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Abstract. The pseudospectrum has become an important quantity for analyzing stability of non-normal systems.
This paper is a continuation of an earlier paper of this author where a mapping theorem for pseudospectra was
given, generalizing the spectral mapping theorem for eigenvalues. The main contribution of this paper consists
of asymptotic expansions of quantities which determine the sizes of components of pseudospectral sets. As an
application of this theory, we solve the eigenvalue perturbation problem for an analytic function of a matrix. Some
numerical examples illustrate the theory.
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1. Introduction. The properties of a normal matrix can be accurately predicted by its
spectrum. Here, normality refers to the matrix having a complete set of orthogonal eigenvec-
tors. The spectrum of a non-normal matrix, however, may not be very informative. Thanks
largely to the work of Trefethen and his co-workers, the pseudospectrum has emerged as an
appropriate indicator for the stability of non-normal systems. It has been applied to problems
in hydrodynamic instability, turbulence, magnetohydrodynamics, control theory, iterative so-
lution of linear equations, numerical solution of differential equations, quantum mechanics,
random matrices, etc. See [6] for an authoritative survey and references and [4] for an expo-
sition of classical eigenvalue perturbation theory.

For a square matrixA and a non-negative numberǫ, theǫ-pseudospectrum ofA is defined
as the following closed set in the complex plane:

Λǫ(A) ≡
⋃

‖E‖≤ǫ

Λ(A + E).

HereΛ() denotes the spectrum of a matrix and‖ · ‖ is the matrix2-norm. (This definition is
slightly different from that given in [6] where the inequality is replaced by strict inequality.)
An equivalent definition is

Λǫ(A) ≡ {z ∈ C, ‖(zI − A)−1‖ ≥ ǫ−1}

where the norm is taken to be infinite ifz ∈ Λ(A). When A is a normal matrix, its
ǫ-pseudospectrum is the union of closed disks of radiusǫ with centers at the eigenvalues.
For a non-normal matrix, itsǫ-pseudospectrum can be much bigger than this union.

The spectral mapping theorem is a fundamental result in functional analysis of great
importance. Given a matrixA and a functionf which is analytic on an open set containing
Λ(A), the theorem asserts that

f(Λ(A)) = Λ(f(A)).

In [5], we discussed a mapping theorem forǫ-pseudospectrum which generalizes the
spectral mapping theorem in the sense that whenǫ = 0, the pseudospectral mapping theorem
becomes the spectral mapping theorem.
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THEOREM 1.1 (pseudospectral mapping theorem).LetA be a matrix andf be an ana-
lytic function defined on an open set containingΛ(A). For eachǫ, s ≥ 0 sufficiently small,
define

φ(ǫ) = sup
ζ∈Λǫ(A)

inf{r ≥ 0, f(ζ) ∈ Λr(f(A))}

and

ψ(s) = sup
z∈Λs(f(A))

inf{r ≥ 0, z ∈ f(Λr(A))}.

Then

f(Λǫ(A)) ⊂ Λφ(ǫ)(f(A)) ⊂ f(Λψ(φ(ǫ))(A)).

Let A be a matrix with distinct eigenvalues{λj , j = 1, · · · , k} each having some pos-
itive algebraic multiplicity. Whenǫ is small,Λǫ(A) consists ofk disjoint components each
containing an eigenvalue. These components are approximately disks ([3]). In the pseu-
dospectral mapping theorem, the sizes of pseudospectra arecharacterized by one pair of
functionsφ andψ. Our first order of business is to characterize each component by functions
φj andψj , offering a sharper bound than the one in the pseudospectralmapping theorem.
While the functionsφj andψj are continuous and monotonically increasing, it appears tobe
difficult to derive other properties. The main purpose of this paper is to obtain the first term
in the asymptotic expansions ofφj andψj .

In Section2, we derive the exact expressions forφj andψj mentioned in the previous
paragraph. In Section3, we determine the size of each component of the pseudospectrum of
f(A). This is followed by a derivation of the asymptotic expansions. In Section5, we apply
these results to obtain sharp estimates for how the eigenvalues off(A) perturb when there
is a perturbation inA. In fact, we estimate the condition number of the eigenvaluef(λj) of
f(A) whenA is subject to a perturbation. Some numerical experiments inthe final section
illustrate the theory.

2. A component-wise pseudospectral mapping theorem.The following is a sharper
version of the pseudospectral mapping theorem for complex analytic functions discussed in
[5]. The proof is the same as that in [5] for the original theorem and is included here for
completeness.

As already mentioned in the introduction, whenǫ is small,Λǫ(A) is a disjoint union of
sets each containing exactly one eigenvalue. Denote the component containing the distinct
eigenvalueλj by Λǫ(A, λj). Throughout this paper, we shall be assuming that the parameter
ǫ is sufficiently small so that the components of pseudospectral sets are pairwise disjoint.The
value ofǫ may need to be restricted further. This point will be elaborated upon later. The same
assumption applies to the parameters used in the context of pseudospectral sets forf(A). In
casef(λj) = f(λk) for someλk 6= λj , we identify the two componentsΛs(f(A), f(λj))
andΛs(f(A), f(λk)) for all s ≥ 0.

THEOREM 2.1. Let A be a matrix with eigenvalues{λj} andf be an analytic function
defined on an open set containingΛ(A). For eachj and eachǫ, s ≥ 0 sufficiently small,
define

φj(ǫ) = sup
ζ∈Λǫ(A,λj)

inf{r ≥ 0, f(ζ) ∈ Λr(f(A), f(λj))}
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and

ψj(s) = sup
z∈Λs(f(A),f(λj))

inf{r ≥ 0, z ∈ f(Λr(A, λj))}.

Then

f(Λǫ(A, λj)) ⊂ Λφj(ǫ)(f(A), f(λj)) ⊂ f(Λψj(φj(ǫ))(A, λj)).

Proof. Fix somej. We first show thatφj is well defined. Letζ ∈ Λǫ(A, λj). Then
ζ ∈ Λ(A + E) for some matrixE such that‖E‖ ≤ ǫ. By the spectral mapping theorem,

f(ζ) ∈ Λ(f(A + E)) = Λ(f(A) + F )

whereF = f(A + E) − f(A). Thusf(ζ) ∈ Λ‖F‖(f(A), f(λj)) which implies that the
infimum in the definition ofφj is taken over a non-empty set and thusφj is well defined. The
first set inclusion now follows directly from the definition of φj .

Next, we show thatψj is well defined assuming thatf is not a constant. (Iff is a constant,
thenφj ≡ 0 andψj(0) = 0 and the theorem is trivially true.) Letz ∈ Λs(f(A), f(λj)) for
some small positives. By the Open Mapping Theorem of complex analysis, there are some
r > 0 andζ ∈ Br(λj), the open disk of radiusr and centerλj , so thatz = f(ζ). (Note
thats must be so small that the Open Mapping Theorem is applicable to f as a mapping from
Br(λj) to some open set containingΛs(f(A), f(λj)).) SinceBr(λj) ⊂ Λr(A, λj), we have
z ∈ f(Λr(A, λj)). Thus, the infimum in the definition ofψj is taken over a non-empty set
and soψj is well defined. The second set inclusion now follows directly from the definition
of ψj(s) with s = φj(ǫ). (Note that the value ofǫ may need to be reduced so thats = φj(ǫ)
is small.)

An equivalent conclusion to the above theorem is that, for small s,

(2.1) Λs(f(A), f(λj)) ⊂ f(Λψj(s)(A, λj)) ⊂ Λφj(ψj(s))(f(A), f(λj)).

Note that by the definitions ofφj andψj , the set inclusions are sharp in the sense that
the functions cannot be replaced by smaller functions.

3. The size of the pseudospectral component off(A). In this section, we estimate the
size of each component of the pseudospectrum off(A) wheref is analytic. An eigenvalue is
semi-simple if its algebraic multiplicity coincides with its geometric multiplicity. Them×m
identity matrix is denoted byIm. For any setS, the boundary of the set is denoted by∂S.
The following is a translation of a classical result (see, p.69 in [7] and [3, Theorem 3.1]) to
the language of pseudospectra.

THEOREM 3.1. Supposeλ is a semi-simple eigenvalue ofA of multiplicity m ≥ 1. Let
A = QJQ−1 where

J =

[

λIm

J2

]

is a Jordan form ofA with λ 6∈ Λ(J2). Letǫ > 0. For anyz ∈ ∂Λǫ(A, λ),

|z − λ| = ǫ‖P‖ + O(ǫ2)

whereP is the projection onto the eigenspace ker(A−λI) along the range space ofA−λI:

(3.1) P = Q

[

Im

0

]

Q−1.
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Proof. Let z ∈ ∂Λǫ(A, λ). Observe that

(zI − A)−1 = Q

[

(z − λ)−1Im

(zI − J2)
−1

]

Q−1.

Now,

1

ǫ
= ‖(zI − A)−1‖ =

∥

∥

∥

∥

Q

[

(z − λ)−1Im

0

]

Q−1 + Q

[

0
(zI − J2)

−1

]

Q−1

∥

∥

∥

∥

=
‖P‖

|z − λ| + O(1).

This implies that

|z − λ| =
ǫ‖P‖

1 + O(ǫ)
= ǫ ‖P‖ + O(ǫ2).

We remark that in caseλ is a simple eigenvalue, then it is well known thatP = xy∗

y∗x
wherex andy are right and left, respectively, eigenvectors corresponding toλ.

COROLLARY 3.2. SupposeA is diagonalizable:A = QDQ−1 for some diagonalD.
Assumef is analytic on some open set containingΛ(A). Letλ be any eigenvalue ofA and
m̃ be the multiplicity off(λ) as an eigenvalue off(A). Define

(3.2) P̃ = Q

[

Im̃

0

]

Q−1

assuming all eigenvaluesµ so thatf(µ) = f(λ) are placed in the first̃m diagonal entries of
D. Lets > 0. Then for anyζ ∈ ∂Λs(f(A), f(λ)),

(3.3) |ζ − f(λ)| = s ‖P̃‖ + O(s2).

Proof. Note that

f(D) =

[

f(λ)Im̃

f(D2)

]

whereD2 is diagonal so thatf(µ) is distinct fromf(λ) for any diagonal entryµ of D2. The
result now follows from a direct application of Theorem3.1.

In Corollary 3.2, supposeλ is an eigenvalue ofA of multiplicity m. If A has an eigen-
valueµ distinct fromλ so thatf(µ) = f(λ), thenm̃ > m. Otherwise,m̃ = m.

The index of an eigenvalue is the size of the largest Jordan block of that eigenvalue. The
following theorem is very similar to results in the literature ([1, Theorem 7.4], (2.8) in [2] and
[3, Theorem 3.1]).

THEOREM 3.3. Supposeλ is an eigenvalue ofA of indexm > 1 and there is exactly one
Jordan block associated withλ of sizem. LetA = QJQ−1 where

(3.4) J =















λ 1
. . .

. . .
λ 1

λ
J2
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is a Jordan form ofA with the first blockm × m. Letǫ > 0. For anyz ∈ ∂Λǫ(A, λ),

|z − λ| = ǫ1/m‖Nm−1‖1/m + O(ǫ2/m)

whereN is the nilpotent matrix associated withλ in the above Jordan decomposition ofA:

(3.5) N = Q















0 1
.. .

. ..
0 1

0
0















Q−1.

Proof. Let z ∈ ∂Λǫ(A, λ). Observe that

(zI − A)−1 = Q















(z − λ)−1 (z − λ)−2 · · · (z − λ)−m

. . .
. . .

...
(z − λ)−1 (z − λ)−2

(z − λ)−1

(zI − J2)
−1















Q−1.

Since the leading order term in the above matrix is(z − λ)−m,

1

ǫ
= ‖(zI − A)−1‖

= |z − λ|−m

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Q















0 · · · 0 1
0 · · · 0

.. .
...
0

0















Q−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

+ O(|z − λ|1−m)

= |z − λ|−m‖Nm−1‖ + O(|z − λ|1−m).

This implies that

|z − λ|m = ǫ ‖Nm−1‖ + O(ǫ |z − λ|)

and the result now follows.

In this theorem, we assume for ease of exposition that there is only one Jordan block of
sizem for the eigenvalueλ. The result also holds if there arek ≥ 1 such Jordan blocks. In
this case, the first diagonal block in (3.5) must be replicatedk times.

COROLLARY 3.4. Assume the hypotheses of the above theorem. Letf be analytic on
some open set containingΛ(A) so thatf ′(λ) 6= 0. Supposef(λ) 6= f(µ) for every eigenvalue
µ of A distinct fromλ. Lets > 0. For anyζ ∈ ∂Λs(f(A), f(λ)),

|ζ − f(λ)| = s1/m |f ′(λ)|1− 1
m ‖Nm−1‖1/m + O(s2/m).

Proof. Sinceζ ∈ ∂Λs(f(A), f(λ)),

1

s
= ‖(ζI − f(A))−1‖ = ‖Q(ζI − f(J))−1Q−1‖.
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Let J1 be the first diagonal block of (3.4) andN1 be them × m nilpotent matrix which is
zero everywhere except for ones along the first superdiagonal. Recall that

f(J1) = f(λ)Im+f ′(λ)N1+· · ·+ f (m−1)(λ)

(m − 1)!
Nm−1

1 =













f(λ) f ′(λ) · · · f(m−1)(λ)
(m−1)!

. . .
. ..

...
f(λ) f ′(λ)

f(λ)













.

The matrixζIm − f(J1) can be explicitly inverted and we find that the dominant term which
appears in the top right corner is

(3.6) f ′(λ)m−1δ−m + O(|δ|1−m)

whereδ = ζ − f(λ). Hence,

1

s
= |δ|−m|f ′(λ)|m−1‖Nm−1‖ + O(|δ|1−m)

which leads to

|δ|m = s |f ′(λ)|m−1 ‖Nm−1‖ + O(s |δ|)

from which the desired result follows.

We next indicate briefly what happens in case some of the hypotheses in the above fail.
For instance, assumef(λ) = f(µ) for some eigenvalueµ with largest index̃m > m. Suppose
f ′(µ) 6= 0. Then the dominant behaviour comes from the Jordan block corresponding toµ of
dimensionm̃. In this case, we obtain

|ζ − f(λ)| = s1/m̃ |f ′(µ)|1− 1
m̃ ‖Ñ m̃−1‖1/m̃ + O(s2/m̃), ζ ∈ ∂Λs(f(A), f(λ)),

whereÑ is the nilpotent matrix associated with the Jordan block ofµ of sizem̃.
Next, assume that the hypotheses of Corollary 3.4 holds, except thatf ′(λ) = 0 and

f ′′(λ) 6= 0. First assume that the index ofλ is odd: m = 2k + 1. It can be checked
that the dominant term of(ζIm − f(J1))

−1 again occurs in the top right corner and is
2−kf ′′(λ)kδ−k−1 + O(|δ|−k) whereδ = ζ − f(λ). This leads to

|ζ − f(λ)| = s1/(k+1)

( |f ′′(λ)|
2

)k/(k+1)

‖Nm−1‖1/(k+1)+O(s2/(k+1)),

ζ ∈ ∂Λs(f(A), f(λ)).

If the index ofλ is even:m = 2k, then the dominant term of(ζIm − f(J1))
−1 is O(|δ|−k)

and it occurs at the(1,m − 1), (2,m) and(1,m) entries of the matrix ifm ≥ 4. If m = 2,
then the dominant term occurs at the(1, 2) entry.

4. Asymptotic expansions.In this section, we give asymptotic expansions for the func-
tionsφj andψj in Theorem2.1. We first discuss the case of a diagonalizable matrix.

THEOREM4.1. Letλ1 be an eigenvalue of multiplicitym ≥ 1 of a diagonalizable matrix
A = QDQ−1 whereD is diagonal:

D =

[

λ1Im

D2

]
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andD2 is diagonal withλ1 6∈ Λ(D2). Letf be a function which is analytic in some open set
containingΛ(A). For smallǫ > 0,

φ1(ǫ) =











|f ′(λ1)|‖P‖
‖P̃‖ ǫ + O(ǫ2), f ′(λ1) 6= 0;

|f ′′(λ1)|
2

‖P‖2

‖P̃‖ ǫ2 + O(ǫ3), f ′(λ1) = 0, f ′′(λ1) 6= 0

whereP and P̃ are as defined in(3.1) and (3.2) with m̃ the multiplicity off(λ1) as an
eigenvalue off(A). For smalls > 0,

ψ1(s) =











s
|f ′(λ1)|

‖P̃‖
‖P‖ + O(s2), f ′(λ1) 6= 0;

√
2 ‖P̃‖1/2 s1/2

|f ′′(λ1)|1/2‖P‖ + O(s), f ′(λ1) = 0, f ′′(λ1) 6= 0.

Proof. By definition,

φ1(ǫ) = sup
z∈Λǫ(A,λ1)

inf{r > 0, f(z) ∈ Λr(f(A), f(λ1))}

= sup
z∈Λǫ(A,λ1)

inf{r > 0, ‖(f(z)I − f(A))−1‖ ≥ r−1}

= sup
z∈Λǫ(A,λ1)

‖(f(z)I − f(A))−1‖−1

= sup
z∈Λǫ(A,λ1)

‖ [Q(f(z)I − f(D))Q−1]−1‖−1

= sup
z∈Λǫ(A,λ1)

‖Q(f(z)I − f(D))−1Q−1‖−1.

Defineδ = f(z) − f(λ1) which has a small magnitude whenz ∈ Λǫ(A, λ1). Note that

f(z)I − f(D) =

[

δIm̃

f(z)I − f(D3)

]

,

whereD3 is diagonal so thatf(µ) 6= f(λ1) for every diagonal entryµ of D3. Hence,

‖Q(f(z)I − f(D))−1Q−1‖ =
1

|δ| ‖P̃‖ + O(1).

If f ′(λ1) 6= 0, then δ = f ′(λ1)(z − λ1) + O(|z − λ1|2) = f ′(λ1) ǫ ‖P‖ + O(ǫ2) by
Theorem3.1. Hence,

φ1(ǫ) =
|f ′(λ1)| ‖P‖

‖P̃‖
ǫ + O(ǫ2).

Now assume thatf ′(λ1) = 0 andf ′′(λ1) 6= 0. Thenδ = f ′′(λ1)(z−λ1)
2/2+O(|z−λ1|3).

The expansion forφ1(ǫ) follows easily from Theorem3.1.
Next, we find the asymptotic expansion forψ1 assuming first thatf ′(λ1) 6= 0. Let

ζ1 = f(λ1) andζ = f(z) for z ∈ Λr(A, λ1) for some smallr > 0. The inverse function
theorem states that the inverse off is well defined nearλ1. Even thoughf−1(ζ) in general
is a set containing possibly several elements, we definef−1(ζ) as the unique element in
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Λr(A, λ1). Let δ = f−1(ζ) − f−1(ζ1). By definition,

ψ1(s) = sup
ζ∈Λs(f(A),ζ1)

inf{r > 0, ζ ∈ f(Λr(A, λ1))}

= sup
ζ∈Λs(f(A),ζ1)

inf{r > 0, f−1(ζ) ∈ Λr(A, λ1)}

= sup
ζ∈Λs(f(A),ζ1)

inf{r > 0, ‖(f−1(ζ)I − A)−1‖ ≥ r−1}

= sup
ζ∈Λs(f(A),ζ1)

‖(f−1(ζ)I − A)−1‖−1

= sup
ζ∈Λs(f(A),ζ1)

∥

∥

∥

∥

∥

Q

(

f−1(ζ)I −
[

λ1Im

D2

])−1

Q−1

∥

∥

∥

∥

∥

−1

= sup
ζ∈Λs(f(A),ζ1)

∥

∥

∥

∥

Q

[

δ−1Im

(f−1(ζ)I − D2)
−1

]

Q−1

∥

∥

∥

∥

−1

= sup
ζ∈Λs(f(A),ζ1)

|δ|
∥

∥

∥

∥

Q

[

Im

δ(f−1(ζ)I − D2)
−1

]

Q−1

∥

∥

∥

∥

−1

= sup
ζ∈Λs(f(A),ζ1)

|δ|
‖P‖ + O(|δ|2)

= sup
ζ∈Λs(f(A),ζ1)

|ζ − ζ1|
|f ′(λ1)| ‖P‖ + O(|ζ − ζ1|2)

=
s ‖P̃‖

|f ′(λ1)| ‖P‖ + O(s2).

In the above, we used the factδ =
ζ − ζ1

f ′(λ1)
+ O(|ζ − ζ1|2) and Corollary3.2. Now assume

thatf ′(λ1) = 0 andf ′′(λ1) 6= 0. Note that

ζ − ζ1 = f(z) − f(λ1) =
f ′′(λ1)(z − λ1)

2

2
+ O(|z − λ1|3).

Givenζ in a small neighbourhood off(λ1), there are two elementsz± of f−1(ζ) in a small
neighbourhood ofλ1. They satisfy

(4.1) |z± − λ1| =
|ζ − ζ1|1/2

√

|f ′′(λ1)|/2
+ O(|ζ − ζ1|).

Consequently,

ψ1(s) = sup
ζ∈Λs(f(A),ζ1)

min{‖(z±I − A)−1‖−1}

= sup
ζ∈Λs(f(A),ζ1)

min

{ |δ|
‖P‖ + O(|δ|2), δ = z± − λ1

}

= sup
ζ∈Λs(f(A),ζ1)

|ζ − ζ1|1/2

√

|f ′′(λ1)|/2 ‖P‖
+ O(|ζ − ζ1|)

=
s1/2 ‖P̃‖1/2

√

|f ′′(λ1)|/2 ‖P‖
+ O(s)
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using (4.1) and Corollary3.2.

An immediate corollary of the above theorem is that

(4.2) φ1(ψ1(s)) =

{

s + O(s2), f ′(λ1) 6= 0;
s + O(s3/2), f ′(λ1) = 0, f ′′(λ1) 6= 0,

and

ψ1(φ1(ǫ)) = ǫ + O(ǫ2)

as long asf ′(λ1) andf ′′(λ1) are not both zero.

THEOREM 4.2. Let λ1 be an eigenvalue of the matrixA of indexm ≥ 2, and let
A = QJQ−1 whereJ is a Jordan form ofA of the form(3.4). Letf be a function which is
analytic in some open set containingΛ(A) satisfyingf ′(λ1) 6= 0. Supposef(λ1) 6= f(λj)
for any other eigenvalueλj distinct fromλ1. For smallǫ > 0,

φ1(ǫ) = |f ′(λ1)|ǫ + O(ǫ1+
1
m ).

For smalls > 0,

ψ1(s) =
s

|f ′(λ1)|
+ O(s1+ 1

m ).

Proof. Let δ = f(z) − f(λ1) = f ′(λ1)(z − λ1) + O(|z − λ1|2) for z ∈ Λǫ(A, λ1). Let
N be as defined in (3.5). Then

φ1(ǫ) = sup
z∈Λǫ(A,λ1)

‖Q(f(z)I − f(J))−1Q−1‖−1

= sup
z∈Λǫ(A,λ1)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Q

















δ −f ′(λ1) · · · − f(m−1)(λ1)
(m−1)!

.. .
.. .

...
δ −f ′(λ1)

δ
f(z)I − f(J2)

















−1

Q−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−1

= sup
z∈Λǫ(A,λ1)

|δ|m
|f ′(λ1)|m−1 ‖Nm−1‖ + O(|δ|m+1)

= sup
z∈Λǫ(A,λ1)

|f ′(λ1)(z − λ1)|m
|f ′(λ1)|m−1 ‖Nm−1‖ + O(|z − λ1|m+1)

= |f ′(λ1)| ǫ + O(ǫ1+
1
m )

by (3.6) and Theorem3.3.

Next, we find an asymptotic expansion forψ1(s). Let δ = f−1(ζ) − f−1(ζ1) where
ζ ∈ Λs(f(A), ζ1) andζ1 = f(λ1). Again, definef−1(ζ) as the unique element in a small
neighbourhood ofλ1. Now
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ψ1(s) = sup
ζ∈Λs(f(A),ζ1)

‖Q(f−1(ζ)I − J)−1Q−1‖−1

= sup
ζ∈Λs(f(A),ζ1)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Q















δ −1
. . .

. ..
δ −1

δ
f−1(ζ)I − J2















−1

Q−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−1

= sup
ζ∈Λs(f(A),ζ1)

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

Q

















δ−1 δ−2 · · · δ−m

. . .
.. .

...
.. . δ−2

δ−1

(f−1(ζ)I − J2)
−1

















Q−1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

−1

= sup
ζ∈Λs(f(A),ζ1)

|δ|m
‖Nm−1‖ + O(|δ|m+1)

= sup
ζ∈Λs(f(A),ζ1)

|ζ − ζ1|m
|f ′(λ1)|m ‖Nm−1‖ + O(|ζ − ζ1|m+1)

=
s

|f ′(λ1)|
+ O(s1+ 1

m )

using Corollary3.4.

An immediate corollary of the above theorem is that

(4.3) ψ1(φ1(ǫ)) = ǫ + O(ǫ1+
1
m ) and φ1(ψ1(s)) = s + O(s1+ 1

m ).

Again for ease of exposition, we assumed that that there is only one Jordan block correspond-
ing to λ1 of sizem. The result also holds in the general case ofk ≥ 1 such Jordan blocks.
Using the facts discussed immediately following Corollary3.4, a similar analysis also works
for the other cases wheref(λ1) = f(λj) for j 6= 1 or whenf ′(λ1) = 0.

5. Eigenvalue perturbation theory for f(A). We give an application of our pseu-
dospectral mapping theorem for the eigenvalue perturbation problem off(A). Given a square
matrix A, a non-constant functionf analytic on an open set containingΛ(A) and a positive
ǫ, we wish to estimate how the eigenvalues off(A) change whenA is perturbed by another
matrix of norm at mostǫ. The relevant set is

{Λ(f(A + E)), ‖E‖ ≤ ǫ} = {f(Λ(A + E)), ‖E‖ ≤ ǫ} = f(Λǫ(A)).

Note the distinction between the above set andΛǫ(f(A)) which has already been estimated
in Corollaries3.2and3.4. Using (2.1) with j = 1 ands = ψ−1

1 (ǫ),

(5.1) Λs(f(A), f(λ1)) ⊂ f(Λǫ(A, λ1)) ⊂ Λφ1(ǫ)(f(A), f(λ1)),

we obtain sharp lower and upper bounds on the size of the component containing a particular
eigenvalueλ1. (From the expansion ofψ1 in Theorem4.1 or 4.2 and the fact thatf is non-
constant,ψ1(s) is a strictly increasing function fors ≥ 0 and small and soψ−1

1 is uniquely
defined.) Observe that in the setting of the previous theorems

(5.2) φ1(ǫ) = φ1(ψ1(s)) =

{

s + O(s2) or s + O(s3/2), in Theorem4.1
s + O(s1+ 1

m ), in Theorem4.2
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by (4.2) and (4.3). Hence, the desired setf(Λǫ(A, λ1)) is sandwiched between two sets of
the same size to leading order ins.

Assuming the hypotheses of Theorem4.1, we have from Corollary3.2and (5.1) that

sup
ζ∈f(Λǫ(A,λ1))

|ζ − f(λ1)| = φ1(ǫ) ‖P̃‖ + O(φ2
1(ǫ)).

From the expansion ofψ1 in Theorem4.1, we have

s = ψ−1
1 (ǫ) =











|f ′(λ1)|‖P‖
‖P̃‖ ǫ + O(ǫ2), f ′(λ1) 6= 0;

|f ′′(λ1)|
2

‖P‖2

‖P̃‖ ǫ2 + O(ǫ3), f ′(λ1) = 0, f ′′(λ1) 6= 0.

We combine the above and (5.2) to obtain a sharp perturbation result for the eigenvalue
f(λ1).

THEOREM 5.1. Assume the hypotheses of Theorem4.1. Then

sup
ζ∈f(Λǫ(A,λ1))

|ζ − f(λ1)| =

{ |f ′(λ1)| ‖P‖ ǫ + O(ǫ2), f ′(λ1) 6= 0;
|f ′′(λ1)|

2 ‖P‖2 ǫ2 + O(ǫ3), f ′(λ1) = 0, f ′′(λ1) 6= 0.

In the literature, the leading order term of the right-hand side of the above is called the
condition number of the eigenvaluef(λ1) whenA is subject to a perturbation of size at mostǫ.
It is interesting that this condition number is independentof any information about another
eigenvalueλk in casef(λk) = f(λ1). The next term in the expansion can be interpreted as
the departure from non-normality of the eigenvalue.

In the same way, we have
THEOREM 5.2. Assume the hypotheses of Theorem4.2. Then

sup
ζ∈f(Λǫ(A,λ1))

|ζ − f(λ1)| = |f ′(λ1)| ‖Nm−1‖1/m ǫ1/m + O(ǫ2/m).

6. Examples and numerical results.In this section, we work out two examples ana-
lytically and supply three numerical experiments to confirmthe theoretical estimates for the
functionsφj andψj as well as two numerical experiments for the eigenvalue perturbation
problem.

EXAMPLE 6.1. LetA =

[

1 0
0 −1

]

. This matrix is normal and everything can be worked

out analytically. The eigenvalues areλ1 = 1, λ2 = −1. Takef(z) = z2 + 2z. First consider
λ1 = 1 and observe thatf ′(1) = 4.

φ1(ǫ) = sup
z∈Λǫ(A,1)

‖(f(z)I − f(A))−1‖−1

= sup
z∈Λǫ(A,1)

∥

∥

∥

∥

∥

[

z2 + 2z − 3
z2 + 2z + 1

]−1
∥

∥

∥

∥

∥

−1

= sup
|z−1|≤ǫ

|z2 + 2z − 3|

= sup
|ζ|≤ǫ

|ζ2 + 4ζ|

= 4ǫ + ǫ2.
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Next,

ψ1(s) = sup
z∈Λs(f(A),3)

‖(f−1(z)I − A)−1‖−1

= sup
|z−3|≤s

∥

∥

∥

∥

∥

[√
1 + z − 2 √

1 + z

]−1
∥

∥

∥

∥

∥

−1

= sup
|z−3|≤s

|
√

1 + z − 2|

= sup
|ζ|≤s

|2
√

1 + ζ/4 − 2|

= 2 − 2
√

1 − s/4 =
s

4
+

s2

64
+ · · · .

Next, consider the eigenvalueλ2 = −1 wheref ′(−1) = 0 andf ′′(−1) = 2. We find

φ2(ǫ) = sup
z∈Λǫ(A,−1)

∥

∥

∥

∥

∥

[

z2 + 2z − 3
z2 + 2z + 1

]−1
∥

∥

∥

∥

∥

−1

= sup
|z+1|≤ǫ

|z2 + 2z + 1|

= ǫ2

and

ψ2(s) = sup
z∈Λs(f(A),−1)

∥

∥

∥

∥

∥

[√
1 + z − 2 √

1 + z

]−1
∥

∥

∥

∥

∥

−1

= sup
|z+1|≤s

|1 + z|1/2

= s1/2.

These results agree with Theorem4.1.

EXAMPLE 6.2. LetA =

[

0 1
0 0

]

. The eigenvalueλ1 = 0 has indexm = 2. Take

f(z) = z2 + z. Observe thatf ′(0) = 1 andf(A) = A. Now

φ1(ǫ) = sup
z∈Λǫ(A,0)

‖(f(z)I − f(A))−1‖−1

= sup
z∈Λǫ(A,0)

∥

∥

∥

∥

[

f(z)−1 f(z)−2

f(z)−1

]∥

∥

∥

∥

−1

= sup
|z|≤

√
ǫ+ǫ2

|z|2|1 + z|2 + · · ·

= ǫ + 2ǫ3/2 + · · · .

In the calculation ofψ1 below, letζ = f−1(z) = (−1 +
√

1 + 4z)/2 ≈ z − z2 for a smallz.
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TABLE 6.1

f1 φ1(ǫ) ψ1(ǫ)
a = 1, ǫ = 10−3 2.0002 × 10−3 (2 × 10−3) 5.0051 × 10−4 (5 × 10−4)
a = 1, ǫ = 10−4 2.0000 × 10−4 (2 × 10−4) 5.0005 × 10−5 (5 × 10−5)
a = 10, ǫ = 10−4 2.0005 × 10−4 (2 × 10−4) 5.0053 × 10−5 (5 × 10−5)

f2 φ1(ǫ) ψ1(ǫ)
a = 1, ǫ = 10−3 1.7321 × 10−6 (1.7321 × 10−6) 2.4037 × 10−2 (2.4028 × 10−2)
a = 1, ǫ = 10−4 1.7321 × 10−8 (1.7321 × 10−8) 7.5986 × 10−3 (7.5984 × 10−3)
a = 10, ǫ = 10−4 1.4177 × 10−7 (1.4177 × 10−7) 2.6576 × 10−3 (2.6558 × 10−3)

Then

ψ1(s) = sup
z∈Λs(f(A),0)

‖(ζI − A)−1‖−1

= sup
z∈Λs(A,0)

∥

∥

∥

∥

[

ζ−1 ζ−2

ζ−1

]∥

∥

∥

∥

−1

= sup
|z|≤

√
s+s2

|z|2|1 − z|2 + · · ·

= s + 2s3/2 + · · · .

This example illustrates the correctness of Theorem4.2.

EXAMPLE 6.3. Leta be any real number and

(6.1) A =





0 0 a
0 a

1



 .

Note thatA is diagonalizable with an eigenvalueλ1 = 0 of multiplicity two. A calculation
leads toA = QDQ−1 where

Q =





1 a
1 a

1



 , D =





0
0

1



 .

The projection onto the eigenspace corresponding to the eigenvalue0 is

P = Q





1
1

0



Q−1 =





1 −a
1 −a

0



 .

We find that‖P‖ =
√

2a2 + 1. Results of numerical computations for the eigenvalue0 and
f1(z) = z2 + 2z andf2(z) = z2 are shown in Table6.1. Note thatf ′

1(0) = 2, f ′
2(0) = 0,

f ′′
2 (0) = 2 andP̃ = P for both functions. In the table, the numbers in parenthesesdenote the

values predicted by first order expansions in Theorem4.1: φ1(ǫ) ≈ 2ǫ, ψ1(s) ≈ s/2 for f1

andφ1(ǫ) ≈ ‖P‖ ǫ2, ψ1(s) ≈
√

s/‖P‖1/2 for f2.

EXAMPLE 6.4. Consider the same matrix as in the above example. Takef3(z) = z2 − z
andf4(z) = z4 − z2. Observe thatf3(0) = 0 = f3(1), f ′

3(0) = −1 andf4(0) = 0 = f4(1),
f ′
4(0) = 0, f ′′

4 (0) = −2. For bothf3 andf4, we haveP̃ = I. Table6.2shows the results of
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TABLE 6.2

f3 φ1(ǫ) ψ1(ǫ)
a = 1, ǫ = 10−3 1.7351 × 10−3 (1.7321 × 10−3) 5.7754 × 10−4 (5.7735 × 10−4)
a = 1, ǫ = 10−4 1.7324 × 10−4 (1.7321 × 10−4) 5.7737 × 10−5 (5.7735 × 10−5)
a = 10, ǫ = 10−4 1.4198 × 10−3 (1.4177 × 10−3) 7.0535 × 10−6 (7.0535 × 10−6)

f4 φ1(ǫ) ψ1(ǫ)
a = 1, ǫ = 10−3 3.0000 × 10−6 (3 × 10−6) 1.8252 × 10−2 (1.8257 × 10−2)
a = 1, ǫ = 10−4 3.0000 × 10−8 (3 × 10−8) 5.7733 × 10−3 (5.7735 × 10−3)
a = 10, ǫ = 10−4 2.0100 × 10−6 (2.01 × 10−6) 7.0533 × 10−4 (7.0535 × 10−4)

TABLE 6.3

f5 φ1(ǫ) ψ1(ǫ)
a = 1, ǫ = 10−3 2.0333 × 10−3 (2 × 10−3) 5.2025 × 10−4 (5 × 10−4)
a = 1, ǫ = 10−4 2.0115 × 10−4 (2 × 10−4) 5.0634 × 10−5 (5 × 10−5)
a = 10, ǫ = 10−4 2.0183 × 10−4 (2 × 10−4) 5.7814 × 10−5 (5 × 10−5)

numerical computations for the eigenvalueλ1 = 0. They agree with the first order expansions
of Theorem4.1: φ1(ǫ) ≈ ‖P‖ǫ, ψ1(s) ≈ s/‖P‖ for f3 andφ1(ǫ) ≈ ‖P‖2 ǫ2, ψ1(s) ≈√

s/‖P‖ for f4.

EXAMPLE 6.5. Leta be any real number and

(6.2) A =





0 a
0 a

1



 .

Note thatA is not diagonalizable with an eigenvalueλ1 = 0 of algebraic multiplicity two and
geometric multiplicity one. A calculation leads toA = QJQ−1 where

Q =





1 0 a
1/a 1
0 1/a



 , J =





0 1
0

1



 .

The nilpotent matrix corresponding to the eigenvalue0 is

N =





0 a −a2

0
0



 .

We find that‖N‖ =
√

a2 + a4. Definef5(z) = z2 + 2z and note thatf ′
5(0) = 2. The

numerical results are shown in Table6.3. They agree with the first order expansions predicted
by Theorem4.2: φ1(ǫ) ≈ 2ǫ, ψ1(s) ≈ s/2.

EXAMPLE 6.6. Take the matrix in (6.1) with a = 10 andf(z) = z3 − z. Note that
f(0) = f(1) = 0 andf ′(0) = −1, f ′(1) = 2. With ǫ = 10−3, the curvef(∂Λǫ(A, λj))
and its approximation by a disk of radius given by the first term of the expansion given in
Theorem5.1 are shown in Figure6.1. For f(z) = z4 − z2 wheref(0) = 0 = f(1) and
f ′(0) = 0, f ′′(0) = −2, see Figure6.2. In both instances, there is excellent agreement with
the theoretical estimate, demonstrating that indeed the leading order behaviour is determined
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FIG. 6.1. f(z) = z3
− z andA given by(6.1). The dotted curve denotes the circle given by the first term of

the expansion in Theorem5.1while the solid curve denotesf(∂Λǫ(A, λj)).
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FIG. 6.2.f(z) = z4
− z2 andA given by(6.1). The dotted curve denotes the circle given by the first term of

the expansion in Theorem5.1while the solid curve denotesf(∂Λǫ(A, λj)).
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FIG. 6.3.f(z) = z2 + 2z andA given by(6.2). The dotted curve denotes the circle given by the first term of
the expansion in Theorem5.2while the solid curve denotesf(∂Λǫ(A, λj)).
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by the eigenvalueλj in question and independent of the other eigenvaluesλk for which
f(λk) = f(λj).

EXAMPLE 6.7. Take the matrix in (6.2) with a = 10 andf(z) = z2+2z. With ǫ = 10−3,
the curvef(∂Λǫ(A, λj)) and its approximation by a disk of radius given by the first term of
the expansion given in Theorem5.2 are shown in Figure6.3. The discrepancy between the
actual and predicted curves is more significant forλ = 0. This can be attributed to the
large value of‖N‖ ≈ O(a2) and the fact that the error behaves likeO(ǫ). The discrepancy
decreases as the value ofa decreases or asǫ decreases.

Acknowledgment. I am grateful to two anonymous referees for their careful reading of
the manuscript and suggestions which have improved the presentation.
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