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POLYNOMIALS AND VANDERMONDE MATRICES
OVER THE FIELD OF QUATERNIONS *

GERHARD OPFER

Abstract. Itis known that the space of real valued, continuous fumsti®( B) over a multidimensional compact
domainB C R¥ , k > 2 does not admit Haar spaces, which means that interpolatidrigons in finite dimensional
subspace¥ of C(B) may not have a solutions ii(B). The corresponding standard short and elegant proof does
not apply to complex valued functions ovBrC C. Nevertheless, in this situation Haar spates C(B) exist. We
are concerned here with the case of quaternionic valuedincmus functionsC(B) where B C H andH denotes
the skew field of quaternions. Again, the proof is not apjiea However, we show that the interpolation problem
is not unisolvent, by constructing quaternionic entrigsafandermonde matri¥ such thatV' will be singular for
all ordersn > 2. In addition, there is a section on the exclusion and inolusif all zeros in certain balls iHl for
general quaternionic polynomials.

Key words. Quaternionic interpolation polynomials, Vandermonde matriguaternions, location of zeros of
quaternionic polynomials
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1. Introduction. Let B be a compact topological Hausdorff space and.= C(B)
the normed vector space of all real valued, continuous fonstdefined onB with norm
[If]] := max,ep |f(x)|. Consider the set of alt-dimensional subspaces &f with n > 2
(let B contain sufficiently many points). We investigate whethrearé is aHaar spacein
this set. This is a spacgé with the following property: Given arbitrary, but pairwisks-
tinct pointst; € B and arbitrary real numbers;, there is a unique < V, such that
v(tj) = uj, 7 = 1,2,...,n. Thus, in Haar spaces of dimensiorall interpolation prob-
lems in the above sense can be solved uniquely, regardled® afhoice oft; and u;,

Jj = 1,2,...,n. The only restriction on the; is that they be pairwise distinct. This type
of space is also calleghisolvent The prototype of a Haar spacdls 1, the space of all real
polynomials of degree at most— 1 on a compact interval of positive length. A counterex-
ample is the spat, 22, - - , ™) on a compact interval containing the origin. The fact that
Haar spaces do not existif is a subset oR* with & > 2 is known for a long time, Haal|

p. 311]. For a proof we refer to the original paper. The esakingredients of the proof are
properties of the determinant of the matrix which descrtbesnterpolation problem and the
intermediate value theorem for real valued, continuoustfans.

Since there is no intermediate value theorem for complenedhfunctions, the proof
does not carry over to the cage C C, thoughB may be regarded as two dimensional in
this case. However, as is also well knowt\,B) contains Haar spaces B ¢ C and if
C(B) is now the space of complex valued functions®nThe set of complex polynomials,
also denoted byl,,_; is again a prototype. A more precise information on what stgosf
C allow the definition of Haar spaces is given by MairhubE?][ In the quaternionic case
all essential ingredients of the proof are missing. Themoisleterminant, Far?], and no
intermediate value theorem. The quaternionic case is hie td the next sections.

A comprehensive bibliography on quaternions ordered véifipect to subjects has been
published by Gsponeb].
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2. Quaternionic polynomials. By H we denote the (skew) field of quaternions. A poly-
nomial onH is already a very complicated item. thonomial of degreg > 0 is a mapping
m; : H — H defined by

(21) mj(x) = A0 TA1;TA[T ¢ - (1,5 TAj5, T, 005,015,--,0j5 € H.

A polynomial of degree: is any finite sum of monomials of degree n. Therefore, the
space of all polynomials of degree n has no finite dimension. According to Eilenberg
and Niven [] a polynomialp of degree> 1 with the property that the monomial with the
highest degree ip occurs exactly once, has at least one zero. This is calledFunda-
mental Theorem of Algebra for Quaterniohg the two mentioned authors. And there is
no hope that the restriction on the monomial with the higdegree can be weakened, since
p(x) := ax™—xz"a—1 has no zero. This follows by application of the real gawthich is lin-
ear and commutative, hendep(z) = —1, implying thatp cannot have a zero. This example
is taken from Pumpiin and Walcher]4], which also contains a review and expansion of some
results on the number of zeros of polynomials on quaterninshe Fundamental Theorem
can be applied to the polynomiglz) := (z — a)? = 22 — xa — ax + a?, a € H\{R} and
shows that, in general, we cannot expect more than one zbki®applies even to polynomials
without repetition of monomials of the same degree. Examatep(z) := 22 —z(i+j) +k
andq(z) := 22 — (i+ j)z + k wherei := (0,1,0,0),j := (0,0,1,0),k := (0,0,0,1). We
havep(i) = ¢(j) = 0 and there are no other rodts.

3. Quaternionic simple polynomials. We will turn our attention to polynomials of one
of the following types:

(3.1) p(x) == ap + 1@ + aza® + -+ - + ana”,
(3.2) pr() == ao +zar + 2%az + -+ +2"a,, ag,ai,...,an; v € H.

We will call these polynomialsimple If the coefficients are real, the two types coincide.
They also coincide with the polynomials of general type lifcalefficients are real. Thus, a
real polynomial (i. e. having real coefficients) is alwaymgie. There is a tight connection
betweerp; andp,., which is explained in Janovakand Opfer10].

THEOREM 3.1. Letp be a real polynomial. Ip has (as a polynomial oveE) only real
zeros, therp as a polynomial oveH has no other zeros. jf has (as a polynomial over)
also complex zeros, themas a polynomial oveH has infinitely many zeros. More precisely:
Let z be one of the complex zerosyofthen,h =124 is also a zero for all, € H\{0}. There
are no other zeros.

Proof. It is easy to see that(h~'zh) = h~!p(z)h for all real polynomials and all
h € H\{0}; see also Janovéakand Opfer$] and Pumplin and Walcher14]. a

The mapping

x— h~'zh, heH\{0}
defines an equivalence relationlihwith equivalence classes
(3.3) [2] := {u:= h~ xh: h € H\{0}}.

The following lemma makes it easy to recognize equivalezmneints.
LEMMA 3.2. Two quaternions:, b are equivalent (in the sense = h~'bh for some
h # 0) if and only if

(3.4) Ra=RNb and |a| = |b|.

1The first example was communicated by Fabio Vlacci, Firenzly, Ita
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Proof. Janovsk and OpferT]. 0
By using @8.3), (3.4 andx := (z1, z2, 3, 24) We can also write

2 2 2 2
= x5+ 23 —|—:L'4}.

(2] = {(z1,u2,uz,uq) € H:uj +uj +uf =7
This is apparently a sphere Hi where the first component;, is fixed. Ifz € R then we
have[z] = {«} which means that:] contains exactly the element Let 2 € C. Then, the
complex conjugate is also belonging tdz], and if z is nonreal, theriz] contains infinitely
many elements. We can put Theor&niinto a simpler form.

COROLLARY 3.3. Letp be a real polynomial oveH of degreen. Then the set of all
zeros can be partitioned into at mosequivalence classes.

For simple polynomials (with quaternionic coefficients tteros fall in two classes. Let
z be a nonreal zero. Then, either all elements of the equigaletasgz] consist of zeros, or
apart fromz there is no zero itiz]. In the first case the zero(and all zeros irjz] as well)
is called aspherical zerand in the second case the zero is calledsatated zero If a zero
is real, then it will also be called isolated. See Pogorui 8hdpiro [L3] and Janovsk and
Opfer [10] for details. The next theorem contains a statement on thebeu of zeros of a
simple, quaternionic polynomial. For a proof see alsg [L3].

THEOREM 3.4. Letp be a simple polynomial ovéil of degreen. Then,p hasn; > 0
isolated zeros and, > 0 equivalence classes of zeros witk< n, + ny < n.

That means, that Corolla3.3is also valid for simple polynomials. We called the poly-
nomials defined in3.1) and in 3.2) simple In the literature one finds also other words for
simple. There is an Italian group, Gentile et a8, 4], who refers to these polynomials as
regular, and there are two other groups, a Portuguese onédest al. [L5]), and a Brazilian
one, de Leo et al.1[1], who refer to these polynomials asilateral. It should be remarked,
that both the Italian and the Brazilian groups did not takeéceoof the mentioned paper by
Pogorui and Shapirdlf].

4. Location of zeros of quaternionic polynomials.For complex polynomials there are
some theorems saying that all roots are outside a certdircdigtered at the origin, and that
all roots are inside some other disk also centered at th@onte will show that analogous
results hold for simple and even for almost all types of quédaic polynomials. Without
loss of generality we may assume that= 1 anday # 0 in the simple polynomials3(1),
(3.2) if we are interested in their zeros.

THEOREM 4.1. Let p be a simple polynomial oveii of degreen with a,, # 0, and
ag # 0. Then, the open ballz € H : |z| < r} does not contain any zero pf wherer is the
only positive root of the real polynomial

n

Blx) = lajla’ —aol.

j=1

Proof. We havep(0) = —|ag| < 0 andp(z) > 0 for sufficiently largex > 0. In addition,
p'(x) > 0 for all z > 0, implying thatp is strictly increasing for alk: > 0. Thus, there is
exactly one positive zero, denoted hylLetp := p; andp(z) = 0, hence

n n n
p@) = a0+ aja? = 0= laol = | aja?| <Y lajllel = p(la]) > 0= [a] > 7.
j=1 j=1 j=1
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The proof forp := p,. is the same. 0
THEOREM 4.2. Let p be a simple polynomial ovell of degreen with a,, = 1 and
ag # 0. Then, all zeros gp are contained in the ball

n—1
{z € H: |2| < R} whereR := max{1, ) _ |a,|}.
j=0

Proof. Letp := p, andz be a zero ofp and assume the contrary, herje¢ > R, in
particular,|z| > 1. Then,

n—1 n—1
= Ip@)] = o + Y ajal| > 2" = | 3 aza | >
7=0 7=0
n—1 n—1 n—1

|a;]
Iw”I—ZI%I\x”I—Iw"I " 1\Z| e izl Il - Zlag 0,

a contradiction. Thugg| < R. The proof forp = p, is the same. a
ExAMPLE 4.3. The two simple, quadratic polynomials

p(x) =2 +jr+i, pe(z) =2 +xj+i
have the following roots:

Roots ofp; : 1 := 0.5(—1,1,—1, 1),z := 0.5(1, -1, -1, —1).
Roots ofp, : 1 := 0.5(—1,1,—1, 1),z9:=0.5(1,—1,—1, 1).
All roots have absolute value one. Applying Theorért yieldsr» := @ ~ 0.618, and
Theoremd.2yields R := 2.
Both boundsy, R, are sharp fop(z) := z™ + 1. Interestingly, Theorerd.1 can be
carried over to general polynomials.

COROLLARY 4.4. Letp(x) := >_7_ u;(x) be a polynomial of degree overH, where
eachy; is a finite sum of monomials of degrgédefined in2.1:

nj

= Zm;k), mg-k)(ac) = ag’;)wa(ll;)w-~-wa§-];), n; €N, ng =1,

(4.1)
14, —Z\aoj al - d™) j=01,.n,
with |A,,| # 0, |Ap| # 0. Then, there is no zero pflocated in the open ball
{z e H: |z| < 7},

wherer is the only positive zero of the real polynomial

Z|A |27 — | Ao.
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Proof. Repeat the proof of Theorefl replacinga;z? with p;(z). a

For the proof it is apparently sufficient to assume gt # 0 for onel < j < n.

In order to generalize Theoret?2 we need to make the assumption that the highest
degree monomial occurs only once.

COROLLARY 4.5. Letp(z) := >_7_ uj(x) be a polynomial of degree overH, where
eachy; is a finite sum of monomials of degrgedefined in 2.1), with the exception that
i, consists only of a single monomial of degreeDefine|A4,| as in @4.1) and assume that
|An| =1,]Ao| # 0. Then, all zeros of are contained in the ball

n—1
{z € H:|2| < R}, whereRR := max{1, > _|A;}.
7=0

Proof. Repeat the proof of Theoref2and replace: ;=7 with p;. 0

EXAMPLE 4.6. Letp(z) := 2% — ax — za + o with a € H\{R}. The polynomiap has
the single zera: = a. Corollary4.4yieldsp(z) := 2% + 2|a| — |a|?. The only positive root
is? := (v/2 — 1)|a|. Corollary4.5yields R := max{1, (Ja| + 1)2 — 1}. The smallestz = 1
is obtained fola| := v/2 — 1 ~ 0.41 which yieldsr := 3 — 2v/2 ~ 0.17.

5. The interpolation problem and the Vandermonde matrix. Let B C H be a com-
pact set andX := C(B) the space of all quaternion valued, continuous functiorfinele on
B. The general question is whether there are Haar spdcesC(B). We shall show, that
the polynomial space composed of simple polynomials is nddar space. For this purpose
let us study two interpolation problems: Given arbitranyt pairwise distinct points; € H

and arbitrary numbers; € H,j = 0,1, ...,n, we are interested in whether the interpolation
problems

(5.1) pi(ty) = uj,

(52) p’r(tj) = uy, j:0717"'7n7

have a solution, wherg,, p,- are simple polynomials of degreg defined by 8.1) and (3.2,
respectively. The following matri¥ will be calledVandermonde matrix

R L L)
tg t711 ce tﬁ

The two problems&.1), (5.2) are equivalent to the following two matrix problems, respe
tively:

alv=u", VTa=u

7

where

a® = (

0,015y Gy), UL = (Ug, UL, ... Up).

The main point here is, that these problems are differeneiegal. Since quaternionic ma-
trices have no determinants, Fdj, [the singularity of a matrix must be defined in a more
elementary way.
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6. Short excursion to linear systems ovet. We will give some elementary properties
of matrices with quaternions as entries and mappings deffipecatrices; see Zhang for
an overview of such mappings and for possible decomposifiensuch matrices. For more
general types of linear mappings; cf. Jandvakd Opfer9].

DEFINITION 6.1. LetA € HP*?. The maximal number of right independent columns
of A will be calledright column rankof A. Letp = ¢. The square matriXA will be called
nonsingular if the right column rank is maximal, i. ecank(A) = p, whererankis to be
understood as right column rank. The mappfhgH? — HP defined by

(6.1) f(x) = Ax

will be callednonsingularif A is nonsingular.

In the same fashioleft column rankandleft, right row rankof A are defined. A standard
theorem in non commutative linear algebra is: The right ewluank coincides with the left
row rank and the left column rank coincides with the right n@mk. Thus, a quaternionic
matrix has two ranks, the right and the left column rank. Tin@v/a definition already suggests
that the right column rank will be more important than theé ésflumn rank, since iAx the
components ok are always on the right of the matrix elementsAaf

THEOREM6.2. Let A € HP*P be a square matrix. The mappirfgas defined ing.1)
is singular (i. e. not nonsingular) if and only if the homogens systenfi(x) = 0 has non
trivial solutions. The systerfix) = c has a unique solution for at € HP if and only if f is
nonsingular. The mapping defined byy(x) := xT A is singular if and only iff is singular,
wherex ! denotes the transpose of

Proof. The mappingf defined in 6.1) may be regarded as a right linear combination of
the columns ofA. The mapping; may be regarded as a left linear combination of the rows
of A, and the right column rank and the left row rank coincide. Tdraaining part is easy.

0

DEFINITION 6.3. LetA € HP*P. The right column rank oA will be calledrankof A.

That f(z) := Ax and f(z)T := xTA" do not define the same mapping (apart from
transposition) will be shown by the following example; séwig [L6].

EXAMPLE 6.4. Let

This matrix has right column rank 2 and left column rank 1. Téiter statement can be
easily verified by multiplying the first column oA from the left byi. The result is the
second column. The transpoA€ has right column rank 1 and left column rank 2. ThAs,
is nonsingular, whereas ™ is singular.

7. Vandermonde matrices, continued.We return now to the Vandermonde matrix and
the corresponding interpolation problenssl), (5.2). Itis clear that the Vandermonde matrix
and its transpose are nonsingularifox 1. In order to show that it is possible to find singular
Vandermonde matrices for general> 3 the idea is the following: Try to find pairwise
distinct pointsty, t1, . . . , t, such that the sum of the first and penultimate row equals time su
of the second and last row. If this is possible, the left agtitrrow rank are not maximal,
which implies that the rank is not maximal. Hend2andV'™ are singular.

THEOREM 7.1. Letn = 2. Definety := i := (0,1,0,0), ¢; := j := (0,0,1,0),
to :=k:=(0,0,0,1), and

1 1 1 1 1 1
(71) V .= tQ tl tQ = i j k
3 12 t3 -1 -1 -1
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Letn > 3 andh € H\{C} be arbitrary. Define the following Vandermonde maf¥x Put
to = 1 and set

1 1 1 e 1 1
1 el €2 oo €n—1 hilen,lh
2 2 . 2 —1,2
_V — 1 el 62 enfl h e’nflh’ 6 H(n+1)><(n+1)

1 -1 -1 - -1 -1

|11 —e1 —ex -+ —en —h_len,lh_
whereey, es, ..., e,_1 are the real or complex roots of
(7.2) t"tr1=0.
If —1 is one of the roots, then let = —1, otherwise, choose any enumeration of the roots.

ThenV and its transpos& ™ are singular.

Proof. Forn = 2 it is obvious thatt, ¢, t, are pairwise distinct and thaf defined
in (7.1) and VT are singular. Let» > 3. It is clear that the second row &f contains only
pairwise distinct entries, in particulas, := h='e,,_1h ¢ C. The formula 7.2) implies that
the first and penultimate row sum (8,0, ...,0). Formula 7.2) impliest™ + ¢ = 0 for all
roots, which implies that row 2 and the last row also surf2t®), . .., 0). Thus, the (right and
left) row rank are not maximal. It follows that the rank is maaximal and in all cases > 2
the Vandermonde matri¥ and its transpos® T are singular. a

We observe that for all selected points (second row of Vandade’s matrix) the abso-
lute value is one. That means, we can restrict our considagtto the unit ball
B:={z € H:|z| <1} ortotheunitspheréB := {z ¢ H: |z| = 1}.

8. Unisolvency and the number of zeros.In the theory of real or complex valued
continuous functions the existence of Haar spaces of dimensis equivalent to the fact
that the elements in the Haar space do not have moreithanzeros with the only exception
of the zero function. We will see that even in quaternioniacgs the situation is analogue.

THEOREMS8.1.LetV C C(B) be a vector space with (left or right) dimensianwhere
the setC(B) is the set of quaternion valued, continuous functionsikrand B C H a
compact set. The spadeéis a Haar space if and only if all functions ¥\ {0} have at most
n — 1 zeros.

Proof. (a) Assumel/ is a Haar space. Then(t;) = 0,5 = 1,2,...,n for pairwise
distinctt; € B impliesv = 0. Thus, anyv # 0 can have at most — 1 zeros inB.
(b) AssumeV is not a Haar space. Then there are pairwise distinct pojnéd values
uj,j = 1,2...,n, such that the interpolation problentt;) = u;,j = 1,2...,n, has no
or two different solutions, v2. In the latter casey := vy — vy is not the zero function but
hasn zeros at the givem pointst;. If the interpolation problem has no solution, then the
homogeneous problenit;) = 0,7 = 1,2...,n must have a non trivial solution. In all cases
there is a non zero functionwith at least: zeros. a

The fact that polynomials have too many zeros is, thus, resple for the fact that
polynomials do not form a Haar space. The question, whellegetare Haar spaces in the
quaternioniaC(B) remains open.
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