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Abstract. The Induced Dimension Reduction (IDR) method is a Krylov space method for solving linear systems
that was developed by Peter Sonneveld around 1979. It was noticed by only a few people, and mainly as the
forerunner of Bi-CGSTAB, which was introduced a decade later. In 2007, Sonneveld and van Gijzen reconsidered
IDR and generalized it to IDR(s), claiming that IDR(1) ≈ IDR is equally fast but preferable to the closely related
Bi-CGSTAB, and that IDR(s) with s > 1 may be much faster than Bi-CGSTAB. It also turned out that when
s > 1, IDR(s) is related to ML(s)BiCGSTAB of Yeung and Chan, and that there is quite some flexibility in the IDR
approach. This approach differs completely from traditional approaches to Krylov space methods, and therefore
it requires an extra effort to get familiar with it and to understand the connections as well as the differences to
better-known Krylov space methods. This expository paper aims to provide some help in this and to make the
method understandable even to non-experts. After presenting the history of IDR and related methods, we summarize
some of the basic facts on Krylov space methods. Then we present the original IDR(s) in detail and put it into
perspective with other methods. Specifically, we analyze the differences between the IDR method published in
1980, IDR(1), and Bi-CGSTAB. At the end of the paper, we discuss a recentlyproposed ingenious variant of
IDR(s) whose residuals fulfill extra orthogonality conditions. There we dwell on details that have been left out in
the publications of van Gijzen and Sonneveld.

Key words. Krylov space method, iterative method, induced dimension reduction, IDR, CGS, Bi-CGSTAB,
ML(k)BiCGSTAB, large nonsymmetric linear system

1. History. TheInduced Dimension Reduction (IDR) methodwas introduced by Wes-
seling and Sonneveld from Delft University at a symposium ofthe International Union of
Theoretical and Applied Mechanics in September 1979. In theproceedings it is covered on
just three and a half pages of a twenty-page paper [40], and it is explicitly attributed to the
second author. It was labeled as a Lanczos-type method for nonsymmetric linear systems
which does not require the transpose of the matrix. The term Lanczos-type method meant
that the new method was related to thebiconjugate gradient (BICG) methodof Lanczos [17],
which had been revived and reformulated by Fletcher [4] four years before. Up to that time
there had been little interest in Lanczos’s approach, despite the fact that it was very closely
related to the widely used conjugate gradient method [16, 21]. Popular alternative Krylov
space solvers for nonsymmetric systems were methods like Vinsome’s ORTHOM IN1 [39]
(now often referred to as GCR) and its variants ORTHODIR and ORTHORES [42], as well as
similar methods introduced by Axelsson [2]. GMRES [22] was still five years away. Also
popular were parameter-dependent Krylov space methods, such as Chebyshev iteration, and
parameter-dependent iterative methods based on matrix splitting, such as SOR.

The IDR method received hardly any attention, probably because it was neither presented
at a conference of the core numerical analysis community norpublished in a widely read jour-
nal. Moreover, Sonneveld’s approach to designing a Krylov space solver was very unusual
and, even for experts, hard to fully understand. Although the method was defined clearly and
uniquely under certain regularity conditions in [40], some of the details, and in particular the
proof of the connection to BICG, were left for publication elsewhere. The basic result onthis
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connection is that the IDR residual polynomials are of the form

(1.1) ρIDR
n (t) =

{
Ωj(t)ρj(t) if n = 2j,

Ωj(t)ρ̂j+1(t) if n = 2j + 1,

whereΩ0(t) :≡ 1, Ωj(t) :≡ (1 − ω1t) · · · (1 − ωjt), and whereρj denotes thejth BICG
residual polynomial, which is often referred to as a Lanczospolynomial, scaled such that
ρj(0) = 1, while ρ̂j+1 denotes another residual polynomial, which has degreej + 1. A
new linear factor(1 − ωj+1t) is appended toΩj in every other step, and it was suggested to
choose it such that the norm of the new IDR residual is minimized among those that lie on a
certain straight line. This is a widely used type of minimization step. For example, it is also
found in the conjugate residual [34] method, but there it leads to a global minimum solution
(for a symmetric positive definite matrix). And such a minimization is a key ingredient of
BICGSTAB. The publication [40] only mentioned that the first line of (1.1) had been proven
in the case where the matrixA of the (real) linear system of equationsAx = b is symmetric
positive definite.

In 1984, Sonneveld introduced another Lanczos-type method: the Conjugate Gradient
Squared (CGS) method[29]. It is based on residual polynomials that are the squares ofthe
BICG residual polynomials:2

(1.2) ρCGS
n (t) = ρ2

n(t).

Note that the indexing of the residual polynomials and residuals is different in IDR and CGS:
in the former, the degree increases by one when the index grows by one; in the latter, the
degree increases by two.

The CGS paper [29] was received by the SIAM Journal on Scientific and Statistical Com-
puting (SISSC) on April 24, 1984, but it took nearly five yearsto get published in revised and
extended form [31]. Nevertheless, the method was accepted quickly by numerical analysts
and engineers. In typical cases it converges nearly twice asfast as BICG, though often in a
very erratic manner. Although the idea and derivation of CGSare ingenious, they are easy
to understand: starting from the standard recursions for the BICG residual polynomials, one
just derives recursions for their squares by defining additional suitable products of pairs of
polynomials.

Yet another similar method was presented at the HouseholderSymposium in Tylösand
in June 1990 by van der Vorst, then still also at Delft University. The title of his talk and
the corresponding paper coauthored by Sonneveld and submitted to SISSC on May 21, 1990,
was“ CGSTAB: A more smoothly converging variant of CG-S”[37]. As part of the revision
process the title was later changed into“ Bi-CGSTAB: a fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systems”, and Sonneveld resigned as a
coauthor [36]. In this paper, van der Vorst started from the first formula in (1.1), now written
as

(1.3) ρ
BiCGSTAB

n (t) = Ωn(t)ρn(t).

Thus, he adopted the indexing from CGS, and he also adopted from CGS the derivation based
on directly finding a recursion for these residual polynomials; that is, he abstained from using
the recursions imposed by the IDR approach.

2Therefore the name Biconjugate Gradient Squared (BICGS) method would also make sense. However Son-
neveld’s view was that CGS is derived from a CG-type algorithm for building up a set of orthogonal (or formally
orthogonal) polynomials [30]. Only after the recursions are mapped into a Krylov space that is embedded in an inner
product space does the notion of biorthogonality make sense.
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In the following years, BICGSTAB was generalized toBICGSTAB2 [12] and BICG-
STAB(ℓ) [24, 27], where the polynomialΩn is built up from factors of degree2 andℓ, re-
spectively, whose coefficients are determined by a two– or anℓ–dimensional residual norm
minimization, respectively. This allows a better approximation of complex eigenvalues and
yields typically faster convergence at the price of higher complexity, but only slightly higher
computational cost. Nevertheless, the simple original BICGSTAB became the method of
choice for most users who apply a Lanczos-type method for solving a nonsymmetric linear
system.

Due to the structure of the residual polynomials, CGS and themethods of the BICG-
STAB family are often referred to asLanczos-type product methods (LTPMs)[13] or as hybrid
BICG methods [26].3

A new dimension came into play when, in 1997, Yeung and Chan submitted the paper
ML(k)BiCGSTAB: a BiCGSTAB variant based on multiple Lanczos starting vectors to the re-
named SIAM Journal on Scientific Computing (SISC) [41]. In this paper, they first introduced
with ML (k)BICG a version of BICG where the left Krylov space (generated byAT from an
arbitrary shadow residual̃r0), which is used for the oblique projection ofr0, is replaced by
a block Krylov space generated from a matrixR̃0 with k columns. Then they generalized
the transition from BICG to BICGSTAB to the new situation. This led to very complicated
formulas, which were then meticulously modified to get a simpler and efficient code. The
method was shown to converge amazingly well for a large number of fairly ill-conditioned
examples, handled mostly without preconditioning and withrather largek, 25 ≤ k ≤ 100.
However, the largek meant high memory consumption and considerable computational cost.4

Although the essence of the paper is well explained and easy to understand, the complexity
of the formulas and, paradoxically, the treatment of all thedetails must have kept people
from reading the paper and applying the method — despite the very promising numerical
results. The authors were aware of the connection to nonsymmetric block Lanczos methods
[1, 3, 5, 6, 8, 19], but while these are based on generalizing the Lanczos three-term recur-
sions, Yeung and Chan generalized the two-term recursions of B ICG, as was done before by
Simoncini [23]. This was partly the reason for the complex formulas.

In [40], Wesseling and Sonneveld had announced a further publication on IDR to be in
preparation, but only in 2007 was such a paper submitted, again to SISC; see [32] and, for
the final version, [33]. In the sequel of an enquiry by Jens-Peter Zemke [43] in May 2006,
Sonneveld and van Gijzen reconsidered IDR and generalized it to IDR(s), where the original
method is included as the cases = 1 (except for a small but interesting detail). They also
clarify the relation of their method to BICGSTAB (whens = 1) and, in the final version,
to ML(s)BICGSTAB (whens > 1), which they did not know when submitting the paper.
It turns out that the even-indexed IDR(1) residuals are (up to roundoff effects) exactly the
BICGSTAB residuals, and that likewise every(s+1)th IDR(s) residual is, up to the possibly
different choice of the parametersωj, a ML(s)BICGSTAB residual. However, the way these
residuals are constructed differs, and the “intermediate”residuals do not exist in BICGSTAB

and differ in ML(s)BICGSTAB, respectively. The paper also features numerical examples
that are relevant in practice and demonstrate the power of the method even for small values
of s where the cost per step inn is small.

In a follow-up publication, Sleijpen, Sonneveld, and van Gijzen [25] introduced partly
different notation and tried to explain IDR(s) and its connection to BICGSTAB from a some-
what different viewpoint, but this author prefers the presentation in [33]. They also introduce

3Note that many other authors have introduced other classes of “hybrid” iterative methods for linear systems.
4For one example, the matrix ORSIRR1, the dependence onk was investigated for smallk, where dramatic

improvements can be noticed already for2 ≤ k ≤ 10; see Figure 3(b) of [41].
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methods similar to ML(s)BICG and ML(s)BICGSTAB.
In the recent publication [38], van Gijzen and Sonneveld introduce yet another, very

ingenious algorithm that fits into the IDR framework and leads to an elegant code. It uses
recursions that are quite different from those of the original IDR(s) of [33] and produces
“intermediate residuals” satisfying additional orthogonality conditions that lead to shorter
recurrence relations for somen and improved memory management. The authors do not
introduce a separate name for this new algorithm, but in someof the figures they refer to it as
IDR(s) Bi-ortho. We will discuss this IDR variant in Section5 and use the shorter acronym
IDR(s)BIO.

2. From BICG to ML (k)BICGSTAB. In this section we review some basic facts on
Krylov space solvers, putting special emphasis on the biconjugate gradient (BICG) method,
and then look at the transition from BICG to BICGSTAB. We also have a quick look at
Yeung and Chan’s [41] generalization of these methods to ML(k)BICG and ML(k)BICG-
STAB, respectively, which feature multiple initial left (or shadow) residuals.

2.1. Krylov space solvers based on projection. Given a nonsingular linear system
Ax = b ∈ CN and an initial approximationx0 along with its residualr0 :≡ b − Ax0,
a Krylov space solver constructs recursively approximate solutionsxn (often referred to as
iterates) such that

xn ∈ x0 + Kn,

where

Kn :≡ Kn(A, r0) :≡ span {r0,Ar0, . . . ,A
n−1r0}

is thenth Krylov subspacegenerated byA from r0.5 Note that we allow complex data now.
Two of the basic theoretical facts in this setting are: (i) There is a minimalν such that

Kν is invariant. (ii) For the solutionx⋆, it holds thatx⋆ ∈ x0 + Kν , andν is the minimal
index for which this is true. So, if we choosexn well, the solver terminates inν steps. In
particular, it suffices to choose the iterates so that the corresponding residualsrn are linearly
independent unless zero. In practice,ν is typically large (close toN ), and therefore this finite
termination property is irrelevant.

The true aim is to findxn very close tox⋆ in few (or at least not very many) steps.
Because of the limited computer memory, it is important to find solvers that allow us to
computexn with short recursions. The restrictionxn ∈ x0 + Kn implies that

(2.1) rn ∈ r0 + AKn ⊆ Kn+1.

Most methods produce residuals that have a component in the “new part of the space”, that
is rn 6∈ r0 + AKn−1; in other methods, there may occur exceptional situations with rn ∈
r0 + AKn−1, which implies that the residuals are linearly dependent atthis moment.

We will refer to spaces of the formr0 + AKn or the formx0 + Kn asaffine Krylov
subspaces.

Since the goal is a smallrn, we need to approximater0 by elements fromAKn. For
example,‖rn‖ is minimal if we choosern as the perpendicular fromr0 to its orthogonal
projection intoAKn. This is the basis of the conjugate residual (CR) method [34] for Her-
mitian systems and its various generalizations for the non-Hermitian case, such as GCR and

5Kn(B, y) denotes in this paper a Krylov subspace generated byB from y, whileKn without an argument is
an abbreviation forKn(A, r0).
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GMRES. For these methods, we have

rn ∈ r0 + AKn, rn ⊥ AKn.

Some Krylov space solvers are based on other orthogonal or oblique projections. In particular,
for the biconjugate gradient (BICG) method [18, 4], which is of special importance here, we
have

(2.2) rn ∈ r0 + AKn, rn ⊥ K̃n :≡ Kn(A⋆, r̃0).

Here, the initial shadow residualr̃0 can be chosen arbitrarily; preferably, it should be in
arbitrary position with respect to an eigenbasis ofA⋆.

The most often used recursions for BICG are the coupled two-term or BIOMIN recur-
sions, which can be written as follows:

αn := δn/δ′n,(2.3a)

rn+1 := rn − αnAvn,(2.3b)

r̃n+1 := r̃n − αnA⋆ṽn,(2.3c)

xn+1 := xn + αnvn,(2.3d)

δn+1 := 〈r̃n+1, rn+1〉,(2.3e)

βn := δn+1/δn,(2.3f)

vn+1 := rn+1 + βnvn,(2.3g)

ṽn+1 := r̃n+1 + βnṽn,(2.3h)

δ′n+1 := 〈ṽn+1,Avn+1〉.(2.3i)

In addition to the residualsrn and iteratesxn, three other sets of vectors are constructed:
shadow residuals(or left-hand side Lanczos vectors)r̃n ∈ r̃0 + A⋆K̃n, search directions
vn ∈ v0 + A⋆Kn, andshadow search directions̃vn ∈ ṽ0 + A⋆K̃n. All these vectors are
updated by coupled two-term recursions.

2.2. Residual polynomials and Lanczos-type product methods. Let Pn denote the
space of polynomials of degree at mostn, and letP◦

n :≡ {ρ ∈ Pn ; ρ(0) = 1}. The inclu-
sion (2.1) implies that one can associatern with a residual polynomialρn ∈ P◦

n such that
rn = ρn(A)r0. Roughly,‖rn‖ is small if |ρn(t)| is small at those eigenvalues ofA that
are “active” whenr0 is written in terms of the eigenbasis ofA. (This statement needs to be
modified whenA has no eigenbasis or an ill-conditioned one.) This observation motivates
derivations of Krylov space methods via real (whenA is Hermitian) or complex (whenA
is non-Hermitian) approximation problems. It must also have motivated Sonneveld’s CGS
method [31], where, as noted in (1.2), the residual polynomials are the squares of the BICG
residual polynomialsρn. Clearly, whenever|ρn(t)| ≪ 1 at an eigenvalue,|ρ2

n(t)| is even
much smaller there. But often the residual norm of BICG oscillates wildly as a function of
n, and then the residual norm of CGS oscillates even more. Avoiding or at least damping
this was the motivation for van der Vorst [36] for the choice (1.3) in BICGSTAB. Recall that
there, at stepn, ωn is chosen to minimize the residual norm on a straight line.

Let ρn denote the polynomial obtained fromρn by complex conjugation of the coeffi-
cients. Then, in BICG, we havern = ρn(A)r0 andr̃n = ρn(A⋆)r̃0. In addition, the search
direction polynomialsσn ∈ Pn\Pn−1 associated with the search directionsvn play an im-
portant role: sincev0 = r0 and ṽ0 = r̃0, we havevn = σn(A)r0 and ṽn = σn(A⋆)r̃0.
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Hence, associated with the recursions (2.3b), (2.3c), (2.3g), and (2.3h) there are the underly-
ing coupled polynomial recursions

(2.4) ρn+1(t) := ρn(t) − αntσn(t), σn+1(t) := ρn+1(t) + βnσn(t).

These polynomial recursions are fundamental for deriving CGS and BICGSTAB, and also, as
we will see in Section4, for understanding the difference between IDR(1) and BICGSTAB.

For CGS it is easy to derive from (2.4) four coupled recursions for the polynomials
ρCGS

n :≡ ρ2
n, σ2

n, ρnσn, andρnσn−1, which can then be translated into recursions for elements
of Kν . Likewise, for BICGSTAB one combines (2.4) with the trivial recursionΩn+1(t) =

(1 − ωn t)Ωn(t) to derive three recursions for the three productsρ
BiCGSTAB

n :≡ ρnΩn, ρnΩn−1,
andσnΩn. In both cases alternative recursions exist, too.6

2.3. Multiple initial shadow residuals. Yeung and Chan [41] generalized BICG by
replacing the left Krylov subspaces̃Kn by block Krylov subspaces, which are a sum of
Krylov spaces for the same matrixA⋆ but with several different initial shadow residuals,
stored as the columns of anN × s matrix R̃0. Yeung and Chan called the resulting method
theML (s)BICG method(except that they usedk instead ofs). The residuals whose index is
a multiple ofs satisfy

(2.5) rsj ∈ r0 + AKsj , rsj ⊥ Kj(A
⋆, R̃0) :≡

s∑

i=1

Kj(A
⋆, r̃

(i)
0 ).

For the others, with indexn = sj + ℓ, where1 < ℓ < s, we have analogously

(2.6)
rn ∈ r0 + AKn,

rn ⊥ Kj;ℓ(A
⋆, R̃0) :≡

ℓ∑

i=1

Kj+1(A
⋆, r̃

(i)
0 ) +

s∑

i=ℓ+1

Kj(A
⋆, r̃

(i)
0 ).

These residuals could also be constructed by using a variantof the nonsymmetric block Lanc-
zos method, where the block size of the left block Krylov space iss, while that of the right
(block) Krylov space is just one, that is, the right space is an ordinary Krylov space; see
[1, 3, 5, 6, 8, 19] for ways to construct bases for these spaces with short recursions. Yeung and
Chan rather generalize block BICG, described before by O’Leary [20] and Simoncini [23],
but the latter authors assumed the same block size in the left-hand and the right-hand side
Krylov spaces. Unfortunately, in theory and practice therecan (and ultimately do) occur prob-
lems that must be addressed by block size reduction (deflation). Moreover there may occur
Lanczos breakdowns and pivot breakdowns; see, e.g., [13] for a discussion of the breakdowns
of BICG. Deflation and breakdowns have not been addressed in [41].

Yeung and Chan [41] continued by applying to ML(s)BICG the same transformation
that turns BICG into BICGSTAB. Unfortunately, this lead to rather complicated formulas,
which they were able to simplify and economize somewhat by algebraic manipulations. The
resulting algorithm, called ML(s)BICGSTAB, was shown to be very effective for a large
number of rather ill-conditioned test matrices.

Under the titles Bi-CG and Bi-CGSTAB, Sleijpen, Sonneveld,and van Gijzen [25]
sketched two methods that are in spirit the same as ML(s)BICG and ML(s)BICGSTAB,

6In [11] four sets of equivalent recursions for CGS derived from theBIORESand BIODIR recursions of BICG
are given; however, they are all more complicated than the original CGS recursions, and therefore more costly in
work and storage.



ETNA
Kent State University 

http://etna.math.kent.edu

132

but in detail differ considerably. First, they are not usingthe equivalent of Lanczos’s coupled
two-term recursions; second, their “intermediate” residuals satisfy only a block biorthogo-
nality, and not the stricter requirement of (2.6) that determines the residuals of ML(s)BICG
uniquely.

3. IDR basics. In this section, we review basic facts about the IDR(s) method, fol-
lowing essentially the presentation in [33]. One aspect that we stress more explicitly than
Sonneveld and van Gijzen is that IDR(s) is a Krylov space method, and therefore the resid-
uals lie in an affine space that is embedded in a Krylov subspace. We also try to give more
realistic figures, although we will see that they still do notreflect the whole truth.

3.1. The IDR Theorem. The IDR approach is based on a finite series of nested linear
subspacesGj of diminishing dimension with the property that for some increasing index
sequence{nj} the residualsrn with n ≥ nj all lie in Gj . Of course, all residuals lie in the
invariant Krylov spaceKν :≡ Kν(A, r0); therefore, we can start withn0 :≡ 0 andG0 :≡ Kν .
The other spacesGj are defined by the recursion

(3.1) Gj :≡ (I − ωjA)(Gj−1 ∩ S).

Here,S is a prescribed linear subspace of codimensions ≪ N , and the constantsωj 6= 0 will
be suitably chosen to boost convergence. Let us denote the dimension ofGj by dj . Clearly,
Gj−1 ∩ S can be represented byN − dj−1 + s linear equations, and it is likely that these are
linearly independent. However, as pointed out in [33], we cannot conclude easily that linear
independence is here a generic property (valid for almost all problems if data are chosen
randomly) sinceGj−1 actually depends onS. But, typically,Gj−1 ∩ S and its imageGj have
dimensiondj = dj−1 − s. We will mostly take it for granted that this and other regularity
assumptions are satisfied, and we will refer to this as theregular case.7 One can see, however,
by analogy to the behavior of the related ML(s)BICG and ML(s)BICGSTAB methods, that
we cannot expect thatdj = dj−1 − s remains true forj up toN/s if s > 1.

The IDR Theorem, given next, states two properties that are not apparent: the spacesGj

are nested; and, under mild assumptions onS, the inclusion is strict, i.e.,Gj ( Gj−1. For an
illustration, see Figure3.1.

THEOREM 3.1 (IDR Theorem [40, 33]). Assume thatS ∩ G0 contains no eigenvector of
A. Then

Gj ( Gj−1 unlessGj−1 = {o}.

For the proof, see [40, 33]. As a consequence of the strict inclusions,Gj = {o} for some
j ≤ N , say,j ≡: J . However, the boundJ ≤ N that follows from the IDR Theorem leads to
a strong overestimation of the finite termination index, forthe simple reason that termination
is characterized bydJ = 0, which we can expect forJ of the sizeN/s.

Sonneveld and van Gijzen [33] also provide the Extended IDR Theorem, the main result
of which is that the differencedj − dj+1 is monotonically non-increasing:

0 ≤ dj − dj+1 ≤ dj+1 − dj ≤ s.

Alternatively, this result could also be concluded from theconnection to ML(s)BICG.
Of course, neitherG0 nor the other spacesGj are known in advance in the sense that

we know a basis for them. In theory, the IDR algorithm would provide these bases if we

7The authors of [33] refer to it as thegeneric case, although this may not be fully consistent with the common
usage of the wordgeneric.
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FIGURE 3.1.Cases = 1: The spacesR3 = K3 = G0 ) G1 ( G2.

continued it until the exact solution ofAx = b was found, that is, untilrν = o was attained;
but this is not feasible unlessν is very small, so that the linear system can be solved exactly
in a few steps.

IDR constructs typically onlys + 1 residuals inGj before turning to the next subspace
Gj+1 ( Gj . To accommodate exceptional situations we introduce a monotonically growing
index sequence{nj} defined implicitly by8

(3.2) rn ∈ Gj ∩ (r0 + AKn), n ≥ nj .

In the normal case,nj = (s+1)j, sonj+1−nj = s+1, for reasons we will see in a moment;
butnj+1 −nj > s+1 may occur in exceptional situations. In the simplest cases = 1, which
is when IDR is closely related to BICGSTAB, two new residuals are computed for eachj.
This is depicted in Figure3.2. The details of the construction are discussed next.

3.2. Recursions. The recursion for the residuals builds upon the recursion (3.1) for the
spacesGj :

(3.3) rn+1 := (I − ωjA)vn, vn ∈ Gj−1 ∩ S ∩ (r0 + AKn).

We suppose here that, for alln, vn lies in the affine Krylov subspace spanned byr1, . . . , rn

and shifted byr0. This means thatvn andrn+1 have “maximum degree” in the sense that
vn 6∈ r0 + AKn−1 and rn+1 6∈ r0 + AKn. There may be situations where the latter
assumptions do not hold, and, according to [33], there are in the IDR framework ways to
recover from such situations, but we will not treat that here. There is some vague analogy to
look-ahead Lanczos [7] or look-ahead block Lanczos [1] in such recovery procedures.

To construct vectors or “points”rn+1 ∈ Gj , we need vectorsvn ∈ Gj−1∩S, and the first
time we construct a point inGj , we can chooseωj . To constructvn in Gj−1 ∩ S we need to
intersect ans-dimensional affine subspace ofGj−1 (in theory it could be represented byN−s
inhomogeneous linear equations) with the subspaceS represented bys homogeneous linear
equations that we may write asP⋆vn = o with an N × s matrix P whose columns form

8It is conceivable that the inclusion in (3.2) holds by chance for somen < nj too, but forn ≥ nj the inclusion
will be forced by construction.
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FIGURE 3.2.Cases = 1: The first two steps: construction ofr2 andr3 (for details see§4.1).

a basis ofS⊥. In theory, we would end up withN inhomogeneous linear equation forvn

that will usually have a unique solution, but this is of course not feasible in practice. Instead,
we represent thes-dimensional affine subspace ofGj−1 directly by an affine combination (a
linear combination whose coefficients sum up to one) ofs + 1 points inGj−1. The natural
choice for theses + 1 points are the last computed residualsrn−s, . . . , rn. Here we see why
we neednj+1 − nj ≥ s + 1. A neat way to take the condition of an affine combination into
account is to introduce the differences of the residual vectors, and that is what Sonneveld and
van Gijzen do:

(3.4) vn := rn −

ι(n)∑

i=1

γ
(n)
i ∆rn−i = rn − ∆Rn cn,

where

s ≤ ι(n) ≤ n − nj−1,

∆rn :≡ rn+1 − rn,

∆Rn :≡
[

∆rn−1 . . . ∆rn−ι(n)

]
,

cn :≡
[

γ
(n)
1 . . . γ

(n)
ι(n)

]T

.

The restrictionι(n) ≤ n − nj−1 ensures that∆rn−i ∈ Gj−1. Usually,ι(n) = s, but, again,
there may be exceptional situations not covered here where one needs to choose a largerι(n).
Note that using the differences of the residuals leads to avn whose polynomial representation
automatically inherits fromrn the value1 at zero. Therefore, indeedvn ∈ r0 + AKn, and
we may viewvn as a residual, so there isx′

n∈ x0 + Kn such thatvn = b− Ax′
n.

To enforcevn ∈ S we enforce9 vn ⊥ S⊥ = R(P), that is,P⋆vn = o. This means
that the term∆Rn cn in (3.4) must be the oblique projection ofrn into R(∆Rn) along

9R(P) denotes the range ofP.
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S. In order that this projection is uniquely defined, we needP⋆ ∆Rn to be nonsingular, in
particularι(n) = s to make the matrix square. Then,

(3.5) cn :≡ (P⋆ ∆Rn)
−1

P⋆rn.

Otherwise, whenι(n) > s, we might choosecn as the minimum norm solution of an under-
determined least squares problem.

For the initial phase, that is, for constructingr1, . . . , rs, we may apply a fairly arbitrary
starting procedure, e.g., GMRES.

We need not just one pointrn+1 ∈ Gj but at leasts + 1 of them before we can continue
to the next spaceGj+1. At first one might expect to need2s + 1 points inGj−1 to repeat
the above constructions + 1 times. However, this is not the case. BecauseGj ⊂ Gj−1,
the just-constructedrn+1 ∈ Gj also qualifies as a point ofGj−1 and can be used when we
replacen by n + 1 in the above construction.10 So, s + 1 points inGj−1\Gj will usually
be enough. However, we cannot fully exclude degenerate situations, where the lasts + 1
points constructed inGj−1 do not span ans-dimensional affine space and therefore∆Rn is
singular (or nearly so). A careful implementation of the method will need to address such
situations, which are also reflected by a zero (or absolutelysmall) coefficient in thetn term
of the polynomial representation of some of the vectorsvn.

For the cases = 1, the first two steps, from givenr0 andr1 to r2 andr3, are shown in
Figure3.2. Then the construction is continued tillv5 = r6 = o in Figure3.3. However, our
figures show actually one of the “exceptional situations” wejust referred to: the constructed
residuals are not all linearly independent. In fact, since the figures show a construction inR3

(i.e.,N = 3), linearly independent residuals would mean convergence in at most three steps,
that is,r3 = o.

We could avoid usingvn by inserting (3.4) in (3.3):

(3.6) rn+1 := rn − ∆Rn cn − ωjA(rn − ∆Rn cn).

10The IDR(s) variant of Section5 will differ in the choice of points used in (3.4).

FIGURE 3.3.Cases = 1: Construction ofr4 andr5. Termination withv5 = o (for details see§4.1).
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This formula illustrates that IDR(s) differs considerably from most commonly used Krylov
space solvers such as CG, BICG, or GCR. The difference is that in (3.6) not onlyrn is mul-
tiplied byA, but alsorn−s, . . . , rn−1. This means that, in the terminology of [10], IDR(s) is
a (s + 1, s+ 1)-step method, while, e.g., CG, BICG are(2, 1)-step methods, ORTHOM IN(k)
is a(k, 1)-step method, and the untruncated GCR is a(∞, 1)-step method.

As mentioned before,ωj can only be chosen when we construct the first point inGj , that
is, rn+1 with n + 1 = nj . The formularn+1 = (I− ωjA)vn suggests that we chooseωj so
that‖rn+1‖ is minimal among allr of the formr = (I− ωjA)vn, that is, we choose it such
thatrn+1 ⊥ Avn:

(3.7) ωj :≡
〈Avn,vn〉

‖Avn‖2
.

Note that this value ofωj may turn out to be zero or close to zero. As in BICGSTAB, this is a
source of breakdown or instability, but it is easily cured bychoosing another value that does
not minimize the residual locally.

Finally, we need to address the fact that it does not suffice toconstruct residualsrn and
vn, but that we also need the corresponding approximate solutionxn andx′

n ∈ x0 + Kn. It
is readily verified that

vn := rn − ∆Rn cn ⇐⇒ x′
n := xn − ∆Xn cn,(3.8)

rn+1 := (I− ωjA)vn ⇐⇒ xn+1 := ωjvn + x′

n.(3.9)

There are several ways to rearrange these four recursions and to combine them with the
iterate-residual relationships; see [25]. Also in the “prototype algorithm” of [33] a different,
but equivalent set of recursions is used. It includes the analog of (3.6) for xn+1,

(3.10) xn+1 := xn − ∆Xncn + ωj(rn − ∆Rncn)

and the relation∆rn = −A∆xn.
Note that here, as in any competitive set of recursions, the major cost of computing

xn ∈ x0 + Kn consists ofn + 1 matrix-vector products (MVs) withA. Regarding memory,
one needs just to stores columns of eachP, ∆Xn, and∆Rn, plus a few singleN -vectors.

3.3. Characterization by orthogonality. Clearly, the dimension ofGj gets reduced due
to taking the intersection with the(N − s)–dimensional spaceS. This dimension reduction
is viewed as the basic force behind IDR and gave the method itsname. However, dimension
reduction in Krylov space solvers is not at all a unique feature of IDR. In fact, projection
based methods can be understood in a similar way. For example, the characterization (2.2) of
the BICG residuals could be written as

rn ∈ L⊥

n ∩ (r0 + AKn) ,

whereLn = K̃n = Kn(A⋆, r̃0), and for CR, GCR, and GMRES the same is true with
Ln = AKn. What is different in IDR is thatGj is not an orthogonal complement of a Krylov
subspace. However, due to the form of the recursion for{Gj}, Gj turns out to be the image
of an orthogonal complement of a Krylov subspace. This result is implicit in Subsection 5.1
of [33] and has been explicitly formulated in [25]:

(3.11) Gj =
{
Ωj(A)w

∣∣ w ⊥ Kj(A
⋆,P)

}
= Ωj(A) [Kj(A

⋆,P)]⊥ .

Here, as before,Ωj(t) :≡ (1 − ω1t) · · · (1 − ωjt) ∈ P◦
j , andKj(A

⋆,P) is thejth block
Krylov subspace generated byA⋆ from thes columns ofP, which are assumed to be a basis
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of S⊥. Note that when we choosẽR0 = P, this block Krylov subspace is the same as in
ML (k)BICG; see (2.5). Note also that the largers, the larger isKj(A

⋆,P), and thus the
smaller isGj .

To prove (3.11), let us repeat here the argument from [33] that is linked to the recursions
that we have just discussed and provides further insight. (The induction proof of (3.11) in
[25] is different.) We start from (3.1) and (3.3) and the observation thatvn ∈ Gj−1 must
likewise be of the form

vn = (I − ωj−1A)v′
n, v′

n ∈ Gj−2 ∩ S ∩ (r0 + AKn−1),

v′

n = (I − ωj−2A)v′′

n, v′′

n ∈ Gj−3 ∩ S ∩ (r0 + AKn−2),

...
...

v(j−2)
n = (I − ω1A)wn+1, wn+1 ∈ G0 ∩ S ∩ (r0 + AKn−j+1).

Starting at the bottom, we can also write (withΩ0 ≡ 1):

wn+1 = Ω0(A)wn+1 ∈ G0 ∩ S,

v(j−2)
n = Ω1(A)wn+1 ∈ G1 ∩ S,

...

v′

n = Ωj−2(A)wn+1 ∈ Gj−2 ∩ S,

vn = Ωj−1(A)wn+1 ∈ Gj−1 ∩ S,

rn+1 = Ωj(A)wn+1 ∈ Gj .

Since{Ωk}
j−1
k=0 is a basis ofPj−1 we see that

Ω(A)wn+1 ∈ S (∀Ω ∈ Pj−1),

that is,P⋆Ω(A)wn+1 = o ∈ Cs or, in other words,wn+1 ⊥ Ω(A⋆)P, ∀Ω ∈ Pj−1, or
wn+1 ⊥ Kj(A

⋆,P). In summary, we conclude that anyrn+1 ∈ Gj is of the form

(3.12) rn+1 = Ωj(A)wn+1, wn+1 ∈ G0∩S∩(r0+AKn−j+1), wn+1 ⊥ Kj(A
⋆,P).

This proves (3.11). For simplicity, we may replacen+1 by n here and, for our records, write
anyrn ∈ Gj (n = nj, . . . , nj+1 − 1) as

(3.13) rn = Ωj(A)wn, wn ∈ G0 ∩ S ∩ (r0 + AKn−j), wn ⊥ Kj(A
⋆,P).

Note that forn = nj −1 andn = nj , the polynomials associated withwn have the same
degree:wn ∈ r0 + AKnj−j . (That is why we chosen as index forwn, although this is not
the degree of the associated polynomial.)

In the generic case, for fixedj, we will constructnj+1−nj = s+1 linearly independent
vectorswn that provides + 1 linearly independent vectorsrn (with nj ≤ n < nj+1). So, as
long as we stay in the generic case,nj = j (s + 1).

Moreover, generically, forn = nj = j (s + 1) wherewn ∈ r0 + AKjs andwn ⊥
Kj(A

⋆,P) with dim Kj(A
⋆,P) = js = dim AKjs, there is auniquewn satisfying (3.13),

since it can be characterized as the solution of a linear system with ajs × js matrix that can
be assumed to be nonsingular in the generic case:

THEOREM 3.2 ([33]). Assume thatnj = j (s + 1), j = 1, 2, . . . , J , and that the iterates
xn and residualsrn of IDR(s) are forn ≤ nJ uniquely constructible by the recursions(3.3)
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and (3.4) with the choiceι(n) = s and the coefficientscn from (3.5). Then, forj ≤ J , the
residualswnj

andrnj
are uniquely characterized by the conditions(3.13).

COROLLARY 3.3. Under the assumptions of Theorem3.2, and if the same parameters
ωj (1 ≤ j ≤ J) have been chosen, the IDR(s) iteratesxnj

and residualsrnj
are identical to

the iteratesxj and residualsrj of BICGSTAB (if s = 1) or ML (s)BICGSTAB (if s > 1),
respectively.

But thes other vectorswn (with nj < n < nj+1), and thus also the corresponding
residualsrn, are not uniquely determined by (3.13). We cannot expect that they appear in
BICGSTAB or ML(s)BICGSTAB, and, in fact, they usually do not.

4. The case s = 1 and the comparison with BICGSTAB. If s = 1, the subspaceS is a
hyperplane determined by a single vectorp ⊥ S. So the matrixP consists of the single col-
umnp now. By Corollary3.3, whens = 1, every other set of vectors{wn, rn,vn−1,xn, . . . }
(with n even) is uniquely determined up to the choice of the parametersωj. If the latter are
chosen as in BICGSTAB (and they usually are), and if̃r0 := p in BICGSTAB, then

(4.1) r2j = r
BiCGSTAB

j , x2j = x
BiCGSTAB

j , w2j = r
BICG

j .

So there remains the question whether and how BICGSTAB and IDR(1) differ. In order
to answer this question, we will look at the polynomial recursions that mirror the recursions
for the Krylov space vectors generated by the two methods.

4.1. Recursions and orthogonality properties of IDR(1). Whens = 1, the recursions
(3.8) and (3.9) of IDR(s) simplify to

(4.2)
vn := rn − γn(rn − rn−1), x′

n := xn − γn(xn − xn−1),

rn+1 := (I − ωjA)vn, xn+1 := x′
n + ωjvn,

wheren ≥ 1, j = ⌊(n + 1)/2⌋. The first line can be written

vn := (1 − γn)rn + γnrn−1, x′

n := (1 − γn)xn + γnxn−1,

to emphasize thatvn lies on the straight line throughrn andrn−1, and likewise,x′
n lies on

the line throughxn andxn−1. By (3.5), γn :≡ γ
(n)
1 = 〈p, rn〉 / 〈p, ∆rn−1〉 is chosen such

thatvn ∈ S, that is,vn ⊥ p. This is illustrated in the Figures3.2 and3.3. The parameter
ωj is usually chosen to maker2j as short as possible; this means thatr2j is orthogonal to
Av2j−1; see (3.7). (This property is not taken into account in the figures.)

From (4.1) and (3.13) we know that

(4.3) w2j = r
BICG

j = ρj(A)r0 ⊥ K̃j ,

whereρj is still thejth Lanczos polynomial, and where now̃Kj :≡ Kj(A
⋆,p). According to

(3.13), w2j+1 is represented by a polynomialρ̂j+1 ∈ P◦
j+1 and

(4.4) w2j+1 = ρ̂j+1(A)r0 ⊥ K̃j .

So, sincern = (I − ωjA)vn−1 = Ωj(A)wn, we have

(4.5)

rn = Ωj(A)wn =

{
Ωj(A)ρj(A)r0 if n = 2j,

Ωj(A)ρ̂j+1(A)r0 if n = 2j + 1,

vn = Ωj−1(A)wn+1 =

{
Ωj−1(A)ρj(A)r0 if n = 2j − 1,

Ωj−1(A)ρ̂j+1(A)r0 if n = 2j.
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Inserting these formulas intovn = (1 − γn)rn + γnrn−1 we get, after a short calcula-
tion, forn = 2j + 1 andn = 2j, respectively,

(4.6)
ρj+1(t) := (1 − γ2j+1) ρ̂j+1(t) + γ2j+1 ρj(t) (j = 0, 1, 2, . . . ),

ρ̂j+1(t) := (1 − γ2j) (1 − ωjt) ρj(t) + γ2j ρ̂j(t) (j = 1, 2, . . . ).

4.2. Comparison with the recursions and orthogonality properties of BICGSTAB.
The Lanczos (residual) polynomialsρj and the BICG search direction polynomialsσj are
formal orthogonal polynomials(FOPs) in the sense that, fori 6= j,

ρi⊥ρj ⇐⇒ 〈ρi(A
⋆)r̃0 , ρj(A)r0〉 = 0 ⇐⇒

〈
r̃

BICG

i , r
BICG

j

〉
= 0,

σi⊥tσj ⇐⇒ 〈σi(A
⋆)r̃0,Aσj(A)r0〉 = 0 ⇐⇒

〈
ṽ

BICG

i ,Av
BICG

j

〉
= 0,

wherev
BICG

j andṽ
BICG

i are the search directions and the “shadow” search directions, respec-
tively, that appeared in the recursions (2.3a)–(2.3i). Since{ρ0, . . . , ρj−1} and{σ0, . . . , σj−1}
both spanPj−1, we actually have

ρj ⊥ Pj−1, σj ⊥t Pj−1, ⇐⇒ r
BICG

j ⊥ K̃j , v
BICG

j ⊥A K̃j .

Here,⊥A denotes formal orthogonality with respect to the formalA–inner product〈., .〉
A

.
In summary, the basic BICG recursions (2.3b), (2.3c), (2.3g), and (2.3h) upon which BICG-
STAB builds too, are mirrored by the following recursions forρj andσj :

(4.7) ρj+1(t)︸ ︷︷ ︸
⊥Pj

:= ρj(t)︸ ︷︷ ︸
⊥Pj−1

−αj tσj(t)︸ ︷︷ ︸
⊥Pj−1

, σj+1(t)︸ ︷︷ ︸
⊥tPj

:= ρj+1(t)︸ ︷︷ ︸
⊥Pj

+βj σj(t)︸ ︷︷ ︸
⊥tPj−1

.

Here, bothαj andβj are chosen so that the new polynomialsρj+1 andσj+1 feature the
indicated orthogonality properties, by which they are uniquely determined up to a scalar
multiple.

In contrast, in IDR(1), by (4.6), (4.3), and (4.4),

ρ̂j+1(t)︸ ︷︷ ︸
⊥Pj−1

:= (1 − γ2j) (1 − ωjt) ρj(t)︸ ︷︷ ︸
⊥Pj−2

+γ2j ρ̂j(t)︸ ︷︷ ︸
⊥Pj−2

,

ρj+1(t)︸ ︷︷ ︸
⊥Pj

:= (1 − γ2j+1) ρ̂j+1(t)︸ ︷︷ ︸
⊥Pj−1

+γ2j+1 ρj(t)︸ ︷︷ ︸
⊥Pj−1

.

Comparing these recursions for(ρj , ρ̂j) with (4.7) we easily see that

(1 − γ2j+1) (ρ̂j+1(t) − ρj(t)) = −αj t σj(t).

So,

(4.8) ρ̂j+1(t) = ρj(t) −
αj

1 − γ2j+1
t σj(t),

or, after multiplication byΩj(t) and translation into the Krylov space,

(4.9) r2j+1 = r2j −
αj

(1 − γ2j+1)
As

BiCGSTAB

j , wheres
BiCGSTAB

j :≡ Ωj(A)v
BICG

j .



ETNA
Kent State University 

http://etna.math.kent.edu

140

FIGURE 4.1.Cases = 1: The connection betweenBICGSTAB and IDR(1).

This formula expresses the odd-indexed IDR(1) residualsr2j+1 in terms of quantities from
BICGSTAB and the IDR coefficientγ2j+1. We illustrate the connection in Figure4.1. While
BICGSTAB implicitly constructsρj+1 by enforcing a biorthogonality condition on a poly-
nomial that lies on the line determined byρj andt σj , IDR(1) first generates by the second
recursion in (4.6) the polynomial̂ρj+1 that lies on that line and then also enforces this condi-
tion.

Let us finally note that the parameterωj , which is in (3.7) chosen to maker2j orthogonal
to Av2j−1, is indeed the same in IDR(1) and BICGSTAB, sincev2j−1 is the same in both
methods.

4.3. How does the original IDR differ from IDR(1)?. In contrast to IDR(1) of [33],
where (4.2) holds for alln > 1, for n odd, the original IDR of [40] used the recursions

(4.10)
vn := rn − γ′

n(rn−1 − rn−2), x′
n := xn − γ′

n(xn−1 − xn−2),
rn+1 := (I − ωjA)vn, xn+1 := x′

n + ωjvn,

with γ′
n :≡ 〈p, rn〉 / 〈p, ∆rn−2〉. So, here, when computing the “intermediate iterate”x′

n,
one modifiesxn by a step in the same direction as has been used in the previousstep for
modifyingxn−1.

Moreover, in contrast to what we have stated here, the new IDR(s) of [33] computes the
residual differences actually as∆rn = −A∆xn. This couples the recursions forxn and
rn more tightly, and thus reduces the gap between the recursively computed residual and the
true residual. This gap is known to be closely linked to the attainable accuracy that can be
achieved with a Krylov space solver; see [9, 15, 27].

The IDR Theorem still applies, and stillx2j = x
BiCGSTAB

j . This follows from the fact that
the arguments of Subsection3.3are still applicable.

5. IDR(s) with locally biorthogonal residuals. Recently, van Gijzen and Sonneveld
[38] came up with a new version of IDR(s), in which, in the regular case assumed throughout
this section, each ofs consecutive “intermediate” residualsrnj+k is orthogonal to a growing
subset of thes prescribed columnspk of P:

(5.1) rnj+k ⊥ {p1, . . . ,pk}, k = 1, . . . , s.

For clarity, we will call this algorithmIDR(s)BIO here.11

11Actually, the sets{rnj+k} and{pi} are not biorthogonal, but by a triangular linear transformation we could

replace the basis{pi} of S⊥ by {p′
i} so that{rnj+k} and{p′

i} are biorthogonal. However, the transformation
would depend onj.
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IDR(s)BIO still fits into the IDR framework in the sense that the IDR Theorem3.1and
the orthogonality result of Theorem3.2as well as its Corollary3.3still apply. One important
aspect where it differs from the original IDR(s) is in the ansatz for recursively constructing
rnj+k from previous residuals: while the original version uses inthe formula (3.4) for vn

the latests residual differences (i.e., the choiceι(n) = s) for all n, in IDR(s)BIO that sum
involves thes residual differences

∆rnj−1
≡ ∆rnj−s−1 ∈ Gj−1 ∩AKnj−1+1,

...

∆rnj−1+s−1 ≡ ∆rnj−2 ∈ Gj−1 ∩AKnj−1,

none of which relates to a residual that lies inGj already. So, in the cases = 1, there is
an analogy to the original IDR of Sonneveld [40]; see (4.10). Additionally, these residual
differences are actually replaced by another set ofs vectors

gnj−1
≡ gnj−s−1 ∈ Gj−1 ∩ AKnj−1+1,

...

gnj−1+s−1 ≡ gnj−2 ∈ Gj−1 ∩ AKnj−1,

that are multiples of the residual differences and thus alsoorthogonal to a growing subset of
thes prescribed columnspk:

(5.2) gnj−1+k ⊥ {p1, . . . ,pk}, k = 0, . . . , s − 1.

However, these residual differences are not defined as before, but undergo a linear transfor-
mation to impose (5.2). Note that in (5.2), the range of the indexk is shifted by 1; so for
k = 0, the orthogonality condition is empty.

To construct preliminary vectors inGj , we now define, forn = nj + k (k = 0, . . . , s),
vectorsvn ∈ S by the ansatz

(5.3) vn := rn −

s∑

i=1

γ
(n)
i gnj−1+i−1 = rn − Gj−1cn,

where

Gj−1 :≡
[

gnj−1
. . . gnj−1

]
, cn :≡

[
γ

(n)
1 . . . γ

(n)
s

]
.

cn is determined by the conditionvn ⊥ R(P). So we have, as in (3.4) and (3.5),

(5.4) cn := (P⋆ Gj−1)
−1

P⋆rn, vn := rn − Gj−1 cn.

Here, the projection alongS is onR(Gj−1), that is, on a space that only depends onj − 1
and therefore is the same fors + 1 values ofn. Consequently, the matrixP⋆ Gj−1 in the
s + 1 linear systems forcn is also the same. (However, the systems cannot be solved at once,
because the vectorrn in the right-hand sideP⋆rn results from the previous system.)

The elegance of IDR(s)BIO comes from special features that result from the imposed
orthogonality conditions (5.1) and (5.2). Due to (5.2), the matrix

(5.5) Mj−1 ≡ {µ
(j−1)
i,k′ }s

i,k′=1 ≡
[

mnj−1
. . . mnj−1+s−1

]
:≡ P⋆ Gj−1
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is lower triangular, and due (5.1) the matrix with thes right-hand sidesP⋆rn (n = nj , . . . , nj+
s − 1),

(5.6) Fj ≡ {φ
(j)
i,k′}

s
i,k=1 ≡

[
fnj

. . . fnj+s−1

]
:≡ P⋆

[
rnj

. . . rnj+s−1

]

is lower triangular, too. Consequently, the matrix with thes solutionscn of Mjcn = fn for
n = nj, . . . , nj + s − 1,

(5.7) Cj ≡ {γ
(nj+k′

−1)
i }s

i,k′=1 ≡
[

cnj
. . . cnj+s−1

]
:≡ M−1

j Fj

is also lower triangular. So itsk′th columncnj+k′−1 only depends on the(s−k′+1)th trailing
principal submatrix (of orders− k′ +1) of Mj−1, whereas its firstk′− 1 entries are zero. In
other words, the possibly nonzero entries ofcnj+k′−1 result from a(s− k′)× (s− k′) linear
system. This means in particular that the recursion (5.3) becomes shorter whilek increases:
for12 n = nj + k, k = 0, . . . , s − 1,

(5.8) vn := rn −

s∑

i=k+1

γ
(n)
i gnj−1+i−1 = rn − Gj−1cn.

This not only reduces the computational cost, but it allows us to overwriteGj−1 by Gj and
Mj by Mj+1 inside the loop overk; for details, see the pseudocode in [38].

We still need to explain how we finds + 1 residualsrnj+k ∈ Gj (k = 0, . . . , s) so that
(5.1) holds for the lasts of them, and how we construct a new set ofs vectorsgnj+k ∈ Gj

(k = 0, . . . , s − 1) satisfying (5.2). We may use the orthogonality conditions (5.1) with j
replaced byj − 1 and (5.2) as induction assumption. For the initialization (j = 0), such sets
can be constructed by a one-sided Lanczos process that combines the generation of a basis
for Ks+1 with orthogonalization with respect to the columns ofP. Of course, at the same
time, approximate solutionsx1, . . .xs need to be constructed, too, but they are obtained using
essentially the same recursions.

Among thes + 1 residuals inGj−1 satisfying the orthogonality condition, the last one,
rnj−1, is orthogonal to all columns ofP, whencernj−1 ∈ S. So, in accordance with (5.8)
for k = s, where the sum is empty, we can choosevnj−1 = rnj−1, and thus

(5.9) rnj
:= (I − ωjA) rnj−1.

Next, forn = nj + k > nj, anyvn obtained from (5.8) lies inGj−1 ∩ S ∩ (r0 + AKn). So,
by the recursive definition ofGj ,

r̃n+1 := (I − ωjA)vn = rn − Gj−1cn − ωjAvn

is a tentative residual inGj ∩ (r0 + AKn+1). Sincern ∈ Gj ∩ (r0 + AKn),

(5.10) g̃n :≡ rn − r̃n+1 = Gj−1cn + ωjAvn ∈ Gj ∩ AKn+1,

too; but in order to serve as a column ofGj , it needs to be replaced bygn satisfying the
orthogonality condition

(5.11) gn ⊥ {p1, . . . ,pk}, n = nj + k, k = 0, . . . , s − 1.

12Note that in the presentation of this and other formulas in [38] the notationvn+k with n = nj+1 − 1
(k = 1, . . . , s) is used, while heren = nj + k (k = 0, . . . , s − 1) andk′ = k + 1.
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This can be achieved by applying a Gram-Schmidt-like process: recursively, the projection of
g̃n ≡ g̃nj+k on the span ofgnj

, . . . , gn−1 along the span ofp1, . . . , pk is subtracted from
g̃n to yield gn ≡ gnj+k ∈ Gj ∩ AKn+1. This can be expressed as follows: fork = 0 the
condition (5.11) is empty, sognj

:= g̃nj
; then, forn = nj + k, k = 0, . . . , s − 1,

(5.12) gn := g̃n −

k∑

i=1

α
(j)
i,kgnj+i−1 = g̃n −

[
gnj

. . . gn−1

]
a

(j)
k ,

where

(5.13) a
(j)
k :≡

([
p1 . . .pk

]⋆ [
gnj

. . . gn−1

])−1 [
p1 . . .pk

]⋆
g̃n ∈ Ck.

Here, thek × k matrix
[

p1 . . .pk

]⋆ [
gnj

. . . gn−1

]
is thekth leading principal

submatrix ofP⋆Gj = Mj, and thus it is lower triangular. Therefore,a
(j)
k can be found

by forward substitution. Of course, the diagonal elementsµ
(j)
i,i = p⋆

i gnj−1+i need to be
nonzero. Otherwise the process breaks down and the orthogonality condition (5.11) cannot
be satisfied for somen. For the whole block this step is summarized by

(5.14) G̃j :≡
[

g̃nj
. . . g̃nj+s−1

]
= GjA

▽

j

with A▽

j unit upper triangular andP⋆Gj = Mj lower triangular. Above the diagonalA▽

j

contains thes−1 coefficients vectorsa(j)
1 (in column 2) toa(j)

s−1 (in the last column). Hence,

MjA
▽

j = (P⋆Gj)A
▽

j is an LU decomposition of̃Mj :≡ P⋆G̃j .
Amazingly, when we replace this classical Gram-Schmidt-like process by a modified

Gram-Schmidt-like process as suggested in [38], there is no need to solve triangular linear
systems.

In matrix notation the first sweep of the modified Gram-Schmidt-like process can be
summarized as

G
(1)
j :≡ G̃jB

(1)
j ,

where the upper triangular matrixB(1)
j is given by

B
(1)
j :≡




1 −β
(j)
12 −β

(j)
13 . . . −β

(j)
1s

1 0 . . . 0
. . .

...
1 0

1




, β
(j)
1,k+1 :≡

〈
p1, g̃nj+k

〉
〈
p1, g̃nj

〉

(with k = 1, . . . , s − 1), and has the effect that, by subtracting a multiple of the first column
g̃nj

of G̃j , columns 2 tos of G̃j are transformed into columns ofG
(1)
j that are orthogonal to

p1. Then, forℓ = 2, . . . , s − 1, in further analogous sweeps, by subtracting a multiple of the
ℓth columng(ℓ−1)

nj+ℓ−1 of G(ℓ−1)
j , columnsℓ + 1 to s of G(ℓ−1)

j are transformed into columns

of G(ℓ)
j that are additionally orthogonal topℓ:

G
(ℓ)
j :≡ G

(ℓ−1)
j B

(ℓ)
j , ℓ = 2, . . . , s − 1,
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whereB(ℓ)
j for ℓ = 2, . . . , s − 1 is given by

B
(ℓ)
j :≡




1 0 . . . . . . . . . . . . 0
. . .

1 −β
(j)
ℓ,ℓ+1 . . . . . . −β

(j)
ℓ,s

1 0 . . . 0
. . .

...
1 0

1




, β
(j)
ℓ,k+1 :≡

〈
pℓ,g

(ℓ−1)
nj+k

〉

〈
pℓ,g

(ℓ−1)
nj+ℓ−1

〉

(with k = ℓ, . . . , s − 1). Ultimately, the columns of

(5.15) Gj :≡ G
(s)
j = G̃jB

(1)
j B

(2)
j · · ·B

(s−1)
j

satisfy the orthogonality condition (5.11), and thus are identical to those obtained by (5.12).
Moreover, the comparison with (5.14) reveals that

(5.16) A▽

j =
(
B

(1)
j B

(2)
j · · ·B

(s−1)
j

)−1

= B̂
(s−1)
j B̂

(s−2)
j · · · B̂

(1)
j ,

whereB̂(ℓ)
j :≡ (B

(ℓ)
j )−1 is obtained by replacing inB(ℓ)

j the coefficients−β
(j)
ℓ,k+1 by+β

(j)
ℓ,k+1.

In view of the special structure of the matricesB̂
(ℓ)
j , one can conclude from (5.16) that

β
(j)
ℓ,k+1 = α

(j)
ℓ,k. Of course, the matrices̃Gj ,G

(1)
j , . . . ,G

(s−1)
j ,Gj can all be stored in the

same place.
Finally, since by induction (within a block) bothrn andgn are orthogonal top1, . . . ,pk,

and moreover,rn ∈ r0 + AKn andgn ∈ AKn+1, we getrn+1 ∈ r0 + AKn+1 satisfying
(5.1) according to

(5.17) rn+1 := rn −
φ

(j)
k+1,k+1

µ
(j)
k+1,k+1

gn (n = nj + k; k = 0, . . . , s − 1),

whereφ
(j)
k,k andµ

(j)
k,k are diagonal elements ofFj andMj , which enforce thatrn+1 ⊥ pk+1,

as can be checked easily.
As has been noted in [38] and can be seen by premultiplying (5.17) with P⋆, the columns

of Fj can be updated in an elegant way, too:

(5.18) fn+1 := fn −
φ

(j)
k+1,k+1

µ
(j)
k+1,k+1

mn+1 (n = nj + k, k = 0, . . . , s − 1).

So far, we have concentrated on the possibility of constructing efficiently residuals sat-
isfying the orthogonality properties (5.1), but we still need to give formulas for the recursive
computation of the approximate solutionsxn; and due to the relation∆rn = −A∆xn, these
formulas will lead to other options for updating the residuals.

In general, update formulas forxn are fairly easily obtained from those forrn, and here
this is true also. Let us define

ũn :≡ A−1g̃n,

un :≡ A−1gn,

Uj−1 :≡
[

unj−1
. . . unj−1

]
= A−1Gj−1.
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Then, from (5.10), we get

(5.19) ũn := Uj−1cn + ωjvn ∈ Kn+1,

which allows us to replace (5.10) by

(5.20) g̃n := Aũn.

This helps to couple the updates ofxn andrn and thus to avoid a fast growth of the residual
gap mentioned before. Moreover, (5.12) translates into

(5.21) un := ũn −

k∑

i=1

α
(j)
i,kunj+i−1 (n = nj + k, k = 1, . . . , s − 1).

Finally, from (5.17) we get

(5.22) xn+1 := xn +
φ

(j)
k+1,k+1

µ
(j)
k+1,k+1

un (n = nj + k, k = 0, . . . , s − 1).

These are the formulas on which the IDR pseudocode in [38] is based. But what makes
this formulation so ingenious is the fact that it minimizes memory usage by systematically
overwriting data that is no longer used. On the other hand, this makes the code harder to
understand.

6. Comments and conclusions. The various IDR algorithms may still be not as well
understood as other algorithms that are directly derived from the Lanczos process (be it sym-
metric or non-symmetric), but their close relationship to Lanczos-based algorithms certainly
helps us to understand them.

6.1. The case s = 1. This case is easy, because in exact arithmetic the even-indexed
IDR(1) iterates and residuals are exactly the BICGSTAB iterates and residuals. However, as
we have seen, the recursions are not the same, and therefore,it is possible that IDR(1) is more
stable than BICGSTAB or vice versa. The odd-numbered IDR(1) iterates and residuals have
no counterpart in the original BICGSTAB algorithm.

The existence of all BICGSTAB iterates, i.e., all even IDR(1) iterates, requires that all
BICG residuals exists, and therefore any serious Lanczos breakdown and any so-called pivot
breakdown cause BICGSTAB and IDR(1) to break down unless extra precautions against
such breakdowns have been implemented. This follows from the fact that the BIOMIN ver-
sion and the BIORES version of BICG break down at the same times: the existence of the
residuals implies the existence of the coupled two-term recursions [13]. Additionally, the
choice of the parametersωj is the same in BICGSTAB and IDR(1), so a breakdown due to
ωj = 0 will occur at the same time in both methods; but in both it is also easy to fix. It is
conceivable that there are further causes for breakdown in IDR(1). On the other hand, the
recovery procedure in case of a breakdown seems to be much simpler in IDR(1); but so far,
it seems to be less understood and less documented than for BICGSTAB [14].

While IDR(1) and BICGSTAB produce in exact arithmetic essentially the same results
based on a common mathematical background, they are clearlydifferent algorithms obtained
by different approaches.13

13From Proposition 5.1 in [25] one may get the impression that BICGSTAB and IDR(1) are nearly identical. But
the authors do not compare the original BICGSTAB recursions with the original IDR(1) recursions.
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6.2. The case s > 1. The relation BICG BICGSTAB ∼ IDR(1) is matched by the re-
lation ML(s)BICG ML (s)BICGSTAB ∼ IDR(s), but the similarity between ML(s)BICG-
STAB and IDR(s) is weaker than between BICGSTAB and IDR(1). In IDR(s) there is
some freedom in choosing thes “intermediate” iterates and residuals because, unlike in
ML (s)BICGSTAB, the vectorswn in (3.13) need not satisfy the strict condition (2.6) of
an “intermediate” ML(s)BICG residual, but only the weaker block orthogonality condition
wn ⊥ Kj(A

⋆,P) of (3.13). With the IDR approach, such vectors can be obtained with much
simpler recursions, which, in addition, allow considerable flexibility that may enable us to
overcome breakdowns.

The many published numerical examples of IDR(s) [25, 33, 38] show the fast conver-
gence of this method and the superiority of the choices > 1. Due to the careful choice
of the numerical examples and the restriction to small values of s, where the method is less
costly than for larges, the numerical results are more relevant than those of Yeungand Chan
[41], who applied their ML(s)BICGSTAB with larges and mostly without preconditioning
to rather ill-conditioned test matrices. Heuristically, it is plausible that these methods are
particularly effective for such examples. In BICG, the basis of̃Kn tends to be somewhat
ill-conditioned if A is far from Hermitian. Moreover, its construction is prone to loss of bi-
orthogonality, which can be expected to be stronger whenA is ill-conditioned andn is large.
When constructing in ML(s)BICG a basis of the block Krylov subspaceKj(A

⋆, R̃0), we can
start withs orthonormal basis vectors and work with the dimensionj of ordern/s of each
single Krylov subspace. Then, for the same value ofn, we can expect the basis of the block
Krylov subspace to be better conditioned. A similar improvement of the condition of the
basis can be expected when we compare BICGSTAB to ML(s)BICGSTAB or IDR(s), and it
seems to be relevant also in preconditioned problems that are not extremely ill-conditioned.

The effectiveness of this improvement due to changing the dual (“left”) space and using
a better conditioned basis is quite surprising. The discovery of this effect is due to Yeung
and Chan [41], but the equally strong improvement of IDR(s) over IDR(1), which seems to
rely partly on the same effect, was discovered independently a decade later by Sonneveld and
van Gijzen. Additionally, the left-hand side block Krylov space that is implicitly used by
both ML(s)BICGSTAB and IDR(s) seems to be more effective in capturing the spectrum.
By choosing in IDR(s) this space (i.e., the matrixP) appropriately — and perhaps even
adaptively — depending on some knowledge on the spectrum ofA, one may be able to
further speed up convergence.

The other fundamental fact is that in the framework of Lanczos-type product methods,
multiple left projections can reduce the MV count. By the reduction of the MV count we
understand a smaller ratio between the search space dimensionn (nj ≤ n < nj+1) and the
numberjs of orthogonality conditions satisfied bywn. For n = nj = j(s + 1), this ratio
is 1 + 1

s
, while for CGS and BICGSTAB it is 2. This also applies both to ML(s)BICG-

STAB and IDR(s), but not to ML(s)BICG, where building up the left block Krylov space
costss MVs per value ofj, while ML(s)BICGSTAB and IDR(s) achieve the same effect
with just one MV. Therefore, ML(s)BICG is not competitive with ML(s)BICGSTAB or
IDR(s), except perhaps in situations where the Lanczos-type product methods fail due to
roundoff problems. (It is well known that the recursion coefficients produced by BICG-
STAB are usually less accurate than the same coefficients produced by BICG, and there are
problems where BICGSTAB fails to converge, while BICG succeeds.) For this reason, Yeung
and Chan [41] introduced ML(s)BICG only as a tool for deriving ML(s)BICGSTAB.

IDR(s) also inherits from BICGSTAB the disadvantage that for a problem with real-
valued data, the parametersωj are all real-valued (when chosen in the standard way), and
therefore the zerosω−1

i of Ωj cannot approximate complex eigenvalues ofA well. This
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problem has been addressed by BICGSTAB2 [12] and later by BICGSTAB(ℓ) [24, 27] by
building upΩj from polynomial factors of degree2 andℓ, respectively. An adaptation of
IDR(s) to include this idea in an efficient way is not so straightforward and requires a mod-
ifiction to the framework. This topic is addressed in [28] and [35], which were published
while this paper was reviewed.
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[15] M. H. GUTKNECHT AND Z. STRAKOŠ, Accuracy of two three-term and three two-term recurrences for
Krylov space solvers, SIAM J. Matrix Anal. Appl., 22 (2000), pp. 213–229.

[16] M. R. HESTENES ANDE. STIEFEL, Methods of conjugate gradients for solving linear systems, J. Res. Nat.
Bureau Standards, 49 (1952), pp. 409–435.

[17] C. LANCZOS,An iteration method for the solution of the eigenvalue problem of linear differential and integral
operators, J. Res. Nat. Bureau Standards, 45 (1950), pp. 255–281.

[18] , Solution of systems of linear equations by minimized iterations, J. Res. Nat. Bureau Standards, 49
(1952), pp. 33–53.

[19] D. LOHER, Reliable nonsymmetric block Lanczos algorithms, PhD thesis, Diss. no. 16337, ETH Zurich,
Zurich, Switzerland, 2006.

[20] D. P. O’LEARY, The block conjugate gradient algorithm and related methods, Linear Algebra Appl., 29
(1980), pp. 293–322.

[21] J. K. REID, On the method of conjugate gradients for the solution of large sparse systems of linear equations,

http://www.sam.math.ethz.ch/~mhg/pub/CopperMtn90.ps.gz
http://www.sam.math.ethz.ch/~mhg/pub/CopperMtn90-7.ps.gz


ETNA
Kent State University 

http://etna.math.kent.edu

148

in Large Sparse Sets of Linear Equations, Proceedings of theOxford Conference of the Institute of
Mathematics and its Applications held in April, 1970, J. K. Reid, ed., Academic Press, London, 1971,
pp. 231–254.

[22] Y. SAAD AND M. H. SCHULTZ, GMRES: a generalized minimal residual algorithm for solving nonsymmetric
linear systems, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 856–869.

[23] V. SIMONCINI , A stabilized QMR version of block BICG, SIAM J. Matrix Anal. Appl., 18 (1997), pp. 419–
434.

[24] G. L. G. SLEIJPEN AND D. R. FOKKEMA , BiCGstab(l) for linear equations involving unsymmetric matrices
with complex spectrum, Electronic Trans. Numer. Anal., 1 (1993), pp. 11–32.
http://etna.math.kent.edu/vol.1.1993/pp11-32.dir/ .

[25] G. L. G. SLEIJPEN, P. SONNEVELD, AND M. B. VAN GIJZEN, Bi-CGSTAB as an induced dimension reduc-
tion method, Report 08-07, Department of Applied Mathematical Analysis, Delft University of Technol-
ogy, 2008.

[26] G. L. G. SLEIJPEN AND H. A. VAN DER VORST, An overview of approaches for the stable computation of
hybrid BiCG methods, Appl. Numer. Math., 19 (1995), pp. 235–254.

[27] G. L. G. SLEIJPEN, H. A. VAN DER VORST, AND D. R. FOKKEMA , BiCGstab(l) and other hybrid Bi-CG
methods, Numer. Algorithms, 7 (1994), pp. 75–109.

[28] G. L. G. SLEIJPEN AND M. B. VAN GIJZEN, Exploiting BiCGstab(ℓ) strategies to induce dimension re-
duction, Report 09-02, Department of Applied Mathematical Analysis, Delft University of Technology,
2009.

[29] P. SONNEVELD, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, Report 84-16, Department
of Mathematics and Informatics, Delft University of Technology, 1984.

[30] P. SONNEVELD, private communication, 2009.
[31] , CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 10

(1989), pp. 36–52.
[32] P. SONNEVELD AND M. B. VAN GIJZEN, IDR(s): a family of simple and fast algorithms for solving large

nonsymmetric systems of linear equations, Report 07-07, Department of Applied Mathematical Analysis,
Delft University of Technology, 2007.

[33] P. SONNEVELD AND M. B. VAN GIJZEN, IDR(s): a family of simple and fast algorithms for solving large
nonsymmetric systems of linear equations, SIAM J. Sci. Comput., 31 (2008), pp. 1035–1062.

[34] E. STIEFEL, Relaxationsmethoden bester Strategie zur Lösung linearer Gleichungssysteme, Comm. Math.
Helv., 29 (1955), pp. 157–179.

[35] M. TANIO AND M. SUGIHARA, GBi-CGSTAB(s, L): IDR(s) with higher-order stabilization polynomials,
Tech. Report METR 2009-16, Department of Mathematical Informatics, Graduate School of information
Science and Technology, University of Tokyo, April 2009.

[36] H. A. VAN DER VORST, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of
nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 631–644.

[37] H. A. VAN DER VORST ANDP. SONNEVELD, CGSTAB, a more smoothly converging variant of CG-S, Report
90-50, Department of Mathematics and Informatics, Delft University of Technology, 1990.

[38] M. B. VAN GIJZEN AND P. SONNEVELD, An elegant IDR(s) variant that efficiently exploits bi-orthogonality
properties, Report 08-21, Department of Applied Mathematical Analysis, Delft University of Technol-
ogy, 2008.

[39] P. K. W. VINSOME, ORTHOMIN—an iterative method for solving sparse sets of simultaneous linear equa-
tions, in Proc. Fourth SPE Symposium on Reservoir Simulation, LosAngeles, 1976, pp. 149–160.

[40] P. WESSELING AND P. SONNEVELD, Numerical experiments with a multiple grid and a preconditioned
Lanczos type method, in Approximation methods for Navier-Stokes problems (Proc. Sympos., Univ.
Paderborn, Paderborn, 1979), vol. 771 of Lecture Notes in Math., Springer, Berlin, 1980, pp. 543–562.

[41] M.-C. YEUNG AND T. F. CHAN, ML(k)BiCGSTAB: a BiCGSTAB variant based on multiple Lanczos starting
vectors, SIAM J. Sci. Comput., 21 (1999), pp. 1263–1290.

[42] D. M. YOUNG AND K. C. JEA, Generalized conjugate-gradient acceleration of nonsymmetrizable iterative
methods, Linear Algebra Appl., 34 (1980), pp. 159–194.

[43] J.-P. ZEMKE, private communication, 2006.

http://etna.math.kent.edu/vol.1.1993/pp11-32.dir/

