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A STREAMING APPROACH FOR SPARSE MATRIX PRODUCTS AND ITS
APPLICATION IN GALERKIN MULTIGRID METHODS  *

JOACHIM GEORGIFAND RUDIGER WESTERMANN

Abstract. In this paper, we present a numerical algorithm for commupiroducts of the fornR K R™, where
R, RT, and K are sparse matrices. By reformulating the problem into thrisaneous processing of a sequential
data and control stream, cache miss penalties are sigrilficaduced. Even though the algorithm increases memory
requirements, it accelerates sparse matrix products @mtgeocessor architectures by a factor of up to 4 compared
to previous approaches. We apply the algorithm to computsistent system matrices at different resolution levels
in a dynamic multigrid elasticity simulation, and we showéfficiency for nested and non-nested mesh hierarchies.
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1. Introduction. The core computations of many numerical simulation teahesgare
based on sparse matrices, making it important to providemggpurpose high performance
software libraries for such structures. The multiplicataf two sparse matrices, in particular,
is often required when solving partial differential eqoas on unstructured finite element hi-
erarchies using geometric multigrid schemes. To ensurasistent calculation of quantities
on different resolution levels, the coarse grid operatorleaobtained by computing products
of the formR K R™. Here,R andR™ are, respectively, the restriction and interpolation op-
erators used to transfer quantities between differenfuésa levels, andx is the fine grid
operator. Itis said that coarse grid operators construatdds way satisfy the Galerkin con-
dition, and it has been shown in previous work that such atcactson is the natural choice
to define the coarse grid operatéyt P3].

In case of unstructured mesh hierarchies, the correspgmaatrix representations of the
involved operators are sparse and non-zero entries aremagdcattered. If the non-linear
strain tensor is used in the dynamic simulation of the systgar time, these entries, and
thus the entire multigrid matrix hierarchy, have to be updah every simulation time step.
As we will show later in this paper, the update of the matrierbirchy dominates the overall
performance of multigrid methods, taking about an order afjnitude longer than the system
solver. The reason for this is that sparse matrix producesaip significantly below the
CPU’s peak performance due to the bottleneck of data tramsfike CPU memory hierarchy.
A directimplication thereof is that standard algorithmsdomputing sparse matrix products
can hardly achieve real-time performance in dynamic sitraria for reasonably sized grid
hierarchies.

To overcome this limitation, we focus on improving the meynaxcess patterns of sparse
matrix operations in this paper. We present a linear layéebmputational cores for sparse
matrix multiplication, which can effectively reduce theesagge memory access time. By re-
formulating the problem into the simultaneous processihg sequential data and control
stream, the locality of memory access operations can beowepl; resulting in consider-
ably less cache miss penalties. In addition, we presertiduitnprovements based on the
particular form of products to be computed in multigrid Gile methods. We include the
proposed matrix operation into a multigrid approach foradisfable body simulation based

*Received December 7, 2007. Accepted for publication A@il 2010. Published online September 7, 2010.
Recommended by A. Frommer.

fComputer Graphics & Visualization Group, Technische Umitat Minchen, Germany
({georgii, westermann}@ um de).

263



ETNA

Kent State University
http://etna.math.kent.edu

264 J. GEORGII AND R. WESTERMANN

on a non-linear elasticity model. By exploiting symmetryiserations and symbolic calcu-
lations to optimize in-place updates of matrix entries, Wweve a significant acceleration of
the multigrid method.

Our approach falls into the category of algorithmic teclais for efficient memory ac-
cess in matrix operations. In contrast to previous work @ndptimization of dense matrix
operations], 6, 11], sparse matrix-vector operationkd, sparse-dense matrix produc,|
and sparse matrix transpositiod|[ in this work we focus on improving the compute-to-
memory ratio in sparse matrix multiplications. For such micas, the Yale sparse matrix
format [L0, 14, 19] was introduced in the early eighties, and specific variargse developed
to exploit the density of subblocks of such matricgé<2[0]. Parallelization strategies of sparse
matrix operations have been discussedir?p], and most recently the complexity of sparse
matrix algorithms has been analyzed theoretical] [ It is worth noting here that, despite
all the different optimization strategies, sparse matrbducts are still not standard in sparse
libraries such as PETSE]|

2. Matrix data structure. The matrix data structure we use in the computation of
sparse matrix products is row-based (Yale or compressedfoawat [10]). For a sparse
matrix K, non-zero entries and their respective column indices tned in two separate
arrays, row by row. In addition, for every rowan index to the first non-zero element in
this row is stored as depicted in Figuzel. We denote byS% the set of indices to non-zero
elements for row. In the following, we will refer to this format asow-compressedRC)
matrix format.

[T

=
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FIG. 2.1.Row-compressed matrix format.

... Column Indices ...

We extend the RC matrix format in such a way that each enttydmiata array can store a
block of non-zero data values instead of just one value. iEtoeneficial in the 3D simulation
we perform, where the system matrix consist8 of 3 blocks of non-zero elements. In this
case, the memory that is required to store the column indiaassignificantly be reduced.
In the following, we will refer to this format alslock-row-compresse@BRC) matrix format.
For the sake of clarity, we will restrict the following disgsion to theow-compressetbrmat,
keeping in mind that the extension to the BRC format is shridgyward.

3. Sparse matrix products. We now illustrate different algorithms for computing prod-
ucts of sparse matrices of the fofik RT. Both the matrix and the matrixz are assumed
to be sparse, and they are stored using an RC matrix formabedfm with a description of
the so called naive approach. Next, we introduce an opdidilzstep approach, which avoids
the intermediate representation of the naive approactalllfj we improve the memory be-
havior of the 1-step approach by reformulating the probleto the processing of sequential
data and control streams, which significantly reduces catbs penalties.

Generally, we distinguish two settings for sparse matrixdoicts. First, the algorithms
are required to construct the sparse matrix structure ofekalt matrix in a pre-processing
step. This setting is referred to as the symbolic processinge it constructs an entry in the
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result matrix for each potentially non-zero element. Selcdine proposed algorithms allow
for efficientin-place updates after the data value&Kadr R have been updated, which utilize
the pre-computed matrix structure to only update the p@iynon-zero elements. In this
paper, we will focus on the in-place updates and analyserdift algorithms in detail.

3.1. Naive approach.The naive approach to perform a multiplication of the form
RK RT, whereR and K are sparse matrices, first computes an intermediate repeese
tion F = R KT, which is then used to compufé = R FT. Splitting the product in this
way is best suited for the RC matrix format, because it regpuinly the calculation of sparse
dot products and therefore allows accessing the data steiict an optimal way. Note that in
both single products the second matrix is transposed, mlptine rows of the data structure
of the non-transposed matrix to be accessed one by one.

3.2. 1-step approach.To avoid storing and computing the intermediate matfrixlet
us have a closer look at the matrix product to be performegaBging the matrix product
E = RK R" yields

By = Z Ry Z K Rjy,

lest keSKnsf

The outer sum is evaluated only for non-zero entries in tlexnsetS®. The calculation
of the inner sum can be optimized by only considering indinake intersection of the two
index setsS/* and S, as in all other cases the resulting terms of the sum are zarthe
calculation of all sums the data structures are now accessedvise, resulting in cache-
friendly memory access patterns. To perform an in-placeatgdf the matrixt’ (assuming
the structure off? to be known), only indiceg € S¥ have to be considered. Pseudo-code
for this operation is given in Algorithrih. To create the matrix structure &f, the respective
loop is performed for all indiceg from 0 to £.numCols—1. An entry in the sparse matrix
structure is only created i;; # 0.

On the downside, in the 1-step approach the inner sum in thupt calculation might
have to be traversed several times because the same valpilas@f can occur for different
indices:i. Therefore, the in-place 1-step approach performs siightirse than the in-place

Algorithm 1 1-step multiplication (in-place)
Require: MatricesK, R, matrix structure of
Ensure: £ = RKRT

for i = 0 to E.numRowsdo
for j € SF do
Ei; =0;
for I € S do
doublesum = 0;
for k € S/ N Sffdo
sum = sum + Ky, - Rji;
end for
Eij = Eij + sum - Ry,
end for
end for
end for
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variant of the naive approach. These observations areatetl in the result Sectidh How-
ever, we use the 1-step approach as the initialization pfoashe streaming acceleration
approach we describe next.

We describe the design and implementation of an acceleratimcture forin-place
sparse matrix multiplication. Although this approach cena¢ the expense of additional
memory requirements to store the acceleration structueghieves an acceleration of up to
a factor of 30 compared to the naive approach describedadtioBes. L

3.3. 1-step stream accelerationThe performance of the 1-step approach is mainly
limited due to the following properties: First, to determithe intersection$ N SJR in
Algorithm 1, the entire (ordered) set$® and SJR have to be processed even though their
intersection is typically very small or even empty. Secoihé, indices/ andj themselves
are determined by processing sparse index sets. Acces$sing sets, namel§/* and Sﬁ
produces scattered read operations that can probably redrbed from cache. The matrix
products we focus on in this section have the property tranthin matrixk" is supposed
to be dynamic and thus subject to frequent changes. Thexmajron the other hand, is
supposed to be static. These assumptions hold in applisati geometric multigrid ap-
proaches, where the transfer operations between diffeesotutions levels do not change.
Although the algorithm presented is not strictly limitedtds setting, dynamic in the matrix
R introduces performance drawbacks.

To address the first issue, we propose a novel accelerattarsttacture that stores the
intersection of the index sef§ and S for all indices! and;. To address the second issue,
we construct a data and control stream that is aligned withdtita structure of the matrix
K. Due to this particular layout, scattered memory read dpmra to access pre-computed
intersectionsS/* N Sf* can be avoided. Because the matriteand R" are the same except
for transposition and do not change over time, their contidns to the product can also be
encoded into the stream.

In summary, we build a data stream that encodes data valuBsabéng with indices
into the destination matrix. Additionally, a control stneds used to encode how many pairs
of data values and indices have to processed for each norenéwy of the matrixK’. The
indices are used to scatter the multiplied entries fisrand R into the destination matri%.

In this way, only the final write operation accesses the mgmanndomly. Due to the fact that
the destination matrixs is smaller in size than the source matfix memory access opera-
tions are reduced compared to the setting where we loop beanatrix £ while randomly
accessing values df. An overview of the streaming approach is given in Figare

3.3.1. Stream design.The acceleration data structure is aligned with the spaegem
data structure of{, and it consists of two different streams:cAntrol streancontaining con-
trol flags and alata streantontaining values oR? and respective indices 6. These streams
store the information required to scatter a single entri{ahto the respective positions &f.

A single byte of the control stream is interpreted as followke first bit indicates whether
the next non-zero entry of the matrix should be fetched or the previous entryfofis used

in the current calculation. The remaining seven bits in@didhe number of data value/index
pairs from the data stream that have to be processed. Ndtevitathis scheme at most a
number of127 pairs can be encoded in one single control byte. If an entidy @6 scattered
into the result matrix more that27 times, an additional control byte has to be used with the
first bit set to 0. However, in all examples used throughoistplaper we never exceeded the
limit of 127 scatter operations.

3.3.2. Stream construction. Stream construction can be performed analogously to a
1-step multiplication as described in Algorithin However, this approach performs the op-
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data stream
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mm non-zero entries of matrix K

FiG. 3.1.0verview of the 1-step stream acceleration.

erations using a non-optimal memory layout, since the dotgps process the destination
matrix £ rather than the matriX’. Therefore, we change the ordering of the loops. The outer
loops running over all entries of the destination matrix neecome the innermost loops,
yielding outer loops over all elements of the matfix(using the indice$ andk). Then, for
each entry of the matriX( all productsR;; - R, and indices, j into the destination matrix
FE are determined and can be directly encoded into the datanstre

Algorithm 2 lists the pseudo-code for the stream construction phasee riéthod
E.getindex(, j) calculates the index of the element in the linearized datyaf F£. This
index is used to quickly access the respective element istieam processing stage. The
stream'’s push() operation stores the previous value arekiimdo the data stream and incre-
ments the number of pairs stored in the last control bytehéfmaximum number of27
is exceeded, a new control byte with the first bit set to 0 iseapled to the control stream.
The stream’s setNext() operation creates a new control Wittethe first bit set to 1, thus
advancing to the next non-zero elementof

3.3.3. Stream processingProcessing the stream to update the destination matis
performed in two steps. These steps are repeated until tire siream has been processed,
i.e., until all non-zero entries adk have been processed. In the following description of the
two steps, we denote lByandk the row and column indices of the first non-zero entrysaf
Step 1: If the first bit of the control byte is 1, the indkxs advanced to the next non-zero
entry in row/. If no such entry is available, the row indéxs incremented to the
next non-empty row andl is set to the respective first non-zero column index. The
value Ky is stored in a temporary registerFrom the control byte, the numbgof
weight/index pairs that have to be processed next are dietedm

Step 2: The following steps are performetmes:
A data valuew and an index valuéare read from the data stream. The produet
is added to the value at positidi(i), whereFE (i) addresses theth position in the
linearized representation @f.

3.3.4. Stream optimization. The constructed stream can be further optimized with re-
spect to the data values stored in the stream. If the samevalatais repeated several times
in the stream, we can save memory by storing this value onte @nd by accompanying
it by the set of destination indices. For instance, this &sdhse in nested grid hierarchies.
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Algorithm 2 Stream construction (in-place)

Require: MatricesK, RT, structure of matrixt;
Ensure: E = RKR"

for i = 1 to E.numRowsdo
for j € SF do
end for
end for
for [ = 0 to K.numRowsdo
for k € S do
for i € SF' do
for j € SF N SE" do
E;j = Eij + Ky - RE - RE]-;
stream.pushi; - R;;, F.getindexi, j));
end for
end for
stream.setNext();
end for
end for

Since the hierarchy is generated by inserting the middleexesn each edge, the values in
the matrix R are eitherl or 0.5. Therefore, only three different types of valug9).5, and
0.25 may have to be stored in the stream. To allow for this kind dfrojzation, the data
value/index pairs are sorted with respect to their valuésr @l pairs belonging to a single
entry of K have been generated. Finally, the control stream needsadjbsted to store for
each data value the number of destination indices to be considered.

3.4. Symmetry optimization. If the matrix K is symmetric, then the 1-step algorithm
and the stream acceleration can be performed nearly twitasasThis is due to the fact that
only the upper triangular matrix af has to be computed, and the lower triangular part can
be determined from the respective mirrored entries. We damimduce a symmetric row-
compressed format, as in this case matrix-vector prodwataat be processed at full per-
formance rates due to the improper memory access pattersgninetric row-compressed
format only stores the upper triangular matrix/@f On average, a single row-vector product
then can only access half of the data value&K fficiently, while the other half of the values
have to be fetched from different rows; see Fig8r2

For this reason, we do not change the matrix format. Instis@dpwer triangular matrix
is determined from the upper triangular part. If the blookvrcompressed matrix format is
used, this step can be performed efficiently3as 3 blocks can be copied at once. For the
pure row-compressed format, this symmetry optimizatiomasas efficient since single data
values have to be copied.

3.5. Parallelization. The 1-step stream acceleration algorithm can be parabn/N
compute nodes by partitioning the data and control streanNhdisjoint parts, and by dis-
tributing these parts to the nodes. In the partitioning psscthe stream is only split at control
bytes with the first bit equal to 1. To split the stream intqalig parts for which approxi-
mately the same number of operations are performed, we &rsttdthe number of non-zero
entries of K’ as well as the number of write operations (addresses intonttex £%). The
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FIG. 3.2. Matrix-vector products using a symmetric sparse matrixrfat. On average, a row-vector product
can only access half of the data valuesfoimemory-efficiently (black), while the other half of the ealinave to be
fetched from different rows (light grey).

stream is then partitioned by considering the resulting iners.

Each node also stores a copy of the destination malitx, For the sake of clarity we
assume that the matrix is duplicated on each node, even though only the non-zenoegits
corresponding to the respective parts of the stream arerezfjiOnce the local computations
on every node have been finished, the matrigésre joined into the result matrix by adding
the per-node contributionsy = Zszl E*. Since all matrice£* have the same structure,
this summation can be carried out in place.

4. Application to elasticity problems. The motion of a deforming volumetric object
can be simulated by a displacement field in an elastic solicerGuch a solid in the reference
configurationz € Q C R3, the deformed solid is modeled using a displacement functio
u(z),u: R3 — R3.

Driven by external forces, the dynamic behavior of the dafed solid is governed by
the Lagrangian equation of motion,

4.1) Mii+ Ci+ Ku = f,

whereM, C, and K are, respectively, known as the system’s mass, dampingstéfress
matrices. The vectar consists of the linearized displacement vectors of allieestandf is
the linearized force vectors applied to these vertices.

By discretization ofu,u and 4 with respect to time, the differential equation can be
transformed into a set of difference equations. Most comnaither an implicit Euler
integration or a second order accurate Newmark scheme caisdzkfor time integration.
Applying the integration scheme to equatidnlj yields a system of linear equations,

Kuttdt — ft+dt

A rotational invariant formulation of the Cauchy strain $en is obtained by using the
so-called co-rotated strain of linear elasticiBA]. In this formulation finite elements are first
rotated into their initial configuration before the stramdomputed. In this way, although
strain is still approximated linearly, artificial forces ey are computed for large deforma-
tions using the Cauchy strain are significantly reducedafwis are calculated per element
using a polar decomposition of the deformation grad¥éft + u(x)) [12, 15] or an energy
minimization [L3]. In particular, we show that an efficient computation of #parse ma-
trix product R K R™ is the most important step to obtain fast geometric muttignethods
based on the Galerkin approach. This is due to the fact thatires system of linear equa-
tions changes in every simulation time step and thus theseaaid matrices of the multigrid
solver have to be re-computed at run time using the proBustR™.
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4.1. Multigrid method. We apply a geometric multigrid method to solve the system of
linear equationg !4 = fi+dt in every simulation step. To transfer quantities from a finer
to a coarser grid and vice versa, geometry-specific restmend interpolation operators are
established. These operators are described for nestecbandasted hierarchies of meshes.

Given a finite element mesh at the coarsest resolution lavegrarchy can be generated
in a top-down fashion by uniformly splitting each finite elem, yielding a nested hierarchy.
Although the transfer operators can be defined in a stramdrd way, this approach fails
in precisely approximating the object’s boundaries at firgmolution levels. Furthermore,
subsequent subdivisions might lead to ill-shaped elenthatsan cause numerical problems
in the simulation. To avoid these disadvantages, we usarlinansfer operators that do not
require a nested hierarchy of meshes. These operatordigistgéometric relations in a mul-
tilevel hierarchy of unstructured meshes by means of baryiceinterpolation as proposed
by Georgii and Westermani ?].

A coarse grid correction performs as follows on the fine drid It requires a linear
transfer operatoR;,, a coarse grid operatdk ¥, and an initial approximatioi” of the

solution:
0 Pre-Smoothing ofi

0 Compute residual rh = fh — Khgh
0 Restrict residual to coarse gridr? = Ryr"

0 Solution on coarse grid KHeH — pH

O Transfer correction el = Rl et

0 Correction uh =al + el

0 Post-Smoothing of.
By recursive application of the coarse grid correction smsf] and by using any direct
solver to compute its solution on the coarsest grid, a fulltigiid V-cycle is obtained.

4.2. Galerkin multigrid approach. Based on the geometric restriction and interpola-
tion operators, the coarse grid matrices are constructied) tise Galerkin propertyq]. In
particular, for all but the finest hierarchy level the systeratrices are computed as

K" = R,K"RT.

This approach ensures consistent calculations on diffeesolution levels, and it is espe-
cially suited to construct black-box multigrid solve£s].

5. Results. In this section, we analyze the performance and memory reaugnts of the
proposed algorithm for computing sparse matrix products.ugé this algorithm to compute
consistent system matrices at different resolution lewedsdynamic multigrid elasticity sim-
ulation (see Figur&.1for some example models), and we give detailed timing siegi$or
this particular application. All timings except for the pHelization timings were measured
on one CPU core of an Intel Cd®% 2 Duo 2.4 GHz equipped with 2 GB RAM.

In the following, we apply the 1-step stream acceleratiopraach to update the coarse
grid operators in a Galerkin multigrid approach. This regsithe computation of matrix
products of the fornk K RT, whereR andR™ are, respectively, the restriction and interpo-
lation operator used to transfer quantities between differesolution levels in a mesh hier-
archy andK is the fine grid operator. We distinguish between nested andnested mesh
hierarchies to demonstrate how the performance dependedill rate of the restriction and
prolongation matrices.

Table5.1 shows the respective timings for a nested hierarchy of stran grids. We
show timings for than-placevariants of different algorithms that can be used at run time
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TABLE 5.1
Timings in [ms] for the update of the coarse grid operatorsinested mesh hierarchy using the BRC sparse
matrix format. The numbers in parentheses give the timiagthe symmetric variants; see Sectidril. The last
columns are reference timings determined with the Suits8g#rary.

= i

S T @ o g2

2o § a& E = e a$

[oR=" 5 9035 G~ &5 aE SRS

ESE g2 ng S £L £ 3¢

model TE cCE wS RS RS nE ok

bridge3k 2.46k 24 22 27 2 2.1MB 7

3levels 1.4% (13) (26) 1) (1.7 MB)

bridge24k 15.7k 229 180 233 12 16 MB 43
4levels  0.25% (103) (207) 10 (A3MB)

bridgel28k  111.8k 2073 1301 1797 107 118 MB 387
5levels  0.25% (728) (1561) 98 (93 MB)

TABLE 5.2

Timings in [ms] for the update of the coarse grid operatorsaimon-nested mesh hierarchy using the BRC
sparse matrix format. The numbers in parentheses giverttings for the symmetric variants; see Sectioh The
last columns are reference timings determined with theeSpiarse library.

z 3@
S T o o g2
2o T aod £ €3 E= 02
o= L5 [Tt S S @ E o Q2
EE s 9& L8 £ £E S¢
model T c= - < S nS nE n o
liver3k 2.52k 158 212 180 7 15MB 10
2 levels 1.4% (102) (131) 5§ (9MB)
bunny11k 9.00k 732 997 566 26 46 MB 47
2levels 0.39% (514) (424) 1) (28 MB)
horse50k 36.7k 3347 6654 4198 167 300MB 171
3levels 0.10% (3646) (2664) 107) (179 MB)

once the matrix structures are known. For each example weetgnings for the block-row-
compressed (BRC) matrix format. As this format benefits fithin symmetry optimization
described in SectioB.4, respective timings are given in parentheses if applicable

Column three shows the time required by the naive appraathmn four lists the time
for the 1-step approach. The next three columns show thialinétion time, the update
time, and the memory requirement of the 1-step stream aetetbapproach. Note that both
initialization and update are performadplace which implies that the structure of the result
matrix has already been determined. The last column givesgce timings determined with
the SuiteSparse librarng]. To the best of our knowledge this is the only library thapgarts
optimized sparse matrix products. Tabl& contains the same columns as Tablg but now
the models are hierarchically represented by a non-nesesth mierarchy. From the given
performance measurements the following results can beuded:

1. Thein-placevariant of the 1-step algorithm can only outperform theveapproach
if nested mesh hierarchies are used. In case of non-nesteatdtiies, the naive
approach computes the results faster than the 1-step appréwever, the naive
approach requires additional memory to store the tempareatyix F'.

2. The stream-accelerated 1-step algorithm for ithplace update outperforms the
naive approach by a factor of 10-30. It comes at the expeinadditional mem-
ory to store the data and control streams, but the data catrdmsed efficiently
through the CPU memory hierarchy. The performance gairrlgleampensates for
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the additional memory requirements.

3. In direct comparison to the optimized sparse matrix pgel&uiteSparsewe still
can achieve a performance gain of up to a factor of 4. We fohatldur stream
acceleration approach is mainly beneficial in case of nesmrchies, where the
restriction matrixR contains fewer non-zero entries than in case of non-nested h
erarchies. However, th8uiteSparsébrary uses another sparse matrix format than
our approach. Therefore, operations, such as the Gaudsi3elaxation required
by the multigrid method, might induce performance issueth whis library (the
library does not support Gauss-Seidel relaxation natjve®n the other hand, the
proposed stream acceleration approach directly updagd®@hor BRC matrix struc-
ture, which allows for very efficient matrix vector multipition as well as Gauss-
Seidel relaxation, and the approach is always faster thaStlite Sparse library.

5.1. Cache analysisWe have analyzed our algorithms using Intel’'s VTUAgerfor-
mance analyzerl[7]. It allows to directly read the CPU’s performance counteisited to
single methods of the application. Especially, it allowsasount the cache misses in our
algorithms. In Tablé.3, we list the number of cache misses reported by the Vitras well
as the number of cache read operations for the level 1 dateeazfdhe Coré" 2 Duo pro-
cessor (32 KB). Although the streaming approach requireshnmiore memory, the number
of memory read operations is significantly reduced comptwabe 1-step approach due to
the pre-computations. As a consequence, the number of aaiskes is significantly reduced
for all examples we considered. Furthermore, we obsentddnaon-nested hierarchies the
stream acceleration approach even increases the insinagier cycle the CPU can process.

TABLE 5.3
Cache analysis of a complete in-place multigrid hierarclpglate for different models using nested and non-
nested hierarchies. We compare the 1-step algorithm wilofitimized stream acceleration approach.

cache cache miss instructions
model algorithm misses read ops  ratio per cycle instrustion
horse50k 1-step (in-place) 74.8M 2691IM  2.8% 1.13 7800M
1-step stream accel. 0.9M 249M 0.3% 1.72 673M
bridge128k 1-step (in-place) 3.9M 875M 4.4% 1.29 2347M
1-step stream accel. 0.7M 199M 0.3% 1.27 544M

5.2. Parallelization. In this section, we demonstrate that the proposed streael-acc
eration approach allows effective parallelization. Welgnathe performance gain we can
achieve on a Xedt'1.8GHz Quad Core processor architecture. The implementétireal-
ized with the Threading Building Blocks library by Intel§]. We achieve a speed-up of 1.7
on two cores, and a speed-up of 2.2-2.5 on four cores as shoiabie5.4. The limitation
of the speed-up achieved for four cores is mostly due to mgimattlenecks on the multicore
architecture. The computational overhead induced by tfa feduce step is less than 20%
of the overall time.

TABLE 5.4
Parallelization of the stream acceleration approach on @X&'1.8GHz Quad Core processor.
model 1thread 2threads 3threads 4 threads

horse50k 293 ms 175 ms 143ms 117ms
bridge128k  255ms 151ms 131ms 112ms
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5.3. Galerkin multigrid. In the following, we demonstrate the performance of the pro-
posed algorithm in a Galerkin multigrid finite-element aggoch. Our intention is to show the
performance of the algorithm in the interplay of matrix aséy and system solution, and
thus to demonstrate that in the particular scenario fagsspaatrix products are mandatory.

The implementation we analyze is based on the BRC matrixdoriive use the symmet-
ric 1-step algorithm in the pre-processing stage and thpeive stream accelerated in-place
variant to build or update the multigrid matrix hierarchyrah time. Tables.5 gives timing
statistics for the simulation of different deformable misdeased on nested and non-nested
tetrahedral mesh hierarchies. Column 8 summarizes thetiota for one simulation step
using the co-rotational simulation. Columns 5 to 7 show theetthat is required for the
calculation of element rotations and matrix assembly, {heate of the multigrid hierarchy,
and the system solver. It can be observed that the multigrihte dominates the overall per-
formance of the entire simulation system if the naive apphds used; see Tabieland5.2
The time required by the stream accelerated approach, astlieehand, is of the same order
as the solution time and even falls below that time. Thegsftre stream acceleration ap-
proaches significantly improves the Galerkin multigrid eggzh in this specific application.
Some example models are shown in Figbire

TABLE 5.5
Timing statistics for dynamic deformable body simulatiosmg the co-rotated Cauchy strain. The simulation
times include the per-frame update of the system matrixidiey the computation of element rotations (Assem.),
the per-frame update of the multigrid matrix hierarchy gsthe BRC matrix format and symmetric 1-step stream
acceleration (Update), and the time required by the systaies (Solve).

model #level #tet #Hvert time [ms]

Assem. Update Solve Total
bridge3k 3* 3072 825 8 2 3 13
liver8k 3 8078 1915 16 10 12 38
bunny11k 2 11206 3019 25 17 19 61
bridge24k 4* 24576 5265 51 11 17 79

horse50k 3 49735 12233 153 107 58 318

It is worth noting that the presented multigrid hierarchydafe can be used in settings
with the full Green strain tensor and non-linear materialdatoo. The derived system of
non-linear equations is solved with a standard solver, a.tylultigrid Newton methodq].
However, each Newton step then requires to rebuild the rhbierarchy of the appropriate
Jacobian matrix, which can be achieved efficiently with theppsed algorithm.

—» %

Fic. 5.1. Visualizations of the deformable bodies used to analyzeénrmance of the proposed matrix
operation in a Galerkin multigrid scheme. From left to rightidge24k, liver8k, bunnyl1k and horse50k.

6. Conclusion. In this paper, we have presented novel algorithms for theutation of
sparse matrix products. By reformulating the problem itite simultaneous processing of
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a data and a control stream, cache miss penalties could biéicagtly reduced. The new
approach outperforms previous approaches to computeespasix products.

In particular, we have shown that the proposed algorithm lmarused efficiently in
Galerkin multigrid approaches to update the hierarchy sfey matrices. The 1-step stream
acceleration approach is especially designed to suppertdimputation of matrix products
as they arise in such scenarios. It can thus be seen as agjeasis for constructing Galerkin
multigrid solvers.

The proposed matrix algorithms can be used in other apjgitsitis well. The streaming
approach can be easily modified to compute single matrix yotsdif one of the matrices
is constant. Furthermore, it can be extended to accountyioamic in both matrices. By
parallelizing the approach on multiple compute nodes ewegel matrices can be handled
efficiently.
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