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EVALUATING THE FR ÉCHET DERIVATIVE OF THE MATRIX PTH ROOT ∗

JOÃO R. CARDOSO†

Abstract. This paper shows that computing the Fréchet derivative of the matrixpth root is equivalent to solve
a sequence ofp Sylvester equations. This provides the theoretical support to design an algorithm for the effective
computation of the Fréchet derivative. The conditioning of the Sylvester sequence is addressed and some numerical
experiments are carried out to illustrate the results.
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1. Introduction. Let p ≥ 2 be a positive integer. Given a matrixA ∈ C
n×n with

eigenvalues not belonging to the closed negative real axis,there is a unique matrixX such
thatXp = A whose eigenvalues lie on the sector of the complex plane defined by

(1.1) − π

p
< arg(z) <

π

p
,

wherearg(z) denotes the argument of the complex numberz. This unique matrixX is called
theprincipal pth root ofA and is a primary matrix function ofA. It is denoted byA1/p. We
refer the reader to [12] and [14, Ch. 6] for details about the theory of matrixpth roots and
primary matrix functions.

The computation of matrixpth roots arises in many technical problems. Due to its closed
relation with the matrix sector function, which in turn has applications in Control, many
papers have been devoted to finding approximation methods for the matrixpth root. See, for
instance, [8, 9, 13, 15, 17, 19, 24]. Applications of the matrixpth rootin other areas such as
Finance and Healthcare are pointed out in [13].

It is well-known that the sensitivity of the matrixpth root (and primary matrix functions
in general) to small perturbations in the data is measured bya condition number based on the
norm of the Fŕechet derivative. In this paper we propose a method for evaluating the Fŕechet
derivative of the matrixpth root which was inspired by the work developed previously by
Kenney and Laub [16] for the Fŕechet derivatives of the matrix exponential and the matrix
logarithm. We first show that the computation of the Fréchet derivative of the power matrix
Xp can be reduced to solve a sequence ofp Sylvester equations. Then, by reversing the
procedure, we are able to conclude that the evaluation of theFréchet derivative ofA1/p is
also equivalent to solvep particular Sylvester equations of the form

A1/pX −X(γA1/p) = C,

whereC ∈ C
n×n andγ is a complex scalar. Due to the simplified form of these equations,

we can save much work by computing first the Schur decomposition ofA to obtain Sylvester
equations involving only triangular matrices on the left-hand side. The resulting method for
the Fŕechet derivative involvesO(pn3) operations, which is efficient, at least forp not being
a large prime number. In contrast with the method of Kenney and Laub which uses Pade
approximants to the functiontanh(x)/x, an important feature of our method is that it does
not require Pade approximations. As a consequence, our method is free from the truncation
errors arising in the Padé approximation.
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The Sylvester equation is a much studied topic, both theoretically and computationally.
For some theoretical background, see for instance, [4] and the references therein; for solving
the Sylvester equation, one of the most popular methods is due to Bartels and Stewart [3],
which is based on the Schur decomposition of matrices. An improvement of this method was
proposed in [6]. See also [11] for a study of perturbation of this equation.

In general the methods for approximating the Fréchet derivative do not need to be highly
accurate (in many cases an error less than10−1 may be satisfactory). However, this in not
the case of our method which performs with very good accuracy. Thus our method is suitable
not only to approximate the Frechét derivative, but also for the computation of the matrix
pth root, in the spirit of [16]. As far as we know, no numerical scheme has been previously
proposed in the literature for the Fréchet derivative of the matrixpth root.

This paper is organized as follows. First, we recall some basic facts about the Fréchet
derivatives of the matrix power and matrixpth root functions. Some new bounds are pro-
posed. In Section3, some lemmas are stated in order to provide the theoretical support of
the main result (Theorem3.4), which enable us to design an algorithm for computing the
Fréchet derivative of the matrixpth root. Since this algorithm involves a sequence of partic-
ular Sylvester equations, often called a Sylvester cascade, in Section4 we analyze the propa-
gation of the error along the sequence and propose an expression for the condition number of
each equation. Numerical experiments are carried out in Section 5 and some conclusions are
drawn in Section6.

Throughout the paper‖.‖ will denote a consistent matrix norm. The Frobenius norm and
the 2-norm will be denoted by‖.‖F and‖.‖2, respectively.

2. Background on the Fŕechet derivative. Let A,E ∈ C
n×n. The Fŕechet derivative

of a matrix functionf at A in the direction ofE is a linear operatorLf that mapsE to
Lf (A,E) such thatf(A + E) − f(A) − Lf (A,E) = O(‖E‖2), for all E ∈ C

n×n. The
Fréchet derivative may not exist, but if it does it is unique. The condition number off atA is
given by

κf (A) =
‖Lf (A)‖ ‖A‖

‖f(A)‖ ,

where

‖Lf (A)‖ = max
‖E‖=1

‖Lf (A,E)‖;

see [12, Ch. 3]. If an approximation toLf (A,E) is known, then a numerical scheme like the
power method on Fréchet derivative [12, Algorithm 3.20] can be used to estimate‖Lf (A)‖
and then the condition numberκf (A).

The following results characterize, respectively, the Fréchet derivative of the functions
Xp andX1/p.

LEMMA 2.1. LetA,E ∈ C
n×n. If Lxp(A,E) denotes the Fŕechet derivative ofXp at

A in the direction ofE, then

(2.1) Lxp(A,E) =

p−1
∑

j=0

Ap−1−jEAj .

Proof. See, for instance, [1, Sec. 3].
LEMMA 2.2. Let A,E ∈ C

n×n and assume thatA has no eigenvalues on the closed
negative real axis. IfLx1/p(A,E) denotes the Fŕechet derivative ofX1/p atA in the direction
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of E, thenLx1/p(A,E) is the unique solution of the generalized Sylvester equation

(2.2)
p−1
∑

j=0

(

A1/p
)p−1−j

X
(

A1/p
)j

= E.

Proof. See [12, Problem 7.4] and its solution and [22, Sec. 2.5]. See also [18, Thm. 5.1]
for a similar result for the matrix sector function.

Recently, an iterative method for solving a generalized Sylvester equation including (2.2)
as a particular case was proposed in [20]. The method involvesO(pn3) operations and in
exact arithmetic the solution is reached aftern2 iterations, for any given initial guess. We
have implemented the method but conclude that in finite precision arithmetic it seems to
suffer from numerical instability. The convergence is too slow which makes the method
impractical for the practical computation of the Fréchet derivative.

Another characterization of the Fréchet derivativeLx1/p(A,E) is given by means of the
integral [5]:

Lx1/p(A,E) =
sin(π/p)

π

∫ ∞

0

(xI +A)−1E(xI +A)−1x1/p dx.

A problem that needs to be investigated is the approximationof this integral by numerical
integration.

There is a closed expression for the Frobenius norm of the Fréchet derivative:

‖Lx1/p(A)‖F =

∥

∥

∥

∥

∥

∥

∥





p−1
∑

j=0

[

(

A1/p
)T
]j

⊗
(

A1/p
)p−1−j





−1
∥

∥

∥

∥

∥

∥

∥

2

;

see Problem7.4 and its solution in [12]. It is not practical to use this formula directly because
it involves Kronecker products and the inverse of ann2 × n2 matrix.

If just a rough estimate of the norm of the Fréchet derivative is required, then some
bounds are available in the literature. In [13], Higham and Lin have shown that

‖A1/pA−1‖
p‖I‖ ≤ ‖Lx1/p(A)‖ ≤ 1

p
e‖ log(A)/p‖‖Llog(A)‖,

wherelog(A) andLlog(A) denote, respectively, the logarithm ofA and the Fŕechet derivative
of the matrix logarithm. More bounds are stated in the following lemmas.

LEMMA 2.3. LetA ∈ C
n×n with no eigenvalues on the closed negative real axis and let

σ(A) denote the spectrum ofA. Then

(2.3) ‖Lx1/p(A)‖ ≥ 1

min
λ,µ∈σ(A)

∣

∣

∣

∣

∣

∣

p−1
∑

j=0

(λ1/p)j (µ1/p)p−1−j

∣

∣

∣

∣

∣

∣

.

Proof. Use [12, Th. 3.14] and note that, forλ 6= µ,

λ1/p − µ1/p

λ− µ
=

1
p−1
∑

j=0

(λ1/p)j (µ1/p)p−1−j

.
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From (2.3) the following lower bound for the condition number of the matrix pth root
can be derived:

κx1/p(A) ≥ 1

min
λ,µ∈σ(A)

∣

∣

∣

∣

∣

∣

p−1
∑

j=0

(λ1/p)j (µ1/p)p−1−j

∣

∣

∣

∣

∣

∣

‖A‖
‖A1/p‖ .

This lower bound may be viewed as a generalization of(6.3) in [12] and shows that the
condition number of the matrixpth root may be large ifA has any eigenvalue near zero or
close to the negative real axis.

LEMMA 2.4. LetA ∈ C
n×n and letB := I −A−1. If ‖B‖ < 1, then

‖Lx1/p(A)‖ ≤ 1

p
(1− ‖B‖)− p+1

p .

Proof. If |x| < 1, the functionf(x) = (1− x)−1/p has the following Taylor expansion

f(x) =

∞
∑

j=0

1

j!

(

1

p

)

j

xj ,

where the symbol(a)j denotes the rising factorial:

(a)0 = 1 and(a)j := a(a+ 1) . . . (a+ j − 1).

LetE ∈ C
n×n. The Fŕechet derivative off can be written as

Lf (B,E) =

∞
∑

j=0

1

j!

(

1

p

)

j

j−1
∑

i=0

Bj−1−iEBi.

Since the coefficients of the expansion off(x) are positive and‖E‖ = 1, one has

‖Lf (B)‖ ≤
∞
∑

j=0

1

j!

(

1

p

)

j

j‖B‖j−1

=
1

p
(1− ‖B‖)− p+1

p ,

and then the result follows.

3. Computation of the Fréchet derivative. First, we shall recall some basic facts about
Kronecker products and thevec operator. The Kronecker product ofA,B ∈ C

n×n is defined
by A ⊗ B = [aijB] ∈ C

n2×n2

and the Kronecker sum byA ⊕ B = A ⊗ I + I ⊗ B. The
notationvec stands for the linear operator that stacks the columns of a matrix into a long
vector. If λr andµs denote the eigenvalues ofA andB, respectively, then the eigenvalues
of the matrix

∑k
i,j=0 αijA

i ⊗Bj are of the form
∑k

i,j=0 αijλ
i
rµ

j
s, for somer, s = 1, . . . , n.

The following properties also hold:

(A⊗B)(C ⊗D) = AC ⊗BD(3.1)

vec(AXB) = (BT ⊗A) vec(X),(3.2)
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whereA,B,C,D,X ∈ C
n×n. We refer the reader to [7] and [14] for more details about

Kronecker products.

Applying thevec operator to both sides of equation (2.1) and using (3.2), a Kronecker
product-based form of the Fréchet derivative ofLxp(A,E) can be obtained:

vec (Lxp(A,E)) = K(A) vec(E),

where

(3.3) K(A) =

p−1
∑

j=0

(

AT
)j ⊗Ap−1−j ∈ C

n2×n2

.

Another expression forK(A) is given in the following lemma. See [16, Sec. 2] and [12,
Th. 10.13] for a similar result to the matrix exponential.

LEMMA 3.1. Assume thatA ∈ C
n×n is nonsingular and thatK(A) is given by (3.3). If

arg(λ) 6= (2k+1)π
p−1 , for anyλ ∈ σ(A) andk = 0, 1, . . . , p− 2, then

K(A) =
(

(Ap−1)T ⊕Ap−1
)

φ(AT ⊗A−1),

where

(3.4) φ(x) =
xp−1 + · · ·+ x+ 1

xp−1 + 1
.

Proof. The assumption thatarg(λ) 6= (2k+1)π
p−1 , for anyλ ∈ σ(A) andk = 0, 1, . . . , p−2,

ensures thatφ(AT ⊗A−1) is well defined. Since

p−1
∑

j=0

xj = (xp−1 + 1)φ(x),

the result follows from the following identities, where basic properties of Kronecker sums
and products are used:

K(A) = (I ⊗Ap−1)

p−1
∑

j=0

(AT ⊗A−1)j

= (I ⊗Ap−1)
(

(AT ⊗A−1)p−1 + I
)

φ(AT ⊗A−1)

=
(

(AT )p−1 ⊗ I + I ⊗Ap−1
)

φ(AT ⊗A−1)

=
(

(AT )p−1 ⊕Ap−1
)

φ(AT ⊗A−1).

REMARK 3.2. Note that ifx 6= 1, φ(x) can be simplified toφ(x) = xp−1
(x−1)(xp−1+1) .

A representation of the functionφ(x) in terms ofpth roots of1 and(p−1)th roots of−1
is given in the next lemma.

LEMMA 3.3. Letφ(x) be as in (3.4). Then

(3.5) φ(x) =

(

x
αp−1

− 1
x

βp−1
− 1

)

· · ·
(

x
α2

− 1
x
β2

− 1

)(

x
α1

− 1
x
β1

− 1

)

,
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where

(3.6) αk = e
2kπ
p i, βk = e

(2k−1)π
p−1 i,

for k = 1, . . . , p − 1, are respectively thepth roots of1 (with the exception of1) and the
(p− 1)th roots of−1.

Proof. Sinceφ(x) = xp−1
(x−1)(xp−1+1) , a simple calculation leads to the result.

Now we have the theoretical support to show that computing the Fŕechet derivative of
Lxp(A,E) is equivalent to solving a set of recursive Sylvester equations. Assuming that the
conditions of Lemma3.1are satisfied, we can write

vec (Lxp(A,E)) =
(

(AT )p−1 ⊕Ap−1
)

φ(AT ⊗A−1) vec(E)

=
(

(Ap−1)T ⊗ I + I ⊗Ap−1
)

vec(Y ),

whereY is ann× n matrix such that

(3.7) vec(Y ) = φ(AT ⊗A−1) vec(E).

Then, by (3.2),

Lxp(A,E) = Ap−1Y + Y Ap−1.

From (3.5) and (3.7),

vec(Y ) =

(

AT ⊗A−1

βp−1
− I

)−1(
AT ⊗A−1

αp−1
− I

)

. . .

· · ·
(

AT ⊗A−1

β2
− I

)−1(
AT ⊗A−1

α2
− I

)

×

×
(

AT ⊗A−1

β1
− I

)−1(
AT ⊗A−1

α1
− I

)

vec(E).

LetX0 := E andX1 be ann× n complex matrix such that

(3.8) vec(X1) =

(

AT ⊗A−1

β1
− I

)−1(
AT ⊗A−1

α1
− I

)

vec(X0).

Then, by (3.2), equation (3.8) is equivalent to the following Sylvester equation:

AX1 −X1
A

β1
= AX0 −X0

A

α1
.

Due to the assumptions on the matrixA, this Sylvester equation has a unique solution because
σ(A) ∩ σ(A/β1) = ∅. Proceeding as above, it follows that the Fréchet derivative ofXp can
be expressed as

(3.9) Lxp(A,E) = Ap−1Xp−1 +Xp−1A
p−1,
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whereXp−1 arises after solving the followingp− 1 recursive Sylvester equations:

X0 = E

AX1 −X1
A

β1
= AX0 −X0

A

α1

AX2 −X2
A

β2
= AX1 −X1

A

α2

· · · · · ·
AXp−1 −Xp−1

A

βp−1
= AXp−2 −Xp−2

A

αp−2
.

Obviously, the explicit formula (3.9) is not recommended for computational purposes because
there are more attractive formulae, for instance,

Lxp(A,E) = Zp ,

whereZp is obtained by the recurrence

Y1 = AE, Z1 = E

Yj+1 = AYj

Zj+1 = ZjA+ Yj ,

j = 1, . . . , p− 1, which can be obtained from (2.1); see also [1, (3.4)] for a similar formula.
Our interest in deriving (3.9) is that the sequence of Sylvester equations involved can be
reversed. This enables us to show that computing the Fréchet derivative of the matrixpth root
is equivalent to solving a set ofp recursive Sylvester equations. This is the main result of the
paper and is stated in the next theorem.

THEOREM 3.4. LetA,E ∈ C
n×n and assume thatA has no eigenvalue on the closed

negative real axis. Ifαk andβk are as in (3.6) and ifB := A1/p, then

(3.10) Lx1/p(A,E) = X0,

whereX0 results from the following sequence ofp Sylvester equations:

Bp−1Xp−1 +Xp−1B
p−1 = E

BXp−2 −Xp−2
B

αp−1
= BXp−1 −Xp−1

B

β1

· · · · · ·(3.11)

BX1 −X1
B

α2
= BX2 −X2

B

β2

BX0 −X0
B

α1
= BX1 −X1

B

β1
.

Proof. SinceA has no eigenvalues lying on the closed negative real axis, the eigenvalues
of B satisfy the condition−π/p < arg(λ) < π/p, and then the assumptions of Lemma3.1
hold. This also guarantees that all the Sylvester equationsinvolved in (3.11) have a unique
solution. From Lemma2.2and (3.9) the result follows.

The strategy of reversing a sequence of Sylvester equationsto obtain the derivative of
the inverse function has also been put forward in [16] for the matrix exponential and the
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matrix logarithm. The main difference is that the sequence of Sylvester equations (3.11) is
derived from the exact rational functionφ(x) defined in (3.4) while Kenney and Laub used
sequences of Sylvester equations arising from the(8, 8) Pad́e approximants oftanh(x)/x.
Some advantages of our method are: the matrixA does not have to be close to the identity
(no square rooting or squaring is necessary) and we do not have to deal with the truncation
errors arising from the Padé approximation.

The method of Theorem3.4 is summarized in the following algorithm. SinceA1/p is
required, it is recommended to combine the algorithm with a method for computing the prin-
cipal pth root based on the Schur decomposition (for instance the methods of Smith [23] or
Guo and Higham [8]). Once the Schur decomposition ofA is known, no more Schur decom-
positions need to be evaluated in the algorithm.

ALGORITHM 3.5. Let A ∈ C
n×n with no eigenvalue on the closed negative real axis

and letαk andβk be given as in (3.6). Assume in addition that the matricesU andT 1/p in
the decompositionA1/p = UT 1/pU⋆, with U unitary andT upper triangular, are known.
This algorithm computes the Fréchet derivativeLx1/p(A,E).

1. SetB := T 1/p andẼ = U⋆EU ;
2. ComputeB̃ := Bp−1 by solving the triangular matrix equationBX = T ;
3. FindY in the Sylvester equatioñBY + Y B̃ = Ẽ;
4. SetYp−1 := Y ;
5. for k = p− 1, . . . , 2, 1, findYk−1 in the Sylvester equation

BYk−1 − Yk−1
B

αk
= BYk − Yk

B

βk
;

6. Lx1/p(A,E) = UY0U
⋆ ; see (3.12) below.

Cost.(4p+ 19/3)n3

To derive the above expression for estimating the cost of Algorithm 3.5, we have based the
flop counts on the tables given in [12, p. 336-337]. We note that the effective cost may be
higher than that estimate because the algorithm involves complex arithmetic. Step6 is based
on the following identity involving the Fréchet derivative and the Schur decomposition:

(3.12) Lx1/p(A,E) = ULx1/p(T,U⋆EU)U⋆,

which can be easily derived from (2.2) ; see also [12, Problem 3.2].
A drawback of Algorithm3.5is that the number of Sylvester equations involved increases

with p which makes it quite expensive for large values of bothn andp, especially whenp is a
large prime number. However, ifp is large but is composite, sayp = p1p2, then onlyp1 + p2
Sylvester equations are involved because

(3.13) Lx1/p(A,E) = Lx1/p1 (A,E)A1/p2 +A1/p1Lx1/p2 (A,E) ;

see [12, Th. 3.3]. At first glance it seems that forp large, finding(m,m) diagonal Pad́e
approximants toφ(x), with m ≪ p, would avoid the use of a large number of Sylvester
equations. It happens that this strategy does not work because Pad́e approximants toφ(x)
of some orders may not exist or may coincide. This phenomenonseems to be typical for
Pad́e approximants to rational functions, as analyzed in detailthroughout [2, Ch. 2]. See in
particular the so-called Gragg example on page 13 and its Padé table on page 23. By virtue
of [2, Th. 2.2], we also note that, for allℓ,m ≥ p − 1, Pad́e approximants toφ(x) of order
(ℓ,m) coincide withφ(x).
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Algorithm 3.5 is also suitable for real matrices, though it involves complex arithmetic
because theαk andβk are not real. A possible strategy to overcome this problem isto write
φ(x) in (3.4) as a product of rational functions involving real quadratic polynomials in the
numerator and in the denominator. This holds only forp odd, which is the case that matters
by virtue of (3.13). Thus, assuming thatp is odd, we can rearrange the factors in (3.5) and
write φ(x) as

φ(x) =

(

x
α1

− 1
x
β1

− 1

) (

x
αp−1

− 1
x

βp−1
− 1

)

. . .

( x
α(p−1)/2

− 1

x
β(p−1)/2

− 1

) ( x
α(p+1)/2

− 1

x
β(p+1)/2−1

)

=

(

x2 − (α1 + αp−1)x+ 1

x2 − (β1 + βp−1)x+ 1

)

. . .

(

x2 − (α(p−1)/2 + α(p+1)/2)x+ 1

x2 − (β(p−1)/2 + β(p+1)/2)x+ 1

)

.

Proceeding as before, some calculation enables us to conclude that computingLxp(A,E) is
equivalent to solving(p− 1)/2 recursive Sylvester equations of the form

(3.14) XkA
2−(βk+βp−k)AXkA+A2Xk = Xk−1A

2−(αk+αp−k)AXk−1A+A2Xk−1,

with k = 1, . . . , (p − 1)/2. Sinceαk + αp−k and βk + βp−k are real, the problem of
computingLxp(A,E) can be reduced to solving(p−1)/2 real quadratic Sylvester equations.
By reversing the procedure, a similar conclusion can be drawn for the Fŕechet derivative of
the matrixpth root. This is a topic that needs further research because it is not clear how to
solve efficiently an equation of the form (3.14).

We end this section by noting that Algorithm3.5 with minor changes is appropriate for
solving a generalized Sylvester equation of the form

p−1
∑

j=0

Bp−1−jXBj = C,

with B having eigenvalues satisfying−π/p < arg(λ) < π/p andC ∈ C
n×n ; see [5].

4. Perturbation analysis. We have seen that the computation of the Fréchet derivative
involves a sequence of(p− 1) Sylvester equations of the form

BXk−1 −Xk−1
B

αk
= BXk −Xk

B

βk
,

whereB, αk, βk are as in Theorem3.4. The right-hand side of this equation is known
and we need to solve the equation in order to findXk−1. SinceXk results from solving
the previous Sylvester equation, it may be affected by an error that propagates through the
Sylvester cascade. We would like to know how this error affects the solutionXk−1. To
simplify the notation, we work instead with the equation

(4.1) BX −X
B

αk
= BY − Y

B

βk
,

where we assume thatY is known whileX has to be found. Consider the following perturbed
version of equation (4.1):

(B +∆B)(X +∆X)− (X +∆X)
(

1
αk

(B +∆B)
)

=

= (B +∆B)(Y +∆Y )− (Y +∆Y )
(

1
βk

(B +∆B)
)

.



ETNA
Kent State University 

http://etna.math.kent.edu
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Ignoring second order terms, we obtain

B∆X − 1

αk
∆X B = ∆B(Y −X) +

(

1

αk
X − 1

βk
Y

)

∆B +B∆Y − 1

βk
∆Y B.

Applying thevec operator and using its properties,
(

I ⊗B − BT

αk
⊗ I
)

vec(∆X) =

=
[

I ⊗
(

X
αk

− Y
βk

)

− (X − Y )T ⊗ I, I ⊗B − BT

βk
⊗ I
]

[

vec(∆B)
vec(∆Y )

]

,

which can be written in the form

vec(∆X) = M−1[N1 N2]

[

vec(∆B)
vec(∆Y )

]

,

where

M = I ⊗B − BT

αk
⊗ I,

N1 = I ⊗
(

X

αk
− Y

βk

)

− (X − Y )T ⊗ I,

N2 = I ⊗B − BT

βk
⊗ I.

Since

vec(∆X) = M−1
[

‖B‖F N1 ‖Y ‖F N2

]

[

vec(∆B)/‖B‖F
vec(∆Y )/‖Y ‖F

]

,

it follows that

(4.2) ‖∆X‖F ≤
√
2
∥

∥

∥
M−1

[

‖B‖F N1 ‖Y ‖F N2

] ∥

∥

∥

2
max

{‖∆B‖F
‖B‖F

,
‖∆Y ‖F
‖Y ‖F

}

,

and therefore

(4.3)
‖∆X‖F
‖X‖F

≤
√
2 δΦ,

where

δ = max

{‖∆B‖F
‖B‖F

,
‖∆Y ‖F
‖Y ‖F

}

,

Φ =

∥

∥

∥M−1
[

‖B‖FN1 ‖Y ‖FN2

] ∥

∥

∥

2

‖X‖F
.

Inequality (4.3) gives a bound for the relative error of the solutionX of the Sylvester equation
(4.1) in terms of the relative errors affectingB andY . According to [11, Sec. 4], where a
similar perturbation analysis was performed, this bound issharp (to first order inδ) andΦ
can be seen as the condition number for the Sylvester equation (4.1). Thus, ifΦ is small an
accurate result is expected after solving the Sylvester cascade.
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To obtain a better understanding into how the error propagates through the Sylvester
equations, we simplify slightly the problem by assuming that B is known exactly, that is,
∆B = 0. Then (4.2) becomes

‖∆X‖F ≤
∥

∥M−1N
∥

∥

2
‖∆Y ‖F ,

with

(4.4) M = I ⊗B − BT

αk
⊗ I, N = I ⊗B − BT

βk
⊗ I,

and (4.3) simplifies to

(4.5)
‖∆X‖F
‖X‖F

≤ Φ
‖∆Y ‖F
‖Y ‖F

,

with

Φ =

∥

∥M−1N
∥

∥

2
‖Y ‖F

‖X‖F
.

We have computed the value ofΦ in (4.5) for several matricesB with eigenvalues satisfying
(1.1) and have observed that for several examplesΦ is small (more precisely,1 ≤ Φ ≤ 2),
but it can be large (see Section5). To understand why, let us assume in addition thatB is
normal. Then the matricesM andN given in (4.4) are also normal. Moreover, they commute
and can be written as

M =

(

−BT

αk

)

⊕B,

N =

(

−BT

βk

)

⊕B.

The productM−1N is also normal and hence

‖M−1N‖2 = max
λ∈σ(M−1N)

|λ|.

Since the eigenvalues ofM−1N are of the form

λ =
βkλi − λj

αkλr − λs
,

for someλi, λj , λr, λs ∈ σ(B), we can see that if the eigenvalues ofB are close to zero
or have arguments close to±π/p, then

∥

∥M−1N
∥

∥

2
may be large, and then a large condition

numberΦ is expected.

5. Numerical experiments. Algorithm 3.5 has been implemented in MATLAB, with
unit roundoffu ≈ 1.1×10−16. For the numerical experiments we first consider the following
8 pairs(A,E) of real and complex matrices combined withp = 5, p = 19 andp = 53:

• Pair 1: A = hilb(8), E = rand(8); A is an8 × 8 Hilbert matrix which is almost
singular andE is a randomized matrix of the same size, with uniformly distributed
pseudorandom entries on the open interval]0, 1[;

• Pair 2: A = gallery(′frank′, 8), E = rand(8); A is a Frank8 × 8 matrix taken
from the MATLAB gallery which is very ill conditioned;
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• Pair 3:A = gallery(3), E = rand(3); A is an3× 3 badly conditioned matrix;
• Pair 4:A = SQS−1, where

Q =









e5 0 0 0
0 e−5 0 0
0 0 cos(3.14) − sin(3.14)
0 0 sin(3.14) cos(3.14)









, S =









1 2 3 4
5 6 7 8
0 0 9 10
0 0 11 12









,

andE = rand(4); This matrix has eigenvalues very close to the negative realaxis
and was taken from [16, Ex. 6];

• Pairs 5 to 8: A = expm(2 ∗ randn(10) + 2 ∗ i ∗ randn(10)), E = rand(10)+
i ∗ rand(10); BothA andE are complex with size10× 10.

To study the quality of the computed Fréchet derivativẽL ≈ Lx1/p(A,E), we evaluated the
relative residual of then2 × n2 linear system that results from applying thevec operator to
the generalized Sylvester equation (2.2):

(5.1) ρ(A,E) =
‖M vec(L̃)− vec(E)‖F

‖M‖F ‖ vec(L̃)‖F
.

The results are displayed in Figure5.1, where we can observe that the computed Fréchet
derivative is very satisfactory in the sense thatρ(A,E) . u for each pair and eachp consid-
ered. The Sylvester equations in Algorithm3.5have been solved by the Bartels and Stewart
method [3], whose codes are available in the Matrix Function Toolbox [10]. For the compu-
tation of the principal matrixpth rootT 1/p in step 1, we have modified the Schur-Newton
Algorithm 3.3 in [8] in order to run it with complex arithmetic.

1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
x 10

−16

pair

re
si

du
al

 

 
p=5
p=19
p=53

FIG. 5.1.Values ofρ(A,E) for the8 pairs of matrices(A,E) combined with the valuesp = 5, 19, 53.
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Given an algorithm for computing a matrix functionf , the Fŕechet derivative can be
obtained using the following relation ([21, Thm. 2.1], [12, Eq. (3.16)])

(5.2) f

([

A E
0 A

])

=

[

f(A) Lf (A,E)
0 f(A)

]

by reading off the(1, 2) block of the matrix in the right-hand side in a single invocation of
any algorithm that computesf . Formula (5.2) has the advantage of providing a very simple
algorithm for the Fŕechet derivative. A drawback of (5.2) is that it involves an2n × 2n
matrix, and then the cost of evaluatingLf (A,E) is about8 times the cost off(A), unless
the particular block structure is exploited. Moreover, as pointed out in [1, Sec. 6], this
formula is not suitable to be combined with techniques widely used for some matrix functions
such as scaling and squaring the matrix exponential, inverse scaling and squaring the matrix
logarithm, and square rooting and squaring the matrixpth root. The main reason is that when
‖E‖ ≫ ‖A‖, algorithms based on (5.2) may require the computation of unnecessary scalings
(respectively, square rootings) to bring the matrix in the left-hand side close to zero (resp.,
close to the identity). This unpleasant situation has been addressed in many papers ; see for
instance [16] and the references therein. SinceLf (A,αE) = αLf (A,E), an algorithm for
computingLf (A,E) should not be influenced by the norm ofE.

We have carried out some numerical experiments with (5.2) in order to compare it with
Algorithm 3.5. For comparison purposes, we have assumed that the computation of a Schur
decomposition and onepth root is included in Algorithm3.5. For the computation of the
matrix pth root we have considered the algorithms of Smith [23, Algorithm 4.3] and of Guo
and Higham [8, Algorithm 3.3]. Both algorithms are based on the Schur decomposition
and are available in [10]. Due to the reasons mentioned above, we have not consideredthe
algorithm of Higham and Lin [13] which involves square rooting and squaring.

We first compare the cost. Since the Schur decomposition of ann × n matrix involves
about25n3 flops, much work can be saved if the block structure of the matrix in the left-hand
side of (5.2) is respected:

(5.3)

[

A E
0 A

]

=

[

U 0
0 U

] [

T U⋆EU
0 T

] [

U 0
0 U

]⋆

,

whereA = UTU⋆, with T upper triangular andU unitary. Using (5.3), the Schur decompo-
sition of the2n × 2n matrix in (5.2) can be computed through29n3 flops, instead of200n3

if computed directly. Combining the algorithms of Smith andGuo and Higham with (5.3)
we can say that these algorithms in general requires slightly fewer flops than Algorithm3.5.
However, this does not mean that algorithms of Smith and Guo and Higham are faster than
Algorithm 3.5. Indeed, in tests carried out withp a prime number between2 and100 and sev-
eral matrices with sizes10 ≤ n ≤ 100 we have measured the CPU times (in seconds) of the
three algorithms and noticed that Algorithm3.5 is the fastest. The differences become more
significative when we fixp and increasen. Table5.1displays the average CPU times required
for computing the Fŕechet derivativeLx1/p(A,E), for 4 pairs of matrices(A,E) (pairs9 to
12) obtained usingA = rand(n)̂ 2 andE = randn(n), for n = 10, 50, 80, 100 andp = 19.
It is clear that the algorithm of Smith is much slower than theothers and that Algorithm3.5
performs much faster than the algorithm of Guo and Higham. One of the reasons for this may
be related with storage. While Algorithm3.5requires the storage ofn×n matrices, the other
algorithms deal with2n× 2n matrices that may require larger storage. However, we believe
that using formula (5.2) to derive new algorithms for the Fréchet derivative by exploiting the
block structure may be a promising topic for further research. We recall that some work has
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Pair size Algorithm3.5 Smith Guo and Higham
9 10× 10 0.0059 0.3897 0.0255
10 50× 50 0.1027 9.5072 0.9854
11 80× 80 0.3682 22.1088 2.9212
12 100× 100 0.6439 39.2173 4.1325

TABLE 5.1
CPU times (in seconds) required by Algorithm3.5and algorithms of Smith and Guo and Higham, withp = 19.

already been done for the Fréchet derivative of the matrix square root [1, Sec. 2] and for the
matrix sector function [18, Thm. 5.3], though implementation issues have not been discussed.

We have also analysed the residuals (5.1) produced by the two algorithms based on (5.2)
with several pairs of matrices, including pairs 1 to 12 mentioned above. Although in some
tests Algorithm3.5 produced slightly smaller residuals, the residuals were ingeneral of the
same order.

We saw above that the Sylvester equations in the sequence (3.11) may be ill conditioned
when the eigenvalues ofA are close to the negative real axis. To illustrate this phenomenon,
we have considered the matrixA = SQ(θ)S−1, where

Q(θ) =









e2 0 0 0
0 e−2 0 0
0 0 cos(θ) − sin(θ)
0 0 sin(θ) cos(θ)









, S = randn(4),

andE = rand(4). Figure5.2 displays the values of the condition numberΦ given by (4.3)
for each of the equations involved in the Sylvester sequence(3.11), for p = 19. There are
exactly19 Sylvester equations involved in this sequence. Both graphics use a linear scale in
thex axis and a log-scale in they axis. The plot in the left-hand side concerns to the value
of θ = 3.14 in A and the one in the right-hand side toθ = π/2. As expected, in the extreme
case ofA having eigenvalues very close to the negative real axis (θ = 3.14) the Sylvester
equations may be badly conditioned. However, this does not happen with other values ofθ,
as illustrated in the right-hand side picture.

6. Conclusions. The Fŕechet derivative is the key to understand the effects of pertur-
bations of first order in primary matrix functions. For the particular case of the matrixpth
root we have derived an effective method for the computationof its Fŕechet derivative, which
involvesO(pn3) operations and is based on the solution of a certain sequenceof Sylvester
equations. Both theory and computation of Sylvester equations are well understood. Numer-
ical experiments we have carried out showed that the proposed method is faster than methods
based on (5.2) and has relative residuals close to the unit roundoff. Someissues that need
further research, as for instance the restriction of Algorithm 3.5 to the real case involving
only real arithmetic, were pointed out.

Acknowledgments. The author thanks the referees for their valuable and insightful
comments and suggestions.



ETNA
Kent State University 

http://etna.math.kent.edu

216 J. R. CARDOSO

0 5 10 15 20
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Sylvester equations

co
nd

iti
on

 n
um

be
r

θ=3.14

0 5 10 15 20
10

0

10
1

10
2

Sylvester equations

θ=π/2

FIG. 5.2. The condition numberΦ in (4.3) of each equation involved in the Sylvester sequence
(3.11), with p = 19.
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