting. In the
case of quaderatic fitting we have the source condition,

3¢ € dJ(n),Ige LAX) : € = K*q,

with K* denoting the adjoint operator df throughout this work. If, e.g., in the case of
denoising withK = Id, the exact imagé contains features that are not elements of the
subgradient of/, error estimates for the Bregman distance cannot be apgilied the source
condition is not fulfilled.

Furthermore, Bregman distances according to certain agigakion functionals have
widely been used to replace those regularization terms;lwyield inverse scale space meth-
ods with improved solutions of inverse problems; &, §, 26].

Most works deal with the case of quadratic fitting, with oréwfexceptions; see, e.g21.
However, in many applications, such as Positron Emissianography (PET), Microscopy,
CCD cameras, or radar, different types of noise appear. Biesmare Salt-and-Pepper noise,
Poisson noise, additive Laplace noise, and different nsoofahultiplicative noise.

In the next section, we present some general fidelities @ntiyaused in various imaging
applications. Next, we present basic error estimates foegs, convex variational regular-
ization methods, which we apply to the specific models. Therillwstrate these estimates
and test their sharpness by computational results. We gdactith a brief outlook and for-
mulate open questions. We would also like to mention thellgh@development on error
estimates for variational models with non-quadratic figeiln [27], which yields the same
results as our paper in the case of Laplacian noise. Sincarthlgsis in P7] is based on fi-
delities that are powers of a metric instead of the noise fsosle use here, most approaches
appear orthogonal. In particular, we base our analysis amedty and duality and avoid the
use of triangle inequalities, which can only be used for arimet

2. Non-quadratic fidelities. In many applications different fidelities than the standard
L2-fidelity are considered, usually to incorporate differarriori knowledge on the distri-
bution of noise. Exemplary applications are Synthetic Ayrer Radar, Positron Emission
Tomography or Optical Nanoscopy. In the following, we presree particular fidelities,
for which we will derive specific estimates later on.
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2.1. General norm fidelity. Typical non-quadratic fidelity terms are norms in general,
ie.,
Hy(Ku) = [[Ku— flly

without taking a power of it. The corresponding variatiopadblem is given via

(2.1) RS argmin{HKu—va(g) +aJ(u)} i
ueW(Q)

The optimality condition ofZ.1) can be computed as
(2.2) K*$+ap=0, 5€0|Ku— fllvwy), ped(a).

In the following we want to present two special cases of tleisegal class of fidelity terms
that have been investigated in several applications.

2.1.1. L' fidelity. A typical non-quadratic, nondifferentiable, fidelity tewnsed in ap-
plications involving Laplace-distributed or impulsiveise (e.g., Salt'n’Pepper noise), is the
L'-fidelity; see for instancelD, 11, 31]. The related variational problem is given via

(2.3) # = argmin / \(Fu)(w) - F@)] duy) + o (u)
ueEW(Q) %

The optimality condition of2.3) can easily be computed as
K*s+ap=0, sesignKu— f), pedd(a),
with sign(z) being the signum “function”, i.e.,
forz >0

1
signz) =< € [-1,1] forz=0 .
-1 forz <0

2.1.2. BV fidelity. In order to separate an image into texture and structure2dh [
Meyer proposed a modification of the ROF model via

1 .
F(u,v) = [[v] gye(o) + oy sup / u divg dx
a€Cy® (R?) JQ
llalle <1
with respect ta (structure) and (texture) for a given imagg¢ = w + v, and with||-[| ..
defined as

1
’(|Pl|2 + |P2|2) ’

subject to diyy = w. Initially the norm has been introduced @snorm.
In this context, we are going to consider error estimatestfevariational model

w . := inf
-y = in

L>(Q)

u € argmin{HKu = fllgv=(s) + on(u)}
ueEW(Q)

with its corresponding optimality condition
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2.2. Kullback-Leibler fidelity. In applications such as Positron Emission Tomography
or Optical Nanoscopy, sampled data usually obey a Poissmoeps. For that reason, other
fidelities than theL? fidelity have to be incorporated into the variational franoev The
most popular fidelity in this context is the Kullback-Leibtivergence (cf. 24]), i.e.,

Hy(Ku) = / s (G2 — 1)+ o) .

Furthermore, due to the nature of the applications and thega, the functiom usually rep-
resents a density that needs to be positive. The relateaticaral minimization problem with
an additional positivity constraint therefore reads as

e argmin{/ [f(y) 1n( /) ) — fly)+ (KU)(y)} du(y) +aJ(U)} :

weEW(s) (Ku)(y)
u>0

With the natural scaling assumption,
K*1=1,
we obtain the complementarity condition,

N f .
>0 K*— — <1,
=5 Ku =

(2.4)

a<1—K*£ﬁ+aﬁ):0, peadJ(u).

2.3. Multiplicative noise fidelity. In applications such as Synthetic Aperture Radar the
data is supposed to be corrupted by multiplicative noise,fi.= (Ku) v, wherev represents
the noise following a certain probability law arddu > 0 is assumed. Inl], Aubert and
Aujol assumed to follow a gamma law with mean one and derived the data figelit

(k) = [ 1 (EW W) f(y) _
Hy(Ku) E/[1< U>+ < }du(y)

TOARCOIONE

Hence, the corresponding variational minimization prabteads as

09 e [ (S7) + O st

with the formal optimality condition

< (((Ea)(y) — f(y)
0=K"|—7"-2—-*

( ((Ka)(y))?
One main drawback o(5) is that the fidelity term is not globally convex and therefor

will not allow unconditional use of the general error estigsawhich we are going to derive
in Section3. In order to convexify this speckle noise removal model,liff [Huang et al.

)+a;a, ped(i).
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suggested the substitutiariy) := In((Ku)(y)) to obtain the entirely convex optimization
problem,

@6)  z—aguin? [ [s)+ f)e Y - 1= ()] duty) + a2
zEW(X)

with optimality condition
(2.7) 1—fy)e W +ap=0

for p € 0J(2). This model is a special case of the general multiplicativisen model pre-
sented in 0. We mention that in the case of total variation regulaitat contrast change
as above is not harmful, since the structural propertiegdednd piecewise constant regions)
are preserved.

3. Results for general models.After introducing some frequently used non-quadratic
variational schemes, we present general error estimatednvex) variational schemes.
These basic estimates allow us to derive specific error agtigrfor the models presented in
Section2. Furthermore, we explore duality and discover an erronegte dependent on the
convex conjugates of the fidelity and regularization terms.

In order to derive estimates in the Bregman distance settigeed to introduce the
so-called source condition,

(SC) ¢ edl(a),Ige V(D) : &=K*q.

As described in Sectioh, the source conditiorSC) in some sense ensures that a solution
contains features that can be distinguished by the regatéwn term.J.

3.1. Basic estimates.n this section we derive basic error estimates in the Bregma
distance measure for general variational regularizatiethwods.

To find a suitable solution of the inverse probleind close to the unknown exact solu-
tion @ of (1.1), we consider methods of the form.8). We denote a solution ofL.(3), which
fulfills the optimality condition due to the Karush-Kuhn-Gker conditions (KKT), byi.

First of all, we derive a rather general estimate for the Brag distancé)fs,(ﬁ, ).

LEmMA 3.1. Letw denote the exact solution of the inverse probldni) and let the
source conditior{SC) be fulfilled. Furthermore, let the functiondl: W(2) — RU {cc} be
convex. If there exists a solutiagnthat satisfieg1.3) for a > 0, then the error estimate

Hp(Kt) + aD(, @) < Hy(g) — o{q, Kt — g)ys)
holds.

Proof. Sinceu is an existing minimal solution satisfyind @), we have

Hp(Ka) + ol (@) < Hf(Ka) + af(a).

Ku
~—~
=9

If we subtract (J(@) + (£, 4 — @)y(q)) on both sides we end up with

Hy(Ka) + o (J(@) — J(@) — (€, 0 — ty)) < Hf(g) —a (&0 — Uy

—né
=D5

(,i) =(K*q,0—1u)y(x)

= Hy(g) — afg, K — g)y () - O
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Notice thatJ needs to be convex in order to guarantee the positivitg/)f;tﬁ,ﬂ) and
therefore to ensure a meaningful estimate. In contrastat the data fidelity y does not
necessarily need to be convex, which makes Ler@rha very general estimate. Furthermore,
the estimate also holds for amyfor which we can guarantee

Hi(Ku)+ oJ (@) < Hf(Ka) + oJ ()

(a property that obviously might be hard to prove for a spediji which might be useful
to study non-optimal approximations to Nevertheless, we are mainly going to deal with
a specific class of convex variational problems that allowgaiderive sharper estimates,
similar to Lemma3.1but for DY™"(4, @). Before we prove these estimates, we define the
following class of problems that we further want to inveatig;
DEFINITION 3.2. We define the clag¥®, ¥, ©) as follows:
(H,J,K) €eC(®,V,0)if
K : © — ®is alinear operator between Banach spaéeand®,
H : ® — RU{oo} is proper, convex and lower semi-continuous,
J: U — RU{oc} is proper, convex and lower semi-continuous,
there exists a’ with Ku' € dom(H) andw’ € dom(.J), such thatH is continuous
at Ku'.
With this definition we assume more regularity to the congddunctionals and are now
able to derive the same estimate as in Len@miabut for D™ (4, @) instead ofD$ (i, @).
THEOREM 3.3 (Basic Estimate l)Let (H;, J, K) € C(V(2), W(Q2),U(S)), for com-
pact and bounded sef? and X. Then, if the source conditiof8Q) is fulfilled, the error
estimate

(3.1) Hyp(Ka) + oD (4, @) < Hy(g) — alg, Kt = g)y(s)

holds.
Proof. SinceH ; and.J are convex, the optimality condition of () is given via

0 € OH(Ktl) + adJ (@) .

Since bothH ; and.J are proper, lower semi-continuous, and convex, and siree txists
u’ with Ku' € domHy) andu’ € dom(J), such thatd is continuous af{w’, we have
OH¢(Ku) + adJ(u) = 0 (Hy(Ku)+ oJ(u)) for all u € W(Q2), due to L2, Chapter 1,
Section 5, Proposition 5.6]. Due to the linear mapping progeof K, we furthermore have
0H;(K-)(u) = K*0H;(Ku) Hence, the equality

K*fi +ap=0

holds for) € 0H;(Ku) andp € 0J(u). If we subtractag, with ¢ fulfilling (SC), and take
the duality product withi — @, we obtain

(K0, 0 — W)y o) + oD — &0 — Uy o) = — s U — W)y s

§
~—
=K*q

which equals

(N, K — Ki)yes) +aDY"(0,0) = —alq, Ki — K )y -

=9 =9
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SinceH is convex, the Bregman distanﬁ%f (g, K4) is non-negative, i.e.,
Dy (9. K@) = Hy(g) = Hp(Ka) = (.9 = Ki)yes) >0,
for ) € 0Hy(Ku). Hence, we obtain
(0, K — g)ys) > Hp(Ku) — Hy(g) .

As a consequence, this yields ). O

We can further generalize the estimate of TheofeB1to obtain the second important
general estimate in this work.

THEOREM 3.4 (Basic Estimate ll)Let (Hy, J, K) € C(V(X), W(Q),U($)) for com-
pact and bounded sef? and . Then, if the source conditiofSC) is fulfilled, the error
estimate

(1= c)Hy(Ka) + aDY™™ (4, a) < (1+c)Hy(g)
(3.2) —alq, [ — g)v) — cHy(g)
+alq, f — Ki)y) — cHy (K1)

holds forc €]0, 1].
Proof. Due to Theoren3.3, we have

Hy(Ka) +aD3™ (4, @) < Hy(g) — afg, Kit — g)y(s) -
The left-hand side is equivalent to
(1 —c)Hy(Ka) +aDY™(4,a) + cHp(Ka),
while the right-hand side can be rewritten as

(1 +c)Hy(g) — alg, Kit — g)v(s) — cHy(g)

for ¢ €]0, 1], without affecting the inequality. The dual produgt K'i. — g) (s is equivalent
to (g, f + Kt — g — f)v(x) and hence we have

—a(g, Kt — g)y) = —alq, f — g)vs) +alg, [ — Ki)ys) -

Subtracting:H ;s (K ) on both sides and replacingx(q, Ki — g)y(x) by
—a(q, [ — g)v(z) +ale, f — Ki)y(s) yields @.2). 0

In Section4 these two basic estimates will allow us to easily derive djgeerror esti-
mates for the noise models described in Section

3.2. A dual perspective. In the following we provide a formal analysis in terms of
Fenchel duality, which highlights a general way to obtanoeestimates and provides further
insights. In order to make the approach rigorous one neecisdok detailed properties of all
functionals allowing to pass to dual problems formally (gf2]), which is however not our
goal here.

In order to formulate the dual approach we redefine the fidtit
Gy(Ku— f):= H;(Ku) and introduce the convex conjugates

G?(Q) = Sup (<Qav>V(Z) - Gf(v)) ) J*(p) = sup (<pau>u(9) - J(U)) )
veEV(X) ueEW(R2)
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for ¢ € V(X)* andp € U(Q2)*. Under appropriate conditions, the Fenchel duality theore
(cf. [12, Chapter 3, Section 4]) implies the primal-dual relation,

1 1
i —Gp(Ku—f)+J =— mi J(K*q) — {q, +—=G3(— ,
BRI b f(Eu—f) (U)} i [ (K7a) = {a, flvm) + ~G(-aq)
as well as a relation between the minimizéref the primal andg of the dual problem,
namely,

K*q e dJ(u), €T (K*§).
More precisely, the optimality condition for the dual prebyl becomes
Ki—f—r=0, r € 0G}(—aq).

If the exact solution; satisfies a source condition with source eleméfite. K*d € 9.J(a)),
then we can use the dual optimality condition and take théitsiymoduct with G — d, which
yields

(K(t—1),q—d)y)y = é(ﬁ (—ad) = (—aq)) vy + (f — 9,4 — d)yis)--
One observes that the left-hand side equals
D™ (@, @) = (@ — @, K*(q — d))uo)~
i.e., the Bregman distance we want to estimate. UsiagdG'} (—aq), we find
(r,(—ad) — (—a))y(z)- < Gj(—ad) — G}(—aqg).

Under the standard assumpti6hy (0) = 0, we find thatG'} is nonnegative and hence in the
noise-free casef(= g), we end up with the estimate,

symm / ~ ~ 1 *
D™ (4, ) < aGf(—ozd).

Hence the error in terms ef is determined by the properties of the convex conjugatg pof
For typical smooth fidelities: s, we haveG';(0) = 0 and(G})'(0) = 0. HenceéG}(—ad)
will at least grow linearly for smaldy, as confirmed by our results below.

In the applications to specific noise models our strategy vélto estimate the terms
on the right-hand side of3(2 by quantities IikeG;i(—ad) and then work out the detailed
dependence on.

4. Application to specific noise modelsWe want to use the basic error estimates de-
rived in SectiorB to derive specific error estimates for the noise models pitesén Sectior.
In the following it is assumed that the operatorsatisfies the conditions of TheoréhBand
Theorem3.4.

4.1. General norm fidelity. With the use of Theorer3.3 we can—in analogy to the
error estimates for the exact penalization modeldh-fobtain the following estimate for
Hi(Ku) = [|[Ku— fHV(E) with 4 satisfying the optimality conditior2(2) andu being the
exact solution of 1.1).

THEOREM 4.1. Let @ satisfy the optimality conditio(2.2) and letz denote the exact
solution of (1.1). Furthermore, the difference between exact datand noisy dataf is
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bounded in the/-norm, i.e. || f _gHV(Z) < ¢ and (SO holds. Then, for the symmetric
Bregman distanc®?y™" (4, u) for a specific regularization functional, such that

(Hf7 J, K) € C(V(E)’ W(Q)’M(Q))

is satisfied, the estimate
@) (1= alalhys). ) Hr(Ka) +aD3™ (@) < (1+a . ) 6

holds. Furthermore, forv < 1/ |g|y, ;.. we obtain
symm / ~ ~ 1
(4.2) DY"™(a,a) <9 ot lallys)- ) -

Proof. Since we havéH,, J,K) € C(V(X),W(Q),U(2)), we obtain (due to Theo-
rem3.3)

Hp(Ka) + a D™ (4, 1) < Hy(g) —alq, K — g)y(s)
——
<J

<0—oalg, Ki—f+f—ghvs)y =0 —a((¢. Ki— flvs) +af—9v)
<o+ allalys) (IKi = fllye +17 =gl
<6+ alldlygs) (1K= Flys) +96) .

which leads us to4.2). If we insertH(Ka) = |[Ki — [,y and setn < 1/ glly -
then we can subtradtK'a — f||,,x, on both sides. If we divide by, then we obtain
4.2. O

As expected from the dual perspective above, we obtain indke of exact data & 0)
for « sufficiently small

DY™™(4,a) =0,  H,(Ka) = 0.

For largera no useful estimate is obtained. In the noisy case we can ehoasnall but
independent of and hence obtain

DY (4, i) = O(5).

We remark on the necessity of the source condit®®@)( In usual converse results one
proves that a source condition needs to hold if the distaeteden the reconstruction and
the exact solution satisfies a certain asymptotit; icf. [25]. Such results so far exist only for
quadratic fidelity and special regularizations and canea@ipected for general Bregman dis-
tance estimates—even less with non-quadratic fidelity nsod&e shall therefore only look
on the asymptotics aff ; in the noise-free case and argue that for this asymptotisdbece
condition is necessary (at least in some sense). In the dasgeneral norm fidelity this
is particularly simple due to the asymptotic exactness¥emall. The optimality condition
K*$+ ap = 0 can be rewritten as

p = K*q, peaJ),qge V),

with g = —éé. Sincet is a solution minimizingJ for « sufficiently small, we see that if the
asymptotic ino holds, there exists a solution &fu = ¢ with minimal J satisfying §CO).
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4.2. Poisson noiseln the case of Poisson noise the source condition can beewat
(scrLh) ¢ edJ(u),Ige L™(X): ¢=K'q,

and we have the Kullback-Leibler fidelity,

f(y)
[f(y) In <(KU)(y)) fy) + (Ku)(y)| duly),
and a positivity constraint > 0. Theorem3.4 will allow us to derive an error estimate of
the same order as known for quadratic fidelities. Before thathave to prove the following
lemma.

LEMMA 4.2. Leta andp be positive, real numbers, i.ex, ¢ € R™. Furthermore, let
~ € R be areal number and €]0, 1[. Then, the family of functions

hn(2) == (=1)"ay(¢ —x) — ¢ (wln (%) —p+ x) :

Hy(Ku) =/

b

for x > 0 andn € N, are strictly concave and have their uniqgue maxima at

They are therefore bounded by

ha(w) < hn(3}) = (~1)"ae = cpln (14 (~1)"27)

for 2|y| < 1andz # 7.

Proof It is easy to see thd, (z) = —c% < 0 and, hencel, is strictly concave for all
n € N. The unique maxima” can be computed via, (z/*) = 0. Finally, sinceh,, is strictly
concave for alh € N, h,,(z") has to be a global maximurf.

Furthermore, we have to ensure the existence’of 0 with Ku' € dom(H;) and
u’ € dom(J), such thatH is continuous at<u’. If, e.g., donfJ) = BV(2), we do not
obtain continuity ofH; at Ku' if K maps to, e.g.L'(X). Therefore, we restrick to map
to L°°(X). However, we still keepgCL') to derive the error estimates, which corresponds
to an interpretation of mapping toL!. This implies more regularity than needed, since
one usually useg in the dual of the image space, which would megan L>°(X)*. For the
latter we are not able to derive the same estimates. NotegVenwthat the assumption &f
mapping toL. > (%) is used only to deal with the positivity d€. With the help of Lemmd.2
and the restriction td< we are able to prove the following error estimate.

THEOREM4.3. Let ¢ satisfy the optimality conditio(2.4) with K : U(Q2) — L>(¥)
satisfyingV (K) = {0}, let a denote the exact solution ¢1.1), and letf be a probability
density measure, i.ef,, f du(y) = 1. Assume that the difference between noisy deadad
exact datgy is bounded in the Kullback-Leibler measure, i.e.,

/E[fln(g) —f+g} du(y) <6

and that(SCL') holds. Then, for €]0,1[ anda < m the symmetric Bregman
distanceDT"™" (u, u) for a specific regularization functional, such that

(Hfa J, K) € C(Ll (E)v W(Q)J/{(Q))
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is satisfied, is bounded via

A Symi /A~  ~ a2
(4.3) (1—c)Hy(Kua)+aDY™(4,2) < (1+c¢)d —cln (1 — = ||q|i°°(z)> .

Proof. We have(H, J, K) € C(L*(Z), W(Q),U(£2)). Using an analogous proof as in
Theorem3.4 with the non-negativity ofi being incorporated in a variational inequality, we
can still derive 8.2) in this case. Hence, we have to investigate(q, f — g) 1 (s) — cHy(9)
anda(q, f — Ku)r1 sy — cHy(Ka). If we consider both functionals pointwise and force

2
o? < (g) , then we can use Lemma2to estimate

—alq, [ —g)rix) — cHf(g) < /f (—aq —cln (1 - %Q)) du(y)

P

and
ala. = Ky~ cHy(K) < [ £ (g~ cln(1+2q)) duty).
>

Adding these terms together yields the estimate

~———
<s

(1 = ) Hy (K@) + a DY™ (3,3) <(1+¢) Hy(g) + / / (—cln <1 - “—q)) du(y).

Itis easy to see that for < ——<— we have
HqHLOO(z)

Oé2 O[2 2
“In <1 - ng) <-In (1 -5 ||q|mz)) .

Hence, for positivef we obtain

(1= () + D™ @) <1+ o+ [ £ (~em (1- s il s ) ) o)
b

a2
—a+s—etn (1= lallegs ) [ Fanty
_—
=1
and, hence 4.3) holds.O
One observes from a Taylor approximation of the second taritihe right-hand side of
(4.3 arounda. = 0 that

«

Hi(Ka)=0(6+a%), DY™(4,a)=0 (é + a)

for small«, which is analogous to the quadratic case.

REMARK 4.4. The assumptioN (K) = {0} is very strict. If N(K) is larger, the
error estimate is still satisfied sindé; is convex (no longer strictly convex) and the terms
—alq, [ — g)r1(z) — cHy(g) andalq, f — Ku) (s — cHy(K ) are concave (instead of
being strictly concave). Hence, Lemm& can still be applied to find an upper estimate, the
only difference is that there can be more than just one maximu
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4.3. Multiplicative noise. In the case of multiplicative noise we are going to examine
model @.6) instead of .5), since @.6) is convex for allz and therefore allows the application
of Theorem3.4. The source condition differs slightly, since there is new@tor in that type
of model. Therefore, we get

(2SCLY) A€ 0J(3),Iqe L¥(D): £=q.

In analogy to the Poisson case, we have to prove the follolgimgna first, to derive qualita-
tive and quantitative error estimates in the case of midtipilve noise.

LEMMA 4.5. Leta andp be positive, real numbers, i.ex, ¢ € R™. Furthermore, let
~ € R be areal number and €]0, 1[. Then, the family of functions,

kn(2) i= (=1)"av(p — ) — c(z + g~ — 1 —1In(p))

for x > 0 andn € N, are strictly concave and have their uniqgue maxima at

Ek — —1In c+ (_1)na’y
n cp

for £|y| < 1. Hencek, is bounded via

k(@) < bn (") = ay ((—1)" <<,0—|—1n <C+(;ﬂ>) - 1> +cln <M> ,

© C

for x # z~.

Proof. Similarly to Lemma4.2, it can easily be shown thaf, (z) = —cpe* < 0 for all
x € R* and hence, thg, are strictly concave for alt € N. The arguments® are computed
to satisfyk,, (z¥) = 0. Since thek,, are strictly concave,, (") has to be a global maximum
foralln e N.O

With the help of Lemma.5, we are able to prove the following error estimate.

THEOREM4.6. Let 2 satisfy the optimality conditio(2.7) and letZ denote the solution
of Z = In (Ku) = In(g), with & being the exact solution dfL..1). Assume that the difference
between noisy datf and exact datg is bounded in the measure (1.5), i.e.,

/Eln<%>—|—§—1du(y)§5

and that(2SCL*') holds. Then, for: €]0,1[ anda < ¢/ 4]l o< (5 the symmetric Bregman
distanceDT™" (2, 2) for a specific regularization functional such that

(Hy,J,ld) € C(LY(2), W(E),U(E))
is satisfied, is bounded via
(4.4)

X symm s . ¢+ allgl s
(1= ¢)Hy(2) +a D™ (2,2) (1 + )0 + a |3 [|q]| o ) In ( =

c— ”anoc(z)

Proof. First of all, we havel{; € C(L'(X), W(X),U(X)). Furthermore, there exists
o’ with Kv' € dom(Hy) andu’ € dom(J), such thatH; is continuous atv'. Hence,
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we can apply Theoreri.4 to obtain 8.2). Therefore, we have to consider the functionals

—alq, [ —g)r1(z) — cHy(g) anda(g, f — 2)11(x) — cHy(2) pointwise. Due to Lemm4.5
we have

—alg, f—g)ri(z) — cHy(g9) +alq, [ — 2)1(x) — cHy(2)

E/ozq (1 —f-In (czfaq» +ecln (c_caq> dp(y)
—i—E/aq <f+1n <C;fo‘q) - 1> +eln <C+caq) dp(y)

ctallql| oo 5y

for a < ¢/q. Itis easy to see thatin (“’*“q) < gl oo () I (

c—aq

— ) Furthermore,
c O‘H‘IHLOO():)

it also easily can be verified that the functitf) := In (1 - OC‘—ij) is strictly concave and
has its unique global maximuhiz) = 0 atz = 0. Hence, if we considein (1 — j‘—jqz)

pointwise, ¢ [y, In (1 — Oc‘—ij) du(y) < 0 has to hold. Inserting these estimates iR
yields @.4). O

Again a Taylor approximation of the second term on the rigétd side of4.4) around
a = 0 yields the asymptotic behaviour,

Hi(Ki)=0(6+0a%),  DY™(i,a) =0 (é + a) :
(&%

5. A-posteriori parameter choice. Before we start discussing computational aspects
and examples we want to briefly consider a-posteriori patanohoices for variational prob-
lems. A typical a-posteriori parameter choice rule is trecdipancy principle. For a general
norm fidelity || Ku — va(E) the discrepancy principle states that for a given noise doun
Ilf - gHV(E) < ¢ the solution to a regularized variational problem should satisfy
1K= fllys) <6 ie.,

(5.1) @ € argmin {J(u)} ,
ueEW(Q)

subject to

(5.2) [Ku— flly) <6.

We can reformulate this problem as

5.3 u € argmin X ( || Ku — + J(u
(5.3) axgnin {4 (1K = Tlyis) ) +700)



ETNA

Kent State University
http://etna.math.kent.edu

58 M. BENNING AND M. BURGER

with X5 being the characteristic function

0 ifv<§
X, = - .
5(v) {+OO else

With the use of the triangular inequality of the norm and thenotonicity and convexity of
the characteristic function, it easily can be seen Iha(HKu - f||v(z)) is convex, and by

settingHy(Ku) = X (||Ku - f”v(z))’ we can apply Lemma&.1to obtain the following
theorem.

THEOREM 5.1. Let 4 denote the exact solution @iL.1) and let the source condition
(SO be fulfilled. If there exists a minimal solutiansatisfying(5.1) subject to(5.2) and if
Ilf — gllvx) is also bounded by, the error estimate

DS (a,7) < 26 [[qlly (s

holds.
Proof. If we apply Lemma&3.1to the variational problent(3), we obtain

Xs | 1K@ — va(z) —|—D§(ﬁ,ﬂ) <X |- QHV(E) —{¢, K — g)vs)
— S——
<5 <5
=0 =0

=— (& Ki— flus) + (¢, f = 9ves)

< llql

V() [ Kt — fﬂv(z) +If = 9||v(z)
<6 <5

= 25”‘1”1}(2)* 0

REMARK 5.2. Obviously a discrepancy principle also can be consitiésr general fi-
delities, not only for norm fidelities, i.e., we may repld@€u — f|l,,s, in (5.2) by a general
fidelity H;(Kw). In that case we can apply the same convex-combinationasdik The-
orem 3.4 to obtain—with a subsequent computation of estimatesfatq, f — g)v(n) —
cHy(g) andad(q, f — K)y(s) — cHy(Ka) (as in Lemmat.2and Lemmat.5—error esti-
mates forDS (i, @).

6. Computational tests. In the following we present some numerical results for vali-
dating the practical applicability of the error estimatssagll as their sharpness. We shall

focus on two models, namely, the'-fidelity (due to the interesting asymptotic exactness)
and the Kullback-Leibler fidelity (due to the practical inmamce).

6.1. Laplace noise.In order to validate the asymptotic exactness or non-egastin
the case of Laplacian noise we investigate a denoising appwith quadratic regularization,
i.e., the minimization

« 2 2 .
(6.1) /Q|u — fldx + 5 /Q(|Vu| +u’) de — ue%llr(lsz)’

whose optimality condition is

—aAu+au+s =0, s € sign(u — f).
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Symmetric Bregman Distance Between ( and g

Symmetric Bregman Distance

o 01 o0z 03 4 05 08 07 08 09

0
a=10"t01

FiG. 6.1. The Bregman distance error betwe¢rand g for o € [1073,1]. As soon agx < % the error
equals zero.

A common approach to the numerical minimization of funcéiersuch asf.1) is a smooth
approximation of the.!-norm, e.g., by replacing — f| with \/(u — f)2 + €2 for smalle.
Such an approximation will however alter the asymptotiquemies and destroy the possibil-
ity to have asymptotic exactness. Hence we shall use a dpedagh as an alternative, which
we derive from the dual characterization of the one-norm,

inf { lu — f|] dx + e / (|Vul? + u?) da:]
v Lo 2 Jo

= inf sup [/ﬂ(u — f)sdxz + % /Q(|Vu|2 +u?) dx}

v lsl<1

= sup inf [/ﬂ(u — f)sdz+ % /Q(|Vu|2 + u?) dx} .

|s|]<1

Exchanging infimum and supremum in the last formula can yasiljustified with standard
methods in convex analysis; cfl4]. The infimum can be calculated exactly from solving
—aAu 4+ au = —s with homogeneous Neumann boundary conditions, and hencobtae
after simple manipulation the dual problem (with the natatil := (—A - +))

l/s(A*ls) dx—i—a/fs dx — min
Q

2 Q s€L®(Q),[[slloo <1

This bound-constrained quadratic problem can be solve fficient methods; we simply
use a projected gradient approach, i.e.,

shtl =Py (sk -7 (A_lsk +af)),
wherer > 0 is a damping parameter ai®} is the pointwise projection operator,

v(x if lo(z
Pi(v)(z) = { U(g%l Ie||3e( ) <1

Due to the quadratiél ! regularization, we obtain

(6.2) D™, g) = 2Dp (i1, 9) = [l — gll3pr o »
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Exact g(x) and noisy f(x)

—
=
%
=l
=
%
=

o 1 p 3
x=0to2m

FIG. 6.2. Exactg(z) = cos(x) and noisyf(z), corrupted by Laplace noise with mean zeso= 0.1 and
§ =~ 0.1037.

and the source condition becomes

q(z) = —Ag(x) + g(z), forx € Qandq € H'(Q),
1
(SCH) %:0, forz € 0.
on
In the following we present two examples and their relatedrerstimates.

ExXAMPLE 6.1. For our first data example we choage) = cos(x), for z € [0, 27].
Sinceg € C*°([0,2x]) and¢’(0) = ¢'(27) = 0, the source conditionSCH ') is fulfilled.
Hence, the derived error estimates in Secti@hould work.

First of all we check4.1) and &.2) numerically for noise-free data, i.¢.,= g andd = 0.
The estimates predict that as sooras 1 (note that|q| ;< (0,2x7) = 2 [lcos(@) | o< (0,21
= 2) holds, the regularized solutiahshould be identical to the exact solutigiin the Breg-
man distance setting (2. This is also found in computational practice, as Figéiecon-
firms.

In the following we want to illustrate the sharpness4} in the case of non-zer For
this reason, we have generated Laplace-distributed ravdoiables and have added them to
g to obtainf. We have generated random variables with different valoethie variance of
the Laplace distribution to obtain different noise levkls the L'-measure. Figuré.2shows
g and an exemplary noisy version @fwith § ~ 0.1037. In the following, we computed as
the L'-norm over|0, 2], to adjust the dimension @fto the #-norm (in the above example
0 then approximately becomésx 0.6).

In order to validate4.2) we produced many noisy functiorfavith different noise levels
0 in the range of O to 2. For five fixed values ¢ = 0.2, « = 0.4, « = 0.52, @« = 0.6, and
«a = 1) we have plotted the symmetric Bregman distances betweeretiularized solutions
4 andg, the regression line of these distances and the error bowed gia @4.2); the results
can be seen in Figur@ 3. It can be observed that fer = 0.2 anda = 0.4 the computed
Bregman distances lie beneath that bound, whilexfet 0.52, « = 0.6 anda = 1 the error
bound is violated, which seems to be a good indicator of tlepstess of4.2).

EXAMPLE 6.2. In order to validate the need for the source condit®@/H{ ') we want
to consider two more exampleg; () = sin(z) andgs(z) = |z — x|, x € [0,27]. Both
functions violate 8CH'); g, does not fulfill the Neumann boundary conditions, while the
second derivative o, is a d-distribution centered at/2 and therefore not integrable. In
the case ofj, there does not exist @ such that there could exist anto guarantee4.2).
Nevertheless, in order to visualize that there exists nb suor bound, we want to introduce
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FiG. 6.3. The plots of computed symmetric Bregman distancestfer 0.2, 0.4, 0.52, 0.6 anda = 1,
againsté = 0tod = 2. It can be seen that in (a) and (b) the computed Bregman distatie beneath the
error bound derived in4.2), while the distances in (c), (d), and (e) partly violate tbisund. Figure (f) shows
the logarithmically scaled error bound in comparison to tbgarithmically scaled regression line of the Bregman
distances forx = 0.2. It can be observed, that the slope of the regression linen&ller than the slope of the error
bound. Hence, for the particular choice @fz) = cos(x) there might exist an even stronger error bound tiés2).

a reference boun&ﬂ(l/a + ||w||Loo([072ﬁ])) with w(z) == —Aga(z) + ga(a), = € ([0,7) U
(], 2x]), which yieIds||w||Lac([0727TD =T.

As in Examples.1we want to begin with the case of exact data, ifes ¢. If we plot the
symmetric Bregman distance againsthen we obtain the graphs displayed in Figaré It
can be seen that fgi as well as fog, the error tends to be zero onlydfgets very small. To
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Symmetric Bregman Distance Between (1 and g Symmetric Bregman Distance Between @ and g
4

Symmetric Bregman Distance
Symmetric Bregman Distance
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0 5
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(@, g1) Vs (b) DT, g2) vsa

(@D ol

FIG. 6.4.The symmetric Bregman distanc®S]T"4, g1) (@) and DT"\d, g2) (b), fora € [1073,1].

illustrate the importance of the source condition in thespaiase with non-zerd, we have
proceeded as in Examptel We generated Laplace-type noise and addedgt tand g- to
obtain f; and f; for different error valueg. Figure6.5shows the Bregman distance error in
comparison to the error bound given via?) and in comparison to the reference bound as
described above, respectively. It can be seen that in casguetio Examplés.1the error and
reference bounds are completely violated, even for smaHurthermore, in the worst case of
go for a = 1 the slope of the logarithmically scaled regression linejisad to the slope of the
reference bound, which indicates that the error assumiwglyn general never get beyond
this reference bounds. The results support the need footlres condition to find quantitave
error estimates.

6.2. Compressive sensing with Poisson nois€or the validation of the error estimates
in the Poisson case we consider the following discrete se/problem. Given a two dimen-
sional functioru at discrete sampling points, i.e..= (u; j)i=1,...n, j=1,...,m, W€ investigate
the operators : /*(Q2) — ¢}(X) and the operator equation

.....

Ku=g
with
gi,j:Z@-,kuk,j, fori:1,...,l,j:1,...7m,
k=1
whereg; ; € [0, 1] are uniformly distributed random numbefs= {1,...,n} x{1,...,m},
Y ={1,...,1} x{1,...,m} andl >> n, such that’ has a large nullspace. Furthermore,

we considerf instead ofy, with f being corrupted by Poisson noise.

6.2.1. Sparsity regularization. In the case of sparsity regularization, we assunte
have a sparse representation with respect to a certain. bEsé&efore, we consider an op-
erator B : (1(0©) — (1(Q) such thatu = Bec holds for coefficients: € ¢1(©). If we
want to apply a regularization that minimizes tHenorm of the coefficients, we obtain the
minimization problem

celi(e)

(6.3) /fln <$) + KBc — fdu(y) + 0423: |ci’-j|¢1(@) —  min
= i
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FIG. 6.5. The plots of the computed Bregman distances with violg&H ). Figures (a) and (b) show the
Bregman distance@i}'ﬂ""’(ﬁ, g1) for @ = 0.4 anda = 0.6, respectively. Figures (c) and (d) represent the Bregman

distancesD¥ T4, g2) for @ = 0.4 anda = 1. Furthermore, Figures (e) and (f) show the logarithmicasisaled
versions of the error/reference bound in comparison to a fiegression of the Bregman distancesdos 1.

Notice that the measure is a point measure and the integral t13) is indeed a sum over
all discrete samples, which we write as an integral in orddwetep the notation as introduced
in the previous sections. To perform a numerical computatice use a forward-backward
splitting algorithm based on a gradient descent of the agdityncondition. For an initial set
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FiG. 6.6.In (a) we can se& as defined viai = Bé. A top-view ofi can be seen in (b). In (c) and (d) the
plots ofg = K and its noisy versiorf are described, while (e) and (f) show top-view illustraaf (c) and (d).
of |©| coefficientss;’, we compute the iterates
&l =¢ -~ |B'K 1—_f ,
kt3 T KBCk ij

L] qj V) _
iy =sian(c ) ( 7).,

i,J

rt1




ETNA

Kent State University
http://etna.math.kent.edu

ERROR ESTIMATES FOR GENERAL FIDELITIES 65

with 7 > 0 being a damping parameter and = max {0,a}. The disadvantage of this
approach is that positivity of. is not guaranteed. However, it is easy to implement and
produces satisfactory results as we will see in the follgwin

As a computational example, we choast be sparse with respect to the cosine basis.
We therefore defin® ! : ¢1(©) — ¢1(Q2) as the two-dimensional cosine-transform,

6 a3 S e (T ) g (),

- ° 2m
=0 j5=0
forae {1,...,n},be{l,...,m}and

[ /1/n forz=0
7(:5)—{\/2/—” fora #0

Remember that since the cosine-transform defined as.#) (s orthonormal we have
B= (B HT.

We setu = Bé with ¢ being zero except foet! = 4./nm, ¢*? = 1/2\/nm, and
&4 = 3/2/nm. With this choice of: we guarante@ > 0. Furthermore, we obtaip = K
with g > 0. Finally, we generate a noisy versigrof g by replacing every samplg ; with a
Poisson random numbgy ; with expected valug; ;. As an example we chose= m = 32.

10°

X
F"_I ' ' ' ' ' 8
08
33 - 4 20 6
06
4
10F g 04 40
2
02
15¢ g 60
o 0
20 f 02 80 -2
-04 i
25F ] 100
-06
-6
2k i -08
120 s
. . . . .

@)¢ (b) g

FiG. 6.7.The computed subgradiefi{a) and the functior (b), which are related to each other by the source
condition(SC/!). The computed has minimun?>°-norm among ally’s satisfying(SC/1); ||q|[ 0 = 8.9 x 1073.

Hence we obtaiid'! = 128, ¢>2 = 16, andé** = 48, while the other coefficients remain
zero. Furthermore, we obtail) g and f as described in Figuré.6. The operator dimension
is chosen to bé = 128. The damping parameter is set to the constant valae0.1225.

The source condition for this discrete data example becomes

(sceh) I €En(, Jge (D) ¢=B"K"q.
It can be shown that the subgradientdf: ) is simply

N N 1 foréd >0
(6.5) Al |y = signe’) =< e [-1,1] foré™i =0
-1 foré <0
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forall (7,5) € Q. Hence, to validate the error estimates and their sharpmeshave com-
puted¢ andq with minimal £>°-norm, in order to satisfy§C/') and 6.5). The computational
results can be seen in FigugeZ, where||q||,.. ~ 8.9 x 103 holds. With¢é computed, the
symmetric Bregman distance easily can be calculated via

symm
]2

(év E) = <ﬁ - 57 ¢— 6>l1(ﬂ)

forp € 01¢,,. We did several computations with different values foand the constant
¢ €]0,1] (not to be confused with the cosine transform coefficierts$upport the error
estimate 4.3). The results can be seen in Tabld. We note that Theorerh.3 can only be
applied if [, f du(y) = 1, which is obviously not the case for our numerical examplet, B
due to the proof of Theorem.3 the only modification that has to be made is to multiply
|f| = [5 [ du(y) by the logarithmic term in4.3) to obtain a valid estimate.

7. Outlook and open questions.We have seen that under rather natural source condi-
tions error estimates in Bregman distances can be extemdedthe well-known quadratic
fitting (Gaussian noise) case to general convex fidelities.hée seen that the appropriate
definition of noise level in the convex case is not directhated to the norm difference, but
rather to the data fidelity. With this definition the estinsirdeed yield the same asymp-
totic order with respect to regularization parameter andetevel as in the quadratic case.
The constants are again related to the smoothness of thigoso{norm of the source ele-
ment), with the technique used in the general case one alihgitly larger constants than
in the original estimates. The latter is caused by the feat e general approach to error
estimation cannot exploit linearity present in the caseuadyatic fidelity

Error estimation is also important for other than variatibapproaches, in particular iter-
ative or flow methods such as scale space methods, invelsespeace methods or Bregman
iterations. The derivation of such estimates will need ahfer understanding of dual iter-
ations or flows, which are simple gradient flows in the caseuafdyatic fidelity but have a
much more complicated structure in general.

Another interesting question for future research, whichl# of practical importance,
is an understanding of error estimation in a stochastic émark. It will be an interesting
task to further quantify uncertainty or provide a compretiea stochastic framework. In
the case of Gaussian noise such steps have been made, difiindpyointwise estimates
to estimates for the distributions in different metrics. (§L4, 15, 16]) or direct statistical
approaches; cf.3). In the case of Poisson noise a direct estimation of mearatiens has
been developed in parallel in§], which uses similar techniques as our estimation and also
includes a novel statistical characterization of noisesllén terms of measurement times.
We think that our approach of estimating pointwise erroesfidelities, i.e., data likelihoods
(more precisely negative log likelihoods), will have an emous potential to generalize to
a statistical setting. In particular, we expect the deirabf confidence regions by further
studies of distributions of the log-likelihood for differenoise models.
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TABLE 6.1
Computational Results. The first two columns represergrdift values forv andc. The remaining numerated

columns denote: (&)1 — ) H (), (b)a DY ™™ (¢,¢), (€) (1+0)3, (d) —cln (1 — (2 Hq”[x)?), e)(14c)s—
2t ¢

(1 -c¢)Hy(¢) —cln (1 —(2 HqHém)Q). It can be seen that column (e) is always larger than (b) amithethe
error estimate(4.3) is always fulfilled.

¢ a @) (b) (c) (d) (e)
0.5 0.05 | 85.25 0.8 178.7| 0.1049 93.56
0.5 0.009 | 60.32| 0.004619| 178.7| 0.0034 118.4
0.5 0.005 | 59.48| 0.005379| 178.7| 0.001049 | 119.2
0.5 0.003 | 58.39| 0.02627 | 178.7| 0.0003777| 120.3
0.5 | 0.0009| 49.34| 0.1651 | 178.7| 3.4e-005 | 129.4
0.5 | 0.0005| 46.69| 0.1501 | 178.7| 1.049e-005 132
0.5 | 0.0003| 45.68| 0.1142 | 178.7| 3.777e-006] 133
0.5 | 5e-005| 50.72| 0.02586 | 178.7 | 1.049e-007| 128
0.1 0.009 | 108.6| 0.004619| 131 0.017 22.48
0.1 0.005 | 107.1| 0.005379| 131 | 0.005246 | 23.99
0.1 0.003 | 105.1| 0.02627 | 131 | 0.001889 | 25.95
0.1 0.0009| 88.8 | 0.1651 | 131 0.00017 | 42.24
0.1 0.0005| 84.04| 0.1501 | 131 | 5.246e-005 47.01
0.1 0.0003| 82.23| 0.1142 | 131 | 1.889e-005 48.82
0.1 | 5e-005| 91.29| 0.02586 | 131 | 5.246e-007| 39.76
0.01 | 0.009 | 119.4| 0.004619| 120.3 0.17 1.054
0.01 | 0.005 | 117.8| 0.005379| 120.3| 0.05246 | 2.611
0.01 | 0.003 | 115.6| 0.02627 | 120.3| 0.01889 | 4.732
0.01 | 0.0009| 97.68| 0.1651 | 120.3| 0.0017 22.64
0.01 | 0.0005| 92.45| 0.1501 | 120.3| 0.0005246| 27.88
0.01 | 0.0003| 90.45| 0.1142 | 120.3| 0.0001889| 29.87
0.01 | 5e-005| 100.4| 0.02586 | 120.3 | 5.246e-006| 19.91

0.001 | 0.05 | 170.3 0.8 119.3 58.45 7.382
0.001 | 0.009 | 120.5| 0.004619| 119.3 1.705 0.4317
0.001 | 0.005 | 118.8| 0.005379| 119.3| 0.5252 | 0.9405
0.001 | 0.003 | 116.7| 0.02627 | 119.3| 0.1889 2.779
0.001 | 0.0009| 98.57| 0.1651 | 119.3 0.017 20.7

0.001 | 0.0005| 93.29| 0.1501 | 119.3| 0.005246 | 25.97
0.001 | 0.0003| 91.27| 0.1142 | 119.3| 0.001889 | 27.98
0.001 | 5e-005| 101.3| 0.02586 | 119.3| 5.246e-005 17.92
0.0001| 0.009 | 120.6| 0.004619| 119.1 27.14 25.65
0.0001| 0.005 | 118.9| 0.005379| 119.1 5.845 6.046
0.0001| 0.003 | 116.8| 0.02627 | 119.1 1.959 4.337
0.0001| 0.0009| 98.66| 0.1651 | 119.1| 0.1705 20.66
0.0001| 0.0005| 93.37| 0.1501 | 119.1| 0.05252 | 25.83
0.0001| 0.0003| 91.36| 0.1142 | 119.1| 0.01889 | 27.81
0.0001| 5e-005| 101.4| 0.02586 | 119.1| 0.0005246| 17.72
1le-005| 0.0009| 98.67| 0.1651 | 119.1 2.714 23.18
1le-005| 0.0005| 93.38| 0.1501 | 119.1| 0.5845 26.34
1e-005| 0.0003| 91.36| 0.1142 | 119.1| 0.1959 27.97
1e-005| 5e-005| 101.4| 0.02586 | 119.1| 0.005252 | 17.71
1le-006| 5e-005| 101.4| 0.02586 | 119.1| 0.05845 | 17.76
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