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ON A NON-STAGNATION CONDITION FOR GMRES AND
APPLICATION TO SADDLE POINT MATRICES ∗

VALERIA SIMONCINI †

Abstract. In Simoncini and Szyld [Numer. Math., 109 (2008), pp. 477–487] a new non-stagnation condition
for the convergence of GMRES on indefinite problems was proposed. In this paper we derive an enhanced strategy
leading to a more general non-stagnation condition. Moreover, we show that the analysis also provides a good
setting to derive asymptotic convergence rate estimates for indefinite problems. The analysis is then explored in the
context of saddle point matrices, when these are preconditioned in a way so as to lead to nonsymmetric and indefinite
systems. Our results indicate that these matrices may represent an insightful training set towards the understanding
of the interaction between indefiniteness and stagnation.
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1. Introduction. A real n × n matrix A is said to be positive definite (or positive real)
if x⊤Ax > 0 for any real nonzero vectorx of lengthn, wherex⊤ is the transpose ofx. A
similar definition holds fornegativedefinite matrices. Large nonnormal real linear systems of
the formAx = b are known to be particularly difficult to solve by iterative Krylov subspace
methods wheneverA is not definite, that is when the quantityx⊤Ax changes sign depending
on x; in fact, full stagnation is possible for as many asn − 1 iterations [1, 20]. On the
other hand, it was shown by H. Elman in 1982 [12] (see also [11]) that a minimal residual
iteration method such as GMRES [24] cannot stagnate, as long asA is positive definite.
Therefore, indefiniteness appears to be a tricky property. Anew non-stagnation condition
was recently proposed in [25]: under certain hypotheses on the matrixA, there are no two
or more consecutive steps of stagnation in the iterative process also for indefinite problems.
A few examples were proposed in [25] to support the new result. The original result by
Elman in [12] has been extensively used in the context of domain decomposition: by proving
that the involved quantities are, say, mesh independent, researchers have deduced that the
convergence of the method, in terms of number of iterations,does not depend on the mesh
either. We refer to [25] for a more detailed discussion and for pointers to the literature.

Starting from [25], in this paper we propose an enhanced strategy leading to a more
general condition, which allows us to expand the set of matrices for which long-term stag-
nation of GMRES cannot occur. We also show that the analysis provides a good setting to
derive new asymptotic convergence rate estimates for indefinite problems. Our discussion is
based on GMRES, but the results hold for any other minimal residual method such as GCR
[2, 24, 27]. The new condition and convergence analysis are then explored in the context of
saddle point matrices, when these are preconditioned in a way so as to lead to nonsymmetric
and indefinite problems. We show that for these sets of matrices, our condition is readily
verified when the preconditioner is effective for the problem. These matrices may thus rep-
resent an insightful training set for understanding the interaction between indefiniteness and
stagnation.

Whenever it comes to nonsymmetric problems, the normal equation is a possible classical
alternative. However, solving the normal equation by a Krylov subspace method for symmet-
ric and positive definite matrices may be very inefficient. Indeed, good spectral properties of
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the preconditioned matrix do not necessarily imply well-conditioning of the same matrix [19,
sec. 7.1]. In our experimental analysis we shall also reporton such a situation.

Throughout the paperx⊤ andx∗ indicate the transpose and the conjugate transpose of a
vectorx, respectively. The Euclidean norm for vectors and the induced matrix 2-norm will
be used.

2. Non-stagnation condition. In this section we describe a generalization of the suffi-
cient non-stagnation condition given in [25], together with a discussion on its sharpness. We
first recall an important result of Grcar for a general degreek polynomial, which is the basis
for further developments. Here and in the following,x0 is an initial approximate solution,
andr0 = b − Ax0 is the associated residual. Subsequent iterates are denoted asxk andrk,
respectively.

THEOREM 2.1. [18] Let φk be a polynomial of degree at mostk, with φk(0) = 0,
and such thatφk(A) is positive or negative definite. Then for everyx0, the affine space
x0 + span{r0, Ar0, . . . , A

k−1r0} contains a vector̂x for which‖b − Ax̂‖ ≤ η‖r0‖, where

η =

(
1 −

ĉ2

Ĉ2

)1/2

< 1,

with ĉ = min{|λ| , λ ∈ σ
(

1
2 (φk(A) + φk(A)⊤))

)
} andĈ = ‖φk(A)‖.

The result states that if it is possible to determineφk such thatφk(A) is positive definite,
then the residual norm afterk iterations must decrease with respect to the initial one. Elman’s
condition in [12] was obtained forφk(λ) = λ (k = 1), thus requiring thatA itself be positive
definite. In [25] the caseφ2(λ) = λ2 was discussed. Therefore, as opposed to the problem
statement in [18], in the two references above the polynomial was fixed, and a corresponding
condition onA was derived. Note however that Elman’s condition was statedbefore Grcar’s
result.

In the following we shall expand on Theorem2.1using again polynomials of degree 2 but
with a problem dependent coefficient. Higher degree polynomials seem to be unfeasible since
testing the condition becomes computationally demanding and in most cases unrealistic; see
a detailed discussion in [25].

Let H = (A + A⊤)/2, S = (A− A⊤)/2 andφ2(λ) = λ(λ − α) for some non-negative
α ∈ R. Note that using a non-monic polynomial would not change theresult of our analysis.

LEMMA 2.2. Let φ2(λ) = λ(λ − α), α ∈ R, α ≥ 0. The matrixφ2(A) > 0, that is
φ2(A) is positive real, if and only if the matrix(−S⊤S + φ2(H)) is also positive real.

Proof. For0 6= x ∈ Rn it holds

x⊤φ2(A)x = x⊤(S2 + H2 − αH + HS + SH − αS)x = x⊤(S2 + H2 − αH)x

= x⊤(−S⊤S + φ2(H))x.

PROPOSITION 2.3. Assume thatφ2(H) > 0. Then φ2(A) > 0 if and only if
‖Sφ2(H)−1/2‖ < 1.

Proof. Using Lemma2.2, the proof follows the same lines as that of [25, Theorem 3.2].
If φ2(H) is indefinite andS is nonsingular, then a corresponding result may be stated:

φ2(A) < 0 if and only if ‖(S⊤S)−1φ2(H)‖ < 1.
In [25], the relation of Proposition2.3 was proved forφ2(λ) = λ2, that is forα = 0.

However, better choices ofφ2 may be possible, although in general the optimalφ2 is hard
to find. In the following we propose a strategy towards the determination ofα ≥ 0 such
that φ2(H) > 0, and such that the smallest eigenvalue ofφ2(H) is as large as possible,
and clearly possibly larger than that ofH2, so as to improve the choice over the polynomial
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φ2(λ) = λ2. In general, fulfilling the above requirements forα does not ensure that the con-
dition ‖Sφ2(H)−1/2‖ < 1 be satisfied, however the proposed framework may significantly
enlarge the set of matrices for which the non-stagnation condition holds.

We stress that our analysis is based on Theorem2.1, therefore it provides a sufficient
but not necessary non-stagnation condition. Moreover, it is difficult to find general a-priori
sufficient conditions so as to avoid the test on‖Sφ2(H)−1/2‖. Indeed, letS = XS(iΣ)X∗

S ,
H = XHΘX∗

H with Σ = diag(σ1, . . . , σn) andΘ = diag(θ1, . . . , θn), be the eigende-
compositions of the normal matricesS andH , respectively. Then, settingw = X∗

Sx for
realx,

x⊤φ2(A)x = x⊤(−S⊤S + φ2(H))x = w∗(−Σ2 + X∗
SXHφ2(Θ)X∗

HXS)w.

SinceXS , XH are orthonormal, the following simple condition holds:

If min
θi

φ2(θi) > max
j

σ2
j thenx⊤φ2(A)x > 0 ∀x 6= 0,(2.1)

and this has inspired us to develop the strategy for the computation of a more general polyno-
mial φ2. With no doubt the statement (2.1) yields an unnecessarily strict condition. Indeed,
in many applicationsS is highly singular. If it is known a-priori that Range(S) has no projec-
tion onto the invariant subspace ofH associated with the smallest values ofφ2(θ), then it is
possible to reduce the condition in (2.1) to hold only on the remaining eigenvalues ofH .

We are left with the selection ofφ2 such thatφ2(H) > 0. To derive α in
φ2(λ) = λ(λ − α) we start by noticing that for anyα > 0 it holds

φ2(λ) > λ2 for λ < 0, φ2(λ) < λ2 for λ > 0.

In other words, while a nonzeroα does a better job thanα = 0 at mapping away from zero
and to the right the negative eigenvalues ofH , this is not so for the positive eigenvalues of
H . To balance the two effects, we thus computeα ≥ 0 so thatφ2(λ−) = φ2(λ+), whereλ−

andλ+ are the negative and positive eigenvalues ofH closest to zero. Taking into account
the positivity constraint we thus set

α := max{0, λ+ + λ−}.

With this choice, a polynomial of degree two different from the simple second power is deter-
mined whenever the positive part of the spectrum ofH is farther away from the origin than the
negative part. It turns out that this special structure is rather natural in certain preconditioned
matrices stemming from algebraic saddle point problems.

Finally, we stress that this analysis requires the knowledge of bothλ− andλ+, although
their accurate computation is not necessary. This may be obtained by an approximate spectral
computation either on the given problem, or under certain conditions, on a smaller dimen-
sional version of the same problem.

3. Beyond non-stagnation.If φ2(A) is positive definite, then we can improve our un-
derstanding of the convergence rate of GMRES by adapting known bounds.

Let Pk be the set of polynomials of degree less or equal tok. AssumeA is diagonalizable
and letA = XΛX−1, so thatφ2(A) = Xφ2(Λ)X−1. Setting‖r0‖ = 1, the following bound
for the GMRES residual norm afterk iterations is well established:

‖rk‖ ≤ κ(X) min
p∈Pk,p(0)=1

max
λ∈Λ

|p(λ)|,(3.1)

whereκ(X) = ‖X‖ ‖X−1‖ is the condition number ofX in the spectral 2-norm. The
bound can be generalized to the case of non-diagonalizable matrices [17]. The estimate in
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(3.1) is attractive whenκ(X) is moderate, and all eigenvalues have positive real part, since
it is otherwise “impossible to have a polynomial that is one at the origin and less than one
everywhere on some closed curve around the origin” [19, p. 55].

Since in our framework the origin is surrounded by eigenvalues, the classical bound
above needs to be modified. We next derive a result that has been used for similar purposes
for A symmetric and indefinite [16], [19, p. 53]; see also the experimental evidence forA
nonsymmetric in [13]. We also refer to [15] for a thorough analysis of polynomial mappings
to analyze the spectral properties of preconditioned Krylov subspace methods.

PROPOSITION3.1. The GMRES residual satisfies

‖r2k‖ ≤ κ(X) min
q∈Pk,q(0)=1

max
λ∈Λ

|q(φ2(λ))|,(3.2)

for any polynomialφ2 of second degree satisfyingφ2(0) = 0.
Proof. We have

‖r2k‖ = min
p∈P2k,p(0)=1

‖p(A)r0‖ ≤ min
q(φ2)∈P2k,q(φ2(0))=1

‖q(φ2(A))r0‖

≤ κ(X) min
q∈Pk,q(0)=1

max
λ∈Λ

|q(φ2(λ))|.

The bound of Proposition3.1 shows that ifφ2(A) > 0, we expect the norm of the
residual after2k iterations to be effectively bounded by the solution to the min-max problem
associated with a polynomialq of degreek. Therefore, because of the indefiniteness of the
problem the performance of GMRES seems to be penalized, as only even numbered itera-
tions contribute to decreasing the residual norm, whereas the residual may stagnate at every
other iteration. On the other hand, stagnation does occur inpractice in the indefinite case, and
therefore the result cannot be improved, in this respect. Inthe left plot of Figure3.1we report
the convergence history of GMRES for the problem in Example4.2 with A = MP−1

tr,aug,
M andPtr,aug as described in Section4. The right plot displays the spectrum of the pre-
conditioned matrix, where the two clusters are clearly visible. Although convergence is fast,
the curve in the left plot shows a staircase behavior, corresponding to single iterations with
(almost) full stagnation.
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FIG. 3.1.Example4.2. Left: Convergence history with staircase behavior. Right: spectrum of preconditioned
matrix.
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Proposition3.1indicates that it is possible to use the results available for the convergence
of GMRES when the field of values of the matrixφ2(A) is sharply contained in some particu-
lar domain ofC+. For instance, if the field of values ofφ2(A) is contained in an ellipse, then
the solution to the min-max matrix problem in the proof of Proposition3.1may be bounded
from above by a scaled Chebyshev polynomial of degreek [19].

More specialized inclusion sets allow us to sharpen this result, and these will turn out to
be particularly appropriate for the problems discussed in the next section. Using [8, Proposi-
tion 4.1] or [24], we can directly derive the following result.

PROPOSITION 3.2. Assume that all eigenvalues ofφ2(A) are enclosed in the disk of
center unit and radiusρ < 1. Then

‖r2k‖ ≤ Cρk‖r0‖,(3.3)

where the constantC is independent ofk but depends either onmax|z−1|=ρ ‖(zI − A)−1‖
or onκ(X).

The estimate in (3.3) can be generalized to disks other than the unit disk. The result is
mostly useful whenρ is small, and this is usually achieved with an effective preconditioning
strategy. Note that the positive definiteness ofφ2(A) ensures that all its eigenvalues have
positive real part. In fact, if the result were stated only interms of eigenvalues, it would be
sufficient that all eigenvalues satisfy|ℜ(λ)| > |ℑ(λ)| to obtainℜ(λ2) > 0. It is not clear
whether checking this condition would be inexpensive.

Starting from‖q(φ2(A))r0‖, a result similar to Proposition3.2may be stated in terms of
the field of values ofφ2(A), in which case the constantC is moderate but the radius may be
much larger [22].

4. Application to saddle point matrices. Structured linear systems in the form
[
F B⊤

B −βC

] [
x
y

]
=

[
f
g

]
⇔ Mu = b,

arise in a large variety of applications, commonly stemmingfrom constrained optimization
problems associated with differential operators. HereF ∈ Rn×n is in general nonnormal
(although we shall also consider the specialized symmetriccase),B ∈ Rm×n with m ≤ n is
rectangular andC is symmetric and positive semidefinite.

Due to the unfavorable spectral properties of the matrix, preconditioning is usually manda-
tory. Preconditioners that try to reproduce the structure of the coefficient matrix while main-
taining affordable computational costs are often very effective. We refer to [6] for a thorough
discussion on various alternative structured preconditioners. Here we focus on some specific
examples, which give rise to indefinite and nonsymmetric preconditioned matricesMP−1,
with P having the possible forms,

Pd =

[
F̃ 0
0 ±W

]
or Ptr =

[
F̃ B⊤

0 ±W

]
,(4.1)

whereF̃ andW are nonsingular properly chosen matrices, withW usually symmetric and
positive definite. Note thatMP−1

tr is nonsymmetric even whenF is symmetric. WhenF is
nonsingular, the blocks are often taken so thatF̃ ≈ F andW ≈ BF−1B⊤ + βC [6, 14].
On the other hand, in certain applications whereF is singular or indefinite the so-called
augmentation block preconditioner is particularly appealing. In this setting, the matrixW is
chosen so that̃F = F +B⊤W−1B is positive definite; see, e.g., [3, 5, 21]. In some cases the
choiceW = γI for some positive values ofγ suffices. Moreover, in practice the exact matrix
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F + B⊤W−1B is replaced by some approximation, and depending on the application this
preconditioner is actually applied to the augmentation formulation of the problem; see [6] and
also Example4.4. We shall use the notationPd,aug andPtr,aug when we wish to emphasize
the use of the augmentation version of the preconditioner. It was shown in [21] that the exact
augmentation block diagonal preconditionerPd,aug (that is, withF̃ = F + B⊤W−1B) with
+W as (2,2) block has eigenvalues either at one, or in the neighborhood of minus one. In
addition, it was recently shown in [9] that the augmentation block triangular preconditioner
Ptr,aug (with F̃ = F + B⊤W−1B) with +W has eigenvalues either at one, or in some
negative neighborhood. On the other hand, both preconditioned problems with the choice
−W have positive definite coefficient matrices; see, e.g., [14, sec. 8.1].

The occurrence of an indefinite spectrum is however not restricted to the use of aug-
mented blocks, as an indefinite preconditioned matrix always arises whenPtr, Pd are used
with +W in the (2,2) block; see, e.g., [14, sec. 8.1]. Unless explicitly stated, in the rest of the
paper we discuss the case where the (2,2) block has the plus sign, which leads to an indefinite
preconditioned matrix.

The spectral properties described above, and in particularthe indefiniteness of these pre-
conditioned matrix, do not seem to be appealing for Krylov subspace methods, especially
considering that simply changing the sign in the (2,2) blockcompletely solves the indefinite-
ness problem. On the other hand, practical experience has demonstrated that well selected
preconditioning blocks may lead to very fast convergence inspite of the indefiniteness. In
addition, the mere fact of being positive definite does not necessarily imply that a precondi-
tioner is effective. These considerations seem to justify adeeper analysis of the performance
of the indefinite problem.

The discussed clustering may be exploited for evaluating the non-stagnation condition.
Using the results of the previous sections applied toA = MP−1, we show that for several
examples stemming from preconditioned saddle point matrices withPtr our non-stagnation
condition is satisfied. On the other hand, we should remark that our non-stagnation condition
was not satisfied when usingPd and no augmentation. This choice usually leads to three
clusters, which may be viewed as perturbations of the three multiple eigenvalues obtained by
the optimal preconditionerPd = blkdiag(F, BF−1B⊤ + βC) [14, sec. 8.1]. This different
clustering may influence the test; we plan to further investigate the problem.

In case the test is passed, GMRES will not stagnate for more than one step. Moreover, it
is possible to derive an estimate of the asymptotic convergence rate if spectral information of
φ2(A) is available.

All reported data were obtained with the software IFISS [14], described as reference
problems in [14, Chapters 5,7], and run in MATLAB [23].

EXAMPLE 4.1. We consider the Stokes problem stemming from the simulation of a
steady horizontal flow in a channel driven by a pressure difference between the two ends
[14, Example 5.1.1]. All parameters except the discretizationgrid size were given default
values (i.e., natural outflow boundary, Q1-P0 elements, stabilization parameter 1/4, uni-
form streamlines); the resulting matrixM is symmetric and indefinite. Table4.1 reports
all relevant parameters for our analysis forB of size 64 × 162 and for various choices
of the blocksF̃ andW in the block triangular preconditionerPtr. In particular, we used
F̃ = F or F̃ = cholinc(F, 0.1) or an Algebraic Multigrid preconditionerFamg [7], whereas
for the (2,2) block we usedW = Q whereQ is the mass matrix for the pressure space,
W = BF̃−1B or W = 10 · BF̃−1B. The remaining columns in the table show the
smallest (negative) eigenvalue ofH ; the largest eigenvalue of the pencils(S⊤S, H2) and
(S⊤S, H2−αH), which are used to check the non-stagnation condition; the computed value
of α. For completeness and to test the quality of the chosen preconditioners we also report
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TABLE 4.1
Example4.1. Stokes problem.L: Incomplete Cholesky factor;Famg : Algebraic Multigrid preconditioner;

W1 = B eF−1B⊤ . Underlined are the cases where a nonzeroα passes the test, unlikeα = 0, to obtain a positive
definiteφ2(A), A = MP−1

tr .

F̃ W λmin(H) λmax(S
⊤S, H2) λmax(S

⊤S, φ2(H)) α # its
F Q -1.9106 0.4733 0.3783 0.833 17
F 10W1 -8.3223 2.8159 0.4585 0.903 16
F W1 -83.223 1.8672 1.7771 0.074 15

LL⊤ Q -1.9240 0.6660 0.3886 0.418 45
LL⊤ 10W1 -8.2948 2.5103 0.6301 0.457 45
LL⊤ W1 -82.949 1.9645 1.9645 0 41
Famg Q -1.9098 0.3771 0.2634 0.780 29
Famg 10W1 -8.3232 2.6057 0.4378 0.847 30
Famg W1 -83.232 1.8628 1.8299 0.026 29

TABLE 4.2
Example4.1. Quantities for testing non-stagnation condition as the problem dimension increases.

n m λmin(H) λmax(S
⊤S, φ2(H)) α # its

162 64 -1.9106 0.37834 0.83307 17
578 256 -1.9352 0.35917 0.83762 18

2178 1024 -1.9413 0.35040 0.83963 18

the number of iterations for the GMRES residual norm to fall below10−8.
We observe that in many cases the non-stagnation condition is satisfied, and in particular

this is so whenever the preconditioner is effective, as shown by the low number of itera-
tions to converge. We also observe that in several cases (underlined values) the choice of
α 6= 0 allowed the test to be passed whereasα = 0 failed. It is interesting that the choice
W = BF̃−1B (adding the termβC would make it an approximation to the Schur comple-
ment) is not good without a proper scaling, at least for the non-stagnation condition, showing
thatW has an important role in the size of the symmetric part of the matrix.

We next experimentally verify that if the preconditioner isoptimal, then the quantities
computed to test our non-stagnation condition are constantas the problem size increases.
Therefore, the non-stagnation condition may be tested inexpensively on the smallest size
problem. Alternatively, by using the independence ofα with respect to the mesh parameter,
we could provide an upper bound of the convergence rate whichdoes not depend on the
problem size. Table4.2displays the relevant values as the problem dimension increases, for
the preconditionerPtr with F̃ = F andW = Q.

EXAMPLE 4.2. We consider the data stemming from the discretization of a linearized
Navier-Stokes problem, simulating a so-called flow over a step, a flow expanding in an
L-shaped domain [14, Example 7.1.2]. All problem parameters were given defaultvalues,
i.e. horizontal dimensionL = 5, uniform outflow, Q1-P0 elements, viscosityν = 1/50, hy-
brid linearization with 2 and 4 Picard and Newton iterationsrespectively, nonlinear tolerance
10−5 and stabilization parameterβ = 1/4. The resulting matrixB has size176× 418 andF
is nonsymmetric. The relevant quantities for our non-stagnation test are reported in Table4.3
for both Pd,aug andPtr,aug, using the exact augmented (1,1) block and various choices of
W : W (tol) = BF̃−1B⊤ + βC, with eitherF̃ = F or its LU incomplete decomposition
with dropping tolerancetol, or W = Q. The choiceW (10−2) was used to create the data
of the plots in Figure3.1. We also report the performance ofPtr whenF̃ is the incomplete
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TABLE 4.3
Quantities appearing in the non-stagnation condition for Example4.2. Underlined are the cases where a

nonzeroα passes the test, unlikeα = 0. For the augmentation methods:W (tol) = B eF−1B⊤ + βC, where
eF = luinc(F, tol). For Ptr: W1 = B eF−1B⊤ + βC, W2 = B eF−1B⊤, eF = luinc(F, 10−2).

Prec λmin(H) λmax(S
⊤S, H2) λmax(S

⊤S, φ2(H)) α # its
Pd,aug

W (0) -3.5512 1.1241 0.9906 0.3951 16
W (10−1) -2.7567 1.2134 0.9724 0.4252 19

Q -4.2339 1.5090 1.5620 0.3558 29
Ptr,aug

W (0) -3.8091 0.9672 0.9672 0 14
W (10−1) -3.0814 1.1087 1.1063 0.0216 21
W (10−2) -3.7450 0.9709 0.9709 0 16

Ptr

W1 -7.3000 0.9923 0.9923 0 11
W2 -13.818 0.9924 0.9924 0 17

LU decomposition ofF (with drop tolerance10−2) andW is either the approximate Schur
complementW1 = BF̃−1B⊤ + βC or W2 = BF̃−1B⊤.

We see that in most cases the non-stagnation condition is satisfied. As a confirmation of
the analysis of Section3, we also compute an estimate of the asymptotic convergence rate
of the method withPtr andW (10−2). The left plot of Figure4.1 shows the spectrum of
the squared preconditioned matrix(MP−1

tr )2 (circles), and the eigenvalues (crosses) of the
matrix MP−1

tr,− where nowPtr,− has−W (10−2) (negative sign) as (2,2) block. Although
squared, the former eigenvalues are more clustered. The right plot of Figure4.1 shows the
convergence history of GMRES when using both preconditioners Ptr (dashed curve) and
Ptr,− (solid curve). Once again, the dashed curve clearly indicates a staircase-like behavior.
In addition, it is remarkable that in spite of the stagnationsteps, the convergence rate is iden-
tical to that of the positive definite problem. Also reported(dash-dotted line) is the estimated
convergence rate forMP−1

tr , usingρk/2 in (3.3) with ρ = 0.04, visually detected from the left
plot of Figure4.1. We note that the initial convergence phase for both preconditioned prob-
lem is well captured by the estimate, before adaptation to the spectrum takes place. Below,
we linger over this issue and propose an explanation.

Table4.4 displays the quantities computed to test our non-stagnation condition as the
problem size increases forPtr andW = βC + BF−1B⊤, confirming the independence
of these quantities with respect to the problem dimension. In all casesα = 0, that is the
polynomialφ2(λ) = λ2 was successfully used for the test.

We conclude this example by noticing that we could also have considered using the nor-
mal equation associated with the problemMP−1x̂ = b and then solved with, e.g., the Conju-
gate Gradient method (CG), since the eigenvalues of the symmetric matrix(MP−1)⊤MP−1

are all positive. However, performance is usually poor. Forinstance, for these data (with
m = 176, n = 418) andPtr with F̃ = luinc(F, 10−2) andW = βC+BF̃−1B⊤, CG applied
to the normal equation requires 498 iterations to achieve a relative residual norm below10−9,
whereas GMRES applied toMP−1x̂ = b takes 11 iterations. According to a well-known
analysis [19, sec. 7.1], the obtained solutions are also quantitativelydifferent, since the error
norm for the CG solution is more than two orders of magnitude larger than for GMRES.

We next address the question of whether we expect the two preconditionersPtr,+ and
Ptr,− to behave similarly, where the subscript+ or − refers to the use of the plus or minus
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FIG. 4.1.Example4.2. Left: Spectrum of(MP−1

tr )2 (circles), and ofMP−1

tr,− (crosses). Right: convergence
history of GMRES when using both preconditionersPtr (dashed curve) andPtr,− (solid curve). The estimated
asymptotic convergence rate forMP−1

tr , usingρk/2 (cf. (3.3)) with ρ = 0.04 is also reported (dash-dotted line).

TABLE 4.4
Example4.2. Quantities for testing non-stagnation condition as the problem dimension increases.

n m λmin(H) λmax(S
⊤S, φ2(H)) α # its

418 176 -3.8091 0.9672 0 14
1538 704 -3.7057 0.9662 0 15
5890 2816 -3.6710 0.9660 0 13

sign in the (2,2) block in (4.1). For both preconditioners we setW = B⊤F̃−1B + βC and
we obtain

MP−1
tr,± =

[
I 0

BF̃−1 ∓I

]
+

[
E ∓EB⊤W−1

0 0

]
,

whereE = (F − F̃ )F̃−1. Therefore, both preconditioned matrices are‖E‖ perturbations of
block triangular matrices having at most two distinct eigenvalues. In addition, we have

(MP−1
tr,+)2 =

[
I 0
0 I

]
+

[
I

BF̃−1

]
E[I,−B⊤W−1] +

[
I
0

]
E[I − B⊤W−1BF̃−1, B⊤W−1]

+

[
I
0

]
E2[I,−B⊤W−1].

That is, the squared matrix(MP−1
tr,+)2 is a nonsymmetric perturbation of the identity matrix.

The following proposition can thus be stated, where we denote byλ(G) an eigenvalue of the
matrixG.
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TABLE 4.5
Quantities appearing in the non-stagnation condition for Example4.4. Underlined are the cases where a

nonzeroα passes the test, unlikeα = 0. For the augmentation methods:W (tol) = B eF−1B⊤ + βC, where
eF = luinc(F, tol). For Ptr: eF = luinc(F,10−2), W1 = B eF−1B⊤ + βC, W2 = B eF−1B⊤.

Prec λmin(H) λmax(S
⊤S, H2) λmax(S

⊤S, φ2(H)) α # its
Pd,aug

W (0) -3.1958 1.1265 0.9705 0.45036 13
W (10−1) -3.1796 1.1562 0.9684 0.46829 16

Q -4.0580 3.9971 2.7796 0.58865 27
Ptr

W (0) -3.4537 0.9741 0.9741 0 11
W (10−1) -3.4387 1.0109 1.0090 0.0317 16
W (10−2) -3.4443 0.9761 0.9770 0.0046 14

Q -4.5438 5.6706 3.8576 0.3083 33
Ptr

W1 -6.8478 0.9798 0.9798 0 8
W2 -6.8487 1.0291 1.0291 0 14

PROPOSITION4.3. With the previous notation, letℑ(E) = (E − E⊤)/(2i). For ‖E‖
sufficiently small it holds

|λ((MP−1
tr,+)2) − 1| . O(‖E‖), |ℑ(λ((MP−1

tr,+)2))| . O(‖ℑ(E)‖),

|λ(MP−1
tr,−) − 1| . O(‖E‖

1

2 ),

where with. we omit higher order terms.
Proof. The first set of inequalities follows from [26, Th. IV.5.1]. For the second set of

inequalities, we note thatMP−1
tr,− is not diagonalizable and it has Jordan blocks of size two.

The estimate thus follows, e.g., from [10, Th. 4.3.6].
The result shows that the perturbation induced byPtr,− may be exponentially twice as

large as that induced byPtr,+: if eigenvalues of(MP−1
tr,+)2 can be found in a disk centered at

one and radiusρ < 1, then eigenvalues ofMP−1
tr,− could be contained approximately in a disk

centered at one and radiusρ1/2. The estimates of Proposition4.3qualitatively explain the dif-
ferent spectral distributions of the two preconditioned problems in the left plot of Figure4.1.
On the other hand, we should keep in mind that these are usually pessimistic estimates, and
that practical spectra are less perturbed than the theory predicts. As a consequence, it is
possible thatPtr,− behave better than the worst case scenario.

Finally, in the case of a disk, the asymptotic rate of convergence forMP−1
tr,+ is expected

to beρ1/2 (cf. Proposition3.2), which is the same as the rate obtained for the definite precon-
ditioned matrix at each iteration. This justifies the similar convergence behavior observed in
the right plot of Figure4.1.

EXAMPLE 4.4. Finally we consider the model of a boundary layer flow over a flat
plate [14, Example 7.1.4]. Parameters were given default values: unit grid stretch factor,
and the other values as in the previous example. The matrixB has size64 × 162 andF is
nonsymmetric. The relevant parameters for our non-stagnation test are reported in Table4.5
for all preconditionersPd,aug andPtr,aug, using the exact augmented (1,1) block and various
choices ofW , and forPtr. The results confirm our previous findings, although in this case
the condition fails a little more often.
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TABLE 4.6
Quantities appearing in the non-stagnation condition for Example4.4. Fully augmented formulation, stable

Q2 − Q1 elements.W1(tol) = luinc(BF−1B⊤, tol), eF (tol) = luinc(F + B⊤W−1B, tol), W2 = 0.1 ·

Bdiag(F )−1B⊤.

W, F̃ λmin(H) λmax(S
⊤S, H2) λmax(S

⊤S, φ2(H)) α # its
F̃ (5 · 10−3)
W1(10−2) -3.0800 1.1577 0.9782 0.4810 13

Q -1.0710 5.7989 2.2705 0.4143 29
F̃ (10−2)

W1(10−2) -3.0509 1.1728 1.0118 0.4120 15
W2 -1.0941 0.6191 0.4980 0.1754 23

Although the (1,1) block is definite, we also consider solving the fully augmented for-
mulation of the algebraic problem, which consists of solving the following equivalent linear
system (forC = 0):

[
F + B⊤W−1B B⊤

B 0

] [
x
y

]
=

[
f + B⊤W−1g

g

]
;

see, e.g., [4] and references therein. To obtain this setting we used Q2-Q1 stable elements
for which C = 0. In Table4.6we report the results obtained by applying the preconditioner
Ptr,aug for various choices of the diagonal blocks. Several other experiments not reported
here were performed, with various problem dependent scalings of the blocks, but results did
not differ much. It is also important to realize that some of the analyzed preconditioning
blocks do not scale well with dimensions, that is the performance of GMRES on the precon-
ditioned problem is in general not mesh independent, therefore results may vary significantly
for larger dimensions.

5. Conclusions. In this paper we have proposed an enhanced strategy to compute a
second degree polynomial to test a non-stagnation condition of GMRES and other Minimum
Residual methods for solving real nonsymmetric linear systems. The new setting may also
be used to estimate the asymptotic convergence rate of GMRES. We have also discussed a
new class of problems whose spectral properties are suitable for the condition to be fulfilled.
Numerical experiments on preconditioned saddle point matrices stemming from the finite
element discretization of classical Stokes and Navier-Stokes problems were reported to test
our findings. In a future analysis we plan to increase our understanding of the non-stagnation
condition, so as to provide a-priori devices on when the condition may be satisfied on general
problems.
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[20] A. GREENBAUM, V. PTÀK , AND Z. STRAKOŠ,Any nonincreasing convergence curve is possible for GMRES,

SIAM J. Matrix Anal. Appl., 17 (1996), pp. 95–118.
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