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SOME TIDBITS ON IDEAL PROJECTORS, COMMUTING MATRICES AND
THEIR APPLICATIONS *
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Abstract. The main result of this paper is the parametrization of igeajectors onto an arbitrary finite-
dimensional linear subspace C k[x]. This parametrization extends the previous ones by B. Maurmnd by
M. Kreuzer and L. Robbiano. We also give applications of gehhique developed in this paper to a question of
similarity between a sequence of commuting matrices anglatspose and to the existence of real solutions to a
system of polynomial equations.
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1. Introduction. Throughout the papét will stand for the field of complex numbers
or the field of real numbers[x] := k[z1,...,z4] will denote the space (algebra, ring) of
polynomials ind indeterminants with coefficients in the fietd

DerINITION 1.1 ([1]). A linear idempotent operataP : k(x| — k[x] is called an ideal
projector ifker P is an ideal ink[x].

Lagrange interpolation projectors, Taylor projectors,anane variable, Hermite inter-
polation projectors are all examples of ideal projectorsr this reason the study of ideal
projectors holds a promise of an elegant extension of opexatraditionally used in nu-
merical analysis, to multivariate setting. The theory wasated by G. Birkhoff [L], C. de
Boor [2], C. de Boor and A. Rord], H. M. Mdller [9], and T. Sauer4].

In this paper | will describe the family of ideal projectorgo a given a finite-dimensional
linear subspacé&’ C k[x]. The family of all such projectors is denoted f8;. Due to
Birkhoff’s restriction of the domain of a projector to thagik[x], the study of ideal projec-
tors parallels the study of idealsC k[x], that complement:

(1.1) J &G = k[x];

equivalently, those ideal$ C k[x| for which G spans the quotient algebkéx]/.J. Let J
denotes the family of all ideals satisfying.{). In commutative algebra the characterization
of J& was previously considered by Mourraitd] and by Kreuzer and Robbian@,[Chap-
ter 6.4] in connection with some questions in computer algebhey gave a description of
the bases for the ideals iy whenG satisfies some additional assumptio6sis connected
to1, in case of L0l andG is a D-invariant space spanned by monomials (order ideals) & cas
of [7]. Further discussion on the relationship between theaggstsons can be found ir8].

The main result of the next section characterizes (paréresjf3s (equivalentlyJe)
without any assumptions a@. In this sense Theore 3 below extends the results cf(]
and [7] to arbitrary G. This parametrization allows to “compute” all ideal prds for
general subspacg. The two examples in Sectic@of the paper show the difference between
parametrization of3 for specialG and arbitraryG.

As in [10] and [7], the indispensable tool in caring out the characteriratbP¢ is
a commuting family of multiplication operators (matrices) G: Mp = (M;,j =1:d)
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defined byM;(g) := P (z;g) for everyg € G. These operators are similar (literally and
figuratively) to the multiplication maps:; onk[x]/J defined bym, ([f]) := [z, f] € k[x]/J
for every[f] € k[x]/J. A relationship between ideals, multiplication maps ancharical
analysis was initiated and explored by H. Stetfief] |

Unlike [10] and [7], our proofs rely on the language of ideal projectors. Itistalief that
this language, as a substitute for a division algorithnovedl extensions and simplification of
some of the arguments used in algebraic geometry.

In the consecutive sections we will present applicationghefinterrelations between
ideal projectors, zero-dimensional ideals and commutiladrices to such diverse fields as
linear algebra, solutions of polynomial equations andlalgie geometry.

We will make use of the following observation due to Carl deB[2].

THEOREM 1.2. A linear operatorP : k[x] — k[x] is an ideal projector if and only if

(1.2) P(fg) = P(f - P(9))

forall f,g € k[x].

In terms of the quotient algebigx]/.J, (1.2) says tha{f[g]] = [fg] € k[x]/J, for all
f.9 € k[x].

ForeveryJ € Jg, we uséM ; = (M, ..., My) to denote the sequence of multiplication
operators ort7 defined byM;(g) = Py (x;g). Itis easy to see (cf2]) that this is a sequence
of pairwise commuting operators which is cyclic, with thelay vectorP;1 € G:

(1.3) {p(M,) (Py1),p €klx]} =G.

2. Border schemes.Letg = (¢1,...,9n) be alinear basis faf. We define the border
of g as

0g == {Lzigr,i=1,....d k=1,...,N}\G.

For every ideall € J¢, the decompositionl(1) induces andeal projector P; onto G
with ker P; = J. From (L.1) it follows that for every ideall € J and for everyh € g
there exists a unique (!) polynomig} = P;b € G such thab — p, € J. As it turns out, the
set{b — py, b € Og} forms an ideal basis fof, called a (generalized) border basis.

PROPOSITION2.1. Let J € Jg and for everyb € Og let p, := Pj;b be the unique
polynomial inG such that) — p, € J. Then{b — p;,, b € 9g} forms an ideal basis fos.

This proposition is not new; cf.2], [16]. The proof below is essentially the same as
in [2] and presented purely for convenience.

Proof. We wish to prove that for every element pk J there aref; ;, € k[x] such that

F="Ffix- (@igr — Py (zigr)) ,

sincex;g, — Py (xigk) =0if ;91 € G.
SinceJ is the range of — Py, and by linearity ofP;, it suffices to show that for every
monomialx® there aref; ;, € k[x] such that

X = Pyx® =" fir - (wigr — Py (2igr)) -

The rest of the proof is by induction on the degte¢ := > «;. If |o| = 0 then
1—P;1 =1-p; € {b—py,be g} and there is nothing to prove. Next, assume that
x® — Pyx® € (b— gy,b € Og). Then, foreveni =1,...,d,

x;x% — Py (2;x%) = x;x% — Py (x; Pyx®) = x; (x* — Pyx®) + 2; Pyx* — Py (x; Pyx“) .
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By the inductive assumption;; (x* — P;x®) € (b — g», b € 0g).. Also P;x“ € G hence
Pix® = Zakgk and

2 Pyx® = Py (2, Pyx®) =Y apwig — Y arPy (zigr)
k K

= Zak (wigr — Py (zigr)) € (b —gp,b € Og) ,

sincex;gr. — Py (Zzgk) =0if 2,9, € G. 0

REMARK 2.2. This proposition is a direct generalization of Protiosi6.4.15 in [7],
where it is proved foD-invariant subspaces spanned by monomials. The argumentih [
uses the division algorithm with remainder coming from thaceG. This, once again, shows
that the language of ideal projectors is an alternative &b dfi division algorithm: for every

feklx],
f:Zfb'pb+PJf

whereP; f is the unique “remainder” idr of the division of f by the ideal/.

What about a converse? That is, what polynomijalsb € dg) have the property that
the ideal(b — py, b € Jg) is in 35? This is the question first dealt with iiA(] with some
additional assumptions a#; cf. also B] and [7].

Mimicking the terminology of ¥, 6.4B], we will characterize those border prebases
that are border bases. We will present necessary and soffma@ditions on polynomials
{pp, b € Og} for {b — py,b € g} to be a basis for an ideal T;. As in [7, 6.4B], the crite-
rion involves formal multiplication operator®/; : G — G defined by

o wgr 0f xigr €G,
Mlg’“—{pm it 20, ¢ G.

Here is the main theorem of this section.
THEOREM 2.3. Let (py, b € Og) be a sequence of polynomials @ Then the ideal
(f —py, f € 0g) € Jg if and only if
i) M;M;, = MM, foralli,k=1,....d,
(i) g(My,...,My)p1 =gforall g € G.
Proof. First assume thal = (b —py, f € dg) € J¢ and letP; be the ideal projector
onto G with ker P; = J.. ThenM;g = Py (z;g9) foralli = 1,...,d. It follows from (1.2)
that

M;My(g) = Py (ziPj (zr9)) = Py (zizrg) = Py (zr7ig) = M. M;i(g),

which proves (i). Also observe that if = > a,x?, then, forM := (M,..., My) and
go := P1, we have

g(My,...,Mg)go=g=> aocM*(Py1)=> agP;(z*(Ps1))

= ZaaPJ (ma) =Py (Z aa$a) =Pjg =y,

which proves (ii).
Now, suppose that (i) and (i) hold. Then the mappingk[x] — k[x] defined by

of = f(M)p
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is a ring homomorphism, hence its kernel

K =kero={f eklx]: fM)p1 = 0} "2 {f e k[x] : /(M) =0}

is an ideal ink[x]. By (ii) the range ofp is G and K N G = 0. By the fundamental theorem
of homomorphismé|x|/ K is isomorphic toG. In particular codimension ok is equal to
dim G and K complements>.

Let hy, be the unique element i@ such that — h;, € K. We need to show that = K
or, alternatively that, = g, for everyb € dg. Sinceb — h;, € K we have

0 = (b(M) — hy(M))p1 "2 b(M)py — b,

On the other hand, by definition df, we haveh(M)p; = p;, which implies thap, = h;, for
allb € og. |

REMARK 2.4. If G is a D-invariant subspaces d&fx] spanned by monomials, then
1 € G and, by theD-invariance, condition (ii) of Theorer.3is automatically satisfied (see
Example3.1below). Hence Theorei 3generalizes Theorem 6.4.30 &f vith, what seems
to be, a shorter, simpler proof, courtesy of the languagédeHliprojectors.

The operators\fy, ..., M, can be written asvV x N matrices in the basig and, the
polynomialp; € G generates alV x 1 matrix of its coefficients.

DEFINITION 2.5. The affine schem8, defined by the ideal, generated by the entries
of the matrices\/; M; — M;M;,i,j =1,...,d, and the coordinates of the vector,

(g (My,...,Mg)p1 —gx), k=1,...,N,

is called the generalized border schemegar g-border scheme. It parametrizes the family
of idealsJ ¢ or, equivalently, the family of ideal projectof3c.

Unlike the border schemes for monomi@tinvariant subspaces &fx], the g-border
scheme is defined by, possibly, extra parameters (if ¢ G): coefficients ofp;, andN extra
equationsyy, (M, ..., M) p1 — gr = 0; cf. Example3.2 below.

Note that, for the ideal € J¢, the operatord/; depend only on the spaceand not on
its basisg. The entries of the matrice®/; depend on the basis, hence thborder scheme
depends on the particular choice of basfer G.

3. Two examples.The first example is standard; cB, [Example 18.23],13], [15].
ExampLE 3.1. Letg = (1,z,y) C k[x] and G be the space spanned By Thus
dg = {22, zy,y*} and everyP € P, is determine by its values

Pz? = ag + box + coy,
Pry =a; + biw + c1y,
Py? = ay + box + coy.

or, equivalently, by nine coefficients

(3.1) (ag,ai,az,bo, by, b2, co,c1,c2).

So what are the condition on the coefficiersly that guarantee that the ideal
<ac2 — Pa?, zy — Pay,y® — Py2>
complementg>? To answer this question we form formal multiplication ricas

0 ap aq 0 a1 a2
M, =1 b() by s My, =11 by by
0 ¢ 1 0 a1 ¢
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This is the case whe@ is a monomialD-invariant space and the conditions (ii) of Theo-
rem 2.3 is automatically satisfied. All that is left is to enforce tb@mmutativity. The six
quadratic equations obtained frabfy My — MM, = 0 are

agby + aicy) — (arbo + azco) = 0,

ay + bob1 + bicy) — (boby + bacy) = 0,

¢t +bico) — (ag + bocy + coc2) =0,

aoby + aicz) — (a1by + azer) =0,

as + boba + byca) — (b3 + bacy) =0,

baco + c1c2) — (a1 + bicy + c1c2) = 0.

(
(
(
(
(
(

A close examination reveals that there is a lot of redundanttyese equations. The solutions
to these equations are given by
ag = —bocy + C? + bico — coce,
(3.2) a; = baco — bye,
a9 = b% — coby — bgba + bacy.
The border schem#, is a six-dimensional affine variety kP that consists of all nine-tuples
(a0, a1, az,bo, by, b, co, c1, c2) satisfying 8.2).
By checking 8.2) we see that the following four projectors defined by
T:T2* =T(xy) = Ty*> =0,
P,:Pa*=y,P, (zy) = Py? =0,
L:La* =z, L(zy) =0,Ly* =y,
H:Hz? =Hxy=Hy’ =y,

(3.3)

are in fact ideal projectors ont@. The first, 7T, is the Taylor projector ont&, it interpolates
the function and its first partial derivatives @t The secondpP., also interpolates various
derivatives at zero, namely

80, 000Dy, 6go0 (D2 +2Dy),

and is a different projector. Hence, unlike the case in om@abke, there are two (infinitely
many) ideal projectors ont@ such that the zero locug(ker P) of the idealker P is {0}..
The projectorl is a Lagrange projector interpolating at sit@s0), (1,0) and(0, 1). Finally
the last projecto interpolates the value of a function and its derivative wébpect tor at
zero and the value of the function(@t 1).

EXAMPLE 3.2. We want to determine and parametrize the family of &l#wdt comple-
ment the two-dimensional spacéspanned by = {z, y}. In this case( is not D-invariant
andl ¢ G, hence in addition to commutativity condition we need tooecé condition (i) of
Theorem2.3 Let

p1 = ux + vy = “
. Y v
and ! |atrices

A C
Ml:[z ft} MQ:[B D]
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The commutativity conditions give four equations:

Be—Cb=0,
Ab—bD — Ba+ Bd =0,
cD — Ac+ Ca—Cd=0,
Cb— Be=0.

The two additional equation¥/, p; = x, Msp; = y give four more equations:

au+cv—1=0,
bu + dv = 0,
Au+ Cv =0,
vD+ Bu—1=0.

Together these two sets of equations define a four-dimeaisaifine algebraic set (thg-
border scheme) ik'®. Clearly(u,v) can not be zero. i, v # 0, then the solutions to these
equations are given in terms of four free parameters, C, d:

— 2
, 6:7037 D:,Lalu’ B =d, Q:Lju,
u

v
u v u

b=—d>, A=-C
u

and all ideal projectors ontG@ are given by

—1+d
Pl =uzx + vy, Px2:aac—d3y, P:Uy:—CEx—i—dy7 PyQZCx—ﬁy.
u u v
The remaining cases are listed below:
D—-1 D—-1 D—-1 1
2) C=0,d=_" ., B=_" L A=0,c=0,b="v, a=-.
u u u u
1
3) d=0,C=0,u=0,A=D, v=5, B=0,c=D
1 1 1
4) v=0,d=—-, A=0,¢=0, B=—,b=0, a=—.
u u u

4. Applications.

4.1. To linear algebra. It is well-known and easy to see (cfl1q]) that every square
matrix M is similar to its transpose. This is not the case for sequeabeommuting matrices.
For instance, the pair of matricé€3/;, M) associated with the Taylor projectérin (3.3
has the form

00 0 00 0
100/, |00 of,
00 0 100

with the cyclic vectore; = (1,0,0). The adjoint pair of matriceéM{, M) is not cyclic.
Hence there cannot be an invertible transformaticsuch thatV/} = SM;S~! fori = 1,2.
As an easy application of ideal projectors we obtain thefaithg non-trivial result.
THEOREM 4.1. A cyclic sequenck& = (Ly,..., Ly) is similar to its transposd.! =
(L%,...,LY) ifand only ifL* is cyclic.
The starting point is the observation (cb],[[11, Theorem 1.9], 12]) that not only an
ideal projector generates a cyclic sequence of commutiegabprs (and therefore matrices)
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but any cyclic sequence of commuting matrices is similar sequence of multiplication
operators for some ideal projector.

ProPOSITION4.2. LetL = (L4,..., Ly) be a cyclic sequence of commutidgx N
matrices. Then the ideal

Ju = {f €klx]: (L) = 0}

has codimensiofv and L is similar to the matrices of multiplication operatoM p of any
ideal projectorP with ker P = Jg,.
Proof. Letwy be a cyclic vector folL. Define

v: k[x] — kY,
f = fL)vo.

SincelL is cyclic, ¢ is onto and by the fundamental theorem of homomorphisixy ker ¢
is isomorphic tdk”. But

kerp = {f € k[x|: f(L)vo = 0} = Jv,

which shows that codimension df, is V.

Now, letG be a subspace that complemeritsand letP be an ideal projector ont¢
with ker P = Jr,. SinceG complements/, it follows that the restrictiow‘G of ptoGis
invertible and, by direct computation,

-1
P = (ga‘G> o .
To show thafl. is similar to the sequence of multiplication operathis> we will verify the
—1
identity: (go‘G) oLjo (¢|G) = Mj,i.e.,

(@\G)il oLjo (<P|G) 9= Pr(z;9),

forall g € G. Indeed,

P(z9) = (90|G)71 ¢ (29) = (<P|G) (Ljg(L)vo) = (9%:)71 o Lj (g(L)vo)

= ((00) "o 10 0) 0= (110) oo (410) 0

sinceg € G. a

Proof of Theoremt.1. Suppose thaL! is cyclic. Sinceker L' = ker L, by Proposi-
tion 4.2, Lt is similar to matrices for multiplication operatdi » for the projectorP just as
L is. By transitivity, L’ is similar toL. The converse is obvious. That isIif = SLS~!,
thenL! is also cyclic. O

In general the problem of (simultaneous) similarity of téxuple of matrices seems to
be quite difficult; cf. B]. The following generalization of Theorelis straightforward, but
may be new.

THEOREM 4.3. Let L be a cyclicd-tuple of commutingV x N matrices and leB =
(Bi1, ..., Bg) be an arbitraryd-tuple of N x N matrices. Them is similar toL if and only
if B is a cyclicd-tuple of commuting matrices.

PROBLEM 4.4. What are the necessary and sufficient conditions for a gélweramut-
ing sequence of matrices to be similar to its transpose?
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4.2. To real solutions of polynomial systemsA standard exercise in Calculus uses the
intermediate value theorem to prove that every real polyabof odd degree has at least
one real zero. In this section we give a simple proof of a (hdpyeoriginal) observation
that generalizes this statement to the systems of polynaqgigtions in several variables.
Namely, we prove that every ideal of real polynomials of oddimension has a common
zero.

In one variable every polynomial € R[x] of odd degree defines the ideal

J = (p) = {fp, f € R[x]},

that complements the spaBe »,,_1[x] of polynomials of degree less than — 1; thusJ is
of odd codimension. The existence of a solution is equivaten

Z(I):={xeR:q(x)=0forallge J} #0.

The existence of a real solution for ideals of odd codimen&adntuitively obvious from the
principle of conjugation. I&, ..., z,, € C? are all the solutions of the generatorsjfthen
they must be invariant under the conjugation. If they are@thplex one has to have an even
number of them. This translates to even codimension. Butetienical proof of this needs
to take into account multiplicities of solutions and is mareolved than the one, presented
below, using multiplication operators.

THEOREM4.5.LetJ C R[x] =R [z1, ..., x4 be an ideal of odd codimension. Then

Z(J):={xeR¥: ¢q(x)=0forall g € J} #0.

Proof. Let P be an ideal projector fror[x] onto a subspac€ C R[x] with ker P =
J. To prove the theorem it suffices to show that the sequéige:= (My,..., M,) of
commuting operators on an odd-dimensional sgades a common eigenvector. Indeed, if
M,g = \,g for someg # 0, then for everyp € J, p (M, ..., My) = 0. Hence

O0=pMy,....,.Mg)g=p(A1,...,\a) " ¢,

and the eigentuplé\y, ..., \y) is a zero ofp.

The proof thatM ; has a common eigenvector is by inductiondnif d = 1, then the
characteristic polynomial of/; has an odd degree and thus has a real root that corresponds to
an eigenvector of/;. Assume that the statement is true for any sequenée-dfcommuting
operators. Letd be a subspace aF of minimal odd dimension, invariant with respect to
My, ..., My. LetMy,..., My be the restrictions oy, ..., M, to H. Itis clearly enough

to prove thatMy, ..., M, have a common eigenvector fit. Leth € H be an eigenvector
for M, corresponding to an eigenvaliie Consider the spaces

Hy = ker (Md - M) . H,:=ran (Md - )\I) .

These two spaces are invariant with respecifg . .., My, and one of the two has an odd
dimension sincéim H; 4+ dim H, = dim H. SinceH; # {0}, dim Hy < dim H, and from
minimality of H it follows that H, has and odd dimension and herfée = H. ThusM, is
a multiple of the identity orf{ and any eigenvector ilf, common toM, ..., My 1, is also
an eigenvector oM. O

For instance, any system of three quadratic equations

z? — (ag + box + coy) = 0,

xy — (a1 + bz + c1y) =0,
y? — (az + bax + c2y) = 0,
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with coefficients satisfying3.2) has a real solution since, by Examplé, the corresponding
ideal complements the space of linear polynomials, hensebddimensior3.

4.3. To the geometry of border schemesfor a monomiaD-invariant spac&’ C k[x]
the following problem was posed iaJ]:

PROBLEM 4.6. Is the border schemB,, whereg is the monomials basis faf7, con-
nected?

In other words, given two ideal projectoi’; and P, € B¢, does there exist a continu-
ous family of ideal projector®(t) € B such thatP(0) = P, andP(1) = P,? The answer
is affirmative for thoseD-invariant monomial spaces wheredeg f > max{degg : g € G}
for every f € Jg. Itis interesting to note that it follows from the generad¢dhny of Gidbner
basis (cf. B, Remark 18.3], 13)), that “the Hilbert schemes” are connected. That is, for a
given pair of ideal projector$y, P, € P there exists a continuous family(¢) of ideal
projectors, such thaP(0) = Fy, P(1) = P;, anddim ran P = dim G for all t. The rub
is: for somet the ideal projector”(¢) may project onto a subspace of dimensigrthat is
different fromG.

Are generalized border schemes connected? The ans®étJirreal polynomials in one
variable, is clearly negative. Indeed, (&thbe the one-dimensional space spanned.byhen
the familyJ ¢ consists of maximal ideals, missing the one supported at 2erd sinceR /{0}
is not connected, neither is the border schédpg. Of course, this based on the peculiarity
of one-dimensional real space, where a point separatepéice SA more subtle example can
be obtained by the projectors onto the two dimensional saf#sf = span {1, 2?} in R[z].

If P € P¢ is given by

(4.1) Px =a+bx? Pz®=c+da?,

then the multiplication matrix foP is

M = {‘b‘ ﬂ :
and by Theoren2.3, the requirement on the coefficients is
M?(1,0)" = (a2 + be,ab + bd)" = (0, 1)",
which implies thab # 0. Thus, the ideal projector’, and P; given by
Pyxr =1+ xz, Py =—1— xz,
Prx=1-2% Pa*=1-2?

satisfy (i) and (ii) of Theoren?.3, yet cannot be connected by a continuous family of ideal
projectors given by4.1) with b # 0. Hencel3; ,»2) is not connected.

PrROBLEM 4.7. Are the generalized border schemegijx| connected? Are generalized
border schemes iR[x] connected forl > 2?

Acknowledgments. | would like to thank Carl de Boor, Martin Kreuzer and Lorenzo
Robbiano for many useful conversations and for help in tieparation of this paper.
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