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COMPUTATION OF THE TORSIONAL MODES IN AN AXISYMMETRIC
ELASTIC LAYER ∗

MOHAMED KARA †, BOUBAKEUR MEROUANI†, AND LAHCÈNE CHORFI‡

Abstract. This paper is devoted to the numerical study of an eigenvalue problem modeling the torsional modes
in an infinite and axisymmetric elastic layer. In the cylindrical coordinates(r, z), without θ, the problem is posed
in a semi-infinite stripΩ = R

∗
+
× ]0, L[ . For the numerical approximation, we formulate the problem in the

bounded domainΩR = ]0, R[ × ]0, L[ . To this end, we use the localized finite element method, which links
two representations of the solution: the analytic solutionin the exterior domainΩ′

R
= ]R,+∞[ × ]0, L[ and the

numerical solution in the interior domainΩR.
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1. Introduction. ForL > 0 andΩ = R
∗
+× ]0, L[ , we consider the following eigenvalue

problem:

(P0)





Findu ∈ D′(Ω), u 6= 0 andω ∈ R+ such that

B0u = ω2ρu for (r, z) ∈ Ω,

u(r, 0) = 0,

(
µ
∂u

∂z

)
(r, L) = 0, ∀r > 0,

where the differential operatorB0 is defined by

(1.1) B0u = − 1

ρr

[
∂

∂r

(
µr
∂u

∂r
− µu

)
+ µ

∂u

∂r
+

∂

∂z

(
µr
∂u

∂z

)
− µ

u

r

]
.

We use the definitionsR∗
+ = ]0,+∞[ andR+ = [0,+∞[ . This problem models the

vibrations of torsional modesuθ(r, θ, z, t) = u(r, z)eiωt in an infinite and axisymmetric
elastic layer occupying the domaiñΩ =

{
(x, y, z) ∈ R

3 : 0 < z < L
}

or Ω̃ = Ω × [0, 2π[
in the cylindrical coordinates(r, θ, z) [1], whereω is the frequency. We suppose the layer is
stratified and perturbed with a local perturbation, which means that it is characterized by a
densityρ(r, z) and a shearing coefficientµ(r, z) which satisfy the assumptions

µ, ρ ∈ L∞(Ω), 0 < µ− = inf µ, and0 < ρ− = inf ρ,(A1)

∃R > 0 such that(µ(r, z), ρ(r, z)) = (µ∞(z), ρ∞(z)) for r > R.(A2)

The boundary conditions mean the layer is fixed on the facez = 0 and is free on the face
z = L.

In this article, we propose a numerical method to compute theeigenvalues and the eigen-
modes of the problem (P0). As the domainΩ is unbounded, the simplest method is to impose
the conditionu = 0 on the fictitious boundaryr = R0 then discretize the problem onΩR0

.
This technique is not accurate, especially when the mode is badly confined. If we are con-
strained to chooseR0 rather large, the dimension of the related algebraic systemincreases
rapidly. To overcome this difficulty, we propose an exact method which consists of setting an
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equivalent problem in a bounded domain via the transmissioncondition on a fictitious bound-
ary r = R (R being the size of the perturbation). The idea is to use the Dirichlet-Neumann
operator to link the analytic solution for the exterior domain Ω′

R = ]R,+∞[ × ]0, L[ to the
numerical solution for the interior domainΩR = ]0, R[ × ]0, L[ . The transmission condition
is expressed in terms of series which will be truncated at an orderN for the numerical ap-
proximation. This method is well known as the localized finite element method, and has been
used by several authors. We refer to the works [10, 13, 16], respectively, for the hydrody-
namic problem, the resolution of the Helmholtz equation, and the Schr̈odinger equation. We
mention also the report [5] for the computation of the guided modes in elasticity and [3, 6, 11]
for the computation of the cutoff-frequencies in electromagnetism. Note that the differential
operatorB0 in our model is singular at the origin, which makes the analysis more difficult.

The paper is organized as follows. In Section2, we give a variational formulation (P1) of
the spectral problem (P0). In Section3, we formulate an equivalent problem (PR) set in a
bounded domainΩR by using the Dirichlet-Neumann operator. In Section4, we truncate
the series and discretize (PR) by the finite element method, then we perform a convergence
analysis as the rank of truncationN → +∞ and the discretization parameterh→ 0. Finally,
we show in Section5 some numerical results which validate the method.

2. Variational formulation. In the paper [2], we introduce (P0) as a spectral problem:
Bu = ω2u, whereB is a self-adjoint operator characterized by a variational triplet (H,V, b).
We recall the essential results given there. We introduced the real Hilbert space (L2 with
weights)

H(Ω) =
{
u ∈ L2

loc(Ω) :
√
ru ∈ L2(Ω)

}

with the inner product(u, v)H(Ω) =
∫∫

Ω
ρuv r dr dz and the norm‖u‖H(Ω) = (u, v)

1/2
H(Ω),

and the weighted Sobolev space

V (Ω) =

{
u ∈ H(Ω) :

u√
r
∈ L2(Ω),

√
r|∇u| ∈ L2(Ω), u(r, 0) = 0

}

equipped with the norm

‖u‖2V (Ω) =

∫∫

Ω

(
|∇u|2 + |u|2

r2
+ |u|2

)
r dr dz.

We can write problem (P0) in the following variational form:

(P1)

{
Findu ∈ V (Ω), u 6= 0, andω > 0 such that
b(u, v) = ω2(u, v)H(Ω), ∀v ∈ V (Ω),

where the bilinear form is defined by

b(u, v) =

∫∫

Ω

µ

(
r∇u · ∇v + uv

r
− u

∂v

∂r
− v

∂u

∂r

)
dr dz, ∀u, v ∈ V (Ω).

This form is obviously continuous and symmetric. Using Poincaŕe’s inequality

(2.1) ∀u ∈ V (Ω),

∫∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2

r dr dz ≥ L2

2

∫∫

Ω

|u|2r dr dz,
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we can establish thatb(·, ·) is V -coercive. Hence, from the representation theorem [8],
there exists an unbounded self-adjoint operatorB such thatb(u, v) = (Bu, v)H(Ω) for all
u ∈ D(B) andv ∈ V . The domain ofB is given by

D(B) =

{
u ∈ V (Ω) : B0u ∈ L2(Ω), µ

∂u

∂z
(r, L) = 0

}
andBu = B0u.

The spectral formulation of the problem (P0) is then:

(P)

{
Findu ∈ D(B), u 6= 0, andω > 0 such that
B(u) = ω2u.

REMARK 2.1. We can see fromu ∈ D(B) thatdiv(µ∇u) ∈ H(Ω), hence the trace
(µ∂u

∂z )(r, L) exists in the generalized sense (in the spaceH
−1/2
loc (R∗

+)).
The spectrum ofB is described in the following proposition.
PROPOSITION2.2. The spectrum ofB is σ = σess ∪ σdis, where

(i) The essential spectrum ofB is

σess = [γ,+∞[ ,

where

γ = inf
g∈W (0,L),g 6=0

∫ L

0
µ∞(z) |g′(z)|2 dz

∫ L

0
ρ∞(z) |g(z)|2 dz

withW (0, L) =
{
g ∈ H1(0, L), g(0) = 0

}
.

(ii) The discrete spectrum satisfies

σdis ⊂ [C, γ[ , with the lower boundC =

(
µ−

ρ+

)
· L

2

2
andρ+ = sup ρ.

Proof. The assertion(i) is proven in [2]. The inclusion(ii) follows from (2.1); indeed,
we have foru ∈ V (Ω)

b(u, u) ≥ µ−

∫∫

Ω

(
r

∣∣∣∣
∂u

∂z

∣∣∣∣
2

− 2u
∂u

∂r

)
dr dz.

SinceD(Ω) is dense inV (Ω), it follows that

∫∫

Ω

2u
∂u

∂r
dr dz =

∫ L

0

(|u(∞, z)|2 − |u(0, z)|2)dz = 0,

hence

b(u, u) ≥ µ−

∫∫

Ω

∣∣∣∣
∂u

∂z

∣∣∣∣
2

r dr dz ≥
(
µ−

ρ+

)
L2

2

∫∫

Ω

|u|2rρ dr dz.
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3. Formulation in a bounded domain. Before exhibiting the method, we introduce
some notation. We let

ΩR = ]0, R[ × ]0, L[ and Ω′
R = ]R,+∞[ × ]0, L[ .

ForD = ΩR or Ω′
R, we denote byH(D) (resp.V (D)) the space of the functions which are

the restrictions toD of the elements ofH(Ω) (resp.V (Ω)) equipped with the induced norm.
For simplicity, we also make the following assumption:

The velocityc∞(z) :=

(
µ∞(z)

ρ∞(z)

)1/2

, 0 < z < L, is a constantc∞.(A3)

We set

u(r, z) =

{
u1(r, z) for (r, z) ∈ ΩR,

u2(r, z) for (r, z) ∈ Ω′
R.

If u ∈ D(B) is solution of (P), then the pair(u1, u2) satisfies the transmission problem

(3.1)





B0u1 = ω2u1 for (r, z) ∈ ΩR,

B0u2 = ω2u2 for (r, z) ∈ Ω′
R,

u1(R, z) = u2(R, z) for 0 < z < L,

µt(u1)(R, z) = µ∞t(u2)(R, z) for 0 < z < L,

wheret(u) = r
∂u

∂r
− u.

3.1. Exterior problem. We now exhibit the analytical form of the solution in the exte-
rior domainΩ′

R. If u ∈ V (Ω) then the traceu(R, z) belongs to the space

H
1

2

0 ( ]0, L[ ) =

{
ϕ ∈ H

1

2 ( ]0, L[ ),
ϕ√
z
∈ L2( ]0, L[ )

}
.

Forω2 andϕ(z) ∈ H
1

2

0 ( ]0, L[ ) given, we consider the following boundary value problem

(Q(ω))

{
B0u2 = ω2u2 in Ω′

R,

u2(R, z) = ϕ(z) for z ∈]0, L[ .

We also introduce the Sturm-Liouville problem

(3.2)





Findg ∈ H1( ]0, L[ ), g 6= 0, andβ > 0 such that

− d
dz

(
µ∞(z)dgdz

)
= βµ∞(z)g, ∀z ∈]0, L[ ,

g(0) =
(
µ∞

dg
dz

)
(L) = 0.

Sinceµ∞(z) ≥ µ− > 0, the problem (3.2) is regular in the sense that it admits a sequence of
eigenvalues (βn > 0, βn → +∞) and an orthogonal system of eigenfunctions(gn(z)) which
is complete inL2(0, L).

REMARK 3.1. We notice that under the hypothesis (A3), the lower bound of the essential
spectrum isγ = β1c

2
∞. Moreover, if c2− := infΩ(

µ
ρ ) < c2∞ we prove by theMin-Max

principle that the discrete spectrum is not empty; see [2].
PROPOSITION3.2. For any realω2 ∈ [β1c

2
−, β1c

2
∞[ ,
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1. (Q(ω)) has a unique solutionu2(r, z) = R(ω)ϕ(z). Moreover, the operatorR(ω)

is linear and continuous fromH
1

2

0 ( ]0, L[ ) into V (Ω′
R).

2. u2(r, z) has the following representation forr > R:

(3.3) u2(r, z) =
∑

n≥1

cn
K1(λn(ω)r)

K1(λn(ω)R)
gn(z),

whereλn(ω) =
(
βn − ω2

c2
∞

)1/2
, cn =

1

L

∫ L

0

µ∞(z)ϕ(z)gn(z) dz, andK1 is the modified

Bessel function of the first order. The series converges inV (Ω′
R).

Proof. The first part results from the variational formulation andcoercivity of the bilinear
form associated with the problem (Q(ω)). More precisely, there existsvϕ ∈ V (Ω′

R) such that
vϕ|r=R = ϕ. Settingũ = u2 − vϕ, f = (B0 −ω2)vϕ, andX = {v ∈ V (Ω′

R), v(R, z) = 0},
then (Q(ω)) is equivalent to

(3.4)

{
Find ũ ∈ X such that
b∞(ω, ũ, v) = 〈f, v〉, ∀v ∈ X,

where

b∞(ω, ũ, v) =

∫∫

Ω′

R

µ∞

(
r∇ũ · ∇v + ũv

r

)
dr dz−ω2(ũ, v) and(ũ, v) =

∫∫

Ω′

R

ρ∞ũv r dr dz.

The brackets〈·, ·〉 designate the duality betweenX andX ′.
If ω2 < β1c

2
∞, thenb∞(ω, ũ, v) isX-coercive and bounded andL(v) = 〈f, v〉 is linear

and continuous. By the Lax-Milgram theorem, there exists a unique solutioñu such that

‖ũ‖X ≤ C1‖f‖X′ ≤ C2‖vϕ‖X ≤ C3‖ϕ‖
H

1

2 (0,L)
,

which means that

‖u2‖V (Ω′

R
) ≤ ‖ũ‖X + ‖vφ‖V (Ω′

R
) ≤ C‖ϕ‖

H
1

2 (0,L)
.

For the second part, we use the method of separation of variables. To this end, we introduce
the following space:

WR =
{
u ∈ L2( ]R,+∞[ ) :

√
ru ∈ H1( ]R,+∞[ )

}

equipped with the norm‖u‖WR
= ‖√ru‖H1( ]R,+∞[ ).

The solutionu2 admits the Fourier expansionu2(r, z) =
∑

n≥1 un(r)gn(z), which con-
verges inV (Ω′

R), with the Fourier coefficientsun ∈ WR and withgn(z) the sequence of
eigenfunctions of the Sturm-Liouville problem (3.2); for details, see [9]. Inserting this form
in the equation of (Q(ω)), we see that, for alln ≥ 1, un is a solution of the modified Bessel
equation

u′′n(r) +
1

r
u′n(r) +

(
− 1

r2
+ λ2n(ω)

)
un(r) = 0 for r > R with λ2n(ω) = βn − ω2

c2∞
.

As un ∈ WR, we have
√
run ∈ L2( ]R,+∞[ ) andun(r) = dnK1(λn(ω)r), ∀n ≥ 1 (ac-

cording to the Bessel asymptotic formulas). The constantdn is determined by the boundary
condition. Finally, we get

u2(r, z) =
∑

n≥1

cn
K1(λn(ω)r)

K1(λn(ω)R)
gn(z), r > R,
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wherecn is the Fourier coefficient ofϕ. The previous series converges inV (ΩR) if the
numerical series

∑
n2‖un‖2WR

converge. We can see that‖un‖2WR
= λ2n‖

√
run‖2L2( ]R,+∞[ )

andλn = O(n), hence
∑
n2‖un‖2WR

≤ C1

∑
nc2n ≤ C2‖ϕ‖ 1

2

.
Note that the hypothesis (A3) is essential to the separation of variables in the equation

B0u = ω2u in Ω′
R.

3.2. The Dirichlet-Neumann operator. We first introduce some tools. Fors ∈ R, we
have the (equivalent) definition

Hs
0( ]0, L[ ) =

{
v(z) =

+∞∑

p=1

vpgp(z) : ‖v‖2s =
+∞∑

p=1

|vp|2p2s < +∞
}
.

The dual product betweenHs
0 andH−s

0 = (Hs
0)

′ is 〈v, u〉s = L
∑+∞

p=1 vpūp.

Recall thatt(u) = r
∂u

∂r
− u, for u ∈ D(B). The Dirichlet-Neumann operator is defined

as follows:

Tω : H
1

2

0 ( ]0, L[ ) → H
− 1

2

0 ( ]0, L[ ) such that Tω(ϕ) = t(R(ω)ϕ) |r=R,

whereR(ω)ϕ is the solution of the problem (Q(ω)) associated with the dataϕ(z).
PROPOSITION3.3. We have:

1. Tω is linear and continuous and the bilinear form〈−Tω(u0), v0〉 is symmetric and
positive.

2. Tω admits the expansion

(3.5) Tω(u0)(z) =
∑

n≥1

(u0)n

(
λn(ω)RK

′
1(λn(ω)R)

K1(λn(ω)R)
− 1

)
gn(z) for r > R,

where the series converges in the spaceH
− 1

2

0 ( ]0, L[ ).
Proof. The first part follows from the identity

〈−Tω(u0), v0〉 =
∫∫

Ω′

R

µ∞∇u · ∇v r dr dz − ω2(u, v) +
∑

p≥1

(u0)p(v0)p,

whereu is the solution of the problem (Q(ω)) associated with the datau0. The second part
results from the application of the differential operatort to the series (3.3).

REMARK 3.4. If the medium is homogeneous, we have:

(3.6) gn(z) = sin
(
(n+ 0.5)

πz

L

)
, λ2n(ω) = − ω2

c2∞
+ (n+ 0.5)2

(π
L

)2
, n ≥ 1.

3.3. Problem(PR). The transmission conditions (3.1) allow us to formulate the prob-
lem

(PR)





Findu1 ∈ V (ΩR), u 6= 0, andω2 ∈ I = [β1c
2
−, β1c

2
∞[ such that

B0u1 = ω2u1 in ΩR,
µt(u1)|r=R = µ∞Tω(u1|r=R).

The problems (PR) and (P) are equivalent in the the following sense:
PROPOSITION3.5. We have:
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1. If the pair (ω2, u) is a solution of the problem(P) then(ω2, u|ΩR
) is a solution of

the problem(PR).
2. Conversely, if the pair(ω2, u1) is a solution of the problem(PR) thenu1 can be

extended uniquely to a solution(ω2, u) of the problem(P).
REMARK 3.6. The eigenvalue problem (PR) is nonlinear sinceT (ω) is a nonlinear

function.

3.4. Study of the nonlinearity. Forα ∈ I = [β1c
2
−, β1c

2
∞[ fixed, we consider the linear

problem:

(PR(α))





Findu1 ∈ V (ΩR), u1 6= 0, andω2(α) ∈ I such that
Bu1 = ω2(α)u1 in ΩR,
µt(u1)|r=R = µ∞Tα(u1|r=R).

Suppose thatα→ ω2(α) is a curve having a fixed pointα0 ∈ I (ω2(α0) = α0); then(u1, α0)
is a solution of (PR). We shall examine the question of existence of such curves.To this end,
we use the variational form of (PR(α)):

(P̃R(α))

{
Findu ∈ V (ΩR), u 6= 0, andω2 ∈ I such that
C(α, u, v) := A(u, v) +D(α, u, v) = ω2(u, v)H(ΩR), ∀ v ∈ V (ΩR),

where

A(u, v) =

∫∫

ΩR

µ

(
r∇u · ∇v + uv

r
− u

∂v

∂r
− v

∂u

∂r

)
dr dz

and

D(α, u, v) =
∑

n≥1

(
λn(ω)RK

′
1(λn(ω)R)

K1(λn(ω)R)
− 1

)
(u0)n(v0)n.

We prove in [9] thatC(α, u, v) is coercive and characterizes a family of operatorsC(α).
PROPOSITION3.7 ([9]). C(α) is a positive self-adjoint operator with a compact resol-

vent. The eigenvalues form an increasing sequence having the properties:
1. ω2

m(α) ≤ ω2
m+1(α), ω

2
1(α) ≥ c2−β1,

2. ω2
m(α) = minVm∈Fm

maxu∈Vm

C(α,u,u)
‖u‖2 , whereFm denotes the family of the sub-

spacesVm ⊂ V (ΩR) with dimensionm.
3. the functionsα → ω2

m(α), m ∈ N
∗, are strictly decreasing and Lipschitz continu-

ous on the intervalI.
Proof. These properties are a consequence of the following coercivity results:

1. C(α, u, u) ≥ c2−β1(u, u)H(ΩR),
2. for all ǫ > 0, there exist positive constantsC1(ǫ) andC2(ǫ) such that

C(α, u, u) + C1(ǫ)(u, u)H(ΩR) ≥ C2(ǫ)‖u‖2V (ΩR).

Then we use the Min-Max principle [15].
As a consequence of Proposition3.7, we have
COROLLARY 3.8. For α ∈ I, the following two properties are equivalent:

1. α = ω2 is an eigenvalue ofB.
2. ∃m ∈ N such thatω2

m(α) = α.
We conclude with the following regularity result.
THEOREM 3.9 (Regularity). Suppose thatµ ∈ C0,1(ΩR) and letu ∈ V (ΩR) be an

eigenfunction of(PR(α)). Then
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1.
√
ru ∈ H2(ΩR) and‖√ru‖2 ≤ C‖u‖H(ΩR),

2. ∀r ∈ ]0, R/2[ , |u(r)| ≤ Cr‖u‖H(ΩR).
Proof. The proof is rather technical. We reproduce here the main steps of [9].
1) Let u ∈ V (ΩR) be a solution of (PR(α)). Thenv =

√
ru ∈ H1(ΩR) satisfies the

problem

(3.7)





−∆v + 3
4

v
r2 = f(v) in ΩR,

v(r, 0) = ∂v
∂z (r, L) = 0, 0 ≤ r ≤ R,

v(0, z) = 0, R∂v
∂r (R, z) =

3v(R,z)
2R + Tα(v|r=R), 0 ≤ z ≤ L.

wheref(v) =
[
ρω2 + ∂µ

∂r

(
∂v
∂r − 3v

2r

)
+ ∂µ

∂z
∂v
∂r

]
µ−1. We can see thatf(v) ∈ L2(ΩR) and

‖f(v)‖0 ≤ C‖u‖V (ΩR).
2) We can decomposev = v1 + v2 such that the pair(v1, v2) solves the systems

(3.8)





−∆v1 +
3
4
v1

r2 = f(v) in ΩR,

v1(r, 0) =
∂v1

∂z (r, L) = 0, 0 ≤ r ≤ R,

v1(0, z) =
∂v1

∂r (R, z) = 0, 0 ≤ z ≤ L.

and

(3.9)





−∆v2 +
3
4
v2

r2 = 0 in ΩR,

v2(r, 0) =
∂v2

∂z (r, L) = 0, 0 ≤ r ≤ R,

v2(0, z) = 0, R∂v2

∂r (R, z) =
3v(R,z)

2R + Tα(v|r=R), 0 ≤ z ≤ L. (T )

3) Using separation of variables we can expressv1 andf(r, z) = f(v(r, z)) as the series

v1(r, z) =
∑

n≥0

v1n sin(
√
βnz), f(r, z) =

∑

n≥0

fn(r) sin(
√
βnz)

(
βn = (2n+ 1)2

π2

4L2

)
,

wherev1n is the solution of the boundary value problem

(3.10)

{
−v′′1n + (βn + 3

4r2 )v1n = fn(r), r ∈]0, R[ ,
v1n(0) = v′1n(R) = 0.

The solution of (3.10) is given by

v1n(r) =

∫ R

0

G(r, r′)fn(r
′)dr′

whereG(r, r′) is the Green function of (3.10), which involves the modified Bessel functions
I1(

√
βnr) andK1(

√
βnr). Using asymptotic formulas, we can prove the inequalities

|v1n(r)| ≤ Cr‖fn‖L2( ]0,R[ ) and ‖v1n‖H2( ]0,R[ ) ≤ C‖fn‖L2( ]0,R[ ),

and as a consequence we obtain

|v1(r)| ≤ Cr‖f‖L2(ΩR) and ‖v1‖H2(ΩR) ≤ C‖f‖L2(ΩR).

4) In the same manner, we obtain the expression

v2(r, z) =

√
r

R

∑

n≥0

ψ2n
I1(

√
βnr)

I1(
√
βnR)

sin(
√
βnz)
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with ψjn = (ψj , sin(
√
βnz))L2(0,L) andψj(z) = vj(R, z) for j = 1, 2. Using the boundary

condition(T ), which relatesv1 tov2, we establish thatψ2 ∈ H3/2 and‖ψ2‖3/2 ≤ C‖ψ1‖3/2.
Then by a direct calculation we prove that∆v2 ∈ L2 and‖∆v2‖0 ≤ C‖ψ2‖3/2. Finally, an
asymptotic study whenr → 0 shows|u2(r)| ≤ Cr‖ψ2‖3/2, which concludes the proof.

4. Discretization.

4.1. Semi-discretized problem.For the numerical approximation of the problem (PR(α)),
we first truncate series (3.5) in the expression ofTα. This leads us to set the followingsemi-
discretizedproblem:

(PN
R(α))

{
Findu ∈ V (ΩR), u 6= 0, andω2 ∈ I such that
CN (α, u, v) := A(u, v) +DN (α, u, v) = ω2(u, v)H(ΩR), ∀v ∈ V (ΩR),

where

(4.1) DN (α, u, v) =

n=N∑

n=1

(
λn(ω)RK

′
1(λn(ω)R)

K1(λn(ω)R)
− 1

)
(u0)n(v0)n.

This problem possesses a sequence of eigenvaluesµN
m(α) = ωN

m(α)2 and eigenfunctions
uNm(α),m = 1, 2, . . ., having all the properties of the exact problem. Moreover, the sequence
µN
m(α) converges toωm(α)2 asN → +∞. More precisely, we have the following result.

THEOREM 4.1 ([9]). Supposeµ ∈ C0,1(ΩR) and (um(α), ω2
m(α)) is a solution of the

problem(PR(α)). Then we have

(4.2) 0 ≤ ω2
m(α)− ωN

m(α)2 ≤ C

N2
,

and

(4.3)
∥∥uNm(α)− um(α)

∥∥ ≤ C

N2
.

Proof. The proof is similar to that of [3, 4].

4.2. Discretization by finite elements.The goal here is to approximate (PN
R(α)) by

finite elements. For this we consider a subspaceVh ⊂ V (ΩR) of dimensionM = M(h),
whereh is a discretization parameter, and we consider the following discretized problem:

(PN,h
R (α))

{
Findu ∈ Vh, u 6= 0, andω2 ∈ I such that
CN (α, u, vh) = ω2(u, vh)H(ΩR), ∀vh ∈ Vh.

We denote the eigenelements of (PN,h
R (α)) by (µN

m,h, u
N
m,h),m = 1,M .

In practice, we defineVh as follows. LetTh = {Ki}Mi=1 be a regular triangulation
of the rectangleΩR with vertices{ai}Mi=1, and defineΓ0 = {(0, z), 0 < z < H} and
Γ1 = {(r, 0), 0 < r < R}. Then we define the spaces

M =
{
ϕ ∈ C0(ΩR) : ϕ ≡ 0onΓ0 ∪ Γ1

}
and

Vh = {ϕ ∈ M∩ V (ΩR) : ϕ |Ki
∈ P1(Ki) for 1 ≤ i ≤M} .

We introduce the interpolation operator

Πh : M −→ Vh, such that(Πhϕ)(ai) = ϕ(ai).
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As in the classical theory [7, 14], we can show the following interpolation property: for
u ∈ V (ΩR),

(4.4) lim
h−→0

inf
vh∈Vh(ΩR)

‖u− vh‖V (ΩR) = 0.

Let O be a regular open ofR2
+ = {(r, z) : r > 0}. For l ∈ N andα ∈ R, we recall the

following weighted Sobolev spaces:

W l,2
α (O) = {u ∈ D′(O) : rαDβu ∈ L2(O) for 0 ≤ |β| ≤ l}

and

X l,2
α (O) = {u ∈ D′(O) : rα−l+|β|Dβu ∈ L2(O) for 0 ≤ |β| ≤ l}

equipped with the natural norms‖ · ‖l,α. These spaces are studied in [12].
We now recall a useful interpolation result.
THEOREM 4.2 ([12]). If the triangulationTh is regular, then there exists a constant

C > 0 such that for everyu ∈W 2,2
1/2(ΩR) ∩X1,2

1/2(ΩR), we have

(4.5) ‖u−Πhu‖1, 1
2

≤ Ch ‖u‖2, 1
2

and such that for allu ∈W 2,2
1/2(ΩR) ∩X1,2

1/2(ΩR), we have

(4.6)
∥∥∥r−

1

2 (u−Πhu)
∥∥∥
0
≤ Ch ‖u‖2, 1

2

.

THEOREM 4.3. Suppose thatµ ∈ C0,1(ΩR) and the triangulation is regular. Supposeu
is a solution of(PN

R(α)). Then there exists a constantC > 0 such that

(4.7) ‖u−Πhu‖V (ΩR) ≤ C ‖u‖1,ΩR
.

Proof. As µ is smooth, it follows from Theorem3.9 and Hardy’s inequality that
u ∈ W 2,2

1/2(ΩR) ∩ X1,2
1/2(ΩR). To conclude we use Theorem4.2 by observing the follow-

ing imbedding:

(4.8) W 2,2
1/2(ΩR) ∩X1,2

1/2(ΩR) ⊂ X2,2
1/2(ΩR) ⊂ H1(ΩR),

which is continuous; moreover, the norm‖u‖V (ΩR) is equivalent to
(
‖u‖21, 1

2

+
∥∥r−1/2u

∥∥2
0

)1/2
.

We introduce the projectioñΠh defined by the variational equation

(4.9) CN (α, Π̃hu− u, uh) + β0(Π̃hu− u, uh)H(ΩR) = 0, ∀vh ∈ Vh(ΩR).

The coercivity leads to the following interpolation result.
THEOREM 4.4. Suppose thatµ ∈ C0,1(ΩR) and letu be an eigenfunction of(PN

R(α)).
Then there exists a constantC > 0 such that

(4.10)
∥∥∥u− Π̃hu

∥∥∥
V (ΩR)

≤ Ch ‖u‖1,ΩR
.
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THEOREM 4.5 (Convergence).We have

(4.11) lim
h−→0

∣∣µN
m(α)− µN

m,h(α)
∣∣ = 0;

furthermore, if the eigenvalueµN
m(α) is simple, then

(4.12) 0 ≤ µN
m(α)− µN

m,h(α) ≤ Ch2 and
∥∥uNm(α)− uNm,h(α)

∥∥
V
≤ Ch.

The previous theorem is analogous to Theorem 6.5.1 in [14].
THEOREM4.6 (Global Error).Suppose thatµ ∈ C0,1(ΩR). For each solution(µm(α), um(α))

of (PR(α)) we have, for allα ∈ I,

1. 0 ≤ µm(α)− µN
m,h(α) ≤ C

(
h2 +

1

N2

)
,

2.
∥∥∥um(α)− uNm,h(α)

∥∥∥
V (ΩR)

≤ C

(
h+

1

N2

)
.

4.3. Implementation of the method. Let h1 = R/Mr andh2 = L/Mz tend to zero
whereMr,Mz ∈ N

∗, and letM = Mz × Mr. We search for a solution to the problem
(PN,h

R (α)) in the formuh(α) = ΣjYjϕj , where{ϕj} is the basis ofVh, which leads to the
linear system

(4.13)

{
FindY ∈ R

M , Y 6= 0, andλ ∈ I such that
(A+DN (α))Y = λBY,

with the entriesA = (aij),DN (α) = (dij), andB = (bij) given by

ai,j = A(ϕi, ϕj) =

∫∫

Ki,j

µ

(
r∇ϕi · ∇ϕj +

ϕiϕj

r
− ϕi

∂ϕj

∂r
− ϕj

∂ϕi

∂r

)
dr dz,

di,j = DN (α,ϕi, ϕj) =

n=N∑

n=1

(
λn(α)RK

′
1(λn(α)R)

K1(λn(α)R)
− 1

)
(ϕi0)n(ϕj0)n,

bi,j =

∫∫

Ki,j

rρϕiϕj dr dz,

Ki,j = supp(ϕi) ∩ supp(ϕj).

(ϕi0)n are the Fourier coefficients of ordern of ϕi0(z) = ϕi(z,R) associated with the system
{gn(z)} (eigenfunctions of (3.2)) given by:

(ϕi0)n =
2

L

L∫

0

µ∞(z)ϕi(z,R)gn(z)dz.

REMARK 4.7. If (µ(z), ρ(z)) are not constant we approximategn(z) by discretizing the
Sturm-Liouville problem (3.2) by the finite element method in the interval]0, L[ .

For eachα2 in
[
c2−β1, c

2
∞β1

[
, we solve the generalized eigenvalue problem (4.13). For

that we perform the Cholesky factorizationB = LTL and make the change of the coordinates
Z = LTY , which transforms the system into

(4.14) L−T
(
A+DN (α)

)
L−1Z = λZ.
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The latter system has a sequence of eigenvaluesλNm(α), 1 ≤ m ≤ M . Form fixed, we put
g(α) = λNm(α). The functiong is decreasing (see Proposition3.7), sog possesses a fixed
point if and only if

(4.15) g(c2−β1) < c2∞β1.

If (4.15) holds, we approximate this point by the secant iteration

α0 = c2−β1, αs+1 =
c2∞β1g(αs)− αsg(c

2
∞β1)

g(αs) + c2∞β1 − g(c2∞β1)− αs
for s = 0, 1, . . . .

We stop the process when|αs+1 − αs| < ǫ, whereǫ is the desired accuracy.

5. Numerical results. We present two simple numerical experiment to verify and illus-
trate the result in this paper.

5.1. An example with piecewise constant profile.In the first example, the domain is
ΩR = ]0, R[ × ]0, L[ whereR = L = 1. Define the piecewise constant coefficients:

ρ1 = 1.0× 103 kg/m3, ρ2 = 1.0× 103 kg/m3

µ1 = 0.5× 1011 N/m3, µ2 = 1.0× 1011 N/m3

In this case there exists a hierarchy of eigenmodesup(r, z) = up(r) sin(λpz), λp =
2p+ 1

2L
π,

indexed with an integerp, such that

up(r) = A





J1(αpr)

J1(αpR)
if r < R,

K1(βpr)

K1(βpR)
if r > R,

where

α2
p =

ω2

c21
− λ2p, β

2
p = λ2p −

ω2

c22
with c21 =

µ1

ρ1
, c22 =

µ2

ρ2
.

and{Jν(z),Kν(z)} are Bessel and modified Bessel functions of orderν. The eigenvalues
ω2 are the roots of the characteristic equation, in the interval Ip =

[
c21λ

2
p, c

2
2λ

2
p

[
,

Gp(ω
2) := αpR

J0(αpR)

J1(αpR)
+
µ2

µ1
βpR

K0(βpR)

K1(βpR)
+ 2

(
µ2

µ1
− 1

)
= 0.

Gp(ω
2) possessesp roots in the intervalIp.

We have computed numerically the first frequencies and compared with exact ones. Re-
sults are shown in the Table5.1.

TABLE 5.1
Convergence of the method for the first eigenvalues.

p 1 2 3
ω 40877 60899 71439 81840 90600 102303
ωh 40916 60794 71992 81865 89956 100915

|ω−ωh|
ω

0.0010 0.0017 0.0077 0.0003 0.0071 0.0135

The approximationωN
h is computed with the dataN = 1,Mr = 24,Mz = 30. We have

used the commandspecof the softwareScilab 5based on the routine DGEEV of LAPACK.
We observe that the result is insensible of higher ordersN ≥ 2.
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FIGURE 5.1. First modes forz = L.

3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8

x 10
4

4.15

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55
x 10

4

FIGURE 5.2. The first dispersion curveα → ωN
1,h

(α).

5.2. An example with linear profile. As a second example, we consider a problem with
coefficientµ(r, z) which is affine inΩ1 = ]0, 1[ × ]0, 1[ :

µ(r, z) =

{
a(r + z) + µmin for 0 < r < 1,

µ∞ for r > 1,

with a = 0.2 × 1011, µmin = 0.5 × 1011 andµ∞ = 1.0 × 1011. With N = 10 and
Mr =Mz = 23, we have computed the first frequencies

ω1,h = 45230, ω2,h = 57054, ω3,h = 72183.

In Table5.2, we show the evolution ofωN
1,h with N , h fixed. We notice that the contri-

bution of the ranksN = 1, 2 is essential.

TABLE 5.2
Evolution ofωN

i with N

N 1 2 3 4 5
ω1 45227.233 45230.235 45230.237 45230.238 45230.242
ω2 58321.369 58321.424 58321.443 58321.459 58321.461
ω3 72296.395 72302.084 72302.100 72302.105 72302.107

The corresponding eigenvectors are plotted, forz = L, in Figure5.1. Figure5.2shows
that the dispersion curveα→ ω1(α) is decreasing.
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isyḿetrique, Maghreb Math. Rev., 8 (1999), pp. 11–24.
[3] A. S. BONNET AND R. DJELLOULI, Calcul des modes guids d’une fibre optique, Tech. Report 82, Centre de
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tielles, Masson, Issy-les-Moulineaux, France, 1988.

[15] M. REED AND B. SIMON, Methods of modern mathematical physics, Academic Press, New York, 1978.
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