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Abstract. An efficient and robust algorithm and a Matlab coderatdisk are presented for rational interpolation
or linearized least-squares approximation of a function based on its values at points equally spaced on a circle. The
use of the singular value decomposition enables the detection and elimination of spurious poles or Froissart doublets
that commonly complicate such fits without contributing to the quality of the approximation. As an application, the
algorithm leads to a method for the stable computation of certain radial basis function interpolants in the difficult
case of smoothness parameterε close to zero.
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1. Introduction. Polynomial interpolants and least-squares fits are used allthe time, ra-
tional ones more rarely. The potential advantage of rational approximations is that they may
behave better in the presence of singularities, and, in particular, may be used to extrapolate
or interpolate a function beyond poles that would block the convergence of a polynomial.
The disadvantage is that they are more fragile. Certain approximants do not exist, or are
nonunique, or depend discontinuously on the data, issues that are not just of theoretical im-
portance as they tend to arise whenever one approximates a function that is even or odd.
More challenging in practice is the fact that even when a unique and well-posed approximant
exists in theory, especially for higher degree numerators and denominators, it may be diffi-
cult to compute numerically in finite precision arithmetic.A symptom of this situation is the
common appearance of poles with residues close to machine precision—“spurious poles” or
“Froissart doublets”—which contribute negligibly to the quality of the approximation while
still causing difficulty in its application. For these reasons, despite many interesting contribu-
tions going back to Cauchy and Jacobi in the first half of the 19th century, rational interpola-
tion and least-squares fitting have not become a robust tool of numerical computation that is
widely relied upon.

In this article we propose an algorithm that we hope is a step in the right direction,
together with an implementation in the form of a 58-line Matlab coderatdisk . This al-
gorithm is an outgrowth of the “PGV method” described recently in [19], but goes further
in removing spurious poles and in producing linearized least-squares approximants as well
as interpolants. A wide range of computed examples are presented to illustrate some of the
properties of the algorithm.

The application to radial basis functions (Section8) is what originally led to the writing
of this paper, especially through discussions of the third author with Bengt Fornberg of the
University of Colorado and Grady Wright of Boise State University.

For an excellent presentation of rational interpolation and approximation we recommend
Chapter 5 of [3].

2. Notation. Throughout this paper we use the following notation. The symbol Pm

denotes the set of polynomials of degree≤m, andRmn is the set of rational functions of
type(m,n), that is, functions that can be written as the quotient of a polynomial inPm and a
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polynomial in Pn. Our purpose is to use functions inRmn to approximate a functionf
defined on the unit circle{z ∈ C : |z| = 1}. The approximations will be based on the values
taken byf at the(N + 1)st roots of unity on the unit circle, whereN ≥ m + n. We define
the roots of unity byzj = exp(2πij/(N + 1)), 0 ≤ j ≤ N , wherei =

√
−1, and the

corresponding values off by fj = f(zj). (Our algorithms can also be applied to arbitrary
data{fj}, which may not come from an underlying functionf , but the applications we are
concerned with involve such functions.) Finally, we define‖v‖ to be the usual 2-norm of a
vectorv, and‖p‖N to be the root-mean-square norm of a functionp defined at the(N + 1)st
roots of unity. That is, ifp is the(N + 1)-vector with entriespj = p(zj), then

‖p‖N = (N + 1)−1/2‖p‖.

Note that for the particular case of the functionzk for somek we have‖zk‖N = 1, and since
different powers ofz are orthogonal over the roots of unity, this implies

‖p‖N = ‖a‖

wheneverp ∈ PN anda is its vector of coefficients, i.e.,p(z) =
∑N

k=0 akzk.
We summarize these notations as follows:

Pm : set of polynomials of degree at mostm

Rmn : set of rational functions of type(m,n)

f : function defined on the unit circle

N : number of sample points, minus 1

{zj} : (N + 1)st roots of unity

{fj} : values off at these points

‖v‖ : 2-norm of a vectorv

‖p‖N : root-mean-square norm of a functionp over the roots of unity.

Note that we have not yet prescribed which approximationr ∈ Rmn to f we are looking
for. That is because several ideas are in play here, and robustness of the algorithm requires
clarity about the different possibilities. A first possibility, in the caseN = m + n, is to look
for an interpolant satisfying

r(zj) = fj , 0 ≤ j ≤ N,(2.1)

but such a function does not always exist. For example, thereis no r ∈ R11 that takes the
same value at two of the3rd roots of unity and a different value at the other. Instead one may
linearize the problem and look for polynomialsp ∈ Pm andq ∈ Pn such that

p(zj) = fj q(zj), 0 ≤ j ≤ N.(2.2)

Obviously, at least one solution to this problem exists, with p = q = 0; to make the problem
meaningful, some kind of normalization is needed. The normalization we shall employ is the
condition

‖q‖N = 1.(2.3)

Existence of polynomials satisfying (2.2) and (2.3) is guaranteed, as follows from the linear
algebra discussed in the next section. Generically, such polynomials will correspond to a
rational functionr = p/q satisfying (2.1), but not always. A potentially more robust approach
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is to takeN > m + n and find polynomialsp ∈ Pm andq ∈ Pn that solve the least-squares
problem

‖p − fq‖N = minimum(2.4)

again normalized by (2.3). As before, existence of polynomialsp andq is guaranteed (though
not, as we shall see, uniqueness). This problem, which we call the linearized least-squares
problemfor rational interpolation, is the starting point of the algorithm we recommend in
this article, and we describe the mathematical basis of how we solve it in the next section.
In Section4 we show that this basic approach to rational interpolation and least-squares,
however, is susceptible to difficulties in machine computation. Section5 is then the heart of
the article, where we present a more practical algorithm whose key feature is the removal of
contributions from minimal singular values that lie below arelative tolerance (tol = 10−14

works well in many applications), or that match the next higher singular value to within such
a tolerance.

In the discussion of Section9 we comment on an iterative algorithm for solving the true
nonlinear least-squares problem

‖r − f‖N = minimum.(2.5)

3. Linearized interpolation and least-squares.Following [19], we now describe a
method for computing a solution to the least-squares problem (2.3)–(2.4); Figure3.1provides
a helpful reference. Letb be an(n + 1)-vector with‖b‖ = 1

b =











b0

b1
...

bn











,

defining coefficients of a polynomialq ∈ Pn satisfying (2.3), i.e.,q(z) =
∑n

k=0 bkzk. Let z
be the(N + 1)-vector of the(N + 1)st roots of unity

z =











z0

z1
...

zN











,

and let powers such asz2, z3 be defined componentwise. Then the vector

p =











f0

f1

. . .
fN





















z0 · · · zn











b

is the(N + 1)-vector with entries

pj = fj q(zj), 0 ≤ j ≤ N.

Multiplying on the left by(N + 1)−1 times the(N + 1) × (N + 1) matrix of conjugate
transposes of vectorszj gives the(N + 1)-vector

â = Ẑb,(3.1)
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FIG. 3.1. Structure of the Toeplitz matrix equation̂a = Ẑb of (3.1), summarizing the notation of Section3.
In terms of function values rather than coefficients, this corresponds to equation(3.4), p̂(zj) = fj q(zj) for all
0 ≤ j ≤ N . The least-squares problem is to minimize‖ã‖ subject to the constraint‖b‖ = 1. The minimum value
of ‖ã‖ is σmin, the smallest singular value of̃Z .

as shown in Figure3.1, whereẐ is the(N + 1) × (n + 1) matrix

Ẑ =
1

N + 1











(z0)∗

...

(zN )∗





















f0

f1

.. .
fN





















z0 · · · zn











.(3.2)

We can interpret this product of three matrices as follows. To find the polynomial coefficients
of the productfq, we could convolve the coefficients ofq with those off . Equation (3.2)
takes a discrete Fourier transform to convert this convolution to a multiplication by values of
f , then returns to coefficient space by the inverse discrete Fourier transform.

Explicitly, the entries ofẐ are given by

zjk =
1

N + 1

N
∑

ℓ=0

zk−j
ℓ fℓ.(3.3)

Thus, we see that̂Z is a nonsymmetric Toeplitz matrix whose first column is the discrete
Fourier transform of the data{fj}. The vector̂a is the vector of coefficients of the unique
polynomialp̂ ∈ PN taking the values

p̂(zj) = fj q(zj), 0 ≤ j ≤ N.(3.4)

Let us now definep to be the best approximation tôp in Pm with respect to the norm
‖ · ‖N , that is, the truncation of̂p to degreem, and leta be its vector of coefficients, that is,
the truncation of̂a to lengthm + 1. Thenp̂ − p is the polynomial inPN with coefficients
am+1, . . . , aN , implying

‖p − p̂‖N = ‖p − f q‖N =





N
∑

j=m+1

|aj |2




1/2

.

In other words‖p − f q‖N = ‖ã‖, where

ã = Z̃b,(3.5)
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andZ̃ is the(N −m)× (n + 1) matrix consisting of the lastN −m rows ofẐ, as shown in
Figure3.1. The norm‖ã‖ will be as small as possible if and only ifb is a minimal singular
vector ofẐ. The corresponding vectora is then

a = Zb,

whereZ is the(m + 1)× (n + 1) matrix consisting of the firstm + 1 rows ofẐ. Notice that
since the minimal singular value of a matrix may be multiple,there is no reason to expect that
b will always be unique. We shall return to this matter in Section 5.

CaseN = m + n: interpolation.The matrixZ̃ is of dimension(N −m)× (n + 1). An
important special case is that in whichN = m+n, corresponding to interpolation rather than
least squares. In this casẽZ has dimensionn×(n+1), so it must have a nonzero null vectorb

for which the approximation error is‖p − f q‖N = 0. In other words, the linearized rational
interpolation problem (3.4) is guaranteed to have a nontrivial solution in this case, and we
can compute a null vectorb numerically with the singular value decomposition (SVD). The
amount of work isO(n3).

CaseN > m + n: least-squares.For largerN , Z̃ will be square or more usually
rectangular with more rows than columns. We now have a true least-squares problem, which
again can be solved with the SVD. The amount of work isO(n2N).

Idealized Matlab code segment.In Matlab, supposem,n,N are given together with a
column(N + 1)-vector fj of data values{fj}. The following code segment produces the
coefficient vectorsa andb of the polynomialsp andq. (In Section5 we shall improve this
in many ways.) The roots ofq can be found afterward byroots(b(end:-1:1)) , and
similarly for p.

col = fft(fj)/(N+1); % column of Toeplitz matrix
row = conj(fft(conj(fj)))/(N+1); % row of Toeplitz matrix
Z = toeplitz(col,row(1:n+1)); % the Toeplitz matrix
[U,S,V] = svd(Z(m+2:N+1,:),0); % singular value decomposi tion
b = V(:,n+1); % coefficients of q
qj = ifft(b,N+1); % values of q at zj
ah = fft(qj. * fj); % coefficients of p-hat
a = ah(1:m+1); % coefficients of p
pj = ifft(a,N+1); % values of p at zj

Evaluation of the rational function.Once the coefficient vectorsa andb have been
determined, there are two good methods for evaluatingr(z) = p(z)/q(z): direct use of the
coefficients, or barycentric interpolation. Suppose a vector zz of numbersz is given and we
wish to find the vectorrr of corresponding valuesr(z). The following command computes
them in the direct fashion:

rr = polyval(a(end:-1:1),zz)./polyval(b(end:-1:1),zz)

Alternatively, they can be computed without transforming to coefficient space by the follow-
ing process of rational barycentric interpolation described in [19].

rr = zeros(size(zz));
for i = 1:length(zz)

dzinv = 1./(zz(i)-zj(:));
ij = find(˜isfinite(dzinv));
if length(ij)>0, rr(i) = pj(ij)/qj(ij);
else rr(i) = ((pj. * zj).’ * dzinv)/((qj. * zj).’ * dzinv); end

end
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For our purposes both of these evaluation methods are fast and stable, and in the remainder
of this paper, the experiments and discussion are based on the simpler direct method. (The
advantages of barycentric interpolation become importantfor approximations in sets of points
other than roots of unity.)

4. Spurious poles or Froissart doublets.To illustrate various approximations, this pa-
per presents a number of figures in a uniform format. Each plotcorresponds to the approxi-
mation of a functionf in the (N + 1)st roots of unity by a rational function of type(m,n)
computed in standard IEEE double precision arithmetic. Theunit circle is marked, with the
roots of unity shown as black dots. The triplet(m,n,N) is listed on the upper-right, and a
label on the upper-left reads “Interpolation” ifN = m+n and “Least-squares” ifN > m+n.
Our standard choice in the latter case isN = 4(m + n) + 1. The advantage of havingN odd
is discussed in the next section.

The lower-left of each plot lists the exact type(µ, ν), to be explained in the next section,
and the elapsed time for computing this approximation on a 2010 desktop computer.

Each plot also lists a numberErr , equal to the maximum of|f(z) − r(z)| over the
discrete grid of 7860 points in the unit disk whose real and imaginary coordinates are odd
multiples of0.01. How to choose a single scalar like this to measure the accuracy of r as an
approximation tof is not in the least bit clear. Different rational functions will be constructed
for different purposes and can be expected to have very different approximation properties.
If f is meromorphic in the disk, for example, then one may hope that r will approximate it
closely throughout the disk, at least away from a small region around each pole. (A function
is meromorphic if it is analytic apart from poles.) For type(n, n) approximation there is no
difference in principle between the interior and the exterior of the disk however, so one could
also measure error outside the disk, or in an annulus centered on the unit circle. Another
issue is that if there are branch points as opposed to poles, or essential singularities, one
cannot expect close approximation near them. We have settled on the quantityErr defined
above as a simple indicator that makes sense for many problems, and have added comments
in the captions of figures where this measure does not work so well (Figures6.6 and6.8).
Interestingly,Err is meaningful even in many cases wheref has poles in the disk, though it
would diverge to∞ in such cases if the grid were infinitely fine.

Finally, each plot also shows poles or essential singularities off , marked by crosses, and
poles ofr, marked by dots. The absolute value of the residue at each pole of r, evaluated by
a finite difference, is indicated by a color code (a scheme suggested to us by Grady Wright):

|residue| ∈











































[10−3,∞) blue

[10−6, 10−3) light blue

[10−9, 10−6) green

[10−12, 10−9) light green

[10−14, 10−12) pink

(0, 10−14) red.

Thus, a blue or green pole has a good chance of being genuine and useful for approximation,
whereas pink and red poles are likely to be artifacts introduced by rounding errors.

In this section we consider just one example function,

f(z) = tan(4z),

with poles at odd multiples ofπ/8; many more examples are presented in Section6. Fig-
ure 4.1 shows rational interpolants and least-squares fits tof of type (8, 8), (80, 8), and
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(8,8,16)

tan(4z)

Err = 1.24e−01

Interpolation

(8,8)
0.002 secs.

(8,8,65)

Err = 3.19e−05

Least−squares

(8,8)
0.001 secs.

(80,8,88)

Err = 4.46e−12

Interpolation

(80,8)
0.001 secs.

(80,8,353)

Err = 5.23e−12

Least−squares

(80,8)
0.002 secs.

(80,80,160)

Err = 6.26e−12

Interpolation

(80,80)
0.021 secs.

(80,80,641)

Err = 1.86e−11

Least−squares

(80,80)
0.040 secs.

FIG. 4.1. Approximations totan(4z) by the algorithm of Section3. For the type(8, 8) approximations of the
top row, both approximations successfully place four poleswhere one would expect them, and least-squares improves
the quality of the fit by orders of magnitude. For type(80, 8), in the second row, some spurious poles have appeared,
and least-squares no longer makes much difference. With type(80, 80), there are dozens of spurious poles clustering
along the unit circle. In both the second and third rows, the spurious poles would make theErr measure infinite if
the grid on which|f(z) − r(z)| was measured were infinitely fine, but the grid has just7860 points and poles at
arbitrary points with residues below10−12 usually slip through undetected.

(80, 80). The type(8, 8) fits are trouble-free, with four poles ofr closely matching poles
of f . In the type(80, 8) fits, however, a few pink and red dots have appeared at seemingly
arbitrary locations. With type(80, 80), the pink and red dots have become numerous, and
most are located near the unit circle. These poles with very small residues, introduced by
rounding errors, are what we callspurious polesor Froissart doublets[11, 12]. The word
doublet alludes to the fact that near each pole one will normally find an associated zero, the
pole and zero effectively cancelling each other except locally.

One can explain the appearance of spurious poles as follows.For low degreesm andn,
all the available parameters may be needed to achieve a good approximation, and thus poles
tend to be placed in a manner well adapted to the function being approximated. Asm andn
increase, on the other hand, or even ifm increases withn held fixed, we begin to have more
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parameters available than are needed to approximatef to machine precision. In this regime
we are fitting the rounding errors rather than the data, and this is when spurious poles appear.
Note that the pink and red dots in Figure4.1show neither of the symmetries one would expect
for this function, namely up-down (sincef(z) = f(z) ) or left-right (sincef(−z) = −f(z)).
These losses of symmetry are further evidence of the dependence of these approximations on
rounding error (symmetries are discussed further in the next section).

In the literature of rational approximation, spurious poles have been investigated mainly
in two contexts. One are situations like our own, where finiteprecision effects or other per-
turbations introduce poles that in an exact analysis shouldnot be there. Authors on this
topic include Bessis, Fournier, Froissart, Gammel, Gilewicz, Kryakin, Pindor, and Truong-
Van; see, for example, [12]. The other is in more theoretical studies on convergence ofPad́e
and Pad́e-like approximants to functionsf in the complex plane, especially the case of type
(n, n) approximants withn → ∞. In such cases it has been known at least since Perron in the
1920s that poles with small residues may appear at seeminglyarbitrary places, preventing the
Pad́e approximants{rnn} from approachingf pointwise asn → ∞. Instead, the standard
theorem of convergence of diagonal Padé approximants, theNuttall–Pommerenke Theorem,
asserts that{rnn} converges to a meromorphic functionin capacity, which means away from
exceptional sets that may vary from one value ofn to the next and whose capacities decrease
exponentially to0 asn → ∞ [1, 18, 20, 25]. (The capacity of a set is a standard notion of
potential theory, and is greater than or equal toπ−1 times the area measure, so convergence
in capacity also implies convergence in measure.) Iff is not meromorphic but has branch
points, a theorem of Stahl makes an analogous statement about convergence in capacity away
from certain arcs in the complex plane [25].

Simpler than the Nuttall–Pommerenke theorem is an earlier theorem of de Montessus
de Ballore, concerning rows of the Padé table rather than diagonals, which asserts that as
m → ∞ with fixedn, the poles of approximantsrmn must approach those of a meromorphic
function like tan(4z) [1, 17]. (The original theorem applies to Padé approximation, but
rational interpolation in roots of unity is closely related, and indeed rational inpterpolation
also goes by the name of multipoint Padé approximation [22].) This theorem asserts true
pointwise convergence, not just convergence in capacity, but in the second row of Figure4.1
we can see that this convergence is evidently not taking place as we go from type(8, 8) to
type(80, 8); it is undone by the rounding errors.

Figure4.2plots the singular values of̃Z for the same six cases as in Figure4.1. Below
about10−14, these are clearly artifacts of rounding error, which introduces effectively random
contributions of order machine epsilon in the coefficients of the numerator and denominator
polynomials. This observation explains why the spurious poles in Figure4.1 tend to cluster
near the unit circle: it is because the roots of random polynomials tend to cluster near the unit
circle [13, 16, 23, 24]. Figure4.3 illustrates this effect by comparing the roots of a random
polynomial of degree100 with the poles of a type(100, 100) rational interpolant to random
data in201 roots of unity.

5. A more robust algorithm and code. We now propose a collection of modifications
to the algorithm and code segment of Section3 to make rational interpolation and least-
squares fitting more robust and useful for applications. Therobust code is listed with line
numbers in Figure5.1, and our algorithmic proposals can be summarized as follows:

1. Check if{fj} is real symmetric,
2. If N is odd, check if{fj} is even or odd,
3. Remove contributions from negligible singular values ofZ̃ ,
4. Remove the degeneracy if the smallest singular value ofZ̃ is multiple.
5. Discard negligible trailing coefficients ofp andq.
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FIG. 4.2. Nonzero singular values of̃Z for the same six problems as in Figure4.1. In the top row, rounding
errors have little effect and the singular values are all genuine. The second row shows four genuine singular values
but the rest of order10−15 rather than decreasing toward zero as would happen in exact arithmetic. The bottom
row shows about15 singular values that could contribute to the quality of the approximation, plus dozens more at
the level of machine precision.

Roots of a random polynomial Poles of a random rational interpolant

FIG. 4.3. On the left, the roots of a random polynomialp of degree100 with coefficients from a complex
normal distribution of mean0. The black line marks the unit circle. On the right, the polesof a rational interpolant
of type(100, 100) to random data from the same distribution at201 roots of unity. The close match of the images
illustrates that the appearance of spurious poles near the unit circle in numerical rational approximation is related
to randomness in the computed denominators.
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All of these ideas involve a tolerancetol , which by default we set at10−14. This is an
effective choice for many problems in which the only perturbations are the rounding errors
of floating-point arithmetic. If other perturbations are present, for example if one is approx-
imating a functionf that is only known to a certain precision, thentol can be increased
accordingly.

1. Check if{fj} is real symmetric.Our first improvement involves the common case in
whichf is real symmetric, by which we mean thatf(z) = f(z) for eachfj . Such a function
should have a real discrete Fourier transform, a real matrixẐ, and approximationsp andq
with real coefficient vectorsa andb. However, rounding errors will typically break this sym-
metry, e.g., if one computes the roots of unity aszj = exp(2i * pi * (0:N)/(N+1)) .
The resulting approximations will be complex, typically with poles and zeros located non-
symmetrically with respect to the real axis, as in Figure4.1.

One could insist that a user wishing to approximate a real symmetric function should
supply a data vector{fj}which is itself exactly real symmetric. Such a requirement,however,
is likely to confuse users. Instead our algorithm checks if{fj} is symmetric up to relative
tolerancetol (lines 8–10). If it passes this test, then the imaginary parts of entries ofZ̃ are
discarded as well as the imaginary parts of the computed vector a, which are introduced by
the FFT (lines 16–17).

2. If N is odd, check if{fj} is even or odd.A similar issue arises whenf is even or odd.
In these cases one might expectq should be even, whilep should have the same parity asf .
In fact, however, this expectation is only valid whenN is odd, so thatN + 1 is even. On
the 3-point grid associated withN = 2, for example, one could hardly expect that an even
functionf must have an even interpolant.

Accordingly, we take no steps to enforce even or odd symmetrywhenN is even, but if
N is odd, we follow a procedure similar to the the one before. The data vector{fj} is tested
for even or odd symmetry up to a relative tolerancetol (lines 12–13), and if it passes the
test, the appropriate structure is forced uponZ̃ , as follows from (3.3): if {fj} is even, then
odd diagonals of̃Z are zero, and if{fj} is odd, then even diagonals are zero (lines 25–26
and 34–35). In both of these cases the row and column dimensions ofZ̃ can be cut in half.

For many practical applications the user will want a least-squares fit withN ≫ m + n,
and here the loss of symmetry would be disturbing even thoughin principle,{fj} can only
be truly symmetric whenN is odd. We address this issue by including a recommendation in
the comment lines of the code that ifN ≫ m + n, thenN should be chosen to be odd.

3. Remove contributions from negligible singular values ofZ̃ . For larger values ofm
andn, the matrixZ̃ of (3.5) often has a number of singular values at a level close to machine
precision. We make this notion precise by defining a singularvalue ofZ̃ to benegligibleif it
is smaller thantol timesmaxj |fj |, wheretol is a number set by default to10−14. Let τ
be the number of negligible singular values ofZ̃ (lines 28 and 40). Ifτ = 0, then the minimal
singular vector defines a denominator polynomialq and then a numerator polynomialp for
which the error‖p − fq‖N of (2.4) is equal to the smallest singular value and thus minimal,
and we have solved the linearized least-squares problem. Ifτ = 1, then the same solution
has a negligible error‖p − fq‖N , and we have solved the interpolation problem. Ifτ ≥ 2,
then there areτ different linearly independent denominator polynomialsq for which the error
‖p − fq‖N can be made negligible. By considering linear combinations, we see that in this
case there must exist a denominator polynomial of degreen− (τ −1) with the same property,
and for robustness it is a good idea to find such a solution so asto prevent the appearance of
spurious poles.
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function [r,a,b,mu,nu,poles,residues] = ratdisk(f,m,n, N,tol)
% Input: Function f or vector of data at zj = exp(2i * pi * (0:N)/(N+1))
% for some N>=m+m. If N>>m+n, it is best to choose N odd.
% Maximal numerator, denominator degrees m,n.
% An optional 5th argument specifies relative tolerance tol .
% If omitted, tol = 1e-14. Use tol=0 to turn off robustness.
% Output: function handle r of exact type (mu,nu) approximan t to f
% with coeff vectors a and b and optional poles and residues.
% P. Gonnet, R. Pachon, L. N. Trefethen, January 2011

1 if nargin<4, if isfloat(f), N=length(f)-1;
2 else N=m+n; end, end % do interpolation if no N given
3 N1 = N+1; % no. of roots of unity
4 if nargin<5, tol = 1e-14; end % default rel tolerance 1e-14
5 if isfloat(f), fj = f(:); % allow for either function
6 else fj = f(exp(2i * pi * (0:N)’/(N1))); end % handle or data vector
7 ts = tol * norm(fj,inf); % absolute tolerance
8 M = floor(N/2); % no. of pts in upper half-plane
9 f1 = fj(2:M+1); f2 = fj(N+2-M:N1); % fj in upper, lower half- plane

10 realf = norm(f1(M:-1:1)-conj(f2),inf)<ts; % true if fj i s real symmetric
11 oddN = mod(N,2)==1; % true if N is odd
12 evenf = oddN & norm(f1-f2,inf)<ts; % true if fj is even
13 oddf = oddN & norm(f1+f2,inf)<ts; % true if fj is odd
14 row = conj(fft(conj(fj)))/N1; % 1st row of Toeplitz matri x
15 col = fft(fj)/N1; col(1) = row(1); % 1st column of Toeplitz matrix
16 if realf, row = real(row); % discard negligible imag parts
17 col = real(col); end
18 d = xor(evenf,mod(m,2)==1); % either 0 or 1
19 while true % main stabilization loop
20 Z = toeplitz(col,row(1:n+1)); % Toeplitz matrix
21 if ˜oddf & ˜evenf % fj is neither even nor odd
22 [U,S,V] = svd(Z(m+2:N1,:),0); % singular value decompos ition
23 b = V(:,n+1); % coeffs of q
24 else % fj is even or odd
25 [U,S,V] = svd(Z(m+2+d:2:N1,1:2:n+1),0); % special trea tment for symmetry
26 b = zeros(n+1,1); b(1:2:end) = V(:,end); % coeffs of q
27 end
28 if N > m+n && n>0, ssv = S(end,end); % smallest singular valu e
29 else ssv = 0; end % or 0 in case of interpolation
30 qj = ifft(b,N1); qj = qj(:); % values of q at zj
31 ah = fft(qj. * fj); % coeffs of p-hat
32 a = ah(1:m+1); % coeffs of p
33 if realf a = real(a); end % discard imag. rounding errors
34 if evenf a(2:2:end) = 0; end % enforce even symmetry of coef fs
35 if oddf a(1:2:end) = 0; end % enforce odd symmetry of coeffs
36 if tol>0 % tol=0 means no stabilization
37 ns = n; % no. of singular values
38 if oddf|evenf, ns = floor(n/2); end
39 s = diag(S(1:ns,1:ns)); % extract singular values
40 nz = sum(s-ssv<=ts); % no. of sing. values to discard
41 if nz == 0, break % if no discards, we are done
42 else n=n-nz; end
43 else break % no iteration if tol=0.
44 end
45 end % end of main loop
46 nna = abs(a)>ts; nnb = abs(b)>tol; % nonnegligible a and b c oeffs
47 kk = 1:min(m+1,n+1); % indices a and b have in common
48 a = a(1:find(nna,1,’last’)); % discard trailing zeros of a
49 b = b(1:find(nnb,1,’last’)); % discard trailing zeros of b
50 if length(a)==0 a=0; b=1; end % special case of zero functi on
51 mu = length(a)-1; nu = length(b)-1; % exact numer, denom de grees
52 r = @(z) polyval(a(end:-1:1),z)... % function handle for r
53 ./polyval(b(end:-1:1),z);
54 if nargout>5 % only compute poles if necessary
55 poles = roots(b(end:-1:1)); % poles
56 t = max(tol,1e-7); % perturbation for residue estimate
57 residues = t * (r(poles+t)-r(poles-t))/2; % estimate of residues
58 end

FIG. 5.1.Matlab coderatdisk for robust rational interpolation and linearized least squares.
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To achieve this, our strategy in cases withτ ≥ 2 is to reduce the denominator degree
from n to n − (τ − 1) and start the approximation process again, now inevitably as a least-
squares problem rather than interpolation sinceN is unchanged (line 42). The shrinking of
the denominator degree can be justified quantitatively by noting that the contribution of a
singular value of sizeε can only affect the error norm (2.4) by ε. Consequently, discarding
such a contribution can at worse increase the error byε, with the great benefit of eliminating
a probably spurious pole.

As the examples of the next section will show, the effect of discarding these negligible
singular values is an elimination of most of the Froissart doublets that otherwise appear in
plots such as those of Figure4.1.

4. Remove the degeneracy if the smallest singular value ofZ̃ is multiple. In approxima-
tion cases where the error‖p− fq‖N of (2.4) cannot be brought down to machine precision,
the smallest singular value of̃Z will not be negligible. Nevertheless, it may be multiple, and
in this case the choice ofq is again nonunique. Such a case corresponds top andq potentially
sharing a common factor. For example, if the best type(1, 1) approximation to a functionf
on the(N + 1)st roots of unity is the constant1, thenp = q = 1 andp = q = z are both
solutions to the least-squares problem. Some situations like this are avoided by the special
steps described above that are taken iff is even or odd, but other degeneracies are not caught
by those tests, such as a function likecos(z)+ z7 (not even, but its low-order approximations
should be even ifN is odd) orlog(2+z3) (Taylor series containing only powers ofz divisible
by 3).

To remove such degeneracies we apply a procedure just like the one desribed above for
negligible singular values. If the smallest singular valueof Ẑ has multiplicityτ ≥ 2, we
reduce the denominator degree fromn to n − (τ − 1) and start the approximation process
again (lines 28, 40, and 42).

5. Discard negligible trailing coefficients ofp andq. Sometimes the numerator or denom-
inator polynomials generated by the methods we have described have one or more highest-
order coefficients that are zero or negligible. For example,this will be true iff is even and
(m,n) is not of the form (even,even), or iff is odd and(m,n) is not of the form (odd,even).
In this case it is appropriate to delete the negligible coefficient(s) and return polynomials of
lower order (lines 46–49).

As we have seen, Figure5.1 lists our robust Matlab programratdisk . The user pro-
vides a functionf vector of datafj and nonnegative integersm andn, and optionally a
tolerancetol to override the default value of10−14. Settingtol = 0 leads to a pure in-
terpolation calculation as in the code segment of Section3, with no robustness features. The
program computes a rational approximantr and returns a function handler to evaluate this
function together with its coefficient vectorsa andb and exact numerator and denominator
degreesµ ≤ m andν ≤ n. We say that the rational functionr returned is ofexact type(µ, ν).
The poles and residues are also optionally returned for plots such as those of this paper. Com-
puting poles takesO(ν3) operations, so one would normally not request this output.

The style ofratdisk is very compressed, with fewer comments and tests than one
would expect in fully developed software, but this program includes all our robustness strate-
gies and should work in many applications.

6. Examples. Figures6.1–6.9 show examples spanning a wide range of functions and
approximation orders. This time, each figure presents four plots instead of two. The first row
in each case corresponds toratdisk with tol = 0, that is, to the idealized algorithm of
Section3, just as in Figure4.1, while the second row corresponds toratdisk in its robust
mode with the default valuetol = 10−14.
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(80,80,160)

Err = 6.26e−12

Interpolation

(80,80)
0.031 secs.

(80,80,641)

Err = 1.86e−11

Least−squares

(80,80)
0.042 secs.

(80,80,160)

Err = 8.13e−13

Interpolation
Stabilized

(47,4)
0.004 secs.

(80,80,641)

Err = 3.53e−13

Least−squares
Stabilized

(47,4)
0.009 secs.

FIG. 6.1. Type(80, 80) approximation oftan(4z) again, now including robustratdisk approximation
in the second row. The spurious poles are gone. Note that the exact type has shrunk to(47, 4), which is of the
(odd,even) form appropriate in the approximation of an odd function.

The discussion of the examples is given in the captions of thefigures. We see that in
almost every case, theratdisk algorithm removes the spurious poles.

7. The limit N → ∞ and an analogue of the Pad́e table. This paper concerns
rational approximation of a functionf in N + 1 points on a circle, whose radiusτ can of
course be varied. Iff is analytic atz = 0, then in the limitτ → 0 andN → ∞ one would
expect the approximants to approach Padé approximants, at least generically [27]. Recall that
the type(m,n) Pad́e approximantto f is the unique functionr ∈ Rmn whose Taylor series
matches that off as far as possible [1]:

f(z) − r(z) = O(zmaximum).

Generically the degree of matching is exactlyO(zm+n+1), but in special cases it can be
higher or lower. For example, iff is even or odd, thenr will have the same symmetry
regardless ofm andn, so the first nonzero term in the expansion off(z) − r(z) will be even
or odd, respectively.

Pad́e approximation is an elegant and fundamental notion of mathematics, but for com-
putation, approximation on circles of finite radius may be more convenient. To calculate the
coefficients of a Pad́e approximation, a straightforward method is to set up a set of linear
equations involving the Taylor coefficients ofp andq, and these equations have a Toeplitz
structure analogous to that of̂Z of (3.2). Instead of the values{fj} at roots of unity that
appear in (3.2), however, such a calculation requires the Taylor coefficients of f . If one is
starting from a functionf rather than from Taylor coefficients, then these must be computed
in one way or another, and a standard method is to samplef in equispaced points on a circle
about0 and then use the FFT [7, 14, 15]. In this paper, since we are approximating on a
circle rather than at a point, the steps of computing coefficients by the FFT and generating
the rational approximation are combined into one.



ETNA
Kent State University 

http://etna.math.kent.edu

ROBUST RATIONAL INTERPOLATION AND LEAST-SQUARES 159

(100,4,104)

log(2+z4)/(1−16z4)

Err = 8.98e−008

Interpolation

(100,4)
0.002 secs.

(100,4,417)

Err = 4.46e−011

Least−squares

(100,4)
0.002 secs.

(100,4,104)

Err = 8.98e−008

Interpolation
Stabilized

(100,4)
0.002 secs.

(100,4,417)

Err = 4.46e−011

Least−squares
Stabilized

(100,4)
0.002 secs.

FIG. 6.2.Type(100, 4) approximation of the even functionlog(2 + z4)/(1 − 16z4). Here, sincen has been
specified as low as4, the robustness features make no significant difference. The next figure, Figure6.3, shows what
happens ifn is increased.

(100,100,200)

log(2+z4)/(1−16z4)

Err = 9.74e−013

Interpolation

(100,100)
0.040 secs.

(100,100,801)

Err = 1.02e−011

Least−squares

(100,100)
0.076 secs.

(100,100,200)

Err = 7.83e−014

Interpolation
Stabilized

(100,12)
0.009 secs.

(100,100,801)

Err = 6.77e−014

Least−squares
Stabilized

(100,12)
0.027 secs.

FIG. 6.3. For type(100, 100) approximation oflog(2 + z4)/(1 − 16z4), there are many spurious poles in
addition to the useful poles tracking the fourfold symmetric branch cuts. Note that as in Figures4.1 and 6.1, the
spurious poles are not symmetric, even though the function is even. In the lower plots the symmetries are enforced
and the type is reduced, with bothµ andν being divisible by4 because of the fourfold symmetry.
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(30,30,60)

log(1.2+z)

Err = 3.62e−013

Interpolation

(30,30)
0.003 secs.

(30,30,241)

Err = 3.70e−013

Least−squares

(30,30)
0.004 secs.

(30,30,60)

Err = 5.91e−011

Interpolation
Stabilized

(29,5)
0.002 secs.

(30,30,241)

Err = 5.14e−011

Least−squares
Stabilized

(29,5)
0.003 secs.

FIG. 6.4. Type(30, 30) approximation of a function with a single branch cut(−∞,−1.2]. As in the last
figure, we see “green and blue poles” with significant residues lining up along the branch cut and performing a
useful approximation function.

(20,60,80)

sqrt(0.7+0.8i−z2)

Err = 3.54e−007

Interpolation

(20,60)
0.014 secs.

(20,60,321)

Err = 3.00e−009

Least−squares

(20,60)
0.016 secs.

(20,60,80)

Err = 7.97e−007

Interpolation
Stabilized

(20,26)
0.022 secs.

(20,60,321)

Err = 5.77e−009

Least−squares
Stabilized

(20,32)
0.034 secs.

FIG. 6.5.Type(20, 60) approximation of
√

0.7 + 0.8i − z2, a complex even function with two branch cuts.
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(40,40,80)

exp(1/z)

Err = 5.18e+021

Interpolation

(40,40)
0.005 secs.

(40,40,321)

Err = 5.18e+021

Least−squares

(40,40)
0.007 secs.

(40,40,80)

Err = 5.18e+021

Interpolation
Stabilized

(7,7)
0.002 secs.

(40,40,321)

Err = 5.18e+021

Least−squares
Stabilized

(7,7)
0.004 secs.

FIG. 6.6. Type(40, 40) approximation ofexp(1/z), with an essential singularity at the origin. TheErr
measures come out nearly infinite. If|f(z) − r(z)| is measured just at the grid points in the disk with|z| > 0.5,
however, they shrink to1.04e−11, 4.26e−11, 3.94e−11, and3.82e−11.

(2345,67,2412)

exp(3iz4)(z9−14)sqrt(1.7−z4)/(77z2+1)

Err = 4.17e−010

Interpolation

(2345,67)
0.060 secs.

(2345,67,9649)

Err = 6.48e−009

Least−squares

(2345,67)
0.355 secs.

(2345,67,2412)

Err = 1.42e−011

Interpolation
Stabilized

(164,2)
0.021 secs.

(2345,67,9649)

Err = 1.08e−011

Least−squares
Stabilized

(164,2)
0.342 secs.

FIG. 6.7. Approximation of type(2345, 67) to a complex function with two poles and four branch cuts. The
polynomial degree is so high that the robust algorithm does not use the denominator at all except to capture the
poles.
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(30,30,60)

sqrt(4−1/z2)

Err = 5.43e+001

Interpolation

(30,30)
0.003 secs.

(30,30,241)

Err = 1.26e+002

Least−squares

(30,30)
0.004 secs.

(30,30,60)

Err = 5.45e+001

Interpolation
Stabilized

(12,12)
0.002 secs.

(30,30,241)

Err = 5.45e+001

Least−squares
Stabilized

(12,12)
0.003 secs.

FIG. 6.8. Type(30, 30) approximation of
√

4 − z−2, which has a branch cut[−1/2, 1/2]. Poles are placed
along the branch cut. In the upper row the poles are far from symmetric, but the lower row shows the expected
symmetries enforced byratdisk . If |f(z) − r(z)| is measured just at grid points with|Imz| > 0.25, theErr
values shrink to1.27e−5, 2.51e−5, 1.36e−5, and1.38e−5.

(6,6,12)

log(2+z4)

Err = 5.42e−001

Interpolation

(6,6)
0.001 secs.

(6,6,49)

Err = 1.76e−002

Least−squares

(6,6)
0.002 secs.

(6,6,12)

Err = 5.42e−001

Interpolation
Stabilized

(6,6)
0.002 secs.

(6,6,49)

Err = 1.76e−002

Least−squares
Stabilized

(6,6)
0.001 secs.

FIG. 6.9.Type(6, 6) approximation oflog(2 + z4). Notice that althoughf has four-fold symmetry, the exact
type(µ, ν) is not divisible by4, even in the least-squares computation of the bottom-right. This is becauseN = 49
is fairly small. For largerN one gets the expected symmetry, as shown in the final panel of Figure7.1.
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(z3
− 3)/(z4

− 4) log(2 + z4)

FIG. 7.1.Tables of linearized least-squares approximants to four functions, withm on the horizontal axis and
n on the vertical axis. Each color corresponds to the exact type (µ, ν) of a ratdisk approximation computed
with tol = 10−14 andN = 1023, so that colors reveal blocks of identical entries or at least entries of identical
exact types. Forexp(z) all the blocks are distinct until the function is resolved tomachine precision, after which
the denominator degrees are systematically reduced as far as possible. For the odd functionsin(10z), 2× 2 square
blocks appear in the table; because of the factor10, this function is never resolved withm, n ≤ 20 to machine
precision, so no further degeneracies appear in the table. For (z3 − 3)/(z4 − 4) we get an infinite square block
since the function is rational and thus resolved exactly form ≥ 3 andn ≥ 4. Finally, for log(2 + z4) we get4× 4
blocks untilm andn get large enough for the approximations to have accuracy close to machine precision; these
anomalies go away iftol is increased to10−12.

A particularly natural finite-radius analogue of Padé approximation emerges if we con-
sider the limitN → ∞, in which the linearized least-squares problem (2.3)–(2.4) is posed on
the unit circle rather than a discrete set of points. Ifrmn is the type(m,n) approximation to a
fixed functionf determined in this way, then we may imagine a table of approximations tof ,
analogous to the usual Padé table, withm displayed horizontally andn vertically. This notion
would apply both as a mathematical abstraction, and also in numerical form as computed in
floating-point arithmetic with a tolerancetol > 0.
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Figure7.1 gives a graphical illustration of these Padé-like tables for approximation on
the unit circle ofexp(z), sin(z), (z3 − 3)/(z4 − 4), andlog(2 + z4). Each square is given
a random color associated not with its allowed type(m,n) but with its exact type(µ, ν) as
obtained in aratdisk computation withN = 1023. The computation of the whole table
takes less than a second on a desktop computer. Forexp(z) we see distinct approximations in
each square for smallerm andn, then numerical degeneracy as machine precision is reached
and further increase ofm andn serves no purpose. Forsin(z) we see an approximate2 × 2
square block structure caused by the fact that the function is odd [1, 26]. The third example is
rational, and this is reflected in the infinite block form ≥ 3, n ≥ 4. Finally, the last function
is fourfold symmetric, and we see see4×4 blocks down to the level where machine precision
begins to be felt.

8. Evaluating radial basis function interpolants. Radial basis functions (RBFs) are a
flexible tool for representing scattered data in multiple dimensions by smooth interpolants [4,
6, 28]. When applied to the solution of partial differential equations, they offer the prospect
of combining the high accuracy of spectral methods with great freedom with respect to the
geometry. Following ideas of Fornberg and his coauthors, weshall show by an example
that robust rational interpolation may play a role in such calculations. The RBFs used in the
example are Gaussians.

Suppose we have anM -vectorg of data values{gj} at distinct pointsuj in a region of
theu-plane. We wish to find anRBF interpolantof the form

s(ε)(u) =

M
∑

j=1

λ
(ε)
j e−ε‖u−uj‖

2

,

whereε > 0 is a fixed number called theshape parameter(usually writtenε2 in the RBF
literature) andλ(ε) is a vector of coefficients. The interpolation conditions take the form of
anM × M linear system of equations forλ(ε),

A(ε)
λ

(ε) = g, a
(ε)
ij = e−ε‖ui−uj‖

2

.(8.1)

It was proved by Bochner in 1933 thatA(ε) is always nonsingular, so a unique solution to the
interpolation problem exists [2, 4, 28].

The dependence onε is a key point in RBF fits. Whenε is large, the basis functions
exp(−ε‖u − uj‖2) are narrowly localized and the matrixA(ε) is well conditioned. Much
greater interpolating accuracy, however, is potentially obtained for smaller values ofε, for
which the RBFs are less localized. The difficulty is that in this regime the condition number
of A(ε) reaches huge values, easily exceeding the inverse of machine epsilon in floating point
arithmetic. The challenge is to evaluates(ε)(u), which is a well-behaved function ofu, de-
spite the ill-conditioning of the matrix. With their “Contour-Pad́e algorithm,” Fornberg and
his coauthors have proposed that one method for this is to regardε as a complex parameter.
For values ofε on the unit circle, for example, the matrixA(ε) may be reasonably well con-
ditioned, whereas perhaps it isε = 0.1 that one cares about, corresponding to an impossibly
ill-conditioned matrix. For each fixed pointu, Cramer’s rule shows thats(ε)(u) is a mero-
morphic function ofε, and the idea is to evaluates(ε)(u) for values ofε on the unit circle,
then use a rational interpolant or least-squares fit to extrapolate in toε = 0.1. This idea was
first proposed in [10].

We give just one example. Let{uj} be the set of points scattered in the unit disk

|uj | =
√

j/Meij , 1 ≤ j ≤ M
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FIG. 8.1. Evaluation of an RBF interpolant through80 data points by direct linear algebra (blue) and
ratdisk (red circles). Rational least-squares approximation circumvents the ill-conditioning of the matrices in
the linear algebra formulation.

with M = 80. Let g(u) be the function

g(u) =
cos(u(1)) tanh(u(2))

‖u − (1, 1)‖

whereu(1) andu(2) denote the two components ofu. At u = 0, g takes the value0, and
we wish to evaluate the RBF interpolant at the same point,s(ε)(0), for variousε. For small
ε, the exact value ofs(ε) is very close tog(0) = 0. Figure8.1 shows values ofs(ε) by
the “RBF-Direct” method of solving the ill-conditioned system (8.1) and byratdisk with
(m,n,N) = (60, 20, 127).

As Fornberg and coauthors have pointed out, the range of RBF problems for which ra-
tional interpolation or least-squares is effective may be rather limited. When the number of
data points is much higher than in the example of Figure8.1, one is faced with meromorphic
functions ofε with so many poles that these techniques may break down. For such problems
an alternative known as the RBF-QR method is sometimes effective [8, 9].

9. Discussion. We have presented a robust numerical method and the Matlab code
ratdisk for rational approximation on the unit circle, with examples and an application
to the evaluation of radial basis function interpolants. Webelieve the method can be useful
for many practical problems and mathematical explorations. We conclude with some remarks
about various issues.

Increasingtol . In all our experiments, the relative tolerance parametertol has been
set to0 (for pure interpolation/least-squares) or10−14 (for robust computation with rounding
errors). In applications, users may want to adjust this parameter. Even when the only per-
turbations are rounding errors, there might be advantages to increasingtol in applications
where robustness is more important then very high accuracy.If other perturbations in the data
are present, then a correspondingly larger value oftol will almost certainly be appropriate.
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Ill-conditioning. However robust our algorithm, rational approximation remains an ill-
conditioned problem. For example, suppose one uses an(m,n) approximant to attempt to
locate some poles of a meromorphic function numerically. Asvarious practitioners have
noted over the years, type(10, 10) approximations will often yield more accurate poles than
type(40, 40), and the reason is simple—as more coefficients become available to achieve a fit,
it becomes less necessary for the approximation to locate the poles exactly right to achieve
optimality. We have seen this effect at several points in this paper, such as the imperfect
4 × 4 block structure in the final plot of Figure7.1. For another example, it is interesting to
approximate a function likef(z) = (z2 − 2)/(z3 +3) by rational functions withm,n → ∞.
For smallm andn, the denominatorq may come out just as expected; for large enoughm
andn our robustness procedures will reduceq to a constant; but for in-between values ofm
andn, q will typically be a cubic with coefficient far from the “correct” ones. Nevertheless
the rational function will be an excellent approximation tof .

Nonlinear least-squares.True rational approximations defined by (2.5), as opposed to
their linearized analogues defined by (2.4), are well known to pose difficulties in some cir-
cumstances. Nevertheless they are of interest, and we have successfully experimented with
the computation of nonlinear approximations by a sequence of iteratively reweighted linear
ones using a variant ofratdisk modified to incorporate a weight vector. Such an iteration
is the basis of the differential correction algorithm for rational best approximation [5]. This
work will be reported elsewhere.

Beyond roots of unity.Roots of unity are beautifully convenient: the basis of mono-
mials zk is numerically stable, formulas written in this basis have afamiliar appearance,
and function values are linked to coefficients by the FFT. Forrational interpolants and
least-squares approximants on an interval[a, b], however, one would need to use a differ-
ent set of interpolation points, and a good choice would be scaled and translated Chebyshev
pointsxj = a + (b − a) cos(jπ/N), 0 ≤ j ≤ N . The monomials would no longer be
a good basis and a good alternative would be scaled and translated Chebyshev polynomials
Tk(−1 + 2(x − a)/(b − a)) [21]. These tools of Chebyshev polynomials and Chebyshev
points have the same mathematical advantages on[a, b] as roots of unity and monomials on
the unit circle, though they are conceptually more complicated since most scientists and engi-
neers are less familiar with them. The methods we have described also generalize to arbitrary
point sets, though here one loses the FFT. Also, unless a goodbasis is known, it becomes
crucial to use barycentric interpolation to evaluater, as described at the end of Section3. For
details see [19].

Availability of code.The Matlab programratdisk is available from the third author at
http://people.maths.ox.ac.uk/trefethen/other.html .

A theoretical challenge.We would like to close by proposing a theoretical opportunity.
As was mentioned in Section4, the Nuttall–Pommerenke and Stahl theorems reflect the fact
that asn → ∞, type (n, n) Pad́e approximations to certain functions do not converge ev-
erywhere where one might expect, because Froissart doublets may appear at wandering loca-
tions [18, 20, 25]. Instead, these theorems only guarantee convergence in capacity. However,
we have proposed methods for eliminating Froissart doublets through the use of the singular
value decomposition. Our method has involved a fixed tolerance such as10−14, since our fo-
cus is on rounding errors, but from a theoretical point of view, in exact arithmetic, one might
consider a similar algorithm with tolerance decreasing to zero at a prescribed rate asn → ∞.
Some form of this idea might lead to a precise notion of arobust Pad́e approximationthat
might be guaranteed to converge pointwise, not just in capacity. A theorem establishing such
a fact would be a beautiful link between rational approximation theory and practice.

http://people.maths.ox.ac.uk/trefethen/other.html
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gramme No. 25, v. 9, CNRS, Strasbourg, 1969, pp. 1–13.
[12] J. GILEWICZ AND M. PINDOR, Pad́e approximants and noise: rational functions, J. Comput. Appl. Math.,

105 (1999), pp. 285–297.
[13] J. M. HAMMERSLEY, The zeros of a random polynomial, in Proceedings of the Third Berkeley Symposium on

Mathematical Statistics and Probability, 1954–1955, J. Neyman, ed., U. California Press, 1956, pp. 89–111.
[14] P. HENRICI, Fast Fourier methods in complex analysis, SIAM Rev., 21 (1979), pp. 481–527.
[15] L. N. LYNESS AND G. SANDE, Algorithm 413: ENTCAF and ENTCRE: evaluation of normalizedTaylor

coefficients of an analytic function, Comm. ACM, 14 (1971), pp. 669–675.
[16] G. A. MEZINCESCU et al.,Distribution of roots of random real generalized polynomials, J. Stat. Phys., 86

(1997), pp. 675–705.
[17] R. DE MONTESSUS DEBALLORE, Sur les fractions continues algébriques, Bull. Soc. Math. de France, 30
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