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TWO EFFICIENT SVD/KRYLOV ALGORITHMS FOR MODEL ORDER
REDUCTION OF LARGE SCALE SYSTEMS

�
YOUNÈS CHAHLAOUI

�
Abstract. We present two efficient algorithms to produce a reduced order model of a time-invariant linear

dynamical system by approximate balanced truncation. Attention is focused on the use of the structure and the
iterative construction via Krylov subspaces of both controllability and observability matrices to compute low-rank
approximations of the Gramians or the Hankel operator. This allows us to take advantage of any sparsity in the
system matrices and indeed the cost of our two algorithms is only linear in the system dimension. Both algorithms
efficiently produce good low-rank approximations (in the least square sense) of the Cholesky factor of each Gramian
and the Hankel operator. The first algorithm computes low-rank approximation of each Gramian independently. The
second algorithm works directly on the Hankel operator, and it has the advantage that it is independent of the chosen
realization. Moreover, it is also an approximate Hankel norm method. The two reduced order models produced by
our methods are guaranteed to be stable and balanced. We study the convergence of our iterative algorithms and the
properties of the fixed point iteration. We also discuss the stopping criteria and the choice of the reduced order.

Key words. model order reduction, approximate balanced truncation, Stein equations, Hankel map, Krylov
subspaces, approximate Hankel norm method, low-rank approximations
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1. Introduction. Most techniques for model reduction of linear dynamical systems are
based on the dominant subspaces of Gramians (energy functions for in- and outgoing signals)
or the dominant subspaces of their product [1]. These Gramians are the solutions of Lyapunov
equations in the continuous case, or the discrete Lyapunov or Stein equations in the discrete
case. Efficiently computing these solutions (or their dominant subspaces) when the system
matrices are large and sparse is still a challenging problem; see for instance [4, 5, 6]. In fact,
direct methods ignore sparsity in the Lyapunov/Stein equations and are not easy to parallelize.
Balanced truncation is one of the most used model reduction methods, and has the desirable
property that from a stable model it produces a reduced model that is guaranteed to be stable
with a global a priori ��� -error bound, but its use is constrained by its complexity. Moreover,
balanced truncation is not optimal as it is not minimizing any system norm. A refinement to
an optimal approximation method with respect to the Hankel-norm of the system leads to the
Hankel-norm approximation [18]. Despite the beauty of the theory it should be stressed that
its numerical use is often nontrivial. It is interesting to note that as far as the � � norm of
the error system is concerned (for which we proposed an easy evaluation method in [9]), the
Hankel-norm approximation need not provide better results than balanced truncation. The
high complexity of balanced truncation is due to the fact that we solve two Lyapunov/Stein
equations and then compute a singular value decomposition of the product of these solutions,
which both have complexity ���	��

� , where � is the dimension of the original system. And so
for systems with ����������� the cost of balanced truncation is prohibitively expensive. Even
the “square root” version of balanced truncation, where one consider the Cholesky factors of
the Gramians instead of the Gramians themselves, has a prohibitive complexity due to the full
balancing SVD [1]. However, if the Cholesky factors have low rank the computational cost
will be significantly reduced.�
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Penzl and others [2, 30] have observed that solutions to Lyaponuv/Stein equations asso-
ciated with linear time-invariant (LTI) systems often have low numerical rank, which means
that there is a sharp and early cutoff in the Gramian eigenvalues and by consequence also in
the Hankel singular values of the system. Indeed, the idea of low-rank methods is to take ad-
vantage of this low-rank structure to obtain approximate solutions in low-rank factored form.
The principal outcome of these approaches is that the complexity and the storage are reduced
from ������
�� flops and ��������� words of memory to ���	���
��� flops and ���	����� words of
memory, respectively, where � is the “reduced” order and so the “approximate” rank of the
Gramians ( ��� � ). In fact, these low-rank schemes are the only way to solve efficiently very
large scale Lyapunov/Stein equations. Moreover, approximating directly the Cholesky factors
of the Gramians and using these approximations to provide a reduced model has a compa-
rable cost to that of the popular moment matching methods. It requires only matrix-vector
products and linear system solves.

There are many methods to approximate the Gramians of an LTI system. Among the
most popular are the Smith method [33], the alternating direction implicit (ADI) iteration
method [39], and the Smith(l) method [29]. But all these schemes are computing the solution
in dense form, which is prohibitively expensive for large problems. Other methods, such as
those in [1, 23, 24, 29, 31, 32], use Krylov subspace ideas and take advantage of any sparsity,
but they usually fail to yield approximate solutions of high accuracy. Here we show how to
efficiently approximate recursively the Gramians by a low-rank factorization, or equivalently
to approximate their Cholesky factors by a low-rank approximation, and at the same time ex-
ploit the possible sparsity of the model matrices. We present two efficient iterative methods
that can be used for the model reduction of either time varying or time invariant systems.
The two reduced order models produced are guaranteed to be stable and balanced. The first
method is mainly dedicated to the low-rank approximation of the Gramians, while the second
method approximates not only the Gramians but also the Hankel map of the system, which
means that it will be independent of the state space realizations of the system. It also pro-
vides an approximation to the Hankel-norm model order reduction based methods, which are
optimal but very hard to handle. The first key fact about approximate balanced truncation is
that we define our reduced order model via its Gramians, from which we construct the pro-
jection matrices. The second is that an error bound for the difference between systems can be
obtained via the error bound on the difference between their Gramians. In [9] we presented
some hints on how to choose the projection matrices in order to have better � � and � � error
norms.

This paper is organized as follows. First, in Section 2 we recall some principal notions
for linear time-invariant dynamical systems. In Section 3, we present the idea of approximate
balanced truncation and we analyze the quality of the reduced order model as a function of
the closeness of the projector matrices to those obtained via balanced truncation. Sections 4
and 5 focus on the presentation and discussion of the two new algorithms for the low-rank ap-
proximation of the Gramians and the Hankel operator. In Section 4, we present the Recursive
Low-Rank Gramian (RLRG) approximation algorithm. It uses the recursive constructibility
of the controllability and observability matrices to efficiently produce low-rank approxima-
tions of the Cholesky factors of the Gramians. We study the convergence of a fixed point
iteration and we give some of its properties. We finish this section by illustrating numerically
all these results. In Section 5 the emphasis reverts to the Hankel operator. The Recursive
Low-Rank Hankel (RLRH) approximation algorithm is presented. It also uses the recursive
constructibility of the controllability and observability matrices, but this time to produce a
low-rank approximation of the Hankel operator. This algorithm has the merit that it is inde-
pendent of the choice of the realization in use. We present some results about approximate
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balanced truncation based on these two algorithms in Section 6. Both algorithms produce a
stable balanced reduced order model. In Section 7, we complete the analysis of our methods
by presenting a further discussion about two very important points: the stopping critera and
the dynamic choice of the reduced order. The emphasis is on the integration of the second
point into our algorithms. We finally illustrate the quality and effectiveness of our meth-
ods with some numerical results in the Section 8. We finish with some remarks and open
questions in Section 9.

2. Linear time-invariant systems. In this work we concentrate on discrete-time sys-
tems, but all our results could be extended to the continuous-time case using the bilinear
transformation [3]. The bilinear transformation, also known as Tustin’s method, has the ad-
vantage that it is a conformal method. In other words, every feature in the continuous system
will be preserved in the discretized system; moreover, the Gramians of the continuous system
will be the same as for the discretized system. A linear time-invariant system is in general
described by the difference equations

(2.1) !#"%$'&)(+*,!-"/.10324"6587�"9(;:<!#"
with input 24"�=�>@? , state !#"�=�>@A and output 7�"B=�>�C , where D�5�EF�G� , and we assume
that the matrices * , 0 , and : are of appropriate dimensions. We will assume also the system
(2.1) to be stable, i.e., all eigenvalues of the matrix * are strictly inside the unit circle. The
transfer function associated with the system is defined by HJIK��LM�ON(P:��	LMQSR+*)�%T & 0 . The
Gramians, defined by

(2.2) U#VW( �X Y Z4[<\ * Y 0^] \ * Y 0_]�`B5aU#b/( �X Y Z4[9\ :9* Y ]c` \ :9* Y ]
are solutions of the Stein equations

(2.3) U#Vd(e*<U#Vf* ` .10g0 ` 5aU#b/(e* ` U#bc*h.1: ` :
and are also related to the input/output map as follow. Let us at each instant ikj�l restrict
inputs to be nonzero (i.e., 2nmo(p� , qrisjtl ) and consider the outputs from the instant l . The
state-to-outputs and inputs-to-state maps are given byuvvvw 7 "7 "%$'&7 "%$ �...

xzyyy{| }%~ �� ( uvvvw ::9*:9*,�
...

xzyyy{+� 0 *,0 *)�c0 N
NcN��
uvvvw 2 " T &2 " T-�2 " T-
...

xzyyy{| }%~ ��| }�~ ���� "%�
N

The Hankel map � mapping � to � is ��(��o� , where

��( uvvvw ::9*:9*)�
...

xzyyy{ 5���( � 0 *)0 *,�
0 NcN
N��
are respectively the observability and the controllability matrices. Notice that this map has
rank at most � since !'��l���=F>@A , and that U V (��#� ` , and U b (�� ` � .
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In applications, the Gramians can be often well approximated using low-rank approx-
imations. These low-rank approximations are used instead of the original Gramians in the
balanced truncation procedure to provide the reduced order model. This is the principle be-
hind the so-called approximate balanced truncation method [28], which has very desirable
properties. The combination of Krylov subspace ideas and the balanced truncation proce-
dure implies that approximate balanced truncation inherits the desirable properties of both
methods. The iterative computations will reduce significatively the cost (mainly from solving
Stein equations) and make use of any sparsity in the data. The use of the balanced truncation
procedure yields bounds on the quality of the approximations and a guarantee on the stability
of the reduced order system. Next, we investigate this method.

3. Approximate balanced truncation. The balanced truncation procedure is based on
the Cholesky factors of the Gramians (2.2) [1]. In practice, these Gramians are low rank
matrices (at least numerically), so their Cholesky factors can be well approximated by low-
rank approximations.

The Gramians are solutions of Stein equations of the formEJ�	*)�@U_EJ�	*)� ` R�Uk(�R,��� ` 5 where E'�	*<��(+* or * ` 5 ��(;0 or : ` N
These equations appear frequently with a low rank ��� ` in engineering applications [1].
This is the case for example whenever D�5�E���� . This property implies that the solution U
is a low rank matrix. In theory, this matrix is positive definite whenever �������-��� A �/(�� or�f� ���#�¡� A �/(�� . However, it is often the case that the eigenvalues present a sharp and early
cutoff and hence the Gramians are numerically of low rank.

The idea of approximate balanced truncation is to use the low-rank approximations of
the Cholesky factors of the Gramians instead of the original Cholesky factors to provide an
approximation to balanced truncation. Notice that even if the low-rank approximations were
obtained from a discretization of the system, i.e., the discretized Gramians, any low-rank
approximation of the discretized Gramian also should be a low-rank approximation of the
corresponding continuous-time Gramian since the Gramians are preserved under a bilinear
transformation [1, 3]. Moreover, since the continuous and discrete controllability (observ-
ability respectively) Gramians are equal, their fundamental subspaces are also equal. This
property is used to obtain a reduced model of a continuous-time system whose projection
matrices are computed from the bilinear discretized version of this system. The algorithm is
as follows.

ALGORITHM 3.1. Approximate Balanced Truncation (ABT).

1: procedure ABT( *35�0S5f:<5¢�£5¢¤¦¥¨§ )
2: Use any algorithm to get low-rank approximations ©@5�ª«=t>�Ao¬�­ of the Cholesky

factors of the Gramians U V and U b , respectively, such that® U V R¯©°© ` ®<± ¤¦¥¨§¦5 ® U b Rkª9ª ` ®)± ¤¦¥¨§ N
3: Calculate the singular value decomposition © ` ªt(t�g²�³ ` .
4: Let ´µ(t©��3²,T &¢¶ � , and ��(eª9³_²,T &¢¶ � .
5: The order � approximate truncated balanced realization is given by·*;(;� � */´�5 ·0�(;� � 0S5 and

·:p(e:<´ N
6: end procedure

We use the SVD in Line 3 of the above algorithm to ensure that the projections matrices´ and � are “balanced”. This is crucial because we approximate the Gramians indepen-
dently. In practice, if the system has poles close to the unit circle, then one or both Gramians
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are not well approximated. So we use the SVD to balance the error. We obtain a better
reduced-order model that is balanced. A similar idea was also proposed by Varga in [38].
He called it balancing-free square-root method, and its advantage is that it has a potentially
better numerical accuracy for systems that are poorly scaled originally.

Now, let us discuss the effect of the approximation of Gramians on the quality of the
obtained reduced model [21]. We consider the � th order reduced system obtained by balanced
truncation, ¸ b C�¹ (Pº *<b C�¹ 0<b C�¹: b C�¹ � » (µº;¼ �½ * ¼n¾ ¼ �½ 0: ¼ ¾ � » 5
where ¼ ½ and ¼-¾ are the balanced truncation projection matrices [1]. Similarly, let·¸ ( º ·* ·0·: � » ( º � � *,´ � � 0:<´ � »
be the � th order reduced model obtained by an approximate balanced truncation. The follow-
ing equation is then easily derived:·*<² ·* � . ·0 ·0 � R�²¿(+� ��À �pR�� � * À * � ��5
where

À
is the error in the Gramian U V , i.e.,

À N(;U V R�©°© ` , and ² is a diagonal matrix. The
diagonal elements of the matrix ² are in fact a perturbation of the � Hankel singular values of
the system

·¸ (�Á ·*g5 ·0S5 ·:^Â and also of the � dominant Hankel singular values of the system
¸ (ÃÁ�*35�0S5�:^Â . This perturbation depends mainly on

À
. It is clear that the stability of

the reduced system is not always guaranteed. However, instability does not seem to occur
often in practice (see also [21]); in general we obtain a stable reduced system for each of our
computational examples. But notice that one can use the idea of implicit restart methods to
stabilize the resulting reduced order model if it is unstable [21].

The following result examines how close is the � reduced order model

¸ b C�¹ , obtained
by balanced truncation, to the � reduced order model

·¸
obtained by approximate balanced

truncation [21].
THEOREM 3.2. If

® ¼-¾ Rk´ ®)±hÄ , ® ¼ ½ RÅ� ®<±hÄ , then® ¸ b C�¹ R ·¸ ® � ±hÄ � ® : ®�® 0 ®�® * ® � ® ¼ ½ ® . ® ¼ ¾ ® �
. ® ¸ & ® � ® 0 ® . ® ¸ � ® � ® : ® �
.���� Ä � �%5
where

¸ &�N( º * b C�¹ Q:�b C�¹ �1» ,

¸ � N( º * b C%¹ 0 b C�¹Q � » .

Proof. Defining
À ¾ N( ¼ ¾ R�´ , and

À ½ N( ¼ ½ RÅ� , we have
® À ¾ ®<±¿Ä and

® À ½ ®<±�Ä . ForÀ/Æ N(;* b C�¹ R ·* ,
À/Ç N(;0 b C�¹ R ·0 ,

À,È N(t: b C�¹ R ·: , we haveÀ Æ ( ¼ �½ * ¼n¾ Rk� � */´P( ¼ �½ *^� ¼-¾ R�´k�É.e� ¼ ½ RÅ�^� � */´P( ¼ �½ * À ¾ R À �½ */´�5À Ç ( ¼ �½ 0pRk� � 0�( À �½ 0S5 À È (;: ¼n¾ R�:<´P(e: À ¾ N
Thus
À/Æ

,
À/Ç

and
À,È

satisfy® À Æ ®<±hÄ¨® * ® � ® ¼ ½ ® . ® ¼n¾ ® ��. Ä � ® * ® 5 ® À Ç ®)±¿Ä¨® 0 ® 5 ® À È ®<±hÄ¨® : ® N
We have �	Ê m¢Ë Q ­ R ·*<�fT &/Ì ��Ê m¢Ë Q ­ RF* b C�¹ �%T & . ·À/Æ for every Í¿=F> , where

·À/Æ (��	Ê m¢Ë Q ­ R* b C�¹ �%T & À/Æ �	Ê m¢Ë Q ­ R ·*<�fT & satisfies the same upper bound as
À)Æ

, i.e.,

(3.1)
® ·À/Æ ®<±�Ä¨® * ® � ® ¼ ½ ® . ® ¼ ¾ ® �É. Ä � ® * ® N
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Now, if we consider the � � norm of the error system

¸ b C�¹ R ·¸ we haveH I b C�¹ �	Ê m¢Ë �£R ·H I �	Ê m¢Ë �°(;:�b C%¹ \ Ê m¢Ë QoRÅ*)b C�¹ ] T & 09b C�¹ R ·:�Î�Ê m¢Ë Q3R ·*)Ï T & ·0 N
Using (3.1) and the definitions of

À,Æ
,
À/Ç

and
À/È

we obtain® ¸ b C�¹ R ·¸ ®�Ð�Ñ ( ® :�b C�¹ H Æ 09b C�¹ R¿��:db C�¹ R À È �/ÒÓH Æ . ·À Æ�Ô �	09b C%¹ R À Ç � ® �( ® À,È H Æ 0 b C%¹ .1: b C�¹ H ÆJÀ/Ç R���: b C�¹ R À/È � ·À/Æ ��0 b C�¹ R À/Ç � ® � 5
where H Æ ( \ Ê m¢Ë Q�R3*)b C�¹ ] T & . Finally, using¸ &¿N( º * b C�¹ Q: b C�¹ � » and

¸ � N( º * b C�¹ 0 b C�¹Q � » 5
it is easy to deduce the final result® ¸ b C�¹ R ·¸ ® � ±¿Ä � ® : ®�® 0 ®�® * ® � ® ¼ ½ ® . ® ¼ ¾ ® ��. ® ¸ & ® � ® 0 ® . ® ¸ � ® � ® : ® �%.^��� Ä � � N

Hence for small
Ä
, i.e., when ´ and � are, respectively, close to ¼ ¾ and ¼ ½ , we expect

·¸
to be close to

¸ b C�¹ . This result says that the quality of a reduced order model depends on the
distance between the projection matrices and those of balanced truncation and the normality
of the matrix * . In [21], this result was given informally without proof for the continuous-
time case. Here we gave a proof for the discrete-time case, but this may not say much about
the quality of approximations if * is far from normal. In that case the norms

® * ® , ® ¸ & ® �
and
® ¸ � ® � will be very large and can destroy the sharpness of this bound. In general, the

choice of coordinate system for
·* ,
·0 and

·: plays an important role as well. Below, we will
show two new methods that propose two possible choices for a good

·¸
.

Almost all methods proposed for approximate balanced truncation are based on the fact
that one obvious way to build a factorization of the Gramian (say, e.g., the controllability
Gramian U V ) is iteratively using

(3.2) � & (;0S5 � Y $J& ( � � Y * Y 0 � N
This is for example the case for all Smith-like methods [1, 8, 21, 27, 29]. But, this factor
can also be constructed in two different ways [17]. The formula (3.2) leads to the idea of the
modified low-rank Smith algorithm. A second approach is to write it as� Y $'& ( � 0 � *)0 NcN
N * Y T & 0 * Y 0 ���( � 0 * � 0 NcNcN * Y T-��0 * Y T & 0 � � ( � 0 *Õ� Y � N
If one has a good low-rank approximation of � Y we also will have a good low-rank approxi-
mation of � Y $'& using this formula. This formulation leads to two new algorithms to compute
good low-rank approximations of the Cholesky factor of the Gramians. Both methods are it-
erative low-rank Gramian methods, and can be included in the low-rank square Smith method
family. These approaches have the important property that they can be generalized to time-
varying systems as well, unlike the other methods. Actually, these approaches have already
been used for the time-varying case, and periodic linear systems [8, 12]. In these papers,
however, only a result for the time invariant case was presented and no proof or discussion of
the convergence was given. Here we shall give a full proof/discussion of the convergence, the
fixed points, the quality of the Gramians approximations, and show some attractive properties
of the corresponding reduced model.
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4. Recursive low-rank Gramian (RLRG) approximation. As mentioned earlier, in
practice the eigenvalues of the Gramians or the eigenvalues of their product present a sharp
early cutoff [2, 30], which suggests approximating the Gramians at each step by a low-rank
factorization. We show below how to obtain such approximations cheaply and exploit the
sparsity of the model Á�*35�0S5f:^Â . The Gramians can be obtained from the Stein iterations

(4.1) U V �	Ö#.e���°(;*)U V �×Ö¦�¦* ` .¯0^0 ` 5 and U b �×Ö¦�°(e* ` U b �×Ö#.e���¢*h.h: ` :<5
for which the iterates U4V
�	Ö¦� and U#b �	ÖØ� are always symmetric positive semi-definite, so we can
substitute them by Cholesky-like factorizationsU#V��×Ö¦�°(+� Y � `Y 5 and U#b �×Ö¦�°(�� `Y � Y N
The key idea of the low-rank method is to approximate the factors � Y and � Y by their rank � Y
approximations ©/�×Ö¦� and ª��×Ö¦� , respectively, at each iteration. Typically � Y is constant, i.e.,� Y (�� . We will show, later in this paper (Subsection 7.3), how to let the algorithm choose
an appropriate � Y given some user criteria. The algorithm is as follows.

ALGORITHM 4.1. Recursive low-rank Gramian (RLRG).

1: procedure RLRG( *35Ù0Ú5�:<5Ù�£5¢¤¦¥¨§ )
2: ©Õ�����£Û ��=F>JA3¬�­ Ü Initialize ©
3: ª��	�M�@Û«��=�> A3¬r­ Ü Initialize ª
4: repeat
5: Compute the singular value decompositions� 0 *)©Õ�	Ö�R¿��� � (��°Vf²�Vf³ `V 5 � : ` * ` ª_�	Ö�R¿��� � (��°b
²�bc³ `b N
6: Let² V (¯Ý ²�V¦& ² V ��Þ 5«² b (1Ý ²�b�& ² b ��Þ 5ß² V¦& 5f² bf& =F> ­-¬r­ 5�°VW( � � V¦& � V � � 5Ã��bÕ( � � bf& � b � � 5 ��V¦&�5f��b�&)=F> A3¬r­ N
7: Construct©Õ�×Ö¦�°Û��°V¦&c²�V¦&¨5Pª��×Ö¦�°Û �°bf&�²�bf&�5 À V��	Ö¦�°Û���V � ²�V � 5 À b �	ÖØ�WÛà��b � ²�b � N
8: until The stopping criterion is verified. Ü See Subsection 7.2
9: end procedure

The cost of this algorithm is linear in the largest dimension � . At each iteration, we need
to multiply *<©Õ�×Ö¦� and ª��×Ö¦� ` * , which requires á����Éâ flops, where â is the average number
of nonzero elements in each row or column of the sparse matrix * . We need �����¯�×�S.kD��f���
flops to form ³ V and another �����¯�×��.¿E-�¢��� flops to form ³ b [19]. Notice that we have�µã���ähD�5�E�5�â .

Using the EckartYoung theorem [19], it is immediate from the previous algorithm thatå Y N(;©Õ�×Ö¦�¢©/�×Ö¦� ` 5çæ Y N(eª��×Ö¦�¦ª��×Ö¦� `
are the best rank- � approximations to � Y � `Y and � `Y � Y , respectively. But this is not sufficient
since we want to compare

å Y
and æ Y with U#V
�	Ö¦� and U#V��×Ö¦� , respectively. This is analyzed

below.
THEOREM 4.2. At each iteration, there exist unitary matrices ³ � Y �V =�> � ­ $ Y ? � ¬ � ­ $ Y ? � ,³ � Y �b =F> � ­ $ Y C � ¬ � ­ $ Y C � , satisfying� Y ³ � Y �V ( � ©/�×Ö¦� À V��×Ö¦� * À V��×Ö�R¿��� N
NcN * Y T & À V
����� � 5� `Y ³ � Y �b ( � ª��	ÖØ� À b �×Ö¦� * ` À b��×ÖJRh��� NcN
N �	* Y T & � ` À V��	�M� � 5



ETNA
Kent State University 

http://etna.math.kent.edu

120 Y. CHAHLAOUI

where
À V��	ÖØ� and

À b��×Ö¦� are the neglected parts at iteration Ö .
Proof. We just show the proof for ³ � Y �V ; that for ³ � Y �b is similar. At each step, the orthog-

onal matrix ³ V is such that� 0 *<©Õ�×ÖJR¿��� � ³ V ( � ©Õ�	Ö¦� À V��×Ö¦� � N
For Ö�(�� we have � [ ( � ©/�	��� À V ����� � . We prove the general result by induction.
Suppose that there exists an orthogonal matrix ³ � Y �V , such that� Y ³ � Y �V ( � ©Õ�	ÖØ� À V
�	Ö¦� * À V��	Ö�R¿��� NcN
N * Y T & À V��	�M� � N
Since � Y $J& can be obtained from � Y by � Y $'& ( � 0 */� Y � 5 we choose³ � Y �V ( Ý Q ? �� ³ � Y �V Þ Ý ³ V �� Q � Y $J&¦� ? Þ 5
from which it follows that� Y $'& ³ � Y $'&¢�V ( � 0 *Õ� Y � Ý Q ? �� ³ � Y �V Þ Ý ³ V �� Q � Y $'&¦� ? Þ(PÒ 0 *Õ� Y ³ � Y �V Ô Ý ³ V �� Q � Y $'&¢� ? Þ( � 0 *)©/�×Ö¦� * À V��	Ö¦� NcNcN * Y À V��	��� � Ý ³nV �� Q � Y $'&¢� ? Þ( � ©Õ�	Ö#.e��� À V �×Ö4.+��� * À V �	Ö¦� NcNcN * Y À V �	��� � N

We can use this result to compare U V �×Ö¦� and U b �	ÖØ� with
å Y

and æ Y , respectively. Note
first that using the previous theorem we haveU#V
�	Ö¦�°(�� Y � `Y (+� Y ³ � Y �V ��³ � Y �V � ` � `Y(;©Õ�	Ö¦�¢©Õ�	ÖØ� `| }%~ �èné . À V
�×Ö¦� À V��×Ö¦� ` .

Y T &Xm ZÉ[/\ *
Y T m À V��Ói6�¢] \ * Y T m À V��Ói6�Ù]
` N

It follows that

(4.2) U#V��×Ö¦�°( å Y . YXm Z4[ \ *
Y T m À V��Ói6� ] \ * Y T m À V��Ói6� ]�` N

Similarly we have

(4.3) U b �	ÖØ�W(êæ Y . YXm Z4[/\ À b �ëi6�¦*
Y T m ]c` \ À b �Ói6�¦* Y T m ] N

As our original system is supposed to be stable, we can bound the differences between
å Y

andU V �×Ö¦� and between æ Y and U b �×Ö¦� for all Ö ,ì V �	ÖØ� N(tU V �×Ö¦�JR å Y 5 ì b �×Ö¦� N(eU b �×Ö¦�JR+æ Y 5
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in terms of the “noise” levels as follows.
THEOREM 4.3. Let

å
and æ be the solutions ofå (e* å * ` .1QK5çæe(;* ` æ)*1.¯Q N

Define the noise levels by í6VW(çîB�¨ï[cð Y ð � ® À V��×Ö¦� ® � , í�b/(çîB�¨ï[
ð Y ð � ® À b �×Ö¦� ® � . Then

(4.4)
® ì V
�×Ö¦� ® � ± í �V ® å ® � ± í �Vòñ �	*)�¢��ÕRkó-��*)� � 5 ® ì b �×Ö¦� ® � ± í �b ® æ ® � ± í �bôñ �	*<�¦��ÕR�ó#�	*<� � 5

where ñ �	*<��( ® * ®�® * T & ® is the condition number of * and ó-��*)� its spectral radius.
Proof. Here also we show only the bound for

ì Vc�	Ö¦� ; the second bound can be shown
similarly. It follows from (4.2) thatì Vc�	Ö4.e���£(;* ì V��×Ö¦�¦* ` . À V
�	Ö¦� À V��	ÖØ� ` N
With íMVW(çîB�¨ï[cð Y ð � ® À V��×Ö¦� ® � , we can consider the equation:õ Y $'& (e* õ Y * ` .e�	í �V Q A R À V �	ÖØ� À V �×Ö¦� ` �%5 õ [ (;� N
Its iterates

õ Y
are clearly positive semidefinite and hence converge to a solution

õ
, which is

also positive semidefinite. Moreover, by linearity we haveì V �×Ö#.e���É. õ Y $J& (e*^� ì V �×Ö¦��. õ Y �¢* ` .¯í �V Q A N
It then follows that öë÷ëîYùø � � ì V �	ÖØ�É. õ Y ��(«í �V å , and we obtain

® ì V �	ÖØ� ® � ± í �V ® å ® � . The

second bound follows from the eigen-decomposition of * .

We also have the following result on the quality of the approximation of the product of
the Gramians.

THEOREM 4.4. Let
å

and æ be the solutions ofå (e* å * ` .1QK5çæe(;* ` æ)*1.¯Q N
Define í V ( îB�¨ï[
ð Y ð � ® À V �	Ö¦� ® � , í b ( îB�¨ï[cð Y ð � ® À b �×Ö¦� ® � 5 where

À V �	ÖØ� and
À b �×Ö¦� are the ne-

glected parts in Line 7 of Algorithm 4.1. Then

(4.5)
® U V U b R å æ ® � ± ñ �	*<�¦��ÕR�ó#�	*<� � \ í �V ® U b ® � .¯í �b ® U V ® � ] N

Proof. Consider the identity U V U b R å æú(û��U V R å �ÙU b . å ��U b Rtæ<� . Taking norms
yields ® U V U b R å æ ® � ±�® U V R å ® � ® U b ® � . ® å ® � ® U b R+æ ® � N
Finally, using the previous theorem we have® U V R å ® � ± ír�V ñ �	*<�¦��ÕRkó#�	*)� � 5 ® U b R�æ ® � ± ír�b ñ ��*)�¦��ÕR�ó#�	*<� � 5
and from the fact that

® å ® � is always bounded above by
® U V ® � , we obtain by linearity that® U#V�U#b�R å æ ® � ± ñ �	*<�¦��ÕRkó#�	*)� � \ í �V ® U#b ® � .¯í �b ® U#V ® � ] N
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This result says that if one Gramian is not well approximated, then the product of the
Gramians, which is related to the Hankel singular values (the Hankel singular values are the
square roots of the eigenvalues of the product of the Gramians), may not be well approxi-
mated.

One should remark that the previous bounds are not explicitly functions of the reduced
order � . Both í V and í b are functions of � . They will be smaller for a good choice of � or
generally for larger � . The term ñ �	*<�¢�¨ür�¢�ÕR�ó#�	*<�¦��� will be very small when ó#�	*<�W��� andñ �	*)� is reasonable. Moreover, í V and í b can be taken equal to the maximum of

® À V �×Ö¦� ® �
and
® À b �	Ö¦� ® � , respectively, for l ± Ö ±þý , since we can interpret the previous theorems

as starting with any initial values. This is particulary useful if after step l the errors have
converged to their minimal value, i.e., the convergence threshold

Ä ? . In fact, í�V and í�b are
functions of the initial choice and one can writeí V ��l��W(ÿî�� ï" ð Y ð � ® À V �	ÖØ� ® � 58í b ��l��°( îB�¨ï" ð Y ð � ® À b �	ÖØ� ® � N
Since í V ��l�� and í b ��l�� are typically decreasing we can replace them by the maximum over
the last iteration steps. We will discuss different strategies for the stopping criterion later in
Section 7.2.

4.1. Convergence of the RLRG algorithm. In this subsection we analyze the conver-
gence of the recursive low-rank Gramian (RLRG) algorithm for a linear time invariant systemÁ�*g5Ù0Ú5�:^Â . The convergence will allow us to deduce important results about the fixed point
of the RLRG algorithm. Although all material below applies to both approximations © andª , we focus on the controllability version only, i.e., on © .

First, note that the updating transformation for © is nonlinear and implicit. Thus to prove
convergence of the RLRG algorithm, we will use a generalization of the fixed point theorem,
due to Ortega and Reinboldt [26], called the contraction mapping theorem.

DEFINITION 4.5. A linear operator
�

is nonexpansive if ó-� � � ± � , and contractive ifó#� � ����� .
THEOREM 4.6. The nonlinear iteration © Y $'&)(��@��© Y ��5�© Y =�>JA3¬�­ admits a fixed point©ÉI if and only if there exists a contractive linear operator ��� , such that for all © we have�@��© I .¯¤¢©°�°(��@��© I ��.�¤	���4©�.h���×¤ � � N
The operator ��� is called Gâteaux-derivative of � or the Fréchet derivative [22, 26]. For

the RLRG algorithm, it is obvious that the differentiability depends on the differentiability
of the SVD, which is guaranteed if there is a gap between the part that we keep and the
part that we neglect in the algorithm [19], and this is supposed to be the case. To prove the
convergence we thus have to prove that the updating mapping is contractive. For this, let us
consider a perturbation of © , namely ©�.�
 . We can define the SVD

� * ¸ 0 � (�� uw ² & �� ² �� � x{ ³ ` 5 where ² & =�> ­n¬�­ 5
and using these � and ³ matrices, we have

(4.6) � *�
 � � (;� ·
�³ ` 5 where
·
O( uw ·
 &Ù& ·
 & �·
 � & ·
 ���·
 
 & ·
 
��

x{
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is partitioned conformably with ² . Let us consider the partitioned transformations

(4.7) ³ê( � ³-& ³ � � ( Ý ³ &Ù& ³ & �³ � & ³ ��� Þ 5 ��( � �W& � � � 
 � 5
and define 
² &¿N(;² & .�
 &Ù& and 
² � N(�² � .�
 ��� . To analyze the fixed point iteration we can
distinguish two cases: ³ constant and ³ varying. If ³ is constant then the new version © Y $'&
is given by ¸ Y $'&/( � * ¸ Y 0 � ³-&,(;� uw ²Õ&�� x{ 5
and the perturbed version of © Y $'& is given by¸ Y $'& .�
 & ( � *g� ¸ Y .�
_� 0 � ³ & (t� uw 
² &·
 � &·
 
 &

x{ 5
and thus 
S&Õ( � *�
 � � ³-&/(e*�
�³#&Ù& N Using the ����� formulation we obtain��������
B&c�°(���³ `&�&�� *)����������
�� N
Here, the term ³ `&Ù&�� * corresponds to the linear operator ��� of the last theorem. As ó#��³ `&Ù&��*)�Õ(�ó#��³#&Ù&
�Øó#�	*<���ê� ( ó#��³#&Ù&
� ± � because ³#&�& is a submatrix of the orthogonal matrix ³ )
the mapping 
���
B& is a contraction.

Let now ³ be varying as well. The new iterates © Y $J& is still given by¸ Y $'& ( � * ¸ Y 0 � ³ & (t� & ² & 5
and the perturbed version is given by¸ Y $'&�.�
B&Õ( � *g� ¸ Y .�
�� 0 � ³-&���
���(���&���
�� ·²Õ& 5
and so 
 & (;� & ��
�� ·² & R¯� & ² & . If we write the transformation ����
_� as����
���(�� Ý Q R! ` Q Þ .1��� ® 
 ® �� �%5
then a first order approximation to  can be obtained from [34, p.359], [35, p.206], [36]" uw 
² & 
² ` & 
² & ·
 `� & . ·
 & � 
² � 
² & ·
 `
 &·
 � & 
² & .#
² T ·
 ` & � 
² � 
² `� ² � ·
 `
��·
 
 &$
²Õ& ·
 
�� 
² � � x{ " .o��� ® 
 ® �� ��( uw ·² � & � �� ·²d�� �� � � x{ 5
where

" («Ý Q  `R! Q Þ . Now, if we consider the ��%'&)(�5
��� blocks, we have

Ý �� Þ (�R! B�*
²Õ&�
² ` & ��. Ý 
² � 
² `� 
² � ·
 `
Ù�·
 
�� 
² � � Þ  �. Ý ·
 � &+
²Õ&£.,
² � ·
 ` & �·
 
 & 
² & Þ .1��� ® 
 ® �� � N
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This equation can be solved to first order [34, p.359], [35, p.206], and if we neglect ² � versus²Õ& (i.e.,
® ² T && ® � ® ² � ® �.- ��� ® 
 ® � � )1, we obtain

(4.8)
®  eR Ý ·
 � & 
² T &&·
 
 &�
² T && Þ ® � ±�®  ® � ® 
² T && ® �� ® 
² � ® ���ÕR ® 
² T && ® �� ® 
² � ® �� N

And thus one obtains
B&Õ(�� uw Q·
 � &+
² T &&·
 
 & 
² T &&
x{ 
²Õ&dR��W&c²Õ&°.h���0/
�(���&¨��²Õ&°. ·
�&�&��'.h� � ·
 � &�.h� 
 ·
 
 &�R��W&c²Õ&£.h���0/c�(�� & ·
 &�& .¿� � ·
 � & .¿� 
 ·
 
 & .1����/c�%5

where //( ®  ® � ® 
² T && ® �� ® 
² � ® ���ÕR ® 
² T && ® �� ® 
² � ® �� N
From (4.6) we have

(4.9)

uw ·
 &�&·
 � &·
 
 &
x{ ( uw � `&� `�� `


x{ � *�
 � � ³ &
so 
B&/(���&�� `& *�
�³#&Ù&W.h� � � `� *�
�³-&�&�.¿� 
 � `
 *�
�³-&�&°.h���0/c�(���� & � `& .¿� � � `� .h� 
 � `
 �| }�~ �1 *�
�³ &Ù& .1����/c� N
Therefore we have 
 & - *�
�³ &Ù& .O���0/c� . Furthermore from (4.8) and (4.9) we have®  ® � Ì ® *�
 ® � ® ² T && ® � , and so//( ®  ® � ® 
² T && ® �� ® 
² � ® ���ÕR ® 
² T && ® �� ® 
² � ® �� Ì ® *�
 ® � ® 
² T && ® 
� ® 
² � ® ���ÕR ® 
² T && ® �� ® 
² � ® �� N
Using the ����� formulation we obtain finally that ����� ��
 & �°(���³ `&Ù&$� *<����������
_�M.F���0/c� . Sinceó#��³ `&Ù& � *)��(Ãó#��³ &Ù& �Øó#�	*<��� � , the mapping 
2� 
 & is a contraction provided that® 
² T && ® � ® 
² � ® � is sufficiently small, i.e., the gap is sufficiently large. Under these conditions,
the RLRG algorithm admits a fixed point. Furthermore, this fixed point has a very desirable
property given by the theorem below. First we introduce the Á�*35�0BÂ -invariance.

DEFINITION 4.7. A subspace 3 of >°A is said to be an Á�*35�0BÂ -invariant subspace if 3 is
invariant under * and contains the image space of 0 (denoted by 4Øî�0 ). We let 31(65 Æ 4Øî�0 .

We have the following equivalences.

1Note that in this case 798;:<>= :<+? =A@CB =ED 8�7GF�7	HH @ 7JI D 8�7GF�7	HH @
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LEMMA 4.8. [25] For all 31(�5 Æ 4Øî�0 , we have*!3�K�4ØîB0t.�3 L ��*+RÅ0 " �	3MKN3 N
THEOREM 4.9. The fixed point of the RLRG algorithm is an Á�*g5Ù0BÂ -invariant subspace

provided that the matrix ³ &Ù& in (4.7) is nonsingular.
Proof. Let Ö be the iteration where we reach the fixed point, i.e., 4ØîS©Õ�×Ö¦��(�4ØîS©Õ�	Ö4.e��� ,

which is equivalent to say that there exists a square nonsingular matrix ´ , such that ©Õ�×Ö¦�Ø´µ(©Õ�×Ö4.+��� . Then, if we put ourselves in a coordinate system, where©Õ�×Ö¦�°( Ý ª � Þ 5ßª�=�> ­n¬�­ 5
(this can be obtained using for example a QR decomposition of ©Õ�×Ö¦� followed by a pre-
multiplication of the matrix ©/�×Ö¦� by  ). The fixed singular subspace implies that we must
have ©Õ�×Ö4.+���°(�Ý ·ª � Þ 5 ·ª�=�> ­n¬r­ N
The two matrices ª and

·ª are related using (4.7) as followsÝ+Ý * &Ù& * & �* � & * �Ù� Þ Ý ª � Þ Ý 0 &0 � ÞeÞ Ý ³ &�&³ � & Þ ( Ý * &Ù& ª 0 &* � &�ª 0 � Þ Ý ³ &Ù&³ � & Þ ( Ý ·ª � Þ N
And so, we have

(4.10) *9&Ù&cªo³-&�&°.109&c³ � &/( ·ª_5ß* � &�ª9³#&�&°.¯0 � ³ � &Õ(e� N
If ³ &�& is invertible it follows that 4ØîB©/�×Ö¦�_( Ý Q� Þ must be an Á�*35�0BÂ -invariant subspace

since for
" ( � " & � � ( � R,³ � &
³ T &&Ù& ª T & � � , we have*�Rk0 " ( Ý * &�& RÅ0 & " & * & �* � &�&dRÅ0 � " & * ����Þ («Ý * &�& RÅ0 & " & * & �� * ����Þ 5

which concludes our proof.

For the observability, we speak about Á�* ` 5�: ` Â invariance instead of Á�*35�0BÂ invariance.
Moreover, we have the following corollary of Theorem 4.2.

COROLLARY 4.10. At each iteration, there exists an orthogonal matrix ³ � Y � =�> � ­ $ Y ? � ¬�­ ,
satisfying � Y ³ � Y � (e©Õ�	Ö¦� .

Proof. For Ö�(�� we have � [ Ý Q ­� Þ (p©Õ����� . We prove the general result by induction.

Suppose that there exists an orthogonal matrix ³ � Y � , such that � Y ³ � Y � (e©Õ�	ÖØ� . Since � Y $'& and©Õ�×Ö4.+��� can be obtained from � Y and ©/�×Ö¦� (Theorem 4.2 and its proof), respectively, as� Y $'& ( � 0 */� Y � and ©Õ�	Ör.1���°( � 0 *<©Õ�×Ö¦� � ³ $V 5 where ³ $V (t³ V �	&Ó5
�O& ���%5
it follows that ©Õ�×Ö4.+���°( � 0 *<©Õ�×Ö¦� � ³ $V ( � 0 */� Y ³ � Y � � ³ $V( � 0 */� Y � Ý Q ? �� ³ � Y � Þ ³ $V (¿� Y $'& ³ �

Y $J&¦� 5(4.11)
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where ³ � Y $'&¢� ( Ý Q ? �� ³ � Y � Þ ³ $V .

Now we can characterize the fixed point.
THEOREM 4.11. The RLRG algorithm has as a fixed point ©�(ê©/� ý �/(��3²QPR , where

the columns of � are the � dominant eigenvectors of the corresponding Gramian (also singu-
lar vectors, as the Gramian is a Hermitian positive semidefinite matrix) and ² is a diagonal
matrix of the corresponding singular values of the Gramian.

Proof. We show the proof only for the controllability case, the other case being similar.
Let S � Y �m , i�( ��5 N
NcN 5Ù� , be the � first singular values of � Y and T S � Y �m , i�(þ��5 NcN
N 5¢� , those of©Õ�	ÖØ� . We have � Y $'&/( � 0 *Õ� Y � ( � � Y * Y 0 � , which means that � Y is a submatrix of� Y $J& , and so S � Y �m ± S � Y $'&¢�m 5 i_(p��5 NcN
N 5¢� N
Then according to Theorem 4.2, there exists a unitary matrix ³ � Y � =�ª � ­ $ Y ? � ¬ � ­ $ Y ? � , such
that� Y ³ � Y � ( � ©/�×Ö¦� ì �×Ö¦� � 5 where

ì �×Ö¦��( � À �	Ö¦� * À �	Ö'R¿��� NcN
N * � Y T &¦� À �	��� � 5
and
À �ëiM� the neglected part of � *)©Õ�ëi3R¿��� 0 � at the iteration i . Then using the relation� Y $J& ( � � Y * Y 0 � we can write� ©Õ�×Ö4.+��� ì �×Ö4.+��� � ³ � Y $'&¢� ` ( Ò � ©Õ�	ÖØ� ì �×Ö¦� � ³ � Y � ` * Y 0 Ô N

We can see easily thatSrm Î � ©Õ�×Ö4.+��� ì �×ÖÉ.e��� � ³ � Y $J&¦� ` Ï jNS6m Î � ©Õ�	Ö¦� ì �×Ö¦� � ³ � Y � ` Ï 5
and as ³ � Y � are unitary matrices, we haveS m \ � ©Õ�	Ö#.e��� ì �	Ö4.e��� � ]9j�S m \ � ©Õ�×Ö¦� ì �	ÖØ� � ]£5
and finally, by construction ©/�×Ö¦� is the dominant part of � ©/�×Ö¦� ì �×Ö¦� � thenS6mM��©Õ�×Ö4.+���¢�djMS6m���©/�×Ö¦�¢� N
The � singular values of ©Õ�×Ö¦� are nondecreasing from one iteration to another, and as we
have shown before that the fixed point is Á�*g5Ù0BÂ -invariant, the space spanned by the columns
of ©/�×Ö¦� converges to a maximal (in term of these singular values) subspace of dimension � .
This maximal subspace is known as the � -maximal Á�*35Ù0SÂ invariant subspace (see [25] for
more details), and can proved to be the rank- � dominant approximation of the controllability
matrix � N(�� � and so of the controllability Gramian U4V�(eU#V�� ý � .

Formally, the RLRG algorithm is based on the fact that � Y $'&Ú( � 0 *Õ� Y � . Taking
the limit when ÖgRU� ý in both sides we get �-�à( � 0 *Õ�K� � , so the � dominant left
singular vectors (called also the � left fundamental subspace [34]) of �e(ú�K� are the cor-
responding fixed point. All this discussion leads to the conclusion that the RLRG algorithm
has one fixed point corresponding to the � dominant singular subspace of the corresponding
Gramian.

Actually, we have a double convergence: one for the singular values and the other for
the subspace. Recall that ©/�×Ö¦�o(�� V �×Ö¦��² V �	Ö¦� , where � V �	ÖØ� are the � dominant left singular
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vectors of � *<©Õ�×Ö'Rh��� 0 � and ²�V��×Ö¦� contains the � corresponding singular values; see
Algorithm 4.1.

Numerically, the convergence for the subspace should be checked by computing the
canonical angle [7] (or its cosine) between � V �	Ö¦� and the dominant subspace of dimension� of the controllability Gramian U V ( V���� V �×Ö¦�%5fU V � ). But, as the Gramian is not available
we can check this convergence using the canonical angle between � V �	ÖØ� and � V �	Ö)Rú���
( V<��� V �×Ö¦�%5%� V �×ÖdRp���Ù� ). This convergence occurs very quickly as soon as 4ØîB0 is enclosed
in the subspace, then the algorithm takes a few iterations to reach the fixed point (for the
subspace). The convergence rate of this iteration seems to be a function only of the numberî�÷Ó���	D�5Ù��� (respectively, î�÷ë��� E'5¢��� for the observability Gramian) and not a function of the
size of * or its spectral radius. On the other hand, the convergence for the singular values is
mainly a function of the spectral radius of * .

The previous theorem has an important hidden outcome. It provides the link with Krylov
subspace methods. We have 4Øî��h(XW � �	*35�0^� . So the � fundamental left subspace of � ,
which is the fixed point iterations of the RLRG algorithm, is also the � dominant subspace ofW9�F��*35�0^� . This is the reason why approximated balanced truncation is called a SVD/Krylov
method.

4.2. Numerical illustration. We illustrate all this discussion using the following nu-
merical example. We generate five random stable systems Á�* Y 5�0S5�:^Â of order ��( áM��� ,
with Dà(ZY inputs, E�(pá outputs (we keep the same 0 and : for all five systems), and the
spectral radii ó-��* & ��(e� N [�\ , ó#�	* � �°(;� N [ , ó-��* 
 ��(+� N ] , ó#�	*!^��°(;� N Y , ó#�	*!_��°(;� N á . We take�1(`(�� . In the first two figures, we show the canonical angle between � V �	ÖØ� and � V �×Ö£R+���
( V<��� V �×Ö¦�%5%� V �×ÖJR¿���¢� ) (Figure 4.1), and the canonical angle between � V �	ÖØ� and the dominant
subspace of dimension � of the controllability Gramian UÉV ( V����°V
�×Ö¦��5�U#Vf� ) (Figure 4.2). Fig-
ure 4.1 shows that there is a fixed point iteration, and Figure 4.2 shows that this fixed point is
the dominant subspace of dimension � of the controllability Gramian U�V . One should notice
that we would like to avoid computing the exact dominant subspace of dimension � of the
controllability Gramian U4V as it is expensive.

From these figures, it is very easy to see the effect of the spectral radius ó#�	*<� on the
convergence rate. The smaller the spectral radius the faster the convergence to the fixed sub-
space, but at the end, in general the quality of the approximation, measured by the canonical
angle between subspaces, is of the same order. In Figure 4.2, we verify that the fixed sub-
space is effectively the dominant subspace of the Gramian of dimension � . In Figure 4.3,
we can see that after a few iterations the noise level is converging also to a constant value,
which is also a function of the spectral radius of * , i.e., the smaller the spectral radius is,
the smaller is the noise level. Actually, we could use this convergence in the noise level to
restart the algorithm in order to get a good approximation. This takes in general very few
iterations. The convergence of the singular values is considered in the last two figures. Figure
4.5 shows the number of the Gramian singular values matched at each iteration, and in Figure
4.4 the corresponding distance between the two sets of the singular values. Here also the
convergence is a function of the spectral radius of * . But the effect is more evident, and the
slope is more significant as this spectral radius become smaller. In general, these numerical
results confirm our previous results about the relationship between the spectral radius of *
and the convergence rate and the quality of the approximation. When ó-��*)� is close to 1 (but
still smaller than 1), we need many more iterations to get the same quality than when ó#�	*)� is
much smaller than 1. This will be very useful; if one has a continuous system on hand, we
could choose a bilinear discretization in order to get the spectral radius of the resulting matrix* much smaller than 1 in order to get a very fast good approximation.

This convergence result will allow us later to deduce some useful properties of the re-
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duced model, especially about the stability and balancing.

Unfortunately, the RLRG algorithm produces an independent approximation of the two
Gramians. So to obtain a reduced model we have to “balance” the projection matrices ob-
tained from these two approximations. The quality of the approximation and indeed of the
reduced model depends on the two “noise” level parameters m V and m b , which determine if
the two Gramians are well approximated or not. These parameters are independent as we
approximate Gramians independently from one another, and so one can imagine the case
where one Gramian is well approximated and the other one not. So, this affects the quality
of the approximation of the reduced model. For instance, if a bilinear transformation H is ap-
plied to the system Á�*g5Ù0Ú5�:^Â to get a new system Á
HgT & */H,5¢HoT & 0S5f:<HoÂ , the corresponding
controllability and observability matrices and Gramians, respectivelly, will be
��(eH T & �£5 ·��(;�3H/5 ·U V (eH T & U V H T ` 5 ·U b (eH ` U b H N
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This transformation will also affect the product of the Gramians (which is taken into account
for the balancing) as follows

·U V ·U b (pH3T & U V U b H . We can see very easily that to have good
approximations of the Gramians, one has to choose good realizations of the system, which
means the choice of the matrices * , 0 , and : . This is not obvious, and could lead to a very
bad result. In the following section we present an algorithm which avoids this problem.

5. Recursive low-rank Hankel (RLRH) approximation. The key idea of this ap-
proach is to use the underlying recurrences defining the so-called Hankel matrices. Because
the system order at each instant is given by the rank of the Hankel matrix at that instant, one
can approximate the system by approximating the Hankel matrix. This is the idea of the exact
Hankel norm approximation methods [17]. In this case, the norm approximation problem is

(5.1) î�÷Ó�ykzr{}|�~Ð ð ­ ® � R ·� ® 5
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where � is the Hankel map which makes the correspondence between inputs and outputs;
see Section 2. The problem (5.1) has many solutions, since only the largest singular values
of the difference

À (�� R ·� is minimized, and �FRh� others are free as long as they remain
smaller. In general, to solve this problem, one has to select an appropriate representation of
the desired high-order model that can be used computationally. A simple but high-complexity
realization is given by the generalized companion form. Now, given this realization one can
solve the problem (5.1) for a given precision which is measured using a Hermitian, strictly
positive diagonal operator 5 (in fact it could be taken as 5¯( Ä Q for some small value of

Ä
),

by solving �E���" ® Î��¡��R ·���G5 T & Ï " ®,± ��5
i.e.,
·� approximates � up to a precision given by 5 . This problem can be solved using the

Schur-Takagi algorithm [17]. Indeed, Hankel norm approximation theory originates as a spe-
cial case of the solution to the Schur-Takagi interpolation problem in the context of complex
function theory. Several techniques were presented to find the optimal solution; see, e.g.,
the work of Dewilde and van der Veen [17, 37], Chandrasekaran and Gu [14, 15, 16], and
Chandrasekaran et al [13]. The complexity of these techniques are normally of the order of���	����� but can be made “fast” or “super fast” to be just of the order of ���	��� . But in order
to obtain this speed up, the matrices involved must have a special structure called the se-
quentially semi-separable matrix structure. This structure involves some rank conditions for
optimality which cause some minor complications. This whole procedure has to be repeated
for 51(X/ " Q , where / " eventually converges to a small optimal value. The principal idea of
these algorithms is to use the SVD to approximate the Hankel matrices by matrices having a
Hankel structure. Our algorithm follows the same line. It has the particularity that it approx-
imates the Hankel matrices at each instant by a low rank approximation in a finite window.
Let us now formulate this in more detail.

5.1. The RLRH algorithm. The key idea of this algorithm is to use the Hankel matri-
ces � Y (O� Y � Y representing the Hankel map ��(��o� . As the system order is given by the
rank of the Hankel map, it is a good idea to approximate the system by approximating the
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Hankel matrices via a recursive SVD performed at each step. The technique is very similar
to the previous algorithm, RLRG, but now we perform at each step the singular values de-
composition of a product similar to the product �o� . Consider indeed the SVD of the matrix

(5.2)

� :·ª^�	ÖØ� ` *�� � 0 * ·©Õ�	Ö¦� � (t�g²�³ ` 5
and partition ��& ( � ��& � � � , ³�& ( � ³#& ³ � � 5 where �W&¿= > � ­ $ C � ¬r­ and ³-&+=> � ­ $ ? � ¬�­ . Define then� ·©Õ�×Ö4.+��� ·À V �×Ö#.e��� � & ( � 0 * ·©/�×Ö¦� � � ³ & ³ � � 5� ·ª �	Ö#.e��� ·À b �×Ö#.e��� � & ( � : ` * ` ·ª �×Ö¦� � � � & � � � N
It follows that Ý ·ª��×Ö4.+��� `·À b �	Ö4.e��� ` Þ � ·© �	Ö#.e��� ·À V �	Ö#.e��� � («Ý ²Õ& �� ² � Þ 5
where ² � contains the neglected singular values at this step. For the initialization at stepÖ@(e� we use again

·©��×Ö¦��(e� , and
·ª^�	ÖØ�W(+� . We summarize this algorithm as follows.

ALGORITHM 5.1. Recursive Low-Rank Hankel (RLRH).

1: procedure RLRH( *35Ù0Ú5�:<5Ù�£5¢¤¦¥¨§ )
2:

·©��	�M�°Û ��=F>JA3¬�­ Ü Initialize
·©

3:
·ª_�	���°Û«��=�>@A3¬r­ Ü Initialize

·ª
4: repeat
5: Compute the singular value decomposition� :·ª_�	Ö¦� ` *�� � 0 * ·©/�×Ö¦� � (��3²�³ ` N
6: Let �p( � � & � � � , ³ê( � ³ & ³ � � , � & =F> � ­ $ C � ¬r­ , ³ & =F> � ­ $ ? � ¬r­ .
7: Construct·©Õ�	Ö#.e���°Û � 0 * ·©/�×Ö¦� � ³ & 5 ·ª��	Ö#.e���°Û � : ` * ` ·ª��×Ö¦� � � & 5·À V �	Ö#.e���°Û � 0 * ·©/�×Ö¦� � ³ � 5 ·À b �	Ö#.e���°Û � : ` * ` ·ª��×Ö¦� � � � N
8: until The stopping criterion is verified. Ü See Subsection 7.2
9: end procedure

Let us investigate the amount of work involved in our algorithm. First we need to form
products of the type * ·©Õ�	Ö¦� and

·ª ` �	Ö¦�¦* . If we assume the matrix * to be sparse and let â
the number of non-zero elements per row or column of * , then the amount of work needed
for this is ����â'����� [19]. The construction of the left hand side of (5.2) requires an additional% �¯�	�9.�DF�c�×�9.BE-� flops and the application of the transformations � and ³ requires ���Ù� E,.�����	DÅ.g������%¨��.,EJ.gDF�Ù� flops, and so the complexity of this algorithm is �����¯� E@.3���c�×D�.3���Ù�
for each iteration. This is comparable to the work required by the RLRG algorihm.

As before we have some results linking the intermediate error matrices and the control-
lability and observability matrices.
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THEOREM 5.2. At each iteration, there exist unitary matrices ³ � Y � =k> � ­ $ Y ? � ¬ � ­ $ Y ? �
and � � Y � =�> � ­ $ Y C � ¬ � ­ $ Y C � satisfying� Y ³ � Y � ( � ·©Õ�	Ö¦� ·À V �×Ö¦� *Õ�A�¨�	ÖØ� � 5 � `Y � � Y � ( � ·ª_�×Ö¦� ·À b �×Ö¦� * ` �O���	Ö¦� � 5
where

·À V �	Ö¦� and
·À b �	Ö¦� are the neglected parts at iteration Ö in the algorithm, and the matrices� � �×Ö¦� and � � �×Ö¦� are defined as follows,�A���×Ö¦� N( � ·À V �×Ö�RB��� N
NcN * Y T & ·À V �	�M� � 5%�O���×Ö¦� ` N( Ò ·À b �×Ö�RB��� N
NcN \ * ` ]

Y T & ·À b �	�M� Ô N
Proof. We just show the proof for ³ � Y � , the other being similar. At each step, there exists

an orthogonal matrix ³ê( � ³#& ³ � � such that� 0 * ·© �	Ö¦� � ³ê( � ·© �×Ö4.+��� ·À V �×ÖÉ.+��� � N
For Ö£(;� we have � [ ( � ·©Õ����� ·À V������ � , and so ³ � [ � (tQ . We prove the general result by
induction. Suppose that there exists an orthogonal matrix ³ � Y � such that� Y ³ � Y � ( � ·© �×Ö¦� ·À V �	ÖØ� * ·À V �×Ö'Rh��� NcNcN * Y T & ·À V ����� � N
Since � Y $J& ( � 0 *Õ� Y � , we choose³ � Y $'&¢� ( Ý Q ? �� ³ � Y � Þ Ý ³ �� Q Y ? Þ 5
from which it follows that� Y $'& ³ � Y $'&¢� ( � 0 */� Y � Ý Q ? �� ³ � Y � Þ Ý ³ �� Q Y ? Þ( � 0 */� Y ³ � Y � � Ý ³ �� Q Y ? Þ( � 0 * ·© �×Ö¦� * ·À V �×Ö¦� NcN
N * Y T & ·À V �	��� � Ý ³ �� Q Y ? Þ( � ·©Õ�	Ö#.e��� ·À V��	Ö4.e��� * ·À V��×Ö¦� NcN
N * Y ·À V��	��� �( � ·© �	Ö#.e��� ·À V �	Ö4.e��� *Õ�A�¨�	Ö#.e��� � N

As a consequence of this theorem we have the following result which give us an approx-
imation of the original Hankel matrix � Y .

THEOREM 5.3. At each iteration Ö , there exist unitary matrices ³ � Y � =�> � ­ $ Y ? � ¬ � ­ $ Y ? �
and � � Y � =�> � ­ $ Y C � ¬ � ­ $ Y C � , such that

(5.3) Î � � Y � Ï ` � Y ³ � Y � ( uvw ·ª^�	ÖØ� ` ·©/�×Ö¦� � ·ª^�	Ö¦� ` *Õ�A���×Ö¦�� ·À b��×Ö¦� ` ·À V��×Ö¦� ·À b��×Ö¦� ` *Õ� � �	Ö¦��O���×Ö¦�¢* ·©/�	Ö¦� �O�¨�×Ö¦�¢* ·À V �×Ö¦� ���¨�×Ö¦�¦*)�%�A�¨�	ÖØ�
xzy{ N

Proof. First we have the relationship between the Hankel matrices, the controllability
and observability matrices � Y N(�� Y � Y , and from the previous theorem, there exist two unitary
matrices ³ � Y � =�> � ­ $ Y ? � ¬ � ­ $ Y ? � and � � Y � =F> � ­ $ Y C � ¬ � ­ $ Y C � , such thatÎ � � Y � Ï ` � Y ³ � Y � N( Î � � Y � Ï ` � Y � Y ³ � Y � ( uw ·ª_�×Ö¦� `·À b �	Ö¦� `�O���×Ö¦�¦* x{ � ·© �	Ö¦� ·À V �×Ö¦� *Õ�A���	ÖØ� � N
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The final result then follows easily.

This result enables us to evaluate the quality of our approximations by using the Han-
kel matrices (and so the Hankel map) without having to pass by Gramians, which can be
very unsuitable in some cases (especially when the original system is poorly balanced). The
procedure yields two matrices

·©Õ�×��� and
·ª_�	��� of full rank � . Using these matrices, we can

approximate the Gramians U4V and U#b of the original model by
·©Õ�×��� ·©Õ�×��� ` and

·ª_�×��� ·ª��	��� ` ,
respectively. The differences between the approximate low-rank Gramians and the exact
Gramians ì V �	ÖØ��N(tU V �×Ö¦�@R ·å Y 5 ì b �×Ö¦�ÅN(tU b �×Ö¦�@R ·æ Y
remains bounded for large Ö , as indicated in the following theorem.

THEOREM 5.4. Let
å

and æ be the solutions ofå (e* å * ` .1QK5çæe(;* ` æ)*1.¯Qn5
respectively. Then® ì V �	ÖØ� ® � ± í �V ® å ® � ± í �V ñ �	*<�¦��ÕRkó#�	*)� � 5 ® ì b �×Ö¦� ® � ± í �b ® æ ® � ± í �b ñ �	*<�¦��ÕR�ó#�	*<� � 5
where í V1N(�îB�¨ïY ® ·À V �×Ö¦� ® � and í b�N(+îB� ïY ® ·À b �×Ö¦� ® � .

Proof. It follows from Theorem 5.2 thatì V �×Ö4.+���°(e* ì V �	ÖØ�¢* ` . ·À V �×Ö¦� ·À V �×Ö¦� ` 5 ì b �×ÖÉ.+���°(+* ` ì b �	Ö¦�¦*1. ·À b �	Ö¦� ·À b �×Ö¦� ` N
We can also consider the equations:õ V��×ÖÉ.+���°(+* õ V��	ÖØ�¢* ` .e�	í �V Q3R ·À V��×Ö¦� ·À V
�	Ö¦� ` �%5 õ V��	���°(;��5õ b �	Ö#.e���°(;* ` õ b �×Ö¦�¦*h.;�×í �b QoR ·À b �	Ö¦� ·À b �×Ö¦� ` �%5 õ b �����°(;� N
Their iterates

õ V �×Ö¦� and
õ b �×Ö¦� are clearly positive semi-definite and hence converge to the so-

lutions
õ V and

õ b , respectively, which are also positive semi-definite. Moreover, by linearity
we have ì V��×Ö4.+����. õ V��	Ö#.e���°(;*g� ì V��×Ö¦�É. õ V
�	Ö¦�¢�¦* ` .¯í �V Qn5ì b �×Ö4.+���É. õ b��×ÖÉ.+���°(+* ` � ì b��×Ö¦�É. õ b��×Ö¦�¢�¢*h.¯í �b Q N
It then follows thatöë÷ÓîYùø � ì V �×Ö¦�É. õ V �×Ö¦��(+í �V å 5 öë÷ÓîYùø � ì b �	ÖØ�É. õ b �	ÖØ�W(�í �b æg5
and we obtain

® ì V �	Ö¦� ® � ± í6�V ® å ® � , and
® ì b �×Ö¦� ® � ± ír�b ® æ ® � . The second bound follows

from the eigendecomposition of * .

THEOREM 5.5. Using the first � columns � � Y �& of � � Y � and ³ � Y �& of ³ � Y � , we obtain a rank� approximation of the Hankel map� R¯� � Y �& ·ª_�	Ö¦� ` ·©��×Ö¦� Î ³ � Y �& Ï ` ( ì�� �	ÖØ��5
for which we have the error bound® ì � �×Ö¦� ® � ± ñ �	*<�� �ÕRkó-��*)� � îB�¨ï#Á
í�V ® ·ª ` * ® � 5¢í�b ® * ·© ® � Âd. ñ ��*)� ��ÕRkó-��*)� � í�b�í�V N
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Proof. This follows directly from the bounds of Theorem 5.3 that can be used to bound
the blocks in the form in (5.3) different from the �¦��5c��� block. More explicitly, from (5.3) we
have � Y (;� � Y � uw ·ª��×Ö¦� ` ·©��	ÖØ� � ·ª��	ÖØ� ` */��� �×Ö¦�� À b �	ÖØ� ` À V �	Ö¦� À b �×Ö¦� ` *Õ�A���×Ö¦�� � �×Ö¦�¦* ·©Õ�×Ö¦� � � �×Ö¦�¦* À V��×Ö¦�ç� � �	Ö¦�¦*,�c� � �×Ö¦� x{ Î�³ �

Y � Ï `
and so

ì�� �	Ö¦�°( ì � &¦�� �	ÖØ�'. ì � � �� �	ÖØ��5 whereì � &¢�� �×Ö¦�°(�� � Y � uw � � ·ª_�	Ö¦� ` */�A�¨�×Ö¦�� � �� � �	ÖØ�¢* ·©Õ�	Ö¦� � � x{ Î
³ � Y � Ï `
and ì � � �� �	Ö¦�°(t� � Y � Ý � �� ì � Þ Î�³ �

Y � Ï ` 5 ì �Õ( Ý À b �×Ö¦� ` À V �×Ö¦� À b �	ÖØ� ` */��� �×Ö¦��O�¨�	ÖØ�¢* À V �	ÖØ�ÿ�O�¨�×Ö¦�¢*,�c�����	Ö¦� Þ 5
and thus ® ì�� �×Ö¦� ® � ± îB� ï-Á ® ·ª^�×Ö¦� ` *Õ�A���×Ö¦� ® � 5 ® �O���	Ö¦�¦* ·©,�×Ö¦� ® � ÂW. ® ì � ® � N

REMARK 5.6. One obtains an approximate rank factorization of a Hankel map with Ö
block columns and rows at each instant Ö . The bounds obtained in Theorems 5.4 and 5.5 are
moreover independent of Ö . As Ö grows larger one can expect that reasonable approximations
of í V and í b are in fact given by the neglected parts of the last iteration, i.e., í V Ì ® À V �×Ö¦� ® �
and í b Ì ® À V �	Ö¦� ® � , which will give much tighter bounds in these theorems. In fact, as we
remarked before, í V and í b are function of the initialization instant and one can writeí�V���l��W(ÿî�� ï" ð Y ð � ® À V��	ÖØ� ® � 58í�b ��l��°( îB�¨ï" ð Y ð � ® À b �	ÖØ� ® � N
Since í V �×Ö¦� and í b �	ÖØ� are typically decreasing, we can replace them by the maximum over the
last iteration steps.

REMARK 5.7. We can make the same convergence study, as for the RLRG algorithm,
to conclude that the RLRH algorithm has a unique fixed point which is Á�*35�0BÂ invariant andÁ�*g5�:^Â invariant at the same time. This leads to the conclusion that the fixed point in this
case is the dominant part of the common “balanced” Gramian. This property will also imply
a very nice result for the reduced model that we show in the following section.

REMARK 5.8. If a bilinear transformation H is applied to the system Á�*35�0S5�:^Â to
get a new system Á
H3T & */H/5ÙHoT & 0Ú5�:<HoÂ , the corresponding controllability and observability
matrices and the Hankel map, respectively, will be·��(�H T & �£5 ·��(t�oH/5 ·�û( ·� ·��(;�o��(+� N
This transformation will not affect the Hankel map (which is taken into account for the bal-
ancing). This means that for any realization of the system, RLRH-ABT will do as good as for
a balanced realization. And so it is a powerful very cheap method to produce a good balanced
approximation to a linear system.
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6. Approximate balanced truncation using the RLRG and RLRH algorithms. Us-
ing the two previous algorithms, RLRG and RLRH, we can use the idea of approximate
balanced truncation (see Section 3) to obtain a reduced order model. The idea here is to use
low-rank approximations of the Gramians, obtained via RLRG or RLRH, instead of the origi-
nal Cholesky factors of the Gramians in the balanced truncation algorithm. The implemented
algorithms are given by Algorithms 6.1 and 6.2.

ALGORITHM 6.1. RLRG Approximate Balanced Truncation (RLRG ABT).

1: procedure RLRG ABT( *g5Ù0Ú5�:<5¢�£5Ù¤¦¥¨§ )
2: Run RLRG (Algorithm 4.1) to get low-rank approximations ©@5Ùª = >°Ao¬�­ of the

Cholesky factors of the Gramians U V and U b , respectively.
3: Calculate the singular value decomposition © ` ª�(t�3²�³ ` .
4: Let ´P(e©��g²,T &Ù¶ � , and ��(+ªo³_²,T &Ù¶ � .
5: The order � approximate truncated balanced realization is given by
*t(+� � *,´�5 
0�(;� � 0S5 
:p(;:<´ N
6: end procedure

ALGORITHM 6.2. RLRH Approximate Balanced Truncation (RLRH ABT).

1: procedure RLRH ABT( *g5Ù0Ú5�:<5¢�£5Ù¤¦¥¨§ )
2: Run RLRH (Algorithm 5.1) to get low-rank approximations

·©�5 ·ª =O>@Ao¬�­ of the
Cholesky factors of the Gramians UÉV and U#b , respectively.

3: Let ´P(e©�²)T &Ù¶ � , and ��(+ª3²,T &¢¶ � .
4: The order � approximate truncated balanced realization is given by·*t(+� � *,´�5 ·0�(;� � 0S5 ·:p(;:<´ N
5: end procedure

In Algorithm 6.1, we use the SVD in Line 3 to “balance” the projection matrices. This
is crucial because we approximate the Gramians independently. In practice, if the system has
poles close to the unit circle, one or both Gramians are not well approximated. This is not
the case in Algorithm 6.2, because the product of the two low-rank approximations is already
equal to a diagonal matrix of nonnegative values. This is the first advantageous property of
the RLRH approximate balanced truncation method.

These two approximate balanced truncation algorithms have some very desirable prop-
erties that we show below.

THEOREM 6.3. Both the algorithms RLRG ABT and RLRH ABT lead to a balanced
stable reduced model.

Before giving the proof of this result, we will need to show the following lemma.
LEMMA 6.4. Let ´�5Ù�ú=F> " ¬ ½ and �p=F> " ¬ ¾ . If ´ ` �e(;� and ´ ` � is full rank then� ` �e(+� .
Proof. Firstly, as ´ ` � is full rank, the columns of ´ and those of � span the same

subspace of > " ¬ ½ . Secondly, as ´ ` �;(+� , the columns of � span a subspace of > " ¬ ¾ that is
orthogonal to the subspace spanned by the columns of ´ into > " ¬ � ½ $ ¾ � . Then the subspace
spanned by the columns of � is also orthogonal to the subspace spanned by the columns of� , i.e., � ` �e(e� .

Proof of Theorem 6.3. We will prove the theorem for the RLRG ABT algorithm; the
proof for the other algorithm is similar. Let © and ª be the fixed points of the RLRG algo-
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rithm applied to the system Á�*g5Ù0S5f:^Â (2.1), i.e.,

(6.1) � © À V � ( � *)© 0 � ³ V 5 � ª À b � ( � * ` ª : ` � ³ b 5
where ³ V =�> � ­ $ ? � ¬ � ­ $ ? � and ³ b =�> � ­ $ C � ¬ � ­ $ C � are unitary matrices. It follows that

(6.2) ©�© ` . À V À `V (;*)©°© ` * ` .¯0^0 ` 5ßª9ª ` . À b À `b (e* ` ª9ª ` *1.h: ` : N
Recall that the projection matrices are¼ ½ (+ªo³^² T PR 5 ¼ ¾ (t©��3² T PR 5a© ` ª�(��3²�³ ` 5 where �Õ5f²)5�³O=F> ­n¬�­ N
Now, using these projection matrices we can project both equations (6.2), and we obtain,
respectively, ¼ `½ \ ©�© ` . À V À `V ] ¼ ½ ( ¼ `½ *)©°© ` * ` ¼ `½ . ¼ `½ 0^0 ` ¼ ½ 5(6.3) ¼ ¾½ \ ª9ª ` . À b À `b ] ¼-¾ ( ¼ `¾ * ` ª<ª ` * ¼n¾ . ¼ `¾ : ` : ¼-¾ N(6.4)

By definition we have ¼ `½ ¼ ¾ (�Q ­ , and by construction we have © ` À V (p� and ª ` À b (�� .
Moreover, we have¼ `½ ©�(t² T PR ³ ` ª ` ©�(;² PR ��5 ¼ `¾ ª�(t² T PR � ` © ` ª�(�² PR ³ ` N
Applying the previous lemma yields that ¼ `½ À V (ú� and ¼ `¾ À b (ú� . Then equations (6.3)
and (6.4) become ¼ `½ ©°© ` ¼ ½ ( ¼ `½ *<©°© ` * ` ¼ `½ . ¼ `½ 0g0 ` ¼ ½ 5¼ `¾ ª9ª ` ¼ ¾ ( ¼ `¾ * ` ª9ª ` * ¼ ¾ . ¼ `¾ : ` : ¼ ¾ N
We can check easily that (as � and ³ are unitary matrices)¼ `½ ©°© ` ¼ ½ ( ¼ `¾ ª9ª ` ¼ ¾ (�²)5a©°© ` ( ¼ ¾ ² ¼ `¾ 5 and ª9ª ` ( ¼ ½ ² ¼ `½ N
Finally, we obtain the Stein equations²¿( ¼ `½ * ¼-¾ ² ¼ `¾ * ` ¼ `½ . ¼ `½ 0g0 ` ¼ ½ and ²h( ¼ `¾ * ` ¼ ½ ² ¼ `½ * ¼n¾ . ¼ `¾ : ` : ¼-¾ N
These two equations prove that the reduced model Á ¼ `½ * ¼ ¾ 5 ¼ `½ 0S5�: ¼ ¾ Â has a balanced
Gramian ² . This Gramian is by construction positive definite and the solution of the last
two Stein equations, from which we conclude that the reduced system is stable.

The next result concerns the convergence of the computed Hankel singular values.
THEOREM 6.5. Let S Y and

·S Y be the Hankel singular values of the original model and
the reduced model via either RLRG ABT or RLRH ABT respectively: S'�Y (��'��U V U b � andS4�Y (6����©°© ` ª<ª ` � . Then­X Y Z & S �Y R ­X Y Z & ·S �Y ± ñ �	*<�¦��ÕR�ó#�	*<� � \ Dsí �V�� �f���}����U b �É.�Ení �b�� �f���}����U V � ] 5
where D is the number of inputs, E is the number of outputs, and í V and í b are the corre-
sponding noise levels.
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Proof. We have­X Y Z & S �Y R ­X Y Z & ·S �Y ( � �f���}����U#V%U#bc�@R � �f���}����©�© ` ª9ª ` �( � �f���}����U V U b R�©°© ` ª9ª ` �( � �f���}� \ ��U V R�©°© ` �ÙU b .1©�© ` ��U b Rkª9ª ` �¢]± � �f���}����U#V�RÅ©°© ` � � �������M��U#bc��. � �f���}����©�© ` � � �f��������U#b�RÅª<ª ` � N
And using previous results in this paper we obtain finally­X Y Z & S �Y R ­X Y Z & ·S �Y ± ñ ��*)�¢��ÕRkó-��*)� � \ D�í �V�� ����������U#bc��.�EKí �b�� ����������U#V%�¢] N

Here, it should be mentioned that for RLRG ABT the noise levels í V and í b could be
not of the same order as the Gramians are approximated independently. This could affect the
quality of the previous bound. On the other hand, for the RLRH ABT, we have íS(�í V - í b ,
which yields ­X Y Z & S �Y R ­X Y Z & ·S �Y ± ñ �	*<�¦�
í6��ÕR�ó#�	*<� � �	D � �f��������U b ��.�E � �f��������U V �¢� N

Another result for the Hankel singular values is obtained using the perturbation theory
for the singular values; see [19, Page 449] and Theorem 5.5.

THEOREM 6.6. Let S Y and
·S Y be the Hankel singular values of the original model and

the reduced model via RLRH ABT. Then for Ö@(���5 N
NcN 5¢�� S Y R ·S Y �r± ñ �	*)�� �ÕR�ó#�	*<� � í ·S#& ® * ® � . ñ �	*)�¢��ÕRkó-��*)� � í � 5
where í is the noise level.

Proof. We apply [19, Corollary 8.6.2] and Theorem 5.5. We also use the fact that í�(í V - í b , ® ·© ® � ( ® ·ª ® � ( ·S & .
7. Further discussion.

7.1. Quality of the bounds. All our bounds are a function of � � Æ � R& T�� � Æ � R (or its square
root). At first sight this appeared to be a disappointing property of our algorithms. It suggests
that our proposed algorithms do not work unless the problem at hand is very well conditioned
and the spectral radius of * is far enough from 1. But, one also should notice that in every
term where the expression � � Æ � R& T$� � Æ � R appears, it is multiplied by the square of one of the noise
levels (either í V or í b ). These noise levels are of the order of the machine epsilon and in most
cases will make these terms small. This is illustrated in our numerical examples.

7.2. Stopping criterion. Since our iterative method computes successive approxima-
tions to the solution of a Lyapunov equation, a practical test is needed to determine when
to stop the iteration. Ideally this test should measure the distance of the last iterate to the
true solution (the Gramian), but this is not possible as the true solution is unknown. Instead,
various other metrics are used, typically involving the residual (noise level) or reached fixed
point. The following stopping criteria could be considered:



ETNA
Kent State University 

http://etna.math.kent.edu

138 Y. CHAHLAOUI

– Maximal number of iteration steps. The iteration is stopped after a certain number ÖE� z	� of
iterations steps. Obviously, no additional computations need to be performed to evaluate
it. The drawback of this stopping criterion is that it is not related to the attainable accuracy
of the delivered low-rank Gramian.

– Stagnation of the canonical angles. The iteration is stopped when stagnation of� ��©Õ�	Ö'R¿����5�©Õ�	ÖØ�Ù� is detected. Roughly speaking, these angles are considered as “stagnat-
ing” when no noticeable decrease is observed in consecutive iteration steps. This criterion
works well in practice. It requires the computation of an SVD, which gives the cosines of
these angles.

– Stagnation of ² V . We predefine a tolerance
Ä ? and test if

® ² V �×Ö¦��Rh² V �	Ö@R+��� ®^±�Ä ? for
several iterations, in the 2-norm or the Frobenius norm.

– Smallness of the noise í6V . We predefine a tolerance
Ä ? and test if íMV ± Ä ? for sev-

eral iterations. Loosely speaking, this means the following. When írV and consequently® À V��×Ö¦� ® become smaller than
Ä ? , then the “contribution” from the following iterations is

not needed as it will not ameliorate the quality of the approximation.
In general, the three last criteria are affected by round-off errors, which is why we should wait
a few more steps before stopping of the algorithm. Note that the delay between stagnation
and stopping of the algorithm can be changed; in our algorithms we consider a delay of 10
steps. In practice, the second and third stopping criteria are combined to have a good low-
rank approximation of the Gramians; see the discussion following Theorem 4.11. The two
last stopping criteria could be considered as equivalent, as a stagnation of ² V means that the
noise levels are very small and negligible.

7.3. The choice of � . So far we have only considered the case where the reduced order� is constant and fixed from the beginning by the user. But actually, if one wants to choose
a convenient value for � one has to do an explicit thorough analysis of the whole Hankel
operator (or matrix) involved and strive for some sort of singular value ranking. For large-
scale dimensions this pre-treatment is prohibitive.

The current situation is that we can choose dynamically the reduced order by choosing
the number of vectors kept during the iterations of the algorithm, i.e., ��(�� Y is variable. This
is very cheap as we already pass through the whole matrix with a kind of a sliding window
which sorts locally the singular values. And so one can adapt � Y as soon as the information
“unveiled” by the sliding window is relevant to the approximation. One should notice that as
we are using SVD-based algorithms, the quality of the approximations will be a function of
the existence and the size of the gap between what we keep and what we neglect [19]. Here,
one can adopt many strategies using some ad-hoc specification, e.g.,
– Absolute tolerance strategy. In this case, one has to predefine a tolerance value �;� and

ask the algorithm to neglect all singular values which are smaller than this tolerance, i.e.,� Y (�î�÷ë�ÉÁfij&�S m ��©������ � Â .
– Relative tolerance strategy. This strategy is more dynamic and suitable. Typically, the user

can define an interval � � ? Y ­ 5¢� ? � ��� K¡  and the algorithm has to find the optimal value
for � Y , such that � ? Y ­ ± � Y ± � ? � � . By optimal, we mean the smallest � Y such that
the quality of the approximations is acceptable. Let � ¾ be a pre-specified tolerance value.
At each iteration we apply our algorithm and we check for all computed singular valuesS6m���©�� , i�(þ�¢&É� Y .+D , the quotient SrmM��©°�Ùü*S & ��©°� , for i�(þ�¢&4� Y .+D . The first i for
which we will have S�m���©°��ü£S & ��©°� ± � ¾ , is compared to � Y ; if this i is smaller than � Y then
we take the next � Y $J& equal to � Y (i.e., � Y $'& (�� Y ), otherwise we take � Y $'& (�i , and so
on.

– Another strategy can be adopted for the choice of � Y . It is based on the fact that the quality
of the approximation depends on the gap between the retained values and the neglected
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ones. So one can detect the gaps between singular values in each window, and adapt � as
for the relative tolerance strategy.

In the strategies above, because � ? Y ­ ± �'& ± � � ±#¤�¤}¤@± � ? � � , if one keeps in memory
all values of � Y , we can choose at the end the low-rank approximation only from the � -
rank approximation, which will embed all other � Y -rank approximations. Of course, the
pre-specification of � � or � ¾ will be crucial.

8. Numerical examples. In this section we apply our algorithms to four different dy-
namical systems: a building model, a CD player model, and two International Space Station
models. These benchmarks are described in more detail in [10, 11, 20]. These models are con-
tinuous, so we discretize each system using a bilinear transformation with parameter ¥s(X%
[3]. In Table 8.1 we give the order of the system ( � ), the number of inputs ( D ), and outputs
(E ), the order of reduced system ( � ), and the corresponding tolerance value. We show also in
this table the spectral radii and the condition numbers of the matrices * .

TABLE 8.1
Summary of data of the benchmark models.� D E � tol.value ó#�	*<� ñ �	*<�

build model 48 1 1 10 0.16 0.4997
] N ��á�¦ ] N ���M


CD player model 120 2 2 24 % N ] N �
�KT�§ 0.5266 � N ¦�¦ [ ( N �
� ^
ISS 1R model 270 3 3 32 % N ����T#
 0.7338

[ N Y ] �)% N �
��

ISS 12A model 1412 3 3 195 Y \ N ����T ^ 0.8310

\ N ¦�¦*% ] N �
��

TABLE 8.2¨ª©

norm of benchmark models, and the error systems.

model
® ¸ ® � ® ¸ R ¸ b C�¹ ® �® ¸ ® � ® ¸ R ·¸ & ® �® ¸ ® � ® ¸ R ·¸ � ® �® ¸ ® �

Building 0.0053 0.1143 0.4301 0.4320

CD player % N (�� [�] N �
��« ] N ��¦¨� á N ��� T$¬ Y N ]�[ (K� N �
� T « � N ¦ N �
� T «
ISS 1R 0.1159 0.0013 0.1023 0.0979

ISS 12A 0.0107 0.0071 0.9697 0.9390

TABLE 8.3
Noise levels ­�® for benchmark models.

model m°¯+±�¯+²V m³¯+±�¯+²b m³¯+±�¯ �V m³¯+±�¯ �b
Building Y N \ ��Y�( N �
��T & _ á N ()¦ [�[ N �
��T & � ¦ N ¦*% [ % N �
��T & _ ( N %¨á�á \ N �
��T &�&

CD player á N � \ ¦ \ N �
� T-� [ Y N ��(�áK� N �
� T-� [ � N Y ] Y)¦ N �
� T & ^ % N ]�] á�Y N �
� T & 

ISS 1R � N \ ��Y�( N ���rT$¬ � N ��Y�áK� N �
��T & [ Y N % \�\ � N ���rT$¬ � N Y)%�¦¨� N ���rT$´

ISS 12A ¦ N � [ ¦*( N �
� T-� _ � N ��¦ \ � N �
� T-�r§ ¦ N \ � [ ( N �
� T-��� á N ¦*% [ % N �
� T-� _
The first remark is that because we work directly on the Hankel map (with RLRH

method) we do not need to “balance” (using an SVD) the projection matrices to obtain a
convenient reduced-order model.
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TABLE 8.4
CPU time for different algorithms.

model BT RLRG ABT RLRH ABT

Building 0.3750 0.3380 0.0810

CD player 0.7970 0.7340 0.7030

ISS 1R 11.6720 4.7350 2.5470

ISS 12A � N ��(�%)¦ N �
��
 � N �
��% [ N �
��
 � N �)% ] % N ����


FIG. 8.1. v£µ+¶C· -plot of the frequency responses for the building model.

FIG. 8.2. Evolution of the values of the noise levels for the building model.

For each example, the relative ��� norms of the full system

¸
and the error systems are

tabulated in Table 8.2, and the S ? � � -plot of the full order and the corresponding error system
are shown in Figures 8.1, 8.3, 8.5, and 8.7. We use the notations

¸ b C�¹ for the reduced order
model by balanced truncation,

·¸ & for the reduced order model by RLRG ABT algorithm,
and
·¸ � for the reduced order model by RLRH ABT algorithm.
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FIG. 8.3. v£µ+¶C· -plot of the frequency responses for the CD player model.

FIG. 8.4. Evolution of the values of the noise levels for the CD player model.

It can be seen from Figures 8.1, 8.3, 8.5, and 8.7 that we obtain with the RLRH approxi-
mation results which are close to those obtained via BT. These results are also close of those
of RLRG approximation, but we have applied the RLRG algorithm to the controllability and
observability matrices with a

·� , where
·��ä¿� , and we have balanced the projection matrices

using an SVD to keep only � projection matrices. These operations make the RLRG more
expensive, and so the RLRH algorithm is less expensive and the results are as good as those
obtained using the RLRG approximation.

Figures 8.2, 8.4, 8.6, and 8.8 show the noise levels í V and í b . Notice that the noise levels
shown must be interpreted also in a special way as it was done for the RLRG algorithm. The
noise levels must be multiplied by the corresponding power of the spectral radius of * to
obtain the real values of the noise level at the end, i.e., the real noise level 
m¹¸ is obtained
as 
m°¸��×Ö¦� N(Ãó#�	*<�Gº�T Y m°¸��	Ö¦� , where » is the number of iteration. Therefore, the values of
noise levels considered in the previous theorems will be taken in the last obtained values,
which will be very small. We notice here also that for poorly balanced systems the resulting



ETNA
Kent State University 

http://etna.math.kent.edu

142 Y. CHAHLAOUI

FIG. 8.5. v£µ+¶C· -plot of the frequency responses for the ISS 1R model.

FIG. 8.6. Evolution of the values of the noise levels for the ISS 1R model.

noise levels are not of the same order as for well balanced systems. This is still the case
for the CD player model. We remark also that for “close balanced” systems, like the CD
player model ( ñ �×H)�k(Ãá�� N ¦£(�áK� , where H is the balancing transformation) RLRG yields
better results. But, RLRH is as least better for “poorly balanced” systems. This is the case for
the Building model ( ñ �×H)�,(X(�á�¦ N �)¦ ] � ) and more clearly for the International space station
( ñ �	H)�,(#¦ N á��K� ] N ��� _ ). Of course, RLRH is always faster and cheaper as we do not need to
balance the approximations at the end of the algorithm (by computing the SVD of a product
of two tall and skinny matrices).

9. Concluding remarks. In this paper, we proposed two recursive approximate bal-
anced truncation model reduction methods based on the Gramians and the Hankel map.
Subsequently the approaches for computing approximate Gramians and Hankel map were
derived. These approaches provide results close to those obtained by balanced truncation,
considered to be optimal, with lower computational cost. Unlike all other methods in the
literature, the reduced order model produced by our methods are guaranteed to be stable and
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FIG. 8.7. v µ+¶C· -plot of the frequency responses for the ISS 12A model.

FIG. 8.8. Evolution of the values of the noise levels for the ISS 12A model.

balanced. Bounds on the quality of the approximation are given with some numerical exam-
ples. The RLRH algorithm is the best algorithm for approximating the balanced truncation
in terms of accuracy and computational cost. Its cost is ���	�¯�	��.ÅD����	��.�E#�¢� , which is only
linear in the large dimension N, unlike balanced truncation which has a cost which is cubic in
the large dimension, i.e., ���	��
�� . The numerical examples show that this algorithm has very
good properties in term of stability, convergence rate and the quality of the approximation.

Despite the obviously desirable features of the Hankel map approach proposed here,
many open questions remain. There are a number of refinements with respect to performance,
convergence, and accuracy which require more theoretical and algorithmic analysis. There is
one particularly interesting feature concerning the comparison between the original Hankel
map and the Hankel map of the reduced order model. For instance, we just compared the
original Hankel map and its dominant block approximation. To compare the two Hankel
maps we still need a better understanding of the algorithm and its features.
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