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ON A NON-STAGNATION CONDITION FOR GMRES AND
APPLICATION TO SADDLE POINT MATRICES *

VALERIA SIMONCINI T

Abstract. In Simoncini and Szyld [Numer. Math., 109 (2008), pp. 477448 new non-stagnation condition
for the convergence of GMRES on indefinite problems was pegoln this paper we derive an enhanced strategy
leading to a more general non-stagnation condition. Magowe show that the analysis also provides a good
setting to derive asymptotic convergence rate estimatesdefinite problems. The analysis is then explored in the
context of saddle point matrices, when these are preconéit in a way so as to lead to nonsymmetric and indefinite
systems. Our results indicate that these matrices maysepran insightful training set towards the understanding
of the interaction between indefiniteness and stagnation.
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1. Introduction. A realn x n matrix A is said to be positive definite (or positive real)
if 27 Az > 0 for any real nonzero vectar of lengthn, wherexz " is the transpose of. A
similar definition holds fonegativedefinite matrices. Large nonnormal real linear systems of
the form Az = b are known to be particularly difficult to solve by iterativeyfov subspace
methods whenevet is not definite, that is when the quantity Az changes sign depending
on z; in fact, full stagnation is possible for as manyqas- 1 iterations [L, 20]. On the
other hand, it was shown by H. Elman in 1982 (see also 11]) that a minimal residual
iteration method such as GMRES84] cannot stagnate, as long asis positive definite.
Therefore, indefiniteness appears to be a tricky propertynefr non-stagnation condition
was recently proposed ir2p]: under certain hypotheses on the matdxthere are no two
or more consecutive steps of stagnation in the iterativege® also for indefinite problems.
A few examples were proposed i@9] to support the new result. The original result by
Elman in [L2] has been extensively used in the context of domain decoitigrusby proving
that the involved quantities are, say, mesh independesgarehers have deduced that the
convergence of the method, in terms of number of iteratidogs not depend on the mesh
either. We refer toZ5] for a more detailed discussion and for pointers to theditiere.

Starting from R5], in this paper we propose an enhanced strategy leading tora m
general condition, which allows us to expand the set of madtrifor which long-term stag-
nation of GMRES cannot occur. We also show that the analysigigles a good setting to
derive new asymptotic convergence rate estimates for imtefiroblems. Our discussion is
based on GMRES, but the results hold for any other minimadives method such as GCR
[2, 24, 27]. The new condition and convergence analysis are then egbia the context of
saddle point matrices, when these are preconditioned inysswas to lead to nonsymmetric
and indefinite problems. We show that for these sets of nestriour condition is readily
verified when the preconditioner is effective for the prableThese matrices may thus rep-
resent an insightful training set for understanding theriattion between indefiniteness and
stagnation.

Whenever it comes to nonsymmetric problems, the normaltéyuia a possible classical
alternative. However, solving the normal equation by a Ewydubspace method for symmet-
ric and positive definite matrices may be very inefficientidad, good spectral properties of
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the preconditioned matrix do not necessarily imply welkdiioning of the same matrix.p,
sec. 7.1]. In our experimental analysis we shall also repoduch a situation.
Throughout the paper” andz* indicate the transpose and the conjugate transpose of a
vectorzx, respectively. The Euclidean norm for vectors and the iedumatrix 2-norm will
be used.

2. Non-stagnation condition. In this section we describe a generalization of the suffi-
cient non-stagnation condition given iag], together with a discussion on its sharpness. We
first recall an important result of Grear for a general dedgrgmlynomial, which is the basis
for further developments. Here and in the following, is an initial approximate solution,
andry = b — Axg is the associated residual. Subsequent iterates are deatg andry,
respectively.

THEOREM 2.1. [18] Let ¢ be a polynomial of degree at mokt with ¢ (0) = 0,
and such that,(A) is positive or negative definite. Then for every, the affine space
xo + span{rg, Arg, ..., A¥~1ry} contains a vecto#: for which||b — Az|| < n||ro||, where

2\ 12
n= (1 — A—) < 1,
CQ

with & = min{|A|, A € o (L(r(A) + ¢x(A) 7))} andC = [[¢r(A)].

The result states that if it is possible to determinesuch that, (A) is positive definite,
then the residual norm aftériterations must decrease with respect to the initial oneafl's
condition in [LZ] was obtained fop, (\) = A (k = 1), thus requiring that! itself be positive
definite. In P5] the casep(\) = \? was discussed. Therefore, as opposed to the problem
statement in1g], in the two references above the polynomial was fixed, anateesponding
condition onA was derived. Note however that EIman’s condition was sta&fdre Grcar’s
result.

In the following we shall expand on Theoréhi using again polynomials of degree 2 but
with a problem dependent coefficient. Higher degree polyiatsseem to be unfeasible since
testing the condition becomes computationally demandnugia most cases unrealistic; see
a detailed discussion ir2f].

LetH = (A+AT)/2,S = (A— AT)/2 andg2(\) = A(\ — «) for some non-negative
« € R. Note that using a non-monic polynomial would not changeadiselt of our analysis.

LEMMA 2.2. Letg2(X) = AM(A — a), @ € R, a > 0. The matrix¢2(A4) > 0, that is
$2(A) is positive real, if and only if the matri—ST S + ¢ (H)) is also positive real.

Proof. For0 # = € R™ it holds

2 po(A)x =2 (S*+ H?> —aH+HS+ SH —aS)z =z (S* + H? — aH)x
=z (=SS + ¢o(H))z. a

PROPOSITION 2.3. Assume thate(H) > 0. Thengs(A) > 0 if and only if
IS¢2(H) 72| < 1.

Proof. Using Lemme2.2, the proof follows the same lines as that®5[ Theorem 3.2]0

If ¢2(H) is indefinite andS is nonsingular, then a corresponding result may be stated:
$2(A) < 0ifand onlyif || (STS) Lo (H)|| < 1.

In [25], the relation of Propositio.3 was proved forss(\) = A2, that is fora = 0.
However, better choices af, may be possible, although in general the optigalis hard
to find. In the following we propose a strategy towards thesgmination ofa > 0 such
that o (H) > 0, and such that the smallest eigenvaluepgfH ) is as large as possible,
and clearly possibly larger than that B, so as to improve the choice over the polynomial
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®2(A\) = A2. In general, fulfilling the above requirements fexdoes not ensure that the con-
dition || S¢2(H)~'/?|| < 1 be satisfied, however the proposed framework may signifigant
enlarge the set of matrices for which the non-stagnatiowlitiom holds.

We stress that our analysis is based on Thea2eintherefore it provides a sufficient
but not necessary non-stagnation condition. Moreoves, difficult to find general a-priori
sufficient conditions so as to avoid the test|@. (H)~1/2||. Indeed, letS = Xs(i¥) X,

H = XpOXj, with ¥ = diag(oy,...,0,) and© = diag(6s,....6,), be the eigende-
compositions of the normal matricésand H, respectively. Then, setting = X« for
realx,

2 pp(A)r =" (=STS 4+ ¢o(H))x = w* (=2 + X5 X na(0) X 57 X 5)w.
SinceXg, Xy are orthonormal, the following simple condition holds:

(2.1) If min #2(0;) > max o7 thenz'¢y(A)z >0 Vz #£0,

and this has inspired us to develop the strategy for the ctettipu of a more general polyno-
mial ¢2. With no doubt the statemen?.() yields an unnecessarily strict condition. Indeed,
in many applications' is highly singular. If it is known a-priori that Rangg) has no projec-
tion onto the invariant subspace Bf associated with the smallest valuesef6), then it is
possible to reduce the condition iB.{) to hold only on the remaining eigenvaluesiéf

We are left with the selection o, such that¢,(H) > 0. To derive « in
¢2(A) = A(A — a) we start by noticing that for any > 0 it holds

$2(N) > A% for A < 0, B2(\) < A% for A > 0.

In other words, while a nonzer does a better job tham = 0 at mapping away from zero
and to the right the negative eigenvaluesibfthis is not so for the positive eigenvalues of
H. To balance the two effects, we thus compute 0 so thatps(A_) = @2 (A1), wherel_
and )\, are the negative and positive eigenvaluegiotlosest to zero. Taking into account
the positivity constraint we thus set

a = max{0,\; + A_}.

With this choice, a polynomial of degree two different frone tsimple second power is deter-
mined whenever the positive part of the spectruni/as farther away from the origin than the
negative part. It turns out that this special structure tbganatural in certain preconditioned
matrices stemming from algebraic saddle point problems.

Finally, we stress that this analysis requires the knowdeafgpothA_ and ., although
their accurate computation is not necessary. This may terat by an approximate spectral
computation either on the given problem, or under certaimd@@ns, on a smaller dimen-
sional version of the same problem.

3. Beyond non-stagnation.If ¢2(A) is positive definite, then we can improve our un-
derstanding of the convergence rate of GMRES by adapting/kimunds.

LetP; be the set of polynomials of degree less or equél tAssumeA is diagonalizable
andletA = XAX !, so thatpy(A) = X ¢o(A)X 1. Setting||ro|| = 1, the following bound
for the GMRES residual norm aftériterations is well established:

3.1 < w(X i by
(3.1) Irell < (X)) min  maxp(A)],

wherek(X) = || X| ||X ! is the condition number o in the spectral 2-norm. The
bound can be generalized to the case of non-diagonalizadtigéces [L7]. The estimate in
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(3. is attractive whemnk(X) is moderate, and all eigenvalues have positive real patesi
it is otherwise “impossible to have a polynomial that is ohéha origin and less than one
everywhere on some closed curve around the oridis; p. 55].

Since in our framework the origin is surrounded by eigengajuhe classical bound
above needs to be modified. We next derive a result that hasussel for similar purposes
for A symmetric and indefinitelfg], [19, p. 53]; see also the experimental evidenceAor
nonsymmetric in 13]. We also refer to 15 for a thorough analysis of polynomial mappings
to analyze the spectral properties of preconditioned Krglabspace methods.

PROPOSITION3.1. The GMRES residual satisfies

3.2 < K(X i
(3.2) Iraell < £(X) _min  maxlg(@2(N))],

for any polynomialp, of second degree satisfyirg(0) = 0.
Proof. We have

rorll = min Argll < min A))r
lraell = __min (ol < win e
<k(X) min  max]|q(d2(N))]- |

q€Pk,q(0)=1 AeA

The bound of PropositioB.1 shows that if¢2(A) > 0, we expect the norm of the
residual afteRk iterations to be effectively bounded by the solution to the-max problem
associated with a polynomialof degreek. Therefore, because of the indefiniteness of the
problem the performance of GMRES seems to be penalized, lgseeen numbered itera-
tions contribute to decreasing the residual norm, wheteasdsidual may stagnate at every
other iteration. On the other hand, stagnation does ocquiaictice in the indefinite case, and
therefore the result cannot be improved, in this respedhéreft plot of Figure3.1we report
the convergence history of GMRES for the problem in Exampiewith A = MP;faug,

M and P, .., as described in Sectioh The right plot displays the spectrum of the pre-
conditioned matrix, where the two clusters are clearlyblesi Although convergence is fast,
the curve in the left plot shows a staircase behavior, cpomeding to single iterations with
(almost) full stagnation.
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Propositior3.lindicates that it is possible to use the results availablé®convergence
of GMRES when the field of values of the mateix(A) is sharply contained in some particu-
lar domain ofC*. For instance, if the field of values @f(A) is contained in an ellipse, then
the solution to the min-max matrix problem in the proof of pwsition3.1 may be bounded
from above by a scaled Chebyshev polynomial of degrged)].

More specialized inclusion sets allow us to sharpen thislteand these will turn out to
be particularly appropriate for the problems discussetiénrtext section. Using[ Proposi-
tion 4.1] or [24], we can directly derive the following result.

PrRoOPOSITION3.2. Assume that all eigenvalues ¢$(A) are enclosed in the disk of
center unit and radiug < 1. Then

(3.3) lr2rll < Co*roll,

where the constar’ is independent of but depends either omax,_—, ||(z1 — A)~!||
or onx(X).

The estimate in3.3) can be generalized to disks other than the unit disk. Thatres
mostly useful whem is small, and this is usually achieved with an effective pralitioning
strategy. Note that the positive definitenesspofA) ensures that all its eigenvalues have
positive real part. In fact, if the result were stated onlyeémms of eigenvalues, it would be
sufficient that all eigenvalues satisfit(A\)| > |S(A)| to obtain®(A?) > 0. Itis not clear
whether checking this condition would be inexpensive.

Starting from||q(¢2(A))ro]|, a result similar to Propositiod.2may be stated in terms of
the field of values ot (A), in which case the consta6tis moderate but the radius may be
much larger 2.

4. Application to saddle point matrices. Structured linear systems in the form

F BT ][« f

R
arise in a large variety of applications, commonly stemnfiiogn constrained optimization
problems associated with differential operators. HErec R™*" is in general nonnormal
(although we shall also consider the specialized symmeaise),B € R™*" with m < n is
rectangular and’ is symmetric and positive semidefinite.

Due to the unfavorable spectral properties of the matrigcpnditioning is usually manda-
tory. Preconditioners that try to reproduce the structdrde coefficient matrix while main-
taining affordable computational costs are often veryatife. We refer to §] for a thorough
discussion on various alternative structured preconuiis. Here we focus on some specific
examples, which give rise to indefinite and nonsymmetricgnelitioned matriced/ P+,
with P having the possible forms,

[F o0 _[F BT
(4.2) Pd_{o iW} or P”_[O iW]’

where F andW are nonsingular properly chosen matrices, withusually symmetric and
positive definite. Note that/ P;,* is nonsymmetric even whef is symmetric. WherF is
nonsingular, the blocks are often taken so that: F andW ~ BF~'BT + 5C [6, 14].
On the other hand, in certain applications whétds singular or indefinite the so-called
augmentation block preconditioner is particularly appealIn this setting, the matrik/ is
chosen so that = F'+ BT W ! B is positive definite; see, e.g3,[5, 21]. In some cases the
choicelV = ~I for some positive values of suffices. Moreover, in practice the exact matrix
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F + BTW~!B is replaced by some approximation, and depending on thecaiph this
preconditioner is actually applied to the augmentatiomfalation of the problem; seé]and
also Examplet.4. We shall use the notatioR; 4., and P 4., When we wish to emphasize
the use of the augmentation version of the preconditioberas shown in21] that the exact
augmentation block diagonal preconditior®r,., (thatis, withF' = F + BT W1 B) with
+W as (2,2) block has eigenvalues either at one, or in the neitjolod of minus one. In
addition, it was recently shown irg] that the augmentation block triangular preconditioner
Piy qug (With ' = F + BTW~1B) with +W has eigenvalues either at one, or in some
negative neighborhood. On the other hand, both precomgitigproblems with the choice
—W have positive definite coefficient matrices; see, elgl, $ec. 8.1].

The occurrence of an indefinite spectrum is however notioéstt to the use of aug-
mented blocks, as an indefinite preconditioned matrix anaryses wher,,., P, are used
with +W in the (2,2) block; see, e.g14, sec. 8.1]. Unless explicitly stated, in the rest of the
paper we discuss the case where the (2,2) block has the glusigiich leads to an indefinite
preconditioned matrix.

The spectral properties described above, and in partithéaindefiniteness of these pre-
conditioned matrix, do not seem to be appealing for Krylobspace methods, especially
considering that simply changing the sign in the (2,2) blocknpletely solves the indefinite-
ness problem. On the other hand, practical experience hasrustrated that well selected
preconditioning blocks may lead to very fast convergencspite of the indefiniteness. In
addition, the mere fact of being positive definite does natssarily imply that a precondi-
tioner is effective. These considerations seem to justidgeper analysis of the performance
of the indefinite problem.

The discussed clustering may be exploited for evaluatiegibn-stagnation condition.
Using the results of the previous sections appliedite- M P~*, we show that for several
examples stemming from preconditioned saddle point negngith P, our non-stagnation
condition is satisfied. On the other hand, we should remaxkdhr non-stagnation condition
was not satisfied when usin§; and no augmentation. This choice usually leads to three
clusters, which may be viewed as perturbations of the threlépte eigenvalues obtained by
the optimal preconditione; = blkdiag(F, BF~'BT + 3C) [14, sec. 8.1]. This different
clustering may influence the test; we plan to further ingzge the problem.

In case the test is passed, GMRES will not stagnate for maredhe step. Moreover, it
is possible to derive an estimate of the asymptotic convergeate if spectral information of
¢2(A) is available.

All reported data were obtained with the software IFIS4]] described as reference
problems in L4, Chapters 5,7], and run in MATLABZ3].

ExAMPLE 4.1. We consider the Stokes problem stemming from the simoulaf a
steady horizontal flow in a channel driven by a pressure idiffee between the two ends
[14, Example 5.1.1]. All parameters except the discretizatjad size were given default
values (i.e., natural outflow boundary, Q1-PO elementdjilstation parameter 1/4, uni-
form streamlines); the resulting matrix/ is symmetric and indefinite. Table.1 reports
all relevant parameters for our analysis fbrof size 64 x 162 and for various choices
of the blocksF and W in the block triangular preconditionéf;,. In particular, we used
F = F or F = cholinc(F, 0.1) or an Algebraic Multigrid preconditionéf,,,, [7], whereas
for the (2,2) block we usedl’ = @ where( is the mass matrix for the pressure space,
W = BF'BorW = 10 - BF~'B. The remaining columns in the table show the
smallest (negative) eigenvalue &f; the largest eigenvalue of the pendils™ S, H?) and
(STS, H? —aH), which are used to check the non-stagnation condition; dhgpuited value
of a. For completeness and to test the quality of the chosen pditaners we also report
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TABLE 4.1
Example4.1 Stokes problemL: Incomplete Cholesky factotf,4: Algebraic Multigrid preconditioner;

W1 = BF~1BT . Underlined are the cases where a nonzerpasses the test, unlike = 0, to obtain a positive
definitego (A), A = M P

F W Amin(H)  Amax(STS H2) Anax(STS, ¢0(H)) o #its
F Q -1.9106 0.4733 0.3783 0.833 17
F 10W; -8.3223 2.8159 0.4585 0.903 16
F Wy -83.223 1.8672 1.7771 0.074 15
LLT Q -1.9240 0.6660 0.3886 0.418 45
LLT 10W; -8.2948 2.5103 0.6301 0.457 45
LL’ Wy  -82.949 1.9645 1.9645 0 41
Famg Q -1.9098 0.3771 0.2634 0.780 29
Fomg 10W;  -8.3232 2.6057 0.4378 0.847 30
Fomg Wy, -83.232 1.8628 1.8299 0.026 29
TABLE 4.2

Example4.1 Quantities for testing non-stagnation condition as theljm dimension increases.

n m Amin(H)  Amax(ST S, ¢2(H)) a #its

162 64 -1.9106 0.37834 0.83307 17
578 256 -1.9352 0.35917 0.83762 18
2178 1024 -1.9413 0.35040 0.83963 18

the number of iterations for the GMRES residual norm to falov 105,

We observe that in many cases the non-stagnation conditiatisfied, and in particular
this is so whenever the preconditioner is effective, as shbwthe low number of itera-
tions to converge. We also observe that in several case®ifimet values) the choice of
a # 0 allowed the test to be passed whereas- 0 failed. It is interesting that the choice
W = BF~'B (adding the tern3C would make it an approximation to the Schur comple-
ment) is not good without a proper scaling, at least for the-stagnation condition, showing
that¥ has an important role in the size of the symmetric part of tla¢rix

We next experimentally verify that if the preconditionemigtimal, then the quantities
computed to test our non-stagnation condition are constgrihe problem size increases.
Therefore, the non-stagnation condition may be testedp@esively on the smallest size
problem. Alternatively, by using the independencewafiith respect to the mesh parameter,
we could provide an upper bound of the convergence rate wihdes not depend on the
problem size. Tablé.2displays the relevant values as the problem dimensionases; for
the preconditionef;,. with F' = FandWW = Q. 0O

ExXAMPLE 4.2. We consider the data stemming from the discretizatfom loearized
Navier-Stokes problem, simulating a so-called flow overepsta flow expanding in an
L-shaped domainl4, Example 7.1.2]. All problem parameters were given defaalues,
i.e. horizontal dimensiodi = 5, uniform outflow, Q1-P0 elements, viscosity= 1/50, hy-
brid linearization with 2 and 4 Picard and Newton iteratioespectively, nonlinear tolerance
10~° and stabilization parametgr= 1/4. The resulting matrix3 has sizel 76 x 418 and F’
is nonsymmetric. The relevant quantities for our non-sédigm test are reported in Tabde3
for both Py .y and P, 4.4, Using the exact augmented (1,1) block and various choites o
W: W(tol) = BF~*BT + C, with either F = F or its LU incomplete decomposition
with dropping toleranceol, or W = Q. The choicel¥ (10~2) was used to create the data
of the plots in Figure3.1. We also report the performance B, whenF is the incomplete
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TABLE 4.3
Quantities appearing in the non-stagnation condition forafple4.2. Underlined are the cases where a
nonzeroa passes the test, unlike = 0. For the augmentation method$¥ (tol) = BF~'BT + BC, where

F = luine(F, tol). For Py.: Wi = BE™1BT + 3C, Wy = BF~'BT, F = luinc(F,102).

Prec Amin(H)  Amax(STS, H?)  Apax(STS, ¢o(H)) a # its

Pd,aug
w(0) -3.5512 1.1241 0.9906 0.3951 16
W(10-1)  -2.7567 1.2134 0.9724 0.4252 19
Q -4.2339 1.5090 1.5620 0.3558 29
Ptr,aug
w(0) -3.8091 0.9672 0.9672 0 14
Ww(10—t) -3.0814 1.1087 1.1063 0.0216 21
W(1072) -3.7450 0.9709 0.9709 0 16
Ptr
Wy -7.3000 0.9923 0.9923 0 11
Wy -13.818 0.9924 0.9924 0 17

LU decomposition off” (with drop tolerance0~?) and W is either the approximate Schur
complementV, = BF'BT + 3C orW, = BF~'B".

We see that in most cases the non-stagnation conditionig§isdt As a confirmation of
the analysis of SectioB, we also compute an estimate of the asymptotic convergetee r
of the method withP,,. and W (10~2). The left plot of Figure4.1 shows the spectrum of
the squared preconditioned mat(ix/ P;;*)? (circles), and the eigenvalues (crosses) of the
matrix MP;}_ where nowP;,. — has—W (10~2) (negative sign) as (2,2) block. Although
squared, the former eigenvalues are more clustered. Theplgt of Figure4.1 shows the
convergence history of GMRES when using both precondit®ii. (dashed curve) and
P, _ (solid curve). Once again, the dashed curve clearly indiatstaircase-like behavior.
In addition, it is remarkable that in spite of the stagnasteps, the convergence rate is iden-
tical to that of the positive definite problem. Also repor{ddsh-dotted line) is the estimated
convergence rate fav/ P;,*, usingp®/? in (3.3 with p = 0.04, visually detected from the left
plot of Figure4.1. We note that the initial convergence phase for both preitionéd prob-
lem is well captured by the estimate, before adaptationecspiectrum takes place. Below,
we linger over this issue and propose an explanation.

Table 4.4 displays the quantities computed to test our non-stagmatmdition as the
problem size increases fd?,. andW = pC + BF~1BT, confirming the independence
of these quantities with respect to the problem dimensionalll casesy = 0, that is the
polynomialg, (\) = A\? was successfully used for the test.

We conclude this example by noticing that we could also havsicered using the nor-
mal equation associated with the problarn®—1# = b and then solved with, e.g., the Conju-
gate Gradient method (CG), since the eigenvalues of the gtriematrix(MP 1) T MP~!
are all positive. However, performance is usually poor. istance, for these data (with
m = 176, n = 418) andP;, with ' = luinc(F, 10~2) andW = 3C+BF~'BT, CG applied
to the normal equation requires 498 iterations to achieedsdive residual norm belon)—?,
whereas GMRES applied tVP~ 14 = b takes 11 iterations. According to a well-known
analysis L9, sec. 7.1], the obtained solutions are also quantitatidiélgrent, since the error
norm for the CG solution is more than two orders of magnitudgér than for GMRESO

We next address the question of whether we expect the twopdéonersP;, . and
P, _ to behave similarly, where the subscriptor — refers to the use of the plus or minus
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history of GMRES when using both preconditioné}s. (dashed curve) and,. — (solid curve). The estimated

asymptotic convergence rate fMP,;l, usingp®/2 (cf. (3.3)) with p = 0.04 is also reported (dash-dotted line).

TABLE 4.4
Example4.2. Quantities for testing non-stagnation condition as thelyjm dimension increases.

n M Amin(H)  Amax(STS,¢2(H)) o #its

418 176 -3.8091 0.9672 0 14
1538 704 -3.7057 0.9662 0 15
5890 2816 -3.6710 0.9660 0 13

sign in the (2,2) block in4.1). For both preconditioners we sBt = BTF~1B + 3C and
we obtain

_ I 0 E FEB'W!
1 e ~
MPre = [BF‘l zpf} [0 0 ’
whereE = (F — F)F~1. Therefore, both preconditioned matrices pfé|| perturbations of
block triangular matrices having at most two distinct eiggoes. In addition, we have

12|40 I Tl I  pTir-lpa-1 pTr—1
(MP;Y) _[0 I}+{BF—1 B[L-B"W™ + || B[l - BTW 'BF 1, BTW ]

+ [é] E*(I,-B"W™1].
Thatis, the squared matr()MPt;lJr)2 is a nonsymmetric perturbation of the identity matrix.
The following proposition can thus be stated, where we dehgi\(G) an eigenvalue of the
matrix G.
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TABLE 4.5
Quantities appearing in the non-stagnation condition foraBple4.4. Underlined_are the cases where a
nonzeroa passes the test, unlike = 0. For the augmentation method$¥ (tol) = BF~'BT + BC, where

F = luine(F, tol). For Py, F = luince(F,10-2), W, = BF~1BT 4+ 8C, W, = BF1BT.

Prec Amin(H)  Amax(STS, H?)  Amax(STS, ¢2(H)) a #its

Pd,aug
W(0) -3.1958 1.1265 0.9705 0.45036 13
w(10~t)  -3.1796 1.1562 0.9684 0.46829 16
@ -4.0580 3.9971 2.7796 0.58865 27
Ptr
W(0) -3.4537 0.9741 0.9741 0 11
W(10-t) -3.4387 1.0109 1.0090 0.0317 16
W(10=2) -3.4443 0.9761 0.9770 0.0046 14
@ -4.5438 5.6706 3.8576 0.3083 33
Ptr
Wy,  -6.8478 0.9798 0.9798 0 8
Wy  -6.8487 1.0291 1.0291 0 14

PROPOSITION4.3. With the previous notation, I&(E) = (E — ET)/(2i). For || E||
sufficiently small it holds

IMMPZL)Y) =1 S OIE]D,  ISMMPL)*)I S OUSE)),

INMPLL) =11 S O(|E]),

where with< we omit higher order terms.

Proof. The first set of inequalities follows fron2f, Th. IV.5.1]. For the second set of
inequalities, we note thdﬂPt;l_ is not diagonalizable and it has Jordan blocks of size two.
The estimate thus follows, e.g., from(, Th. 4.3.6].0

The result shows that the perturbation inducedfy_ may be exponentially twice as
large as that induced b, . : if eigenvalues otMPt;_’lJr)2 can be found in a disk centered at

one and radiupg < 1, then eigenvalues (MPI;}_ could be contained approximately in a disk

centered at one and radig¥' 2. The estimates of Propositign3qualitatively explain the dif-
ferent spectral distributions of the two preconditionedigems in the left plot of Figuré.1
On the other hand, we should keep in mind that these are yqueskimistic estimates, and
that practical spectra are less perturbed than the theadiqis. As a consequence, it is
possible tha#,, _ behave better than the worst case scenario.

Finally, in the case of a disk, the asymptotic rate of congaog forMPl;,l_F is expected
to bep!/? (cf. PropositiorB.2), which is the same as the rate obtained for the definite preco
ditioned matrix at each iteration. This justifies the simdanvergence behavior observed in
the right plot of Figuret.1

EXAMPLE 4.4. Finally we consider the model of a boundary layer flowrcaelat
plate [L4, Example 7.1.4]. Parameters were given default valuest grid stretch factor,
and the other values as in the previous example. The mattas sizet4 x 162 and F' is
nonsymmetric. The relevant parameters for our non-stégmégst are reported in Tabte5
for all preconditioners’; .y and P, 4.4, USing the exact augmented (1,1) block and various
choices ofl¥, and for P,,.. The results confirm our previous findings, although in thlisec
the condition fails a little more often.
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TABLE 4.6
Quantities appearing in the non-stagnation condition fa@Bple4.4. Fully augmented formulation, stable
Q2 — Q1 elements.W1 (tol) = luinc(BF~'BT  tol), F(tol) = luinc(F + BTW !B, tol), Wo = 0.1 -
Bdiag(F)~'BT.

W, F dmin(H)  Amax(STS, H2)  Amax(STS,¢2(H)) o #its

F(5-107%)
W.(10-2) -3.0800 1.1577 0.9782 0.4810 13
Q -1.0710 5.7989 2.2705 0.4143 29
F(1072)
W.(10-%) -3.0509 1.1728 1.0118 0.4120 15
W, -1.0941 0.6191 0.4980 0.1754 23

Although the (1,1) block is definite, we also consider sajvihe fully augmented for-
mulation of the algebraic problem, which consists of sajuine following equivalent linear
system (forC' = 0):

)

F+B™W='B B"|[z] [f+B"Wlg
B 0yl g

see, e.g.,4] and references therein. To obtain this setting we used Q&t@ble elements
for which C = 0. In Table4.6 we report the results obtained by applying the precondition
Py, qug for various choices of the diagonal blocks. Several oth@eerents not reported
here were performed, with various problem dependent sgslirf the blocks, but results did
not differ much. It is also important to realize that some lué inalyzed preconditioning
blocks do not scale well with dimensions, that is the perfmmoe of GMRES on the precon-
ditioned problem is in general not mesh independent, tbezgBsults may vary significantly
for larger dimensions. O

5. Conclusions. In this paper we have proposed an enhanced strategy to cemaput
second degree polynomial to test a non-stagnation condifiGMRES and other Minimum
Residual methods for solving real nonsymmetric lineareyst The new setting may also
be used to estimate the asymptotic convergence rate of GMRESave also discussed a
new class of problems whose spectral properties are seitabthe condition to be fulfilled.
Numerical experiments on preconditioned saddle point igegrstemming from the finite
element discretization of classical Stokes and Naviek&tgroblems were reported to test
our findings. In a future analysis we plan to increase our tstdading of the non-stagnation
condition, so as to provide a-priori devices on when the @@mrmay be satisfied on general
problems.
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