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POSITIVITY OF DLV AND MDLVS ALGORITHMS FOR COMPUTING
SINGULAR VALUES *

MASASHI IWASAKI T AND YOSHIMASA NAKAMURA ¥

Abstract. The discrete Lotka-Volterra (dLV) and the modified dLV withfsfmdLVs) algorithms for computing
bidiagonal matrix singular values are considered. Posijtdfi the variables of the dLV algorithm is shown with the
help of the Favard theorem and the Christoffel-Darboux fdenofi symmetric orthogonal polynomials. A suitable
shift of origin also guarantees positivity of the mdLVs aligfom which results in a higher relative accuracy of the
computed singular values.
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1. Introduction. A close relationship between known numerical algorithmg dis-
crete-time integrable dynamical systems is reviewed?Hh).[ There, a continuous-time or
discrete-time dynamical system is calledegrable if it has an explicit solution of deter-
minant form, a Lax form and a sufficient number of conservedntjties. For example,
Rutishauser’s qd algorithn2}] for computing tridiagonal matrix eigenvalues and congidu
fraction expansions is equivalent to a discrete-time Tdarc[13]. Wynn's e-algorithm [B5]
for accelerating convergence of sequences is a discrateKdV equation26]. Is it possible
to formulate a new effective numerical algorithm in termssofme discrete-time integrable
system? The answer is yes. A new algorithm for computinglgiginal matrix singular values
is presented in1[4, 34] with the help of a discrete-time Lotka-Volterra (dLV, fdiart) system
[12, 29] with constant discrete step size. There is a beautiful sitpy paper 4] on the dLV
system. It is observed ir8] that a solution of a continuous-time finite Lotka-Volte(ta/)
system converges to bidiagonal singular values; see atspréteeding works2f, 30] on
the connection between a continuous-time finite Toda chadrtrédiagonal eigenvalues. The
corresponding discrete-time Toda chain is just the reaggeelation of the qd algorithm.
Thus, the existence of discrete-time integrable systerakey to design new numerical al-
gorithms. Though the dLV algorithm itself is subtractiordrand has exponential stability
[17], its convergence rate to the singular values is only liféd}. Therefore, a generaliza-
tion of the dLV to the case with variable step size is discd$sg15]. A modified dLV with
shift (mdLVs) algorithm is then designed ifig]. The mdLVs algorithm has a higher order
convergence rate and a higher relative accuracy. An impiétien of the mdLVs algorithm
with the Johnson shiftl9] and its evaluation are discussed 87].

Convergence theorems and stability of the dLV and the mdllysrahms are proved
in [14, 15, 16, 17] assuming that the free parametéf) is positiveand bounded namely,

0 < 6™ < M for some positive constat/. However, this parameter originally appears as
a non-zero discrete step-size it?], where —oo < 6™ < 0, or0 < §(™ < co. In other
words, the dLV system with non-ze®™ itself is not suitable to design stable numerical
algorithms. Since the qd algorithm and th@lgorithm have no such free parameter and
include subtraction, it has been an important problem hostabilize these algorithms.
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In this paper, it is proved that™ should be positive and boundeil< 6 < M, by
definition of the dLV algorithm in terms of orthogonal polyn@ls (OPs). Here, the dLV
system is derived from the compatibility condition betwélea Christoffel-Darboux formula
and the three-terms recurrence relation of symmetric ORsarAapplication of the Favard
theorem it is shown in this paper that the positivity and tmdaness of(™ result from the
positivity of a linear functional of such OPs. Since the diyét®m has no subtraction, all the
variables are kept positive.

Positivity and convergence of the mdLVs algorithm are alsaved in [L6] assuming
that the shift is less than the minimal singular value togettith positivity and boundedness
of 5("). Itis possible to choose such a shift. The generalized Neshift introduced in20]
is a candidate of a stable shift. Since the positivity andnioedness of("™) is guaranteed
by the Favard theorem, positivity of the mdLVs is also prowedhis paper. It is shown
that the positivity is an inherent property of the mdLVs amithdys us high relative accuracy.
Numerical experiments of the mdLVs with the generalized dewshift are given as well.
The mdLVs algorithm finds all the singular values, even tinget ones, to high relative
accuracy.

2. The dLV algorithm and the mdLVs algorithm revised. Here, we give a brief re-
view of the dLV algorithm and the mdLVs algorithm. Let us cioles the continuous-time
finite Lotka-\Volterra (LV) system

du
(2.1) CTtk = up(up+1 —up—1), (k=1,2,...,2m—1),

U (t) =0, U2m(t) =0,

whereus,, (t) = 0 is an additional condition. M. Chu] showed that fork = 1,2,...,m
a solutionusy—1 (t) of the LV converges to the square of some singular valyef a given
upper bidiagonal matrix

b1 by

B b2m
0 bam—1
andugy(t) goes to0 ast — o0o: limy—,oo ugk—1(t) = o7 andlim;_,oo usk(t) = 0. Here,
everyb; is assumed to be positivi; > 0. Such a bidiagonal matrix is derived from a general
nonsingular matrix through Householder transformatign Without loss of generality, the

singular values of3 are arranged ag;, > o9 > --- > 0, > 0. In [3], the initial values of
the differential equation?(1) are given by

(2.2) Ugp—1(0) = b3, 1 >0, uw(0) =03, >0, (k=1,2,...,m).

A proof is carried out with the help of the asymptotic behawbthe solution of the finite
Toda equation44]. Deift-Demmel-Li-Tomei p] discussed a Hamiltonian structure and its
meaning in the singular value decomposition. However, stiat been clear for a long time
how to design an actual numerical algorithm based on thesgieg works B, 5].

Let us consider the recurrence relation

23 oD — 2T TR 7
(2.3) k . 5(%1)%(:5;1) k
(2.4) W =0, 0o<ul™, Wi =0, 0<s™ <M,

(n=0,1,..., k=1,2,...,2m—1).
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FIG. 2.1.dLV table.

Let us regardu,(c”) as the value ofi, = u(t) at the timet = Z;’;Ol 5\, Keepingt a
constant, we take a limit®) — 4-0 such tha*+) /5(*) — 1. We then deriveZ.1) from
(2.3). We call @.3) the finite discrete LV (dLV) system. IriLp] it is shown that a solution of
the dLV with the additional conditior2(4) converges to the same limit as the finite LV

lim ug;)_l =07, (k=1,2,...,m), lim ug,? =0, (k=12,....m—1)

n—oo n—0o0

under theassumption of positivity and boundedne$s™). In Section5, the dLV system
(2.3) is presented as a deformation equation of a finite numbemoifreetric OPs. It is proved
in Theoremb.2 that the assumption of positivity and boundedness is autoatlst satisfied
by definition.

Itis to be remarked that the initial value setting is diffgrfrom that in the LV caseX 2).
The appropriate choice of initial values found 8¥] is

b2
0 ke—
uly = — 2 (k=12,...,m),
14 0Oy, ,

(2.5) .

(0) 2k

W) = — B (p=12, . m—1)

T + 5(0)u(2(1)<:)—1

aswell az:\”) = 0 andul) = 0. Here,u") = 0 corresponds to the case whe#e, = 0 and

D1 = 0 (cf. Section3). The computational procedure is indicated by a rhombuesirul
Figure2.1and will be called thelLV algorithmfor computing singular values of bidiagonal
matrices.

Basic properties of the dLV algorithm such as convergenmeyergence rate, error anal-
ysis, and stability are discussed # [L4, 15, 17, 34]. With respect to accuracy and stability
the dLV has the following good properties. There is no suiiwa in (2.3). The denominator
1+ 5(”+1)u,(!'jl) in the division is always greater than Obviously, no underflow occurs in
the denominator. Therefore, it is expected that the dLV rtlgm has a good relative accu-
racy. The dLV algorithm is shown to have exponential stgbilith the help of the existence
of a center manifold, in which the positivity 6f™ plays a key role.

Next, we discuss a relationship between the dLV algorithoh Ratishauser’s qd (quo-
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tient difference) algorithm1[1, 27]. Introduce new variablefp*q,(cn), e,(C”)} by

= gy (18 (1 s ).

eén) = (5(")ugz)_1uéz), (n=0,1,..., k=1,2,...,m).

(2.6)

Then it follows from @.3) that{q,(ﬁnﬁ eﬁf")} satisfy

(n)
(n+1) _ (n) _ (n+l) | (n) 1 1 (n+1) _ (n) Dt
2.7) q;, =q, —e€,_ *Te,  — (5(n) - 5(n+1)> , € =€ q]gn+1).

This recurrence relation takes the form of the progressivalgorithm with shift (pgds, for
short) 28]. The pqds algorithmd.7) is expressed in the following matrix form of the LR
transformation

1 1
(n+1) pn+l) _ pn)gp) _ (= _ =
L R =R™L ((5(”) (5(""'1))[7
a;" 0 Lo
LM .= ? , R .= 1 ' ,
. " (n)
.|
Loq) 0 1

wherel is themn x m unit matrix. Since the matri®("") L(") is positive definite by definition
(2.8), the shift1/6(") — 1/5(*+1) should be nonnegative, which impligs< () < §(»+1),
It follows from (2.4) that (™ tends to some positive constant, sy, asn — oo. Thus,
1/6(M —1/6(+1) — 0 asn — co. Whend(™ is constant im, the dLV recurrence relation
is reduced to that of the progressive qd algorithm withoift §hqd); see 2.7). A negative
constan®(™) is allowed in the general pqd algorithm, thus exponentatitity of the pqd is
not proved 7).

The rate of convergence of the dLV algorithm is then desdripea ratio of the closest
adjacent singular valu€s ;, o;41)

2 1 2 1
Tj+1 T 5~ Thy1 T 5
(2.9) Rary = 714' = max —— <1
2 k=1,....m—1 2
o; + — o+ —
7oy oy

This is proved by an asymptotic analysis of explicit solngidl4, 15]. It is shown that the
convergence rate of the dLV algorithm is otigear sinced, > 0. When the limitd.. be-
comes larger, the rate of convergertgy becomes slightly faster within linear convergence.

The mdLVs (modified dLV with shift) 16] is a shifted dLV algorithm keeping the posi-
tivity of the paramete§(™ . Let us introduce intermediate variablhs,i”), w,i")} by

_(n+1 n n n
w,(C )= u,(C ) (1—1—5( )u,(H)l),

w,in) = u,(cn) (1 +5(”)u,(€n_)1>, (n=0,1,..., k=1,2,...,m).
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_(r (2.10, (2.1))
{of"y —=2 fwM)
mdLVs | (212 |

{mz(cnﬂ)} T {Uggn)}

FIG. 2.2.mdLVs diagram.

The initial values 2.5) of the dLV correspond tav,(fo) = b7. Let us set
/1U§n) /1U£n)

[, ) -

B™ .= s '

)

O wé%—l

Obviously,B(®) = B. The mdLVs algorithm is defined by the recurrence relations

10wl = el kel - OOF, 00 =
() ()
n) _ War—1Way
2k—1
(n)
w
(2.12) R
S T
(2.13) o = (14 0™ufl),)

where (0()? indicates a shift of origin. The mdLVs algorithm is a compiosi of these
mappings as in Figura.2

The mapping fron{w,ﬁ”)} to {w,g")} defined by .10 and @.11) is expressed in matrix
form as

(2.14) oy w{"

Equation 2.14) is similar to €.8). The difference between the pgds algorith#r8( and the
mdLVs algorithm is as follows. Whef™) = 0, the mapping fron{w_" } to {w™} defined
by (2.10 and @.11) is an identity mapping, and the mapping fro{m,ﬁ”)} to {u?,g"“)}
defined by 2.12 and .13 is just the dLV algorithm Z.3). On the other hand, when
1/6( —1/6(»+1D =0, (2.8) is not an identity mapping but the pgd algorithm.
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Sinced©® = 0, we see that\”) = w” and then3(®) = B() = B. Letus set™ > 0,
(n=1,2,...), for simplicity. For the mapping fromiu’),(f”)} to {w,(c”)} the following lemma
is proved in [L6], which implies that the denominator df.(L1) never vanishes.

LEMMA 2.1 (Positivity ofw(") for a fixedn). Letw(”) > 0 for a fixedn and for
k=12...,2m—1 Letus denote by;(B™) the smgular values oBB("™ such that
0 < 0m(B™) <0, 1(B™) < - <o (B™). It holds that

w™ >0 ifandonlyif 6 < g, (B™).

Moreover, ifg(™) < am(B(")) — ¢, for some positive constant, thenw,i") > g5 for some
positive constant.

When the initial valuess\”) have positivity and boundedness, the same proper@’@f
for anyn is guaranteed by a successive choice of suitable shifts tﬁaaetargel{w("+1 } of
the mdLVs map is positive and bounded given positive mﬂaaiheka and suitable shifts.

LEMMA 2.2 (Positivity ofw|" ™ for anyn). Letd®) < ,,,(B®)for¢ = 0,1,...,n
Let M; and M> be some positive constants. THer: w(”“) < M; and0 < u; " < Moy
foranyn, if 0 < wl(c )< M.

Now, a convergence theorer] of the mdLVs algorithm is given. It follows from
Lemma2.2that}";° , (69)2 < o2, for 0¥) < o,,,(BY) for £ =0,1,....

THEOREM 2.3. Let0 < w(o) < M; andd®) < ¢,,(BY)for¢ = 0,1,.... Then it
follows that

oo

lim a) | = o} - ;(ew))z, (k=1,2....m)
(2.15) lim wék) =0, (k=12,....,m—1).
n—oo

For an implementation of the mdLVs algorithm the propefylp is quite useful to
introduce a stopping criteria. The asymptotic rate of cogperce of the mdLVs is described
by the ratio

[e.e]

1
2 £)\2
Tj+1 E (6% + E

E 1

Z (602
=1

Ryarvs == < Rarv,

where(c;,0;41) is the pair of closest adjacent singular valuesBot= B (see g.9 for
the definition of Rqry). A higher order convergence of the mdLV&g] results from the
inequalityRnqrvs < Rarv. Note that positivity and boundedness of the paramiterising
from0 < 6(™ < M in (2.4) are still assumed here.

The convergence rate depends on the choice of the#$hifas well asy, . The remaining
problem concerns the choice of suitable shifts suchafat< o,,(B®) for ¢ = 0,1,....
An excellent solution is the-th generalized Newton bound

1
2p

0,(B") = (trace(B“ TBO)- )
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introduced by K. KimuraZ20]. We observe that

1 _
— < om(BY),

1 1\

0<0,(BY)<0y(BY) < - <0,(BY), lim 6,(BY)=o0,(BY).
p— 00

@p(B(Z)) =

Obviously, 0, (B")) satisfiesd,(B¥)) < a,,(B®) for ¢ = 0,1,.... Since it also holds
that®,(B®) < ¢,,(B")) —¢, for some positive constaat, it is obtained from Lemma.1
thatw,(f”) > g4 for some positive,. Thus, we confirm a strict positivity of the denominator
w;z)_1 of (2.11) where the shift is given by the generalized Newton bound.

The generalized Newton boutd), (B) itself is computed by using a recurrence relation
using onlyO(pm) operations 20]. Recently, Y. YamamotoZ1] proved that the generalized
Newton shift yields a weaklyp + 1)-th order convergence of the mdLVs algorithm. The
mdLVs code with the generalized Newton shijft £ 2, 3,4) is shown to be actually faster
and more accurate than the mdLVs cod#] jwith the Johnson shiftl[9].

3. Orthogonal polynomials. Let us begin with the Favard theoren2,(jp. 21]). Let
{sx}, (k =10,1,2,...) be a sequence of real numbers. The sequéngckis called positive
whenever the bilinear for@}c'fzzo Sk+eTrTe IS positive for anym. Itis known that{s } is
positive if and only if the Hankel determinants

S0 S1 e Sm
S1 52 o Sm4l

Dygr = . ) ) = |sitjlo<ij<om, (m=0,1,...)
Sm 5m+1 Tt S2m

are positive foralim = 0,1, . ...
THEOREM 3.1 (Favard) Let{ax}, {br}, (k = 1,2,...) be sequences of real numbers.
Let{pr(\)} be polynomials oh defined by the three-terms recurrence relation

poN) =1, p1(A) =A=b1, pry1(A) = (A= bry1)pr(A) — azpr—1(N).
Then there exists a unique linear functionasuch that
J1] =s0, JpeMN)pe(N)] =0, (k,=0,1,...,k#Y)

for any positive constan,. Moreovera? > 0 if and only if the sequence of moments defined
by

spe=JN], (k=1,2,...)

is positive.

Proof. We can uniquely introduce a sequence of moments as foll®ets![py (\)] = 0,
(k=1,2,...). The momens, = J[1] is given byso = a2. From.J[p;(\)] = J[A—b1] =0
we find thats; = by1sg. From J[p2(A\)] = J[(A — b2)p1(A) — a?po(N)] = 0 we derive
s3 = (b1 +by)s1 + (a? — b1ba)se, and so on. Then, evewy, = J[\¥] is determined by using
the recurrence relation. This implies that a linear fundid is defined. It follows from the
recurrence relation and[p,(\)] = 0 that J[Apr(\)] = 0, (k = 2,3,...). Similarly, we
obtainJ[Np,(\)] =0, (j =0,1,...,k — 1) and thenJ[p;(A\)px(A)] = 0.
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Assume that? > 0, (k = 1,2,...). SinceJ[Mp,(\)] = 0 we have
TN P (W] = a2 TN Lp_ 1 (A)] = spa? - - a2.

Thus, J[pr(N)?] = spa?---ai. On the other hand, the polynomigl()), (k = 1,2,...)
takes the determinant forn3J]

30 51 e Sk
1 S1 S22 r Sk+1
A= —
Pr(N) Dy
Sk—1 Sk " S2k—1
1 D L

The coefficients:? of the recurrence relation are

o2 — Dy—1Djyy1
It follows from a? - - - a2 = Dy.+1/ Dy thatDy, > 0 for anyk and the corresponding moments
are positive. The converse is obvious from the above. O

The Favard theorem says that the polynomials(\)} defined by the three-terms re-
currence relation with positive coefficient$ are orthogonal with respect to the linear func-
tional .J, namely, J[px,(A\)pe(N)] = soa? - aidye. In this case, the corresponding set of
moments{s; } is positive and vice versa. Note thaf()) is of degreek and its leading
coefficient is 1. The polynomial§p;(\)} are sometimes called the monic orthogonal poly-
nomials (OPs) of the first kind.

OPs have some special features. One of them is the positipero$. It is known that
the zeros of OPs are mutually distinct real numbers and havsterlacing property]]. Let
{qx(\)} be OPs of the second kind defined by

-1 () =1, @) =0, gr1(N) = A= br1)ar(N) — aggr—1(N),

whereg;, (\) is of degreec — 1. Let )\ ,,,, ( = 1,2,....,m) andp; ,, (i = 1,2,...,m — 1)
be the zeros of,,,(\) andg,,(\), respectively. Then,

(31) )\1,m < H1,m < )\Z,m < H2,m <o < Hm—1,m < )\mfl,m~

This leads to the following statement. The rational functig (\)/p.. (\) of degreen admits
a partial fraction expansion

m

gm(N) Vjm —am(Njm)

= , Vjim = LA LU
Pm(A) A=Xjm P (Njm)

Jj=1

(3.2)

From the interlacing property3(l) it follows that the residues, ,,, called the Christoffel
coefficients satisfy the positivity conditiar ,,, > 0.

Here we give two examples of OPs. The Laguerre polynomialespond to the linear
functional J[f(\)] = [;° f(AM)A%e™?dA, (o > —1). Whena = 0, the corresponding
moments and Hankel determinants age= 1, s, = k!, (k = 1,2,...), andD; = 1,
Dy = ([Tiey k1%, (m = 1,2,...), respectively.

The Hermite polynomial is associated withy ()] =1/y/7 [~ f()\)e**Qd/\. The cor-
responding moments and Hankel determinants@re 1, so_1 = 0, so, = (2k — 1)!1/2%,
(k=1,2,...),andDy = 1, Dy, 1 = [[1o, k1/2FFFD/2(m = 1,2,...), respectively.
Here(2k — 1)!! :== (2k — 1)(2k —3) --- 5 3 - 1. The Hermite polynomialg,;_1 () are odd
andpq (\) are even functions.
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4. Christoffel-Darboux formula for symmetric orthogonal p olynomials. For the Her-
mite, Legendre and Chebyshev polynomials every momentagithorder is zerossy, 1 = 0.
In the linear functionals of those cases, the meaguf@) is invariant under the exchange
A — —\. The linear functionall satisfying

sop_1 = JA*F =0, (k=1,2,...)

is called symmetric and the corresponding orthogonal potyial is called a symmetric or-
thogonal polynomial. Whedu(\) = w(\)d\, the weight functiono(\) is an even function
over the interva(—¢, £). The coefficient$,, of the recurrence relation are zero for symmetric
OPs:b, =0, (k= 1,2,...). Inthis section, we restrict ourselves to symmetric OPs.

Let us consider the three-terms recurrence relation of sstmerOPs

poN) =1, pi(N) =X prr1(N) = Apr(\) — aipe—1(N).

For simplicity, we write

Ykl = AUk — Qiyk—1, Yk = Pr(N),

2
Zpy1 = K2k — Qp2k—1, 2k = Pr(K),
wherex is a constant. Using the recurrence relation twice, we deriv

Yrt2 = (A — @iy 1) yk — Aagyk—1,

2 2 2
Zpyo = (K™ — Qjq1)2k — KA 2ZK—1-
From the first and the second relations, we have

(K% = N2k = Ykzita — Ykr22k — Qp(AYk—12k — KYkZk—1).

Then, the following bilinear formula results.

AYk—12k — KYkZk—1

= —aj_1(\Yk—12K—2 — KYr—22k—1)

= ai 1 (K* = N)yk-22p-2 + 6105 o (A\Y—32k-2 — KYk—22k-3)
= aj_y (K? = N)yp—2zk-0 + aj_105_saj_5(K* = N*)yp—azk-4

‘Hl%f1a%72ai73ai74(/\yk—52k74 — KYk—42k—5)-
() Whenk = 2m — 1, noting thatyg = zo = 1, y1 = \, 21 = K, we see that

2 2
(K% = X*)Y2m—122m—1
2 2 2 2
= —Yom-122m+1 — Y2m+122m—1 — Aoy 102 _o(K~ — A")Y2m—322m—3
2 2 2 2 2 2
—A3, 102,202,302, 4 (K~ — A°)Y2m—522m—5

e agm_l . ..ag(,g _ )\2)y121,
Therefore, we obtain

2m—2k

m
2 2 2
(K" =A%) E H Aom—Y2k—122k—1 | = Y2m—122m+1 — Y2m+122m—1-
k=1 \ j=0
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(i) Whenk = 2m, noting thatag = 0, we have

m 2m—2k—1
_ )\2 2 _ _
(w? A2y Y2k 22k | = Y2mZ2m+2 — Y2m+222m-
k=0 3=0

In conclusion, we present the Christoffel-Darboux fornfolasymmetric OPs as follows. In
contrast to the case of usual ORsZ, 31], a parity emerges as follows

a2 szj 1( Pz; 1(K) :P2m71(/\)P2m+1(H)—P2m+1(>\)P2m71(f€)
Zm—1 — a?- azj 1 K2 — )2

for k =2m —1,

a2m Z p2j p2] +p0 ()\)po (Ii) _ me()‘)meJrQ(/{) : ];\22m+2()‘)p2m(’{)

for k= 2m.

J

The Christoffel-Darboux formula is useful, for examplegdiscuss the convergence of series
of OPs.

5. Discrete Lotka-Volterra and positivity. In this section, we first define a kernel poly-
nomialp; () corresponding to the original symmetric orthogonal polyia p.(\). To this
end, we assumgy (k) # 0.

2,

a -a3 A
1° 2m—1 p2] 1( )p22] 1( ) for k=2m-—1,

Pam—1(K ) al a35—1

- “2m Zp% p2J ) ¢ popote) | for k= 2m
2m 2]

Then, the Christoffel-Darboux formula leads to

. 1 Prt2(k)
= — A Ap = -2,
pk()‘) K2 — )\2 (pk+2()‘) + kpk(/\)) ) k pk(fi)
Whenk = 2m — 1, pi(A) is an odd function. Whek = 2m, p,(\) is even. The poles
A = *x are removable poles. Hengg,()\) is a polynomial of degreg. The transformation

{Pe(N)} — {pe (M)}

is just the Christoffel transformation for the symmetricsdB, (\)}. Let us introduce a new
linear functional/* by

T TAN)] = J[(5* = M) AW)]

for any polynomialA () and a suitable constart< 0. The corresponding weight function
and moments are*(\) := (k? — A2)w(\) ands}, := k2s) — sp+2, respectively. Let us note
a theorem (], p.36) on the positivity of the linear functiondr*.

THEOREMS5.1. (Chihara).et the linear functionall be positive definite over the interval
[—¢&, &, ) with € > 0. ThenJ* is positive ovef—¢, ¢, ], if and only ifk < —¢.
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Proof. If k < —¢, thenJ* is obviously positive ovef—¢, £,]. Conversely, let us assume
that J* is positive ovef{—¢,¢,]. LetA;,,, (7 = 1,2,...,m) be the zeros of the symmetric
OPp,,,(A) such that\; ,,, < Ajt1.m,. Note thath; ,,, < 0. Setr(A) := pum(X) /(A — A1 ).
Using the Gauss-Jacobi formula we have

0 < J*[r2(N)] = J[(k* = A)r?(N\)]
= Z Vim (52 = (Njn) D12 (Njm),

wherev; ,, (> 0) are the Christoffel coefficient8(2). Sincer(A;,,) =0, (j =2,...,m),
we obtaink < A, from x? — (A\;,,)? > 0 andk < 0, thus,x < —¢. 0
We now consider a successi@ie = 0, 1, ... ) use of the Christoffel transformations

1 () (1)

R S SN CON O ) () _  Prpal(s
(R)2 — 2 (Ak '+ ) A=

(5.1) Pt = o
py (k)

to generate a sequence of kernel polynomials

Y =N} — ) =) = P — -

wherep™ (k™) # 0 follows from (™ < A{") for the zeros{)\(")} of p™()). Letus
consider the compatibility condition of the system of Ilnequatlons

A 0 1 0
1

(n+1) — =~ (n) . (n)
e wmp—xe | 0 A 01 P,
0 1 0 n
() pé ;
(ay")? 0 1 "
! pm — \pm pm . P2

The first equation is the system of the Christoffel transttions. The second one is that
of the three-terms recurrence relation. Inserting the stiifel transformations to the three-
terms recurrence relation we have

(P A2~ ALY+ (AL~ 2~ A+ ) 2 =0

Hence, as the first compatibility condition we obtain

A(")
(a" ™) = (a")*
A
) 2p27l)1( (n)) (") ( (n))
= (&) (1) (,.(n) (n) 4o(n)
Py (k) pk—H( )
Let us set
(n) ¢, .(n)
K
(5.2) ﬁ,(cn) = (a,(C ))ka i )

py (k)
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It follows from p™) = 0 thata{™ = 0. Let /\gnk) (j = 1,...,k) be the zeros of the OP
,(;‘) (\). Note that in the partlal fraction expansion

(n) ("ﬂ(n a P]nk (n) P1§71)1(/\ k))
<n) = N Pik T 2/ (A
o e = A 7 P (%)

the residue&iﬁg are positive. This is proved by using the interlacing proper
/\(") < )\gn,z_l < /\(") < Aé",ﬁ << A,(c”_)Lk_l < /\é”,z

It follows from the positivity of the linear functional* (Theorems.1) thatx (™) — )\g”]z < 0.
Thus,p{™, (k™) /p{" (™) < 0 and henca™ < 0.
2™ into the three-terms recurrence relation we derive

(agﬁ)z = al(:jr)l ( ™ + A(n))

Insertingti,,

Similarly we have(a\""")? = 4" (m(") + u,(;_’gl> - We eliminate(a{"*")?2 to obtain

(6.3) @Y ) = M (0 + ),
G4 al” =0, @™ <0, kM<-¢<0, (n=01,..., k=12,..).
Equation b.3) is equivalent to the first compatibility condition. Spvigov-Zhedanov49]

derived 6.3) with a negative free parametef”) < 0. In our casex(™ should satisfy
k(") < —¢ < 0 asin 6.4) to guarantee the positivity of the linear functional and Hankel

determinantsD". Define

1
(Ii(”))Q .

(5.5) u,(qn) = m(")ﬁ,in), 6 =

By a scale change!™ — 1/(¢2M)ul™, we can relax the conditiod < 5™ < 1/¢2 to

0 < 6(") < M for some positive constat/. Thus, we obtain the following result.
THEOREM 5.2. Let u,(c”) and (™ be defined by5.2) and (5.5). Then the Christoffel

transformationg5.1) for symmetric OPs induce the recurrence relation

L+0mu,

(n+1) _
(5.6) U, = 14 6(ntD) U;(anil) k

. (n=0,1,..., k=1,2...)

with the additional conditions
u =0, 0<ul”, 0<s™ <M

This implies that the parametéf™ is positive and bounded.

R. Hirota [L2] derived the same recurrence relati@ngj with a non-zero constamt™),
namely,—oo < 6" < 0or0 < 6" < co. The positivity and boundedness&f) has not
been considered irLp, 29]. It is to be noted that the positivity and boundednes& f will
be important to prove convergence and stability of the tegphumerical algorithm.
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The condltlonu(”) = 01in (2.4) is satisfied in the case where the successive Christoffel
transformations of moments ho|d5?12j|0§i7j§m = 0. Here, Equationq.3) describes a
deformation of a finite number of symmetric OPs.

Keepingt a constant, we take a limit™ — 4-0 such thaty™*1 /5(*) — 1. We then
derive the semi-infinite LV
(5.7) % = up(up1 —uk—1), uo(t) =0, (k=1,2,...)
for the variableu, = u(¢) from the recurrence relation. This process correspondseo t
limit x(") — —o0 and does not violate the positivity of linear functionals.

The system?3.7) is called the LV system in mathematical biology, the Langrattice
in statistical physics, a discrete KdV equation in intedgagystems 33]. Conversely, the
recurrence relation5(6) is a discrete-time version of the LV system with a variakileps
sized(™). The most important common feature is the existence of aficébgolution u(")
anduy(t) expressed as ratio of Hankel determinaritg [L4, 15]. Equation £.6) is rather
different from the usual Euler scheme

o 4 B, =01 460,
of (5.7).

The second compatibility condition of the Christoffel tsbormations and the three-terms

recurrence relation

A(”)

o ( (n) ) _A](Cn) +(al(€n+1))2 -0

)

is automatically satisfied give® (3). Indeed, we see
(n n)
Ak+)1 A;

) p (M) p () o (1) = ps () o ()

() p{ (k) P () /p, (k)
(K +af) = 5 +alV) ) (n)
= - = (f‘k - ﬂk+2)>(“(n) + ﬁkﬂ)
1/ (50 + )
~ (7 ~(n+1 n ~ 1 7 n+1
=~ (s )+U,(€”)1)+u1$+ (kD 1) = (a ;ifg) — (a\"ty2,

In this section, it is shown that the successive ChristaféeisformationsX.1) of symmetric
OPs induce a deformation of the coefficiet .")} of the three-terms recurrence relation.
The resulting deformation equatioB.€) is the dLV system having the positivity and bound-
edness of the paramet#f*) .

6. Numerical experimentations. Finally, we give some numerical examples on the rel-
ative accuracy of the computed singular values by the mdlysrighm and other today’s
standard algorithms for the bidiagonal singular value fEwbwith double-precision float-
ing point arithmetic. Here, we use the DBDSLV code of the I-SVD Libraryd for the
mdLVs algorithm with the second generalized Newton shif{ B), the DBDSQR code of
LAPACK [22] for the Demmel-Kahan QR algorithnT], the DLASQ code 22] for the dif-
ferential qd algorithm with the aggressive shift (dqds]) fhe DBDSDC code 42] for the

1 CPU: Intel Core 2 Extreme X9650 3.00 GHz, Memory: 8 GB, OS: Likerel 2.6.29, Compiler: gfortran
4.3.2, Library: LAPACK 3.2.122), I-SVD Library [18], Machine epsilons = 2.220446049250313 x 10~ 16.
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divide and conquer algorithm (D&C)LD], the DSTEBZ codeZ2] for the bisection method.
The bisection method is highly accurate but very slow. Tduata these algorithms we need
bidiagonal test matrices whose singular values are randonrtificially given in an inter-
val, for examplg0, 1], but are exactly known. In this paper, we generate suchdpdial test
matrices by the Golub-Kahan-Lanczos meth®@ fhrough multiple-precision floating point

arithmetic.

In Figure 6.1, we compare the relative errors in the computed singularegaby the
mdLVs (DBDSLV code) with the Demmel-Kahan QR (DBDSQR codbg dgds (DLASQ
code), the D&C (DBDSDC code). The Demmel-Kahan QR uses QRtiten without shift to

compute tiny singular values to high relative accuragly [n the final stage of convergence,
DLASQ calls the dqds iteration with a zero shift, while DBD&talls the dLV iteration2.3).
The reason why the dLV algorithm computes even the tiniesfudar values to high relative

accuracy is related to the propeittyté("“)u,(c’il) > 1in(2.3). The1000 x 1000 bidiagonal
random matrixB; has singular values such that

1000 = 1/888.504408243616 < ggg9 < - -+ < 09 < op = 1.00000000000000.

The condition number oB; is thenoy /o1900. The sumEs,,1 of the relative errors of the

1000 singular values is computed as

Eoumi1 = 2.66529621185386 x 10713
Eyum1 = 1.56457359160163 x 10~ 12
Eoum1 = 6.45198203659775 x 10~ 13
Eoum1 = 2.33427683024027 x 10713

for the mdLVs (DBDSLV)
for the QR (DBDSQR)
for the dqds (DLASQ)
for the D&C (DBDSDC)

The maximal relative erraE,,,,; with respect to tha000 singular values is

Epax1 = 2.28258949369991 x 10~1°
Frax1 = 9.47911409172151 x 1014
Frax1 = 3.81199853522746 x 1015
Fraxt = 1.34754253759979 x 1015

for the mdLVs (DBDSLV)
for the QR (DBDSQR)
for the dqds (DLASQ)
for the D&C (DBDSDC)

In Figure6.2, we compare the relative errors in the computed singulaiegabbtained by
the mdLVs (DBDSLV) with those of the Demmel-Kahan QR (DBDSQRe dqds (DLASQ),
the D&C (DBDSDC). Here, we introducef x 50 bidiagonal matrixBs having singular

valuesl, ¢!/49 g2/49

e48/49 ¢ wheree is the machine epsilon. The condition

number of B, is thenoy /o509 = 1/e = 4.50359962737050 x 10'5. According to p], the
D&C does not guarantee that the tiny singular values are otedto high relative accuracy.
The sumFy,.,» of the relative errors of thg0 singular values is computed as

Esum2 = 9.30226226185777 x 10~1°
Esum2 = 2.39019061564147 x 10~
Equmaz = 1.39452380691172 x 10~ 14
FEoum2 = 1.28173379248682 x 10~!

for the mdLVs (DBDSLV)
for the QR (DBDSQR)
for the dqds (DLASQ)
for the D&C (DBDSDC)

The maximal relative erroF,, ..o with respect to thé0 singular values is

Eraxo = 5.87427280192174 x 10716
Epaxe = 1.83578543181057 x 10~1°
Emaxe = 8.35327903600726 x 10716
Eaxe = 6.25196422083310 x 1072

for the mdLVs (DBDSLV)
for the QR (DBDSQR)
for the dqds (DLASQ)
for the D&C (DBDSDC)
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o mdLVs
L + QR
f % dqds
* D&C
1074 E«t _
L+ jrr ]
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+
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+
+ Thh
+

2y

FiG. 6.1.A graph of the magnitude of the computed singular valuesloi@ x 1000 bidiagonal random ma-
trix By (xz-axis) and the relative errors in the corresponding singwialues {y-axis) computed by mdLVs (DBDSLV),
Demmel-Kahan QR (DBDSQR), dqds (DLASQ), D&C (DBDSDC).

The third test matridx3Bs is a301 x 301 bidiagonal matrix having singular values

1, 107Y6, 1072/6, ..., 107299/6  10—300/6,

Several large and tiny singular valuesi®f are

o1(B3) = 1.00000000000000 x 10°,
02(B3) = 6.81292069057961 x 1071,
03(B3) = 4.64158883361277 x 1071,

T209(B3) = 2.15443469003189 x 1050,
o300(B3) = 1.46779926762206 x 1050,
301 (B3) = 1.00000000000000 x 1050

The condition number oB; is then10°?. The sumE.,,3 of the relative errors of thg01
singular values computed by the mdLVs (DBDSLV), the Demiehan QR (DBDSQR),
the dqds (DLASQ), the D&C (DBDSDC), the bisection (DSTEBZomputed as follows

Eyumz = 8.25112141717703 x 10~ 4 for the mdLVs (DBDSLV)
Eum3 = 1.59645456456799 x 10~13  for the QR (DBDSQR)
Egums = 8.22908954851692 x 10~'4  for the dgds (DLASQ)
Egums = 1.51104134213085 x 1034  for the D&C (DBDSDC)
Eyums = 2.85925285862472 x 10~ for the bisection (DSTEBZ)



ETNA
Kent State University
http://etna.math.kent.edu

DLV AND MDLVS ALGORITHMS FOR SINGULAR VALUES 199
10° T T T T T T T
102 *, % o mdLVs
+ QR
0 L W x dqds |
. ¥ D&C
10—6 | * _
*
*

1078 - .

L x X

L X% ]

*
*
*
1074} Xy E
*

o R +od4 ¥ X4 £ % m+**>’<+ 3  + +x+§é§§*"

+ * *
10—16 [ ,éXﬁE‘EQD Dﬁ|gaag.>< pX+DE%§§$.§E[}m*¥.g*;I§ %Xgéﬁégmmz

107 10 102 10 10 10° 107 1072 10°

FiG. 6.2.A graph of the magnitude of the computed singular valuess6fa50 bidiagonal matrixBs (z-axis)
and the relative errors in the corresponding singular vag-axis) computed by mdLVs (DBDSLV), Demmel-Kahan
QR (DBDSQR), dgds (DLASQ), D&C (DBDSDC).

The maximal relative erraE,,,,3 with respect to th&01 singular values is

Eoaxs = 1.08902767362569 x 10~1°  for the mdLVs (DBDSLV)
B = 2.19692596703967 x 1015 for the QR (DBDSQR)
Ermaxs = 1.35525271560688 x 10-15  for the dgds (DLASQ)
Epaxs = 4.54473724050997 x 1033 for the D&C (DBDSDC)
Enaxs = 3.59168891967719 x 10~!6  for the bisection (DSTEBZ)

7. Concluding remarks. The dLV and the mdLVs are new algorithms for computing
singular values of regular bidiagonal matrices. The orgithese algorithm is in the theory
of discrete-time integrable systems. Convergence of tiperidhms to the singular values is
proved in the sequence of papetd,[15, 16] under the assumption of positivity and bound-
edness of the discrete step-si#&). In this paper, we reconsider the derivation of the dLV
iteration @.3) as a deformation equation of symmetric OPs and prove tegidhametef (")
is positive and boundealy definition namely,0 < 6( < §_. Therefore, the positivity of the
mdLVs algorithm follows.

As a natural consequence of the positivity of the dLV and tlikWis algorithms, high
relative accuracy of the computed singular values is oleskervhe mdLVs algorithm is a fast
algorithm and will be effective in some numerical problemshemistry and material science
where the smallest singular values are very important.
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