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ERROR ESTIMATES FOR GENERAL FIDELITIES ∗

MARTIN BENNING† AND MARTIN BURGER†

Abstract. Appropriate error estimation for regularization methods in imaging and inverse problems is of enor-
mous importance for controlling approximation propertiesand understanding types of solutions that are particularly
favoured. In the case of linear problems, i.e., variationalmethods with quadratic fidelity and quadratic regulariza-
tion, the error estimation is well-understood under so-called source conditions. Significant progress for nonquadratic
regularization functionals has been made recently after the introduction of the Bregman distance as an appropriate
error measure. The other important generalization, namelyfor nonquadratic fidelities, has not been analyzed so far.

In this paper we develop a framework for the derivation of error estimates in the case of rather general fidelities
and highlight the importance of duality for the shape of the estimates. We then specialize the approach for several
important fidelities in imaging (L1, Kullback-Leibler).
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1. Introduction. Image processing and inversion with structural prior information (e.g.,
sparsity, sharp edges) are of growing importance in practical applications. Such prior infor-
mation is often incorporated into variational models with appropriate penalty functionals used
for regularization, e.g., total variation orℓ1-norms of coefficients in orthonormal bases. The
error control for such models, which is of obvious relevance, is the subject of this paper.

Most imaging and inverse problems can be formulated as the computation of a function
ũ ∈ U(Ω) from the operator equation,

Kũ = g ,(1.1)

with given datag ∈ V(Σ). HereU(Ω) andV(Σ) are Banach spaces of functions on bounded
and compact setsΩ, respectivelyΣ, andK denotes a linear operatorK : U(Ω) → V(Σ). We
shall also allowΣ to be discrete with point measures, which often correspondsto the situation
encountered in practice. In the course of this work we want tocall g theexact dataandũ the
exact solution.

Most inverse problems are ill-posed, i.e.,K usually cannot be inverted continuously (due
to compactness of the forward operator). Furthermore, in real-life applications the exact data
g are usually not available. Hence, we face to solve the inverse problem,

Ku = f,(1.2)

instead of (1.1), with u ∈ U(Ω) andf ∈ V(Σ), while g andf differ from each other by a
certain amount. This difference is referred to as beingnoise(or systematic and modelling
errors, which we shall not consider here). Therefore, throughout this work we want to call
f thenoisy data. Although in generalg is not available, nevertheless in many applications a
maximum noise boundδ is given. This “data error” controls the maximum differencebetween
g andf in some measure, depending on the type of noise. For instance, in the case of the
standardL2-fidelity, we have the noise bound,

‖g − f‖L2(Σ) ≤ δ .
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In order to obtain a robust approximationû of ũ for (1.2) many regularization techniques
have been proposed. Here we focus on the particularly important and popular class of convex
variational regularization, which is of the form

û ∈ arg min
u∈W(Ω)

{Hf (Ku) + αJ(u)} ,(1.3)

with Hf : V(Σ) → R ∪ {∞} andJ : W(Ω) → R ∪ {∞}, W(Ω) ⊆ U(Ω), being con-
vex functionals. The scheme contains the general fidelity term Hf (Ku), which controls the
deviation from equality of (1.2), and the regularization termαJ(u), with α > 0 being the reg-
ularization parameter, which guarantees certain smoothness features of the solution. In the
literature, schemes based on (1.3) are often referred to asvariational regularization schemes.
Throughout this paper we shall assume thatJ is chosen such that a minimizer of (1.3) exists,
the proof of which is not an easy task for many important choices ofHf ; cf., e.g., [1, 2].
Notice that ifHf (Ku) + αJ(u) in (1.3) is strictly convex, the set of minimizers is indeed a
singleton.

Variational regularization of inverse problems based on general, convex—and in many
cases singular—energy functionals has been a field of growing interest and importance over
the last decades. In comparison to classical Tikhonov regularization (cf. [13]) different regu-
larization energies allow the preservation of certain features, e.g., preservation of edges with
the use of Total Variation (TV) as a regularizer (see for instance the well-known ROF-model
[29]) or sparsity with respect to some bases or dictionaries.

By regularizing the inverse problem (1.2), our goal is to obtain a solution̂u close toũ in
a robust way with respect to noise. Hence, we are interested in error estimates that describe
the behaviour of the “data error”δ and optimal choices for quadratic fitting; see [13]. A
major step for error estimates in the case of regularizationwith singular energies has been the
introduction of (generalized) Bregman distances (cf. [4, 20]) as an error measure; cf. [8]. The
Bregman distance for general convex, not necessarily differentiable functionals, is defined as
follows.

DEFINITION 1.1 (Bregman Distance).LetU be a Banach space andJ : U → R∪ {∞}
be a convex functional with non-empty subdifferential∂J . Then, the Bregman distance is
defined as

DJ(u, v) := {J(u) − J(v) − 〈p, u − v〉U | p ∈ ∂J(v)} .

The Bregman distance for a specific subgradientζ ∈ ∂J(v), v ∈ U , is defined asDζ
J :

U × U → R
+ with

Dζ
J(u, v) := J(u) − J(v) − 〈ζ, u − v〉U .

Since we are dealing with duality throughout this work, we are going to write

〈a, b〉U := 〈a, b〉U∗×U = 〈b, a〉U×U∗ ,

for a ∈ U∗ andb ∈ U , as the notation for the dual product, for the sake of simplicity.
The Bregman distance is no distance in the usual sense; at least Dζ

J(u, u) = 0 and
Dζ

J(u, v) ≥ 0 hold for all ζ ∈ ∂J(v), the latter due to convexity ofJ . If J is strictly convex,
we even obtainDζ

J (u, v) > 0 for u 6= v andζ ∈ ∂J(v). In general, no triangular inequality
nor symmetry holds for the Bregman distance. The latter one can be achieved by introducing
the so-called symmetric Bregman distance.
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DEFINITION 1.2 (Symmetric Bregman Distance).Let U be a Banach space andJ :
U → R∪ {∞} be a convex functional with non-empty subdifferential∂J . Then, a symmetric
Bregman distance is defined asDsymm

J : U × U → R
+ with

Dsymm
J (u1, u2) := Dp1

J (u2, u1) + Dp2

J (u1, u2) = 〈u1 − u2, p1 − p2〉U∗ ,

with

pi ∈ ∂J(ui) for i ∈ {1, 2} .

Obviously, the symmetric Bregman distance depends on the specific selection of the
subgradientspi, which will be suppressed in the notation for simplicity throughout this work.

Many works deal with the analysis and error propagation by considering the Bregman
distance between̂u satisfying the optimality condition of a variational regularization method
and the exact solutioñu; cf. [7, 9, 17, 21, 22, 28]. The Bregman distance turned out to be an
adequate error measure since it seems to control only those errors that can be distinguished
by the regularization term. This point of view is supported by the need of so-called source
conditions, which are needed to obtain error estimates in the Bregman distance setting. In the
case of quadratic fitting we have the source condition,

∃ ξ ∈ ∂J(ũ), ∃ q ∈ L2(Σ) : ξ = K∗q ,

with K∗ denoting the adjoint operator ofK throughout this work. If, e.g., in the case of
denoising withK = Id, the exact imagẽu contains features that are not elements of the
subgradient ofJ , error estimates for the Bregman distance cannot be appliedsince the source
condition is not fulfilled.

Furthermore, Bregman distances according to certain regularization functionals have
widely been used to replace those regularization terms, which yield inverse scale space meth-
ods with improved solutions of inverse problems; cf. [5, 6, 26].

Most works deal with the case of quadratic fitting, with only few exceptions; see, e.g., [27].
However, in many applications, such as Positron Emission Tomography (PET), Microscopy,
CCD cameras, or radar, different types of noise appear. Examples are Salt-and-Pepper noise,
Poisson noise, additive Laplace noise, and different models of multiplicative noise.

In the next section, we present some general fidelities as recently used in various imaging
applications. Next, we present basic error estimates for general, convex variational regular-
ization methods, which we apply to the specific models. Then we illustrate these estimates
and test their sharpness by computational results. We conclude with a brief outlook and for-
mulate open questions. We would also like to mention the parallel development on error
estimates for variational models with non-quadratic fidelity in [27], which yields the same
results as our paper in the case of Laplacian noise. Since theanalysis in [27] is based on fi-
delities that are powers of a metric instead of the noise models we use here, most approaches
appear orthogonal. In particular, we base our analysis on convexity and duality and avoid the
use of triangle inequalities, which can only be used for a metric.

2. Non-quadratic fidelities. In many applications different fidelities than the standard
L2-fidelity are considered, usually to incorporate differenta priori knowledge on the distri-
bution of noise. Exemplary applications are Synthetic Aperture Radar, Positron Emission
Tomography or Optical Nanoscopy. In the following, we present three particular fidelities,
for which we will derive specific estimates later on.
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2.1. General norm fidelity. Typical non-quadratic fidelity terms are norms in general,
i.e.,

Hf (Ku) := ‖Ku − f‖V(Σ) ,

without taking a power of it. The corresponding variationalproblem is given via

û ∈ arg min
u∈W(Ω)

{

‖Ku − f‖V(Σ) + αJ(u)
}

.(2.1)

The optimality condition of (2.1) can be computed as

K∗ŝ + αp̂ = 0, ŝ ∈ ∂‖Kû− f‖V(Σ), p̂ ∈ ∂J(û) .(2.2)

In the following we want to present two special cases of this general class of fidelity terms
that have been investigated in several applications.

2.1.1. L1 fidelity. A typical non-quadratic, nondifferentiable, fidelity termused in ap-
plications involving Laplace-distributed or impulsive noise (e.g., Salt’n’Pepper noise), is the
L1-fidelity; see for instance [10, 11, 31]. The related variational problem is given via

(2.3) û = arg min
u∈W(Ω)







∫

Σ

|(Ku)(y) − f(y)| dµ(y) + αJ(u)






.

The optimality condition of (2.3) can easily be computed as

K∗ŝ + αp̂ = 0, ŝ ∈ sign(Kû − f), p̂ ∈ ∂J(û) ,

with sign(x) being the signum “function”, i.e.,

sign(x) =







1 for x > 0

∈ [−1, 1] for x = 0

−1 for x < 0

.

2.1.2. BV∗ fidelity. In order to separate an image into texture and structure, in [23]
Meyer proposed a modification of the ROF model via

F (u, v) := ‖v‖BV ∗(Ω) +
1

2λ
sup

q∈C∞

0 (Ω;R2)
‖q‖∞≤1

∫

Ω

u divq dx

with respect tou (structure) andv (texture) for a given imagef = u+ v, and with‖·‖BV ∗(Ω)

defined as

‖w‖BV ∗(Ω) := inf
p

∥
∥
∥
∥

(

|p1|2 + |p2|2
) 1

2

∥
∥
∥
∥

L∞(Ω)

,

subject to divp = w. Initially the norm has been introduced asG-norm.
In this context, we are going to consider error estimates forthe variational model

u ∈ arg min
u∈W(Ω)

{

‖Ku − f‖BV∗(Σ) + αJ(u)
}

with its corresponding optimality condition

K∗ŝ + αp̂ = 0, ŝ ∈ ∂ ‖Kû − f‖BV∗(Σ) , p̂ ∈ ∂J(û) .
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2.2. Kullback-Leibler fidelity. In applications such as Positron Emission Tomography
or Optical Nanoscopy, sampled data usually obey a Poisson process. For that reason, other
fidelities than theL2 fidelity have to be incorporated into the variational framework. The
most popular fidelity in this context is the Kullback-Leibler divergence (cf. [24]), i.e.,

Hf (Ku) =

∫

Σ

[

f(y) ln

(
f(y)

(Ku)(y)

)

− f(y) + (Ku)(y)

]

dµ(y) ,

Furthermore, due to the nature of the applications and theirdata, the functionu usually rep-
resents a density that needs to be positive. The related variational minimization problem with
an additional positivity constraint therefore reads as

û ∈ arg min
u∈W(Σ)

u≥0







∫

Σ

[

f(y) ln

(
f(y)

(Ku)(y)

)

− f(y) + (Ku)(y)

]

dµ(y) + αJ(u)






.

With the natural scaling assumption,

K∗
1 = 1 ,

we obtain the complementarity condition,

û ≥ 0, K∗ f

Ku
− αp̂ ≤ 1 ,

û

(

1 − K∗ f

Kû
+ αp̂

)

= 0 , p̂ ∈ ∂J(û) .
(2.4)

2.3. Multiplicative noise fidelity. In applications such as Synthetic Aperture Radar the
data is supposed to be corrupted by multiplicative noise, i.e.,f = (Ku) v, wherev represents
the noise following a certain probability law andKu ≥ 0 is assumed. In [1], Aubert and
Aujol assumedv to follow a gamma law with mean one and derived the data fidelity,

Hf (Ku) =

∫

Σ

[

ln

(
(Ku)(y)

f(y)

)

+
f(y)

(Ku)(y)
− 1

]

dµ(y) .

Hence, the corresponding variational minimization problem reads as

û ∈ argmin
u∈W(Ω)







∫

Σ

[

ln

(
(Ku)(y)

f(y)

)

+
f(y)

(Ku)(y)
− 1

]

dµ(y) + αJ(u)






(2.5)

with the formal optimality condition

0 = K∗

(
(Kû)(y) − f(y)

((Kû)(y))2

)

+ αp̂ , p̂ ∈ ∂J(û) .

One main drawback of (2.5) is that the fidelity term is not globally convex and therefore
will not allow unconditional use of the general error estimates which we are going to derive
in Section3. In order to convexify this speckle noise removal model, in [19] Huang et al.
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suggested the substitutionz(y) := ln((Ku)(y)) to obtain the entirely convex optimization
problem,

ẑ = arg min
z∈W(Σ)







∫

Σ

[

z(y) + f(y)e−z(y) − 1 − ln(f(y))
]

dµ(y) + αJ(z)






(2.6)

with optimality condition

1 − f(y)e−ẑ(y) + αp̂ = 0(2.7)

for p̂ ∈ ∂J(ẑ). This model is a special case of the general multiplicative noise model pre-
sented in [30]. We mention that in the case of total variation regularization a contrast change
as above is not harmful, since the structural properties (edges and piecewise constant regions)
are preserved.

3. Results for general models.After introducing some frequently used non-quadratic
variational schemes, we present general error estimates for (convex) variational schemes.
These basic estimates allow us to derive specific error estimates for the models presented in
Section2. Furthermore, we explore duality and discover an error estimate dependent on the
convex conjugates of the fidelity and regularization terms.

In order to derive estimates in the Bregman distance settingwe need to introduce the
so-called source condition,

∃ ξ ∈ ∂J(ũ), ∃ q ∈ V(Σ)∗ : ξ = K∗q .(SC)

As described in Section1, the source condition (SC) in some sense ensures that a solutionũ
contains features that can be distinguished by the regularization termJ .

3.1. Basic estimates.In this section we derive basic error estimates in the Bregman
distance measure for general variational regularization methods.

To find a suitable solution of the inverse problem (1.2) close to the unknown exact solu-
tion ũ of (1.1), we consider methods of the form (1.3). We denote a solution of (1.3), which
fulfills the optimality condition due to the Karush-Kuhn-Tucker conditions (KKT), bŷu.

First of all, we derive a rather general estimate for the Bregman distanceDξ
J(û, ũ).

LEMMA 3.1. Let ũ denote the exact solution of the inverse problem(1.1) and let the
source condition(SC) be fulfilled. Furthermore, let the functionalJ : W(Ω) → R∪ {∞} be
convex. If there exists a solution̂u that satisfies(1.3) for α > 0, then the error estimate

Hf (Kû) + αDξ
J(û, ũ) ≤ Hf (g) − α〈q, Kû − g〉V(Σ)

holds.

Proof. Sinceû is an existing minimal solution satisfying (1.3), we have

Hf (Kû) + αJ(û) ≤ Hf (Kũ
︸︷︷︸

=g

) + αJ(ũ) .

If we subtractα
(
J(ũ) + 〈ξ, û − ũ〉U(Ω)

)
on both sides we end up with

Hf (Kû) + α
(
J(û) − J(ũ) − 〈ξ, û − ũ〉U(Ω)

)

︸ ︷︷ ︸

=D
ξ

J
(û,ũ)

≤ Hf (g) − α 〈ξ, û − ũ〉U(Ω)
︸ ︷︷ ︸

=〈K∗q,û−ũ〉V(Σ)

= Hf (g) − α〈q, Kû − g〉V(Σ) .
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Notice thatJ needs to be convex in order to guarantee the positivity ofDξ
J(û, ũ) and

therefore to ensure a meaningful estimate. In contrast to that, the data fidelityHf does not
necessarily need to be convex, which makes Lemma3.1a very general estimate. Furthermore,
the estimate also holds for anyu for which we can guarantee

Hf (Ku) + αJ(u) ≤ Hf (Kũ) + αJ(ũ)

(a property that obviously might be hard to prove for a specific u), which might be useful
to study non-optimal approximations tôu. Nevertheless, we are mainly going to deal with
a specific class of convex variational problems that allows us to derive sharper estimates,
similar to Lemma3.1 but for Dsymm

J (û, ũ). Before we prove these estimates, we define the
following class of problems that we further want to investigate:

DEFINITION 3.2. We define the classC(Φ, Ψ, Θ) as follows:
(H, J, K) ∈ C(Φ, Ψ, Θ) if

• K : Θ → Φ is a linear operator between Banach spacesΘ andΦ,
• H : Φ → R ∪ {∞} is proper, convex and lower semi-continuous,
• J : Ψ → R ∪ {∞} is proper, convex and lower semi-continuous,
• there exists au′ with Ku′ ∈ dom(H) andu′ ∈ dom(J), such thatH is continuous

at Ku′.
With this definition we assume more regularity to the considered functionals and are now

able to derive the same estimate as in Lemma3.1, but forDsymm
J (û, ũ) instead ofDξ

J(û, ũ).
THEOREM 3.3 (Basic Estimate I).Let (Hf , J, K) ∈ C(V(Σ),W(Ω),U(Ω)), for com-

pact and bounded setsΩ and Σ. Then, if the source condition(SC) is fulfilled, the error
estimate

Hf (Kû) + α Dsymm
J (û, ũ) ≤ Hf (g) − α〈q, Kû − g〉V(Σ)(3.1)

holds.
Proof. SinceHf andJ are convex, the optimality condition of (1.3) is given via

0 ∈ ∂Hf (Kû) + α∂J(û) .

Since bothHf andJ are proper, lower semi-continuous, and convex, and since there exists
u′ with Ku′ ∈ dom(Hf ) andu′ ∈ dom(J), such thatHf is continuous atKu′, we have
∂Hf (Ku) + α∂J(u) = ∂ (Hf (Ku) + αJ(u)) for all u ∈ W(Ω), due to [12, Chapter 1,
Section 5, Proposition 5.6]. Due to the linear mapping properties ofK, we furthermore have
∂Hf (K·)(u) = K∗∂Hf (Ku) Hence, the equality

K∗η̂ + αp̂ = 0

holds forη̂ ∈ ∂Hf(Kû) andp̂ ∈ ∂J(û). If we subtractαξ, with ξ fulfilling ( SC), and take
the duality product witĥu − ũ, we obtain

〈K∗η̂, û − ũ〉U(Ω) + α〈p̂ − ξ, û − ũ〉U(Ω) = −α〈 ξ
︸︷︷︸

=K∗q

, û − ũ〉U(Ω) ,

which equals

〈η̂, Kû − Kũ
︸︷︷︸

=g

〉V(Σ) + αDsymm
J (û, ũ) = −α〈q, Kû − Kũ

︸︷︷︸

=g

〉V(Σ) .
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SinceHf is convex, the Bregman distanceDη̂
Hf

(g, Kû) is non-negative, i.e.,

Dη̂
Hf

(g, Kû) = Hf (g) − Hf (Kû) − 〈η̂, g − Kû〉V(Σ) ≥ 0 ,

for η̂ ∈ ∂Hf (Kû). Hence, we obtain

〈η̂, Kû − g〉V(Σ) ≥ Hf (Kû) − Hf (g) .

As a consequence, this yields (3.1).
We can further generalize the estimate of Theorem3.3 to obtain the second important

general estimate in this work.
THEOREM 3.4 (Basic Estimate II).Let (Hf , J, K) ∈ C(V(Σ),W(Ω),U(Ω)) for com-

pact and bounded setsΩ and Σ. Then, if the source condition(SC) is fulfilled, the error
estimate

(1 − c)Hf (Kû) + α Dsymm
J (û, ũ) ≤ (1 + c)Hf (g)

− α〈q, f − g〉V(Σ) − cHf (g)

+ α〈q, f − Kû〉V(Σ) − cHf (Kû)

(3.2)

holds forc ∈]0, 1[.
Proof. Due to Theorem3.3, we have

Hf (Kû) + αDsymm
J (û, ũ) ≤ Hf (g) − α〈q, Kû − g〉V(Σ) .

The left-hand side is equivalent to

(1 − c)Hf (Kû) + αDsymm
J (û, ũ) + cHf (Kû) ,

while the right-hand side can be rewritten as

(1 + c)Hf (g) − α〈q, Kû − g〉V(Σ) − cHf (g)

for c ∈]0, 1[, without affecting the inequality. The dual product〈q, Kû−g〉V(Σ) is equivalent
to 〈q, f + Kû − g − f〉V(Σ) and hence we have

−α〈q, Kû − g〉V(Σ) = −α〈q, f − g〉V(Σ) + α〈q, f − Kû〉V(Σ) .

SubtractingcHf (Kû) on both sides and replacing−α〈q, Kû − g〉V(Σ) by
−α〈q, f − g〉V(Σ) + α〈q, f − Kû〉V(Σ) yields (3.2).

In Section4 these two basic estimates will allow us to easily derive specific error esti-
mates for the noise models described in Section2.

3.2. A dual perspective. In the following we provide a formal analysis in terms of
Fenchel duality, which highlights a general way to obtain error estimates and provides further
insights. In order to make the approach rigorous one needs tocheck detailed properties of all
functionals allowing to pass to dual problems formally (cf.[12]), which is however not our
goal here.

In order to formulate the dual approach we redefine the fidelity to
Gf (Ku − f) := Hf (Ku) and introduce the convex conjugates

G∗
f (q) = sup

v∈V(Σ)

(
〈q, v〉V(Σ) − Gf (v)

)
, J∗(p) = sup

u∈W(Ω)

(
〈p, u〉U(Ω) − J(u)

)
,
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for q ∈ V(Σ)∗ andp ∈ U(Ω)∗. Under appropriate conditions, the Fenchel duality theorem
(cf. [12, Chapter 3, Section 4]) implies the primal-dual relation,

min
u∈W(Ω)

[
1

α
Gf (Ku − f) + J(u)

]

= − min
q∈V(Σ)∗

[

J∗(K∗q) − 〈q, f〉V(Σ) +
1

α
G∗

f (−αq)

]

,

as well as a relation between the minimizersû of the primal andq̂ of the dual problem,
namely,

K∗q̂ ∈ ∂J(û), û ∈ ∂J∗(K∗q̂).

More precisely, the optimality condition for the dual problem becomes

Kû − f − r = 0, r ∈ ∂G∗
f (−αq̂).

If the exact solutioñu satisfies a source condition with source elementd (i.e. K∗d ∈ ∂J(ũ)),
then we can use the dual optimality condition and take the duality product with q̂ − d, which
yields

〈K(û − ũ), q̂ − d〉V(Σ)∗ =
1

α
〈r, (−αd) − (−αq̂)〉V(Σ)∗ + 〈f − g, q̂ − d〉V(Σ)∗ .

One observes that the left-hand side equals

Dsymm
J (û, ũ) = 〈û − ũ, K∗(q̂ − d)〉U(Ω)∗ ,

i.e., the Bregman distance we want to estimate. Usingr ∈ ∂G∗
f (−αq̂), we find

〈r, (−αd) − (−αq̂)〉V(Σ)∗ ≤ G∗
f (−αd) − G∗

f (−αq̂).

Under the standard assumptionGf (0) = 0, we find thatG∗
f is nonnegative and hence in the

noise-free case (f = g), we end up with the estimate,

Dsymm
J (û, ũ) ≤ 1

α
G∗

f (−αd).

Hence the error in terms ofα is determined by the properties of the convex conjugate ofGf .
For typical smooth fidelitiesGf , we haveG∗

f (0) = 0 and(G∗
f )′(0) = 0. Hence1

α
G∗

f (−αd)
will at least grow linearly for smallα, as confirmed by our results below.

In the applications to specific noise models our strategy will be to estimate the terms
on the right-hand side of (3.2) by quantities likeG∗

f (−αd) and then work out the detailed
dependence onα.

4. Application to specific noise models.We want to use the basic error estimates de-
rived in Section3 to derive specific error estimates for the noise models presented in Section2.
In the following it is assumed that the operatorK satisfies the conditions of Theorem3.3and
Theorem3.4.

4.1. General norm fidelity. With the use of Theorem3.3 we can—in analogy to the
error estimates for the exact penalization model in [8]—obtain the following estimate for
Hf (Ku) := ‖Ku − f‖V(Σ) with û satisfying the optimality condition (2.2) andũ being the
exact solution of (1.1).

THEOREM 4.1. Let û satisfy the optimality condition(2.2) and let ũ denote the exact
solution of (1.1). Furthermore, the difference between exact datag and noisy dataf is
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bounded in theV-norm, i.e. ‖f − g‖V(Σ) ≤ δ and (SC) holds. Then, for the symmetric
Bregman distanceDsymm

J (û, ũ) for a specific regularization functionalJ , such that

(Hf , J, K) ∈ C(V(Σ),W(Ω),U(Ω))

is satisfied, the estimate

(4.1)
(

1 − α ‖q‖V(Σ)∗

)

Hf (Kû) + α Dsymm
J (û, ũ) ≤

(

1 + α ‖q‖V(Σ)∗

)

δ

holds. Furthermore, forα < 1/ ‖q‖V(Σ)∗ , we obtain

(4.2) Dsymm
J (û, ũ) ≤ δ

(
1

α
+ ‖q‖V(Σ)∗

)

.

Proof. Since we have(Hf , J, K) ∈ C(V(Σ),W(Ω),U(Ω)), we obtain (due to Theo-
rem3.3)

Hf (Kû) + α Dsymm
J (û, ũ) ≤ Hf (g)

︸ ︷︷ ︸

≤δ

−α〈q, Kû − g〉V(Σ)

≤ δ − α〈q, Kû − f + f − g〉V(Σ) = δ − α
(
〈q, Kû − f〉V(Σ) +〈q, f − g〉V(Σ)

)

≤ δ + α ‖q‖V(Σ)∗

(

‖Kû − f‖V(Σ) + ‖f − g‖V(Σ)

)

≤ δ + α ‖q‖V(Σ)∗

(

‖Kû − f‖V(Σ) + δ
)

,

which leads us to (4.1). If we insertHf (Kû) = ‖Kû − f‖V(Σ) and setα < 1/ ‖q‖V(Σ)∗ ,
then we can subtract‖Kû − f‖V(Σ) on both sides. If we divide byα, then we obtain
(4.2).

As expected from the dual perspective above, we obtain in thecase of exact data (δ = 0)
for α sufficiently small

Dsymm
J (û, ũ) = 0, Hg(Kû) = 0.

For largerα no useful estimate is obtained. In the noisy case we can choose α small but
independent ofδ and hence obtain

Dsymm
J (û, ũ) = O(δ).

We remark on the necessity of the source condition (SC). In usual converse results one
proves that a source condition needs to hold if the distance between the reconstruction and
the exact solution satisfies a certain asymptotic inδ; cf. [25]. Such results so far exist only for
quadratic fidelity and special regularizations and cannot be expected for general Bregman dis-
tance estimates—even less with non-quadratic fidelity models. We shall therefore only look
on the asymptotics ofHf in the noise-free case and argue that for this asymptotic thesource
condition is necessary (at least in some sense). In the case of a general norm fidelity this
is particularly simple due to the asymptotic exactness forα small. The optimality condition
K∗ŝ + αp̂ = 0 can be rewritten as

p̂ = K∗q, p̂ ∈ ∂J(û), q ∈ V(Σ)∗,

with q = − 1
α
ŝ. Sinceû is a solution minimizingJ for α sufficiently small, we see that if the

asymptotic inα holds, there exists a solution ofKu = g with minimalJ satisfying (SC).
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4.2. Poisson noise.In the case of Poisson noise the source condition can be written as

∃ ξ ∈ ∂J(ũ), ∃ q ∈ L∞(Σ) : ξ = K∗q ,(SCL1)

and we have the Kullback-Leibler fidelity,

Hf (Ku) =

∫

Σ

[

f(y) ln

(
f(y)

(Ku)(y)

)

− f(y) + (Ku)(y)

]

dµ(y) ,

and a positivity constraintu ≥ 0. Theorem3.4 will allow us to derive an error estimate of
the same order as known for quadratic fidelities. Before that, we have to prove the following
lemma.

LEMMA 4.2. Let α andϕ be positive, real numbers, i.e.,α, ϕ ∈ R
+. Furthermore, let

γ ∈ R be a real number andc ∈]0, 1[. Then, the family of functions

hn(x) := (−1)nαγ(ϕ − x) − c
(

ϕ ln
(ϕ

x

)

− ϕ + x
)

,

for x > 0 andn ∈ N, are strictly concave and have their unique maxima at

xh
n =

ϕ

1 + (−1)n α
c
γ

.

They are therefore bounded by

hn(x) < hn(xh
n) = (−1)nαγϕ − cϕ ln

(

1 + (−1)n α

c
γ
)

for α
c
|γ| < 1 andx 6= xh

n.

Proof. It is easy to see thath
′′

n(x) = −c ϕ
x2 < 0 and, hence,hn is strictly concave for all

n ∈ N. The unique maximaxh
n can be computed viah

′

n(xh
n) = 0. Finally, sincehn is strictly

concave for alln ∈ N, hn(xh
n) has to be a global maximum.

Furthermore, we have to ensure the existence ofu′ ≥ 0 with Ku′ ∈ dom(Hf ) and
u′ ∈ dom(J), such thatHf is continuous atKu′. If, e.g., dom(J) = BV(Ω), we do not
obtain continuity ofHf at Ku′ if K maps to, e.g.,L1(Σ). Therefore, we restrictK to map
to L∞(Σ). However, we still keep (SCL1) to derive the error estimates, which corresponds
to an interpretation ofK mapping toL1. This implies more regularity than needed, since
one usually usesq in the dual of the image space, which would meanq ∈ L∞(Σ)∗. For the
latter we are not able to derive the same estimates. Note, however, that the assumption ofK
mapping toL∞(Σ) is used only to deal with the positivity ofK. With the help of Lemma4.2
and the restriction toK we are able to prove the following error estimate.

THEOREM 4.3. Let û satisfy the optimality condition(2.4) with K : U(Ω) → L∞(Σ)
satisfyingN (K) = {0}, let ũ denote the exact solution of(1.1), and letf be a probability
density measure, i.e.,

∫

Σ f dµ(y) = 1. Assume that the difference between noisy dataf and
exact datag is bounded in the Kullback-Leibler measure, i.e.,

∫

Σ

[

f ln

(
f

g

)

− f + g

]

dµ(y) ≤ δ

and that (SCL1) holds. Then, forc ∈]0, 1[ and α < c
‖q‖

L∞(Σ)
, the symmetric Bregman

distanceDsymm
J (û, ũ) for a specific regularization functionalJ , such that

(Hf , J, K) ∈ C(L1(Σ),W(Ω),U(Ω))
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is satisfied, is bounded via

(1 − c)Hf (Kû) + α Dsymm
J (û, ũ) ≤ (1 + c)δ − c ln

(

1 − α2

c2
‖q‖2

L∞(Σ)

)

.(4.3)

Proof. We have(Hf , J, K) ∈ C(L1(Σ),W(Ω),U(Ω)). Using an analogous proof as in
Theorem3.4 with the non-negativity of̂u being incorporated in a variational inequality, we
can still derive (3.2) in this case. Hence, we have to investigate−α〈q, f − g〉L1(Σ) − cHf (g)
andα〈q, f − Kû〉L1(Σ) − cHf (Kû). If we consider both functionals pointwise and force

α2 <
(

c
q

)2

, then we can use Lemma4.2to estimate

−α〈q, f − g〉L1(Σ) − cHf (g) ≤
∫

Σ

f
(

−αq − c ln
(

1 − α

c
q
))

dµ(y)

and

α〈q, f − Kû〉L1(Σ) − cHf (Kû) ≤
∫

Σ

f
(

αq − c ln
(

1 +
α

c
q
))

dµ(y) .

Adding these terms together yields the estimate

(1 − c)Hf (Kû) + α Dsymm
J (û, ũ) ≤(1 + c)Hf (g)

︸ ︷︷ ︸

≤δ

+

∫

Σ

f

(

−c ln

(

1 − α2

c2
q2

))

dµ(y) .

It is easy to see that forα < c
‖q‖

L∞(Σ)
we have

− ln

(

1 − α2

c2
q2

)

≤ − ln

(

1 − α2

c2
‖q‖2

L∞(Σ)

)

.

Hence, for positivef we obtain

(1 − c)Hf (Kû) + α Dsymm
J (û, ũ) ≤(1 + c)δ +

∫

Σ

f

(

−c ln

(

1 − α2

c2
‖q‖2

L∞(Σ)

))

dµ(y)

=(1 + c)δ − c ln

(

1 − α2

c2
‖q‖2

L∞(Σ)

)∫

Σ

f dµ(y)

︸ ︷︷ ︸

=1

and, hence, (4.3) holds.
One observes from a Taylor approximation of the second term on the right-hand side of

(4.3) aroundα = 0 that

Hf (Kû) = O
(
δ + α2

)
, Dsymm

J (û, ũ) = O
(

δ

α
+ α

)

for smallα, which is analogous to the quadratic case.
REMARK 4.4. The assumptionN (K) = {0} is very strict. If N (K) is larger, the

error estimate is still satisfied sinceHf is convex (no longer strictly convex) and the terms
−α〈q, f − g〉L1(Σ) − cHf (g) andα〈q, f − Kû〉L1(Σ) − cHf (Kû) are concave (instead of
being strictly concave). Hence, Lemma4.2can still be applied to find an upper estimate, the
only difference is that there can be more than just one maximum.
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4.3. Multiplicative noise. In the case of multiplicative noise we are going to examine
model (2.6) instead of (2.5), since (2.6) is convex for allz and therefore allows the application
of Theorem3.4. The source condition differs slightly, since there is no operator in that type
of model. Therefore, we get

∃ ξ ∈ ∂J(z̃), ∃ q ∈ L∞(Σ) : ξ = q .(zSCL1)

In analogy to the Poisson case, we have to prove the followinglemma first, to derive qualita-
tive and quantitative error estimates in the case of multiplicative noise.

LEMMA 4.5. Let α andϕ be positive, real numbers, i.e.,α, ϕ ∈ R
+. Furthermore, let

γ ∈ R be a real number andc ∈]0, 1[. Then, the family of functions,

kn(x) := (−1)nαγ(ϕ − x) − c(x + ϕe−x − 1 − ln(ϕ))

for x > 0 andn ∈ N, are strictly concave and have their unique maxima at

xk
n = − ln

(
c + (−1)nαγ

cϕ

)

for α
c
|γ| < 1. Hence,kn is bounded via

kn(x) < kn(xk
n) = αγ

(

(−1)n

(

ϕ + ln

(
c + (−1)nαγ

cϕ

))

− 1

)

+ c ln

(
c + (−1)nαγ

c

)

,

for x 6= xk
n.

Proof. Similarly to Lemma4.2, it can easily be shown thatk
′′

n(x) = −cϕe−x < 0 for all
x ∈ R

+ and hence, thekn are strictly concave for alln ∈ N. The argumentsxk
n are computed

to satisfyk
′

n(xk
n) = 0. Since thekn are strictly concave,kn(xk

n) has to be a global maximum
for all n ∈ N.

With the help of Lemma4.5, we are able to prove the following error estimate.
THEOREM 4.6. Let ẑ satisfy the optimality condition(2.7) and letz̃ denote the solution

of z̃ = ln (Kũ) = ln(g), with ũ being the exact solution of(1.1). Assume that the difference
between noisy dataf and exact datag is bounded in the measure of(2.5), i.e.,

∫

Σ

ln

(
g

f

)

+
f

g
− 1 dµ(y) ≤ δ

and that(zSCL1) holds. Then, forc ∈]0, 1[ andα < c/ ‖q‖L∞(Σ), the symmetric Bregman
distanceDsymm

J (ẑ, z̃) for a specific regularization functionalJ such that

(Hf , J, Id) ∈ C(L1(Σ),W(Σ),U(Σ))

is satisfied, is bounded via

(1 − c)Hf (ẑ) + α Dsymm
J (ẑ, z̃) ≤(1 + c)δ + α |Σ| ‖q‖L∞(Σ) ln

(

c + α ‖q‖L∞(Σ)

c − α ‖q‖L∞(Σ)

)

.

(4.4)

Proof. First of all, we haveHf ∈ C(L1(Σ),W(Σ),U(Σ)). Furthermore, there exists
u′ with Ku′ ∈ dom(Hf ) andu′ ∈ dom(J), such thatHf is continuous atKu′. Hence,
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we can apply Theorem3.4 to obtain (3.2). Therefore, we have to consider the functionals
−α〈q, f − g〉L1(Σ) − cHf (g) andα〈q, f − ẑ〉L1(Σ) − cHf (ẑ) pointwise. Due to Lemma4.5
we have

− α〈q, f − g〉L1(Σ) − cHf (g) + α〈q, f − ẑ〉L1(Σ) − cHf (ẑ)

≤
∫

Σ

αq

(

1 − f − ln

(
c − αq

cf

))

+ c ln

(
c − αq

c

)

dµ(y)

+

∫

Σ

αq

(

f + ln

(
c − αq

cf

)

− 1

)

+ c ln

(
c + αq

c

)

dµ(y)

= α

∫

Σ

q

(

ln

(
c + αq

cf

)

− ln

(
c − αq

cf

))

︸ ︷︷ ︸

=ln( c+αq
c−αq )

dµ(y)

+ c

∫

Σ

(

ln

(
c + αq

c

)

+ ln

(
c − αq

c

))

︸ ︷︷ ︸

=ln
“

1−α2

c2
q2

”

dµ(y) ,

for α < c/q. It is easy to see thatq ln
(

c+αq
c−αq

)

≤ ‖q‖L∞(Σ) ln
(

c+α‖q‖L∞(Σ)

c−α‖q‖
L∞(Σ)

)

. Furthermore,

it also easily can be verified that the functionl(x) := ln
(

1 − α2

c2 x2
)

is strictly concave and

has its unique global maximuml(x) = 0 at x = 0. Hence, if we considerln
(

1 − α2

c2 q2
)

pointwise,c
∫

Σ
ln
(

1 − α2

c2 q2
)

dµ(y) ≤ 0 has to hold. Inserting these estimates into (3.2)

yields (4.4).
Again a Taylor approximation of the second term on the right-hand side of (4.4) around

α = 0 yields the asymptotic behaviour,

Hf (Kû) = O
(
δ + α2

)
, Dsymm

J (û, ũ) = O
(

δ

α
+ α

)

.

5. A-posteriori parameter choice. Before we start discussing computational aspects
and examples we want to briefly consider a-posteriori parameter choices for variational prob-
lems. A typical a-posteriori parameter choice rule is the discrepancy principle. For a general
norm fidelity ‖Ku − f‖V(Σ) the discrepancy principle states that for a given noise bound
‖f − g‖V(Σ) ≤ δ the solution û to a regularized variational problem should satisfy
‖Kû − f‖V(Σ) ≤ δ, i.e.,

û ∈ argmin
u∈W(Ω)

{J(u)} ,(5.1)

subject to

‖Ku − f‖V(Σ) ≤ δ .(5.2)

We can reformulate this problem as

û ∈ argmin
u∈W(Ω)

{

Xδ

(

‖Ku − f‖V(Σ)

)

+ J(u)
}

(5.3)
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with Xδ being the characteristic function

Xδ(v) :=

{

0 if v ≤ δ

+∞ else
.

With the use of the triangular inequality of the norm and the monotonicity and convexity of

the characteristic function, it easily can be seen thatXδ

(

‖Ku − f‖V(Σ)

)

is convex, and by

settingHf (Ku) = Xδ

(

‖Ku − f‖V(Σ)

)

, we can apply Lemma3.1 to obtain the following

theorem.
THEOREM 5.1. Let ũ denote the exact solution of(1.1) and let the source condition

(SC) be fulfilled. If there exists a minimal solution̂u satisfying(5.1) subject to(5.2) and if
‖f − g‖V(Σ) is also bounded byδ, the error estimate

Dξ
J(û, ũ) ≤ 2δ ‖q‖V(Σ)∗

holds.
Proof. If we apply Lemma3.1to the variational problem (5.3), we obtain

Xδ




‖Kû − f‖V(Σ)
︸ ︷︷ ︸

≤δ






︸ ︷︷ ︸

=0

+Dξ
J(û, ũ) ≤ Xδ




‖f − g‖V(Σ)
︸ ︷︷ ︸

≤δ






︸ ︷︷ ︸

=0

−〈q, Kû − g〉V(Σ)

= −
(
〈q, Kû − f〉V(Σ) + 〈q, f − g〉V(Σ)

)

≤ ‖q‖V∗(Σ)




‖Kû − f‖V(Σ)
︸ ︷︷ ︸

≤δ

+ ‖f − g‖V(Σ)
︸ ︷︷ ︸

≤δ






= 2δ ‖q‖V(Σ)∗

REMARK 5.2. Obviously a discrepancy principle also can be considered for general fi-
delities, not only for norm fidelities, i.e., we may replace‖Ku − f‖V(Σ) in (5.2) by a general
fidelity Hf (Ku). In that case we can apply the same convex-combination trickas in The-
orem3.4 to obtain—with a subsequent computation of estimates for−α〈q, f − g〉V(Σ) −
cHf (g) andα〈q, f − Kû〉V(Σ) − cHf (Kû) (as in Lemma4.2and Lemma4.5)—error esti-

mates forDξ
J(û, ũ).

6. Computational tests. In the following we present some numerical results for vali-
dating the practical applicability of the error estimates as well as their sharpness. We shall
focus on two models, namely, theL1-fidelity (due to the interesting asymptotic exactness)
and the Kullback-Leibler fidelity (due to the practical importance).

6.1. Laplace noise.In order to validate the asymptotic exactness or non-exactness in
the case of Laplacian noise we investigate a denoising approach with quadratic regularization,
i.e., the minimization

(6.1)
∫

Ω

|u − f | dx +
α

2

∫

Ω

(|∇u|2 + u2) dx → min
u∈H1(Ω)

,

whose optimality condition is

−α∆u + αu + s = 0, s ∈ sign(u − f).
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FIG. 6.1. The Bregman distance error betweenû and g for α ∈ [10−3, 1]. As soon asα ≤ 1
2

, the error
equals zero.

A common approach to the numerical minimization of functionals such as (6.1) is a smooth
approximation of theL1-norm, e.g., by replacing|u − f | with

√

(u − f)2 + ǫ2 for smallǫ.
Such an approximation will however alter the asymptotic properties and destroy the possibil-
ity to have asymptotic exactness. Hence we shall use a dual approach as an alternative, which
we derive from the dual characterization of the one-norm,

inf
u

[∫

Ω

|u − f | dx +
α

2

∫

Ω

(|∇u|2 + u2) dx

]

= inf
u

sup
|s|≤1

[∫

Ω

(u − f)s dx +
α

2

∫

Ω

(|∇u|2 + u2) dx

]

= sup
|s|≤1

inf
u

[∫

Ω

(u − f)s dx +
α

2

∫

Ω

(|∇u|2 + u2) dx

]

.

Exchanging infimum and supremum in the last formula can easily be justified with standard
methods in convex analysis; cf. [12]. The infimum can be calculated exactly from solving
−α∆u + αu = −s with homogeneous Neumann boundary conditions, and hence weobtain
after simple manipulation the dual problem (with the notationA := (−∆ · +·))

1

2

∫

Ω

s(A−1s) dx + α

∫

Ω

fs dx → min
s∈L∞(Ω),‖s‖∞≤1

.

This bound-constrained quadratic problem can be solved with efficient methods; we simply
use a projected gradient approach, i.e.,

sk+1 = P1

(
sk − τ

(
A−1sk + αf

))
,

whereτ > 0 is a damping parameter andP1 is the pointwise projection operator,

P1(v)(x) =

{

v(x) if |v(x)| ≤ 1
v(x)
|v(x)| else

.

Due to the quadraticH1 regularization, we obtain

D
symm
H1 (û, g) = 2DH1(û, g) = ‖û − g‖2

H1(Ω) ,(6.2)
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FIG. 6.2. Exactg(x) = cos(x) and noisyf(x), corrupted by Laplace noise with mean zero,σ = 0.1 and
δ ≈ 0.1037.

and the source condition becomes

q(x) = −∆g(x) + g(x) , for x ∈ Ω andq ∈ H1(Ω),

∂q

∂n
= 0 , for x ∈ ∂Ω.

(SCH1)

In the following we present two examples and their related error estimates.
EXAMPLE 6.1. For our first data example we chooseg(x) = cos(x), for x ∈ [0, 2π].

Sinceg ∈ C∞([0, 2π]) andg′(0) = g′(2π) = 0, the source condition (SCH1) is fulfilled.
Hence, the derived error estimates in Section4 should work.

First of all we check (4.1) and (4.2) numerically for noise-free data, i.e.,f = g andδ = 0.
The estimates predict that as soon asα ≤ 1

2 (note that‖q‖L∞([0,2π]) = 2 ‖cos(x)‖L∞([0,2π])

= 2) holds, the regularized solution̂u should be identical to the exact solutiong in the Breg-
man distance setting (6.2). This is also found in computational practice, as Figure6.1 con-
firms.

In the following we want to illustrate the sharpness of (4.2) in the case of non-zeroδ. For
this reason, we have generated Laplace-distributed randomvariables and have added them to
g to obtainf . We have generated random variables with different values for the variance of
the Laplace distribution to obtain different noise levelsδ in theL1-measure. Figure6.2shows
g and an exemplary noisy version ofg with δ ≈ 0.1037. In the following, we computedδ as
theL1-norm over[0, 2π], to adjust the dimension ofδ to theH1-norm (in the above example
δ then approximately becomesδ ≈ 0.6).

In order to validate (4.2) we produced many noisy functionsf with different noise levels
δ in the range of 0 to 2. For five fixedα values (α = 0.2, α = 0.4, α = 0.52, α = 0.6, and
α = 1) we have plotted the symmetric Bregman distances between the regularized solutions
û andg, the regression line of these distances and the error bound given via (4.2); the results
can be seen in Figure6.3. It can be observed that forα = 0.2 andα = 0.4 the computed
Bregman distances lie beneath that bound, while forα = 0.52, α = 0.6 andα = 1 the error
bound is violated, which seems to be a good indicator of the sharpness of (4.2).

EXAMPLE 6.2. In order to validate the need for the source condition (SCH1) we want
to consider two more examples;g1(x) = sin(x) andg2(x) = |x − π|, x ∈ [0, 2π]. Both
functions violate (SCH1); g1 does not fulfill the Neumann boundary conditions, while the
second derivative ofg2 is a δ-distribution centered atπ/2 and therefore not integrable. In
the case ofg2 there does not exist aq such that there could exist anα to guarantee (4.2).
Nevertheless, in order to visualize that there exists no such error bound, we want to introduce
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(f) α = 0.2

FIG. 6.3. The plots of computed symmetric Bregman distances forα = 0.2, 0.4, 0.52, 0.6 and α = 1,
againstδ = 0 to δ = 2. It can be seen that in (a) and (b) the computed Bregman distances lie beneath the
error bound derived in(4.2), while the distances in (c), (d), and (e) partly violate thisbound. Figure (f) shows
the logarithmically scaled error bound in comparison to thelogarithmically scaled regression line of the Bregman
distances forα = 0.2. It can be observed, that the slope of the regression line is smaller than the slope of the error
bound. Hence, for the particular choice ofg(x) = cos(x) there might exist an even stronger error bound than(4.2).

a reference boundδ
(

1/α + ‖w‖L∞([0,2π])

)

with w(x) := −∆g2(x) + g2(x), x ∈ ([0, π[)∪
(]π, 2π]), which yields‖w‖L∞([0,2π]) = π.

As in Example6.1we want to begin with the case of exact data, i.e.,f = g. If we plot the
symmetric Bregman distance againstα, then we obtain the graphs displayed in Figure6.4. It
can be seen that forg1 as well as forg2 the error tends to be zero only ifα gets very small. To
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˜

.

illustrate the importance of the source condition in the noisy case with non-zeroδ, we have
proceeded as in Example6.1. We generated Laplace-type noise and added it tog1 andg2 to
obtainf1 andf2 for different error valuesδ. Figure6.5shows the Bregman distance error in
comparison to the error bound given via (4.2) and in comparison to the reference bound as
described above, respectively. It can be seen that in comparison to Example6.1the error and
reference bounds are completely violated, even for smallα. Furthermore, in the worst case of
g2 for α = 1 the slope of the logarithmically scaled regression line is equal to the slope of the
reference bound, which indicates that the error assuminglywill in general never get beyond
this reference bounds. The results support the need for the source condition to find quantitave
error estimates.

6.2. Compressive sensing with Poisson noise.For the validation of the error estimates
in the Poisson case we consider the following discrete inverse problem. Given a two dimen-
sional functionu at discrete sampling points, i.e.,u = (ui,j)i=1,...,n, j=1,...,m, we investigate
the operatorK : ℓ1(Ω) → ℓ1(Σ) and the operator equation

Ku = g

with

gi,j =

n∑

k=1

φi,kuk,j , for i = 1, . . . , l, j = 1, . . . , m ,

whereφi,j ∈ [0, 1] are uniformly distributed random numbers,Ω = {1, . . . , n}×{1, . . . , m},
Σ = {1, . . . , l} × {1, . . . , m} andl >> n, such thatK has a large nullspace. Furthermore,
we considerf instead ofg, with f being corrupted by Poisson noise.

6.2.1. Sparsity regularization. In the case of sparsity regularization, we assumeu to
have a sparse representation with respect to a certain basis. Therefore, we consider an op-
eratorB : ℓ1(Θ) → ℓ1(Ω) such thatu = Bc holds for coefficientsc ∈ ℓ1(Θ). If we
want to apply a regularization that minimizes theℓ1-norm of the coefficients, we obtain the
minimization problem

∫

Σ

f ln

(
f

KBc

)

+ KBc − f dµ(y) + α
∑

i,j

|ci,j |ℓ1(Θ) → min
c∈ℓ1(Θ)

.(6.3)
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FIG. 6.5. The plots of the computed Bregman distances with violated(SCH1). Figures (a) and (b) show the
Bregman distancesDsymm

H1 (û, g1) for α = 0.4 andα = 0.6, respectively. Figures (c) and (d) represent the Bregman

distancesDsymm
H1 (û, g2) for α = 0.4 andα = 1. Furthermore, Figures (e) and (f) show the logarithmicallyscaled

versions of the error/reference bound in comparison to a line regression of the Bregman distances forα = 1.

Notice that the measureµ is a point measure and the integral in (6.3) is indeed a sum over
all discrete samples, which we write as an integral in order to keep the notation as introduced
in the previous sections. To perform a numerical computation, we use a forward-backward
splitting algorithm based on a gradient descent of the optimality condition. For an initial set
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FIG. 6.6. In (a) we can seẽu as defined viãu = Bc̃. A top-view of̃u can be seen in (b). In (c) and (d) the
plots ofg = Kũ and its noisy versionf are described, while (e) and (f) show top-view illustrations of (c) and (d).

of |Θ| coefficientsci,j
0 , we compute the iterates

ci,j

k+ 1
2

= ci,j
k − 1

τ

(

BT K
T
(

1 − f

KBck

))

i,j

,

ci,j
k+1 = sign

(

ci,j

k+ 1
2

)(∣
∣
∣c

i,j

k+ 1
2

∣
∣
∣− α

τ

)

+
,
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with τ > 0 being a damping parameter anda+ = max {0, a}. The disadvantage of this
approach is that positivity ofu is not guaranteed. However, it is easy to implement and
produces satisfactory results as we will see in the following.

As a computational example, we chooseu to be sparse with respect to the cosine basis.
We therefore defineB−1 : ℓ1(Θ) → ℓ1(Ω) as the two-dimensional cosine-transform,

ca,b = γ(a)γ(b)
n−1∑

i=0

m−1∑

j=0

ui,j cos

(
π(2i + 1)a

2n

)

cos

(
π(2j + 1)b

2m

)

,(6.4)

for a ∈ {1, . . . , n}, b ∈ {1, . . . , m} and

γ(x) =

{ √

1/n for x = 0
√

2/n for x 6= 0
.

Remember that since the cosine-transform defined as in (6.4) is orthonormal we have
B = (B−1)T .

We setũ = Bc̃ with c̃ being zero except for̃c1,1 = 4
√

nm, c̃2,2 = 1/2
√

nm, and
c̃4,4 = 3/2

√
nm. With this choice of̃c we guaranteẽu > 0. Furthermore, we obtaing = Kũ

with g > 0. Finally, we generate a noisy versionf of g by replacing every samplegi,j with a
Poisson random numberfi,j with expected valuegi,j . As an example we chosen = m = 32.
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FIG. 6.7.The computed subgradientξ (a) and the functionq (b), which are related to each other by the source
condition(SCℓ1). The computedq has minimumℓ∞-norm among allq’s satisfying(SCℓ1); ‖q‖ℓ∞ ≈ 8.9× 10−3.

Hence we obtaiñc1,1 = 128, c̃2,2 = 16, andc̃4,4 = 48, while the other coefficients remain
zero. Furthermore, we obtaiñu, g andf as described in Figure6.6. The operator dimension
is chosen to bel = 128. The damping parameter is set to the constant valueτ = 0.1225.

The source condition for this discrete data example becomes

∃ ξ ∈ ∂|c̃|ℓ1(Ω), ∃ q ∈ (ℓ1(Σ))∗ : ξ = BT KT q .(SCℓ1)

It can be shown that the subgradient of|c̃|ℓ1(Ω) is simply

∂|c̃i,j |ℓ1(Ω) = sign(c̃i,j) =







1 for c̃i,j > 0
∈ [−1, 1] for c̃i,j = 0

−1 for c̃i,j < 0
,(6.5)
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for all (i, j) ∈ Ω. Hence, to validate the error estimates and their sharpness, we have com-
putedξ andq with minimalℓ∞-norm, in order to satisfy (SCℓ1) and (6.5). The computational
results can be seen in Figure6.7, where‖q‖ℓ∞ ≈ 8.9 × 10−3 holds. Withξ computed, the
symmetric Bregman distance easily can be calculated via

Dsymm
|·|

ℓ1
(ĉ, c̃) = 〈p̂ − ξ, ĉ − c̃〉ℓ1(Ω)

for p̂ ∈ ∂ |ĉ|ℓ1 . We did several computations with different values forα and the constant
c ∈]0, 1[ (not to be confused with the cosine transform coefficients) to support the error
estimate (4.3). The results can be seen in Table6.1. We note that Theorem4.3 can only be
applied if

∫

Σ
f dµ(y) = 1, which is obviously not the case for our numerical example. But,

due to the proof of Theorem4.3, the only modification that has to be made is to multiply
|f | =

∫

Σ f dµ(y) by the logarithmic term in (4.3) to obtain a valid estimate.

7. Outlook and open questions.We have seen that under rather natural source condi-
tions error estimates in Bregman distances can be extended from the well-known quadratic
fitting (Gaussian noise) case to general convex fidelities. We have seen that the appropriate
definition of noise level in the convex case is not directly related to the norm difference, but
rather to the data fidelity. With this definition the estimates indeed yield the same asymp-
totic order with respect to regularization parameter and noise level as in the quadratic case.
The constants are again related to the smoothness of the solution (norm of the source ele-
ment), with the technique used in the general case one obtains slightly larger constants than
in the original estimates. The latter is caused by the fact that the general approach to error
estimation cannot exploit linearity present in the case of quadratic fidelity

Error estimation is also important for other than variational approaches, in particular iter-
ative or flow methods such as scale space methods, inverse scale space methods or Bregman
iterations. The derivation of such estimates will need a further understanding of dual iter-
ations or flows, which are simple gradient flows in the case of quadratic fidelity but have a
much more complicated structure in general.

Another interesting question for future research, which isalso of practical importance,
is an understanding of error estimation in a stochastic framework. It will be an interesting
task to further quantify uncertainty or provide a comprehensive stochastic framework. In
the case of Gaussian noise such steps have been made, e.g., bylifting pointwise estimates
to estimates for the distributions in different metrics (cf. [14, 15, 16]) or direct statistical
approaches; cf. [3]. In the case of Poisson noise a direct estimation of mean deviations has
been developed in parallel in [18], which uses similar techniques as our estimation and also
includes a novel statistical characterization of noise level in terms of measurement times.
We think that our approach of estimating pointwise errors via fidelities, i.e., data likelihoods
(more precisely negative log likelihoods), will have an enormous potential to generalize to
a statistical setting. In particular, we expect the derivation of confidence regions by further
studies of distributions of the log-likelihood for different noise models.
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TABLE 6.1
Computational Results. The first two columns represent different values forα andc. The remaining numerated

columns denote: (a)(1−c)Hf (ĉ), (b)α Dsymm

|·|
ℓ1

(ĉ, c̃), (c) (1+c)δ, (d)−c ln
“

1 −
`

α
c
‖q‖ℓ∞

´2
”

, (e)(1+c)δ−

(1 − c)Hf (ĉ) − c ln
“

1 −
`

α
c
‖q‖ℓ∞

´2
”

. It can be seen that column (e) is always larger than (b) and hence, the

error estimate(4.3) is always fulfilled.

c α (a) (b) (c) (d) (e)
0.5 0.05 85.25 0.8 178.7 0.1049 93.56
0.5 0.009 60.32 0.004619 178.7 0.0034 118.4
0.5 0.005 59.48 0.005379 178.7 0.001049 119.2
0.5 0.003 58.39 0.02627 178.7 0.0003777 120.3
0.5 0.0009 49.34 0.1651 178.7 3.4e-005 129.4
0.5 0.0005 46.69 0.1501 178.7 1.049e-005 132
0.5 0.0003 45.68 0.1142 178.7 3.777e-006 133
0.5 5e-005 50.72 0.02586 178.7 1.049e-007 128
0.1 0.009 108.6 0.004619 131 0.017 22.48
0.1 0.005 107.1 0.005379 131 0.005246 23.99
0.1 0.003 105.1 0.02627 131 0.001889 25.95
0.1 0.0009 88.8 0.1651 131 0.00017 42.24
0.1 0.0005 84.04 0.1501 131 5.246e-005 47.01
0.1 0.0003 82.23 0.1142 131 1.889e-005 48.82
0.1 5e-005 91.29 0.02586 131 5.246e-007 39.76
0.01 0.009 119.4 0.004619 120.3 0.17 1.054
0.01 0.005 117.8 0.005379 120.3 0.05246 2.611
0.01 0.003 115.6 0.02627 120.3 0.01889 4.732
0.01 0.0009 97.68 0.1651 120.3 0.0017 22.64
0.01 0.0005 92.45 0.1501 120.3 0.0005246 27.88
0.01 0.0003 90.45 0.1142 120.3 0.0001889 29.87
0.01 5e-005 100.4 0.02586 120.3 5.246e-006 19.91
0.001 0.05 170.3 0.8 119.3 58.45 7.382
0.001 0.009 120.5 0.004619 119.3 1.705 0.4317
0.001 0.005 118.8 0.005379 119.3 0.5252 0.9405
0.001 0.003 116.7 0.02627 119.3 0.1889 2.779
0.001 0.0009 98.57 0.1651 119.3 0.017 20.7
0.001 0.0005 93.29 0.1501 119.3 0.005246 25.97
0.001 0.0003 91.27 0.1142 119.3 0.001889 27.98
0.001 5e-005 101.3 0.02586 119.3 5.246e-005 17.92
0.0001 0.009 120.6 0.004619 119.1 27.14 25.65
0.0001 0.005 118.9 0.005379 119.1 5.845 6.046
0.0001 0.003 116.8 0.02627 119.1 1.959 4.337
0.0001 0.0009 98.66 0.1651 119.1 0.1705 20.66
0.0001 0.0005 93.37 0.1501 119.1 0.05252 25.83
0.0001 0.0003 91.36 0.1142 119.1 0.01889 27.81
0.0001 5e-005 101.4 0.02586 119.1 0.0005246 17.72
1e-005 0.0009 98.67 0.1651 119.1 2.714 23.18
1e-005 0.0005 93.38 0.1501 119.1 0.5845 26.34
1e-005 0.0003 91.36 0.1142 119.1 0.1959 27.97
1e-005 5e-005 101.4 0.02586 119.1 0.005252 17.71
1e-006 5e-005 101.4 0.02586 119.1 0.05845 17.76
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