Electronic Transactions on Numerical Analysis. ETNA
Volume 36, pp. 126-148, 2010. Kent State University
Copyright 0 2010, Kent State University. http://etna.math.kent.edu
ISSN 1068-9613.

IDR EXPLAINED*
MARTIN H. GUTKNECHT'

Dedicated to Richard S. Varga on the occasion of his 80tlnday.

Abstract. The Induced Dimension Reduction (IDR) method is a Krylovegpaethod for solving linear systems
that was developed by Peter Sonneveld around 1979. It waseddby only a few people, and mainly as the
forerunner of Bi-CGSTAB, which was introduced a decader.ldte 2007, Sonneveld and van Gijzen reconsidered
IDR and generalized it to IDR), claiming that IDR1) ~ IDR is equally fast but preferable to the closely related
Bi-CGSTAB, and that IDRs) with s > 1 may be much faster than Bi-CGSTAB. It also turned out thatrwhe
s > 1, IDR(s) is related to ML(s)BICGSTAB of Yeung and Chan, and that there is quite some flléyiin the IDR
approach. This approach differs completely from tradéloapproaches to Krylov space methods, and therefore
it requires an extra effort to get familiar with it and to unstand the connections as well as the differences to
better-known Krylov space methods. This expository pap@sdo provide some help in this and to make the
method understandable even to non-experts. After preggtité history of IDR and related methods, we summarize
some of the basic facts on Krylov space methods. Then we miréise original IDRs) in detail and put it into
perspective with other methods. Specifically, we analyzedifferences between the IDR method published in
1980, IDR1), and Bi-CGSTAB. At the end of the paper, we discuss a recqityposed ingenious variant of
IDR(s) whose residuals fulfill extra orthogonality conditions. €fé we dwell on details that have been left out in
the publications of van Gijzen and Sonneveld.

Key words. Krylov space method, iterative method, induced dimensegtuction, IDR, CGS, Bi-CGSTAB,
ML(k)BICGSTAB, large nonsymmetric linear system

1. History. Thelnduced Dimension Reduction (IDR) methaes introduced by Wes-
seling and Sonneveld from Delft University at a symposiunthaf International Union of
Theoretical and Applied Mechanics in September 1979. Irptioeeedings it is covered on
just three and a half pages of a twenty-page pap@r pnd it is explicitly attributed to the
second author. It was labeled as a Lanczos-type method feynumetric linear systems
which does not require the transpose of the matrix. The teanckos-type method meant
that the new method was related to tieonjugate gradient (£ G) methodf Lanczos 7],
which had been revived and reformulated by FletcHgfdur years before. Up to that time
there had been little interest in Lanczos’s approach, teegpé fact that it was very closely
related to the widely used conjugate gradient methag] 21]. Popular alternative Krylov
space solvers for nonsymmetric systems were methods likeoxfie’s RTHOMIN® [39]
(now often referred to as GCR) and its varian®81@0DIR and CRTHORES [42], as well as
similar methods introduced by Axelsso?].| GMREs [22] was still five years away. Also
popular were parameter-dependent Krylov space methodis,asiChebyshev iteration, and
parameter-dependent iterative methods based on matititirgplsuch as SOR.

The IDR method received hardly any attention, probably bsedt was neither presented
at a conference of the core numerical analysis communitpuablished in a widely read jour-
nal. Moreover, Sonneveld’s approach to designing a Kryfmcs solver was very unusual
and, even for experts, hard to fully understand. Althoughttethod was defined clearly and
uniquely under certain regularity conditions #0], some of the details, and in particular the
proof of the connection to G, were left for publication elsewhere. The basic resuthis
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connection is that the IDR residual polynomials are of thenfo

@) ooty = § aWeat) =2
Q)41 (t)  ifn=2j+1,

whereQ(t) := 1, Q;(t) := (1 — wit)--- (1 — w;t), and wherep; denotes thgth BICG
residual polynomial, which is often referred to as a Langzolynomial, scaled such that
p;(0) = 1, while p,4+1 denotes another residual polynomial, which has degreel. A
new linear facto1 — w;41¢) is appended t); in every other step, and it was suggested to
choose it such that the norm of the new IDR residual is mingthiamong those that lie on a
certain straight line. This is a widely used type of minintiaa step. For example, it is also
found in the conjugate residudé4] method, but there it leads to a global minimum solution
(for a symmetric positive definite matrix). And such a mirgation is a key ingredient of
BICGSrAB. The publication40 only mentioned that the first line ol.(1) had been proven
in the case where the matri of the (real) linear system of equatioAsx = b is symmetric
positive definite.

In 1984, Sonneveld introduced another Lanczos-type mettiwConjugate Gradient
Squared (CGS) methd@9]. It is based on residual polynomials that are the squardiseof
BICG residual polynomial$:

(1.2) pEE(t) = pr(t).

Note that the indexing of the residual polynomials and neglislis differentin IDR and CGS:
in the former, the degree increases by one when the indexsghbgvone; in the latter, the
degree increases by two.

The CGS paper9] was received by the SIAM Journal on Scientific and Staé${tom-
puting (SISSC) on April 24, 1984, but it took nearly five yetrget published in revised and
extended form31]. Nevertheless, the method was accepted quickly by nualeaitalysts
and engineers. In typical cases it converges nearly twidasisas BCG, though often in a
very erratic manner. Although the idea and derivation of G&Singenious, they are easy
to understand: starting from the standard recursions ®BtC G residual polynomials, one
just derives recursions for their squares by defining auldliti suitable products of pairs of
polynomials.

Yet another similar method was presented at the Househ8llmposium in Tylosand
in June 1990 by van der Vorst, then still also at Delft UniitgrsThe title of his talk and
the corresponding paper coauthored by Sonneveld and gednutSISSC on May 21, 1990,
was"“ CGSTAB A more smoothly converging variant of CG-§7]. As part of the revision
process the title was later changed ih®i-CGSTABa fast and smoothly converging variant
of Bi-CG for the solution of nonsymmetric linear systemaitd Sonneveld resigned as a
coauthor B€]. In this paper, van der Vorst started from the first formulgli.1), now written
as

BiCGSTAB

(1.3) Pn (t) = Qn(t)pn(t)'

Thus, he adopted the indexing from CGS, and he also adoped@G S the derivation based
on directly finding a recursion for these residual polyndsjidnat is, he abstained from using
the recursions imposed by the IDR approach.

2Therefore the name Biconjugate Gradient Squara(®S) method would also make sense. However Son-
neveld's view was that CGS is derived from a CG-type algarifior building up a set of orthogonal (or formally
orthogonal) polynomials30]. Only after the recursions are mapped into a Krylov spaatithembedded in an inner
product space does the notion of biorthogonality make sense
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In the following years, BCGSraB was generalized t81CGSras2 [12] and BICG-
STAB(¢) [24, 27], where the polynomial2,, is built up from factors of degre2 and/, re-
spectively, whose coefficients are determined by a two— aFdimensional residual norm
minimization, respectively. This allows a better approatimn of complex eigenvalues and
yields typically faster convergence at the price of higtmmnplexity, but only slightly higher
computational cost. Nevertheless, the simple origind B8Srae became the method of
choice for most users who apply a Lanczos-type method feirgplh nonsymmetric linear
system.

Due to the structure of the residual polynomials, CGS andribthods of the BCG-
StaB family are often referred to dsanczos-type product methods (LTPM&}] or as hybrid
BICG methodsZ6].°

A new dimension came into play when, in 1997, Yeung and Chaméted the paper
ML(k)BICGSTABa BICGSTAB variant based on multiple Lanczos startingaesdo the re-
named SIAM Journal on Scientific Computing (SISZ)][ In this paper, they first introduced
with ML (k)BICG a version of BCG where the left Krylov space (generatedAY from an
arbitrary shadow residua}), which is used for the oblique projection of, is replaced by
a block Krylov space generated from a mafRx with £ columns. Then they generalized
the transition from BCG to BICGSTAB to the new situation. This led to very complicated
formulas, which were then meticulously modified to get a $anpnd efficient code. The
method was shown to converge amazingly well for a large nurabtairly ill-conditioned
examples, handled mostly without preconditioning and watter largek, 25 < k& < 100.
However, the largé meant high memory consumption and considerable compotdtost!
Although the essence of the paper is well explained and @aggderstand, the complexity
of the formulas and, paradoxically, the treatment of all degails must have kept people
from reading the paper and applying the method — despite ¢ng promising numerical
results. The authors were aware of the connection to nonggrimblock Lanczos methods
[1, 3,5, 6, 8, 19], but while these are based on generalizing the Lanczos-tieren recur-
sions, Yeung and Chan generalized the two-term recursiioRs®G, as was done before by
Simoncini R3]. This was partly the reason for the complex formulas.

In [40], Wesseling and Sonneveld had announced a further publican IDR to be in
preparation, but only in 2007 was such a paper submittedn ag&1SC; see3?2] and, for
the final version, 33]. In the sequel of an enquiry by Jens-Peter Zen&#® ih May 2006,
Sonneveld and van Gijzen reconsidered IDR and generalitedDR(s), where the original
method is included as the case= 1 (except for a small but interesting detail). They also
clarify the relation of their method to IRGSrAB (whens = 1) and, in the final version,
to ML (s)BICGSTAB (whens > 1), which they did not know when submitting the paper.
It turns out that the even-indexed IDR residuals are (up to roundoff effects) exactly the
BICGSraB residuals, and that likewise evefy+ 1)th IDR(s) residual is, up to the possibly
different choice of the parameters, a ML(s)BICGSTAB residual. However, the way these
residuals are constructed differs, and the “intermediasituals do not exist in EG STAB
and differ in ML(s)BICGSTAB, respectively. The paper also features numerical examples
that are relevant in practice and demonstrate the powereafigthod even for small values
of s where the cost per step inis small.

In a follow-up publication, Sleijpen, Sonneveld, and vafe&i [25] introduced partly
different notation and tried to explain IGR) and its connection to EEG StAB from a some-
what different viewpoint, but this author prefers the preagon in [33]. They also introduce

SNote that many other authors have introduced other clagsbgtwid” iterative methods for linear systems.
4For one example, the matrix ORSIRR1, the dependenck was investigated for smakl, where dramatic
improvements can be noticed already 2o k£ < 10; see Figure 3(b) of41].
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methods similar to MILs)BICG and ML(s)BICGSTAB.

In the recent publication3@], van Gijzen and Sonneveld introduce yet another, very
ingenious algorithm that fits into the IDR framework and leaol an elegant code. It uses
recursions that are quite different from those of the oagibR(s) of [33] and produces
“intermediate residuals” satisfying additional orthogbty conditions that lead to shorter
recurrence relations for someand improved memory management. The authors do not
introduce a separate name for this new algorithm, but in sofrtiee figures they refer to it as
IDR(s) Bi-ortho. We will discuss this IDR variant in Sectidhand use the shorter acronym
IDR(s)BIO.

2. From BICG to ML (k)BICGSTAB. In this section we review some basic facts on
Krylov space solvers, putting special emphasis on the lpigate gradient (BCG) method,
and then look at the transition fromB8G to BICGSraB. We also have a quick look at
Yeung and Chan's4[1] generalization of these methods to Nl)BICG and ML(k)BICG-
STAB, respectively, which feature multiple initial left (or st@w) residuals.

2.1. Krylov space solvers based on projection. Given a nonsingular linear system
Ax = b € CV and an initial approximatios, along with its residuat, := b — Axq,
a Krylov space solver constructs recursively approximatet®nsx,, (often referred to as
iterates) such that

X, € Xo + Kn,
where
K := Kn(A, 1) := span {rg, Arg,..., A" 'rq}

is thenth Krylov subspacgenerated byA fromr,.> Note that we allow complex data now.

Two of the basic theoretical facts in this setting are: (igfighis a minimal such that
KC, is invariant. (ii) For the solutio,, it holds thatx, € xq + K., andv is the minimal
index for which this is true. So, if we choosg, well, the solver terminates in steps. In
particular, it suffices to choose the iterates so that theesponding residuals, are linearly
independent unless zero. In practicés typically large (close t@V), and therefore this finite
termination property is irrelevant.

The true aim is to findk,, very close tox, in few (or at least not very many) steps.
Because of the limited computer memory, it is important ta faolvers that allow us to
computex,, with short recursions. The restrictis, € x¢ + /C,, implies that

(2.2) r, €rg+AK, CKui1.

Most methods produce residuals that have a component imgwe part of the space”, that
isr, € ro + AK,_1; in other methods, there may occur exceptional situatioitis vy, €
ro + AK,,_1, which implies that the residuals are linearly dependetitiatmoment.

We will refer to spaces of the formy + AXC,, or the formxy + IC,, asaffine Krylov
subspaces

Since the goal is a small,, we need to approximatg by elements fromAC,,. For
example,||r,, || is minimal if we chooser,, as the perpendicular frony, to its orthogonal
projection intoA/C,,. This is the basis of the conjugate residual (CR) mett3aiifor Her-
mitian systems and its various generalizations for the Hermitian case, such as GCR and

5K (B, y) denotes in this paper a Krylov subspace generateB liypm y, while /C,, without an argument is
an abbreviation foiC,, (A, ro).
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GMREs. For these methods, we have
r, € rg + AK,, r, L AKC,.

Some Krylov space solvers are based on other orthogonaliquelprojections. In particular,
for the biconjugate gradient (BG) method 18, 4], which is of special importance here, we
have

(2.2) rn €10+ AKn,  Tn LKy = Kn (A T).

Here, the initial shadow residual, can be chosen arbitrarily; preferably, it should be in
arbitrary position with respect to an eigenbasibf

The most often used recursions for@s are the coupled two-term on®MIN recur-
sions, which can be written as follows:

(2.33) Qp 1= 0, /00,

(2.3b) py1 =Ty — @AV,
(2.3¢) Tpil =Ty — O AV,
(2.3d) Xpt1 i= Xn + Qp Vi,
(2.3e) Ont1 := (Tpt1,Tngi1)s
(2.3f) Br i= Ont1/0n,
(2.39) Vg1 1= Iny1 + BnVa,
(2.3h) Votl = Tni1 + BuVa,
(2.30) 01 o= (Vg1, AViga).

In addition to the residuals,, and iteratesz,,, three other sets of vectors are constructed:
shadow residualéor left-hand side Lanczos vectors) € ry + A*K,,, search directions
v, € vog + A*K,, andshadow search directions, € vy + A*KC,,. All these vectors are

updated by coupled two-term recursions.

2.2. Residual polynomials and Lanczos-type product methods. Let P,, denote the
space of polynomials of degree at mastand letP; := {p € P,,; p(0) = 1}. The inclu-
sion 2.1) implies that one can associatg with a residual polynomiap,, € P2 such that
r, = pn(A)rg. Roughly,||r, | is small if |p,(¢)| is small at those eigenvalues Af that
are “active” whenrg is written in terms of the eigenbasis Af. (This statement needs to be
modified whenA has no eigenbasis or an ill-conditioned one.) This obsenvahotivates
derivations of Krylov space methods via real (wh&nis Hermitian) or complex (wher
is non-Hermitian) approximation problems. It must alsoéhawtivated Sonneveld’s CGS
method B1], where, as noted inl(2), the residual polynomials are the squares of the B
residual polynomialg,,. Clearly, whenevefp,(t)] < 1 at an eigenvalugp?(t)| is even
much smaller there. But often the residual norm o€B oscillates wildly as a function of
n, and then the residual norm of CGS oscillates even more. diwgior at least damping
this was the motivation for van der Vorsif] for the choice {.3) in BICGSTAB. Recall that
there, at step, w,, is chosen to minimize the residual norm on a straight line.

Let p,, denote the polynomial obtained fropy by complex conjugation of the coeffi-
cients. Then, in BCG, we haver,, = p,(A)ry andr,, = p,,(A*)ro. In addition, the search
direction polynomialsr,, € P,\P,_1 associated with the search directionsplay an im-
portant role: sincery = ro andvy = T, we havev,, = o,(A)ry andv,, = 7, (A")ry.
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Hence, associated with the recursioBs30), (2.39, (2.39), and .3 there are the underly-
ing coupled polynomial recursions

(2.4) Pr+1(t) = pu(t) — anton(t), Ont1(t) = ppt1(t) + Bnon ().

These polynomial recursions are fundamental for derivi@fSGand BCGSraB, and also, as
we will see in Sectior, for understanding the difference between [DRand BCGSTAB.

For CGS it is easy to derive fron2 () four coupled recursions for the polynomials
PSS = p2, 02, p,o,, andp, 0,1, which can then be translated into recursions for elements
of K,. Likewise, for BCGSTAB one combinesa.4) with the trivial recursiorﬂnﬂ(t) =

GSTAB

(1 —w, t)82,(t) to derive three recursions for the three prodw,;'fs = s Prn—1,
ando,,Q,,. In both cases alternative recursions exist,%00.

2.3. Multiple initial shadow residuals. Yeung and Chan4] generalized BCG by
replacing the left Krylov subspaces,, by block Krylov subspaces, which are a sum of
Krylov spaces for the same matrix* but with several different initial shadow residuals,
stored as the columns of aW x s matrix Ry. Yeung and Chan called the resulting method
theML (s)BICG methodexcept that they usedinstead ofs). The residuals whose index is
a multiple ofs satisfy

(2.5) r €ro+ AKy,  ry LKA, Re): ZIC AT
For the others, with index = sj + ¢, wherel < ¢ < s, we have analogously

r, € ro + AK,,

14
vy LKA Ro) =Y Kjpr (A Z K (A F0)
i=1 i=0+1

(2.6)

These residuals could also be constructed by using a varfitimt nonsymmetric block Lanc-
zos method, where the block size of the left block Krylov spesss, while that of the right
(block) Krylov space is just one, that is, the right spacensoedinary Krylov space; see
[1,3,5, 6,8, 19 for ways to construct bases for these spaces with shorntsieris. Yeung and
Chan rather generalize block ®G, described before by O’Lear(] and Simoncini 3],
but the latter authors assumed the same block size in thbdefl and the right-hand side
Krylov spaces. Unfortunately, in theory and practice tloane (and ultimately do) occur prob-
lems that must be addressed by block size reduction (defjatMdoreover there may occur
Lanczos breakdowns and pivot breakdowns; see, & .fdr a discussion of the breakdowns
of BICG. Deflation and breakdowns have not been addresséd]in [

Yeung and Chan4[1] continued by applying to MLs)BICG the same transformation
that turns BCG into BCGSTAB. Unfortunately, this lead to rather complicated formulas,
which they were able to simplify and economize somewhat bgladaic manipulations. The
resulting algorithm, called M{s)BICGSTAB, was shown to be very effective for a large
number of rather ill-conditioned test matrices.

Under the titles Bi-CG and Bi-CGSTAB, Sleijpen, Sonneveddd van Gijzen 75|
sketched two methods that are in spirit the same ag4yRICG and ML(s)BICGSTAB,

8In [11] four sets of equivalent recursions for CGS derived fromBh@Resand B ODIR recursions of BCG
are given; however, they are all more complicated than tiggnad CGS recursions, and therefore more costly in
work and storage.
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but in detail differ considerably. First, they are not usihg equivalent of Lanczos’s coupled
two-term recursions; second, their “intermediate” realdwsatisfy only a block biorthogo-
nality, and not the stricter requirement @f€) that determines the residuals of Ni)BICG
uniquely.

3. IDR basics. In this section, we review basic facts about the [®Rmethod, fol-
lowing essentially the presentation iB3. One aspect that we stress more explicitly than
Sonneveld and van Gijzen is that IRR is a Krylov space method, and therefore the resid-
uals lie in an affine space that is embedded in a Krylov sulespéat also try to give more
realistic figures, although we will see that they still do reftect the whole truth.

3.1. ThelDR Theorem. The IDR approach is based on a finite series of nested linear
subspaceg/; of diminishing dimension with the property that for somergasing index
sequencen; } the residuals,, with n > n; all lie in G;. Of course, all residuals lie in the
invariant Krylov spacéC, := K, (A, ry); therefore, we can start with, := 0 andG, := K.

The other space@; are defined by the recursion

(3.1) gj = (I - ij)(gj_l ns).

Here,S is a prescribed linear subspace of codimensien IV, and the constants; # 0 will

be suitably chosen to boost convergence. Let us denotertendion ofG; by d;. Clearly,
G;j—1 NS can be represented by — d;_; + s linear equations, and it is likely that these are
linearly independent. However, as pointed out3f][ we cannot conclude easily that linear
independence is here a generic property (valid for almdgtrablems if data are chosen
randomly) sincé&y;_, actually depends ofi. But, typically,G;_; NS and its image&j; have
dimensiond; = d;_; — s. We will mostly take it for granted that this and other regija
assumptions are satisfied, and we will refer to this asdbelar case’ One can see, however,
by analogy to the behavior of the related K4.BICG and ML(s)BICGSraB methods, that
we cannot expect thal; = d;_1 — s remains true fof up toN/s if s > 1.

The IDR Theorem, given next, states two properties that arepparent: the spacégs
are nested; and, under mild assumptionsspthe inclusion is strict, i.eG; C G;_;. For an
illustration, see Figur8.1

THEOREM 3.1 (IDR Theorem40, 33]). Assume thaf N G, contains no eigenvector of
A. Then

G; € Gj_1 unlessg,_; = {o}.

For the proof, seed, 33]. As a consequence of the strict inclusiogs,= {o} for some
j < N, say,j =: J. However, the bound < N that follows from the IDR Theorem leads to
a strong overestimation of the finite termination index tfa simple reason that termination
is characterized by ; = 0, which we can expect fof of the sizeN/s.
Sonneveld and van GijzeB3J] also provide the Extended IDR Theorem, the main result
of which is that the differenceé; — d;+1 is monotonically non-increasing:

0 S dj — dj_‘_l S dj+1 — dj S S.

Alternatively, this result could also be concluded from th@nection to MI(s)BICG.
Of course, neitheg, nor the other spaceg; are known in advance in the sense that
we know a basis for them. In theory, the IDR algorithm wouldyide these bases if we

"The authors of33] refer to it as thegeneric casgalthough this may not be fully consistent with the common
usage of the wordeneric
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GNS=S§

FIGURE3.1.Cases = 1: The space®R3 = K3 = Go 261 € Go.

continued it until the exact solution &x = b was found, that is, untit, = o was attained;
but this is not feasible unlessis very small, so that the linear system can be solved exactly
in a few steps.

IDR constructs typically only + 1 residuals inG; before turning to the next subspace
Giy+1 € G;. To accommodate exceptional situations we introduce a tooitlly growing
index sequencén; } defined implicitly by

(3.2) r, € G;N(ro+ AK,), n>mn;.

In the normal casey; = (s+1)7, son;+1 —n; = s+ 1, for reasons we will see in a moment;
butn;+1 —n; > s+ 1 may occur in exceptional situations. In the simplest easel, which

is when IDR is closely related toIBGSTAB, two new residuals are computed for egch
This is depicted in Figur8.2. The details of the construction are discussed next.

3.2. Recursions. The recursion for the residuals builds upon the recursiof) or the
spacegj;:

(33) Tyl = (I — (.UjA) Vi, v, € gj,l nsSnN (I‘Q + A’Cn)

We suppose here that, for al| v,, lies in the affine Krylov subspace spannedry. ... r,
and shifted byry. This means that,, andr,,,1 have “maximum degree” in the sense that
v, € r9 + AK,—1 andr, 1 € rqg + AK,. There may be situations where the latter
assumptions do not hold, and, according 36]] there are in the IDR framework ways to
recover from such situations, but we will not treat that hditeere is some vague analogy to
look-ahead Lanczo¢T] or look-ahead block Lanczo4]in such recovery procedures.

To construct vectors or “points’, 11 € G;, we need vectors,, € G;_1 NS, and the first
time we construct a point ifF;, we can choose;. To construct,, in G;_; NS we need to
intersect a-dimensional affine subspace®f_; (in theory it could be represented bBy— s
inhomogeneous linear equations) with the subsgaoepresented by homogeneous linear
equations that we may write &*v,, = o with an N x s matrix P whose columns form

81t is conceivable that the inclusion i8.Q) holds by chance for some < n; too, but forn > n; the inclusion
will be forced by construction.



ETNA

Kent State University
http://etna.math.kent.edu

134

FIGURE 3.2.Cases = 1: The first two steps: construction of andrs (for details see4.1).

a basis ofS*. In theory, we would end up witt.inhomogeneous linear equation foy;
that will usually have a unique solution, but this is of caun®t feasible in practice. Instead,
we represent the-dimensional affine subspace@f_; directly by an affine combination (a
linear combination whose coefficients sum up to onej ef 1 points inG;_;. The natural
choice for these + 1 points are the last computed residug|s s, . . ., r,,. Here we see why
we needh; 1 —n; > s+ 1. Aneat way to take the condition of an affine combination into
account is to introduce the differences of the residualorsctind that is what Sonneveld and
van Gijzen do:

¢(n)
(3.4) Vy =T, — Z ygn)Arn,i =r, - AR, c,,

i=1
where
s<i(n) <n—mnj_1,

Ar, :=T,41 — Iy,

ARn = [ Arn_l cee ArnfL(n) ] )
T
cp = [ A vL((nn)) ] :

The restriction(n) < n —n;_; ensures thaf\r,,_;, € G;_1. Usually,.(n) = s, but, again,
there may be exceptional situations not covered here wnereeeds to choose a largén).
Note that using the differences of the residuals leadstpwhose polynomial representation
automatically inherits front,, the valuel at zero. Therefore, indeed, € ro + AK,,, and
we may viewv,, as a residual, so therex$ € x, + I, such thatv,, = b — Ax/,.

To enforcev,, € S we enforc€ v,, 1 S+ = R(P), that is,P*v,, = o. This means
that the termAR,, c,, in (3.4 must be the oblique projection af, into R(AR,,) along

9R(P) denotes the range &.



ETNA

Kent State University
http://etna.math.kent.edu

135

S. In order that this projection is uniquely defined, we n®dAR,, to be nonsingular, in
particular.(n) = s to make the matrix square. Then,

(3.5) ¢, = (P*AR,) ' P'r,,.

Otherwise, when(n) > s, we might choose,, as the minimum norm solution of an under-
determined least squares problem.

For the initial phase, that is, for constructing . . ., rs, we may apply a fairly arbitrary
starting procedure, e.g., GMR.

We need not just one poimnf,;; € G; but at leask + 1 of them before we can continue
to the next spacg;;,. At first one might expect to nees + 1 points inG,_; to repeat
the above construction + 1 times. However, this is not the case. BecagseC G;_i,
the just-constructed,,.; € G; also qualifies as a point @¢f;_; and can be used when we
replacen by n + 1 in the above constructiol. So, s + 1 points inG;_;\G; will usually
be enough. However, we cannot fully exclude degeneratatsins, where the last + 1
points constructed ig;_; do not span ag-dimensional affine space and therefd&®,, is
singular (or nearly so). A careful implementation of the noet will need to address such
situations, which are also reflected by a zero (or absolstelgll) coefficient in the™ term
of the polynomial representation of some of the vectors

For the case = 1, the first two steps, from givery andr; to ro andrs, are shown in
Figure3.2 Then the construction is continued ¥} = r¢ = o in Figure3.3 However, our
figures show actually one of the “exceptional situations”just referred to: the constructed
residuals are not all linearly independent. In fact, siteefigures show a construction¥
(i.e., N = 3), linearly independent residuals would mean convergaemeginost three steps,
thatis,rs = o.

We could avoid using,, by inserting 8.4) in (3.3):

(3.6) rp41 =1, — AR, ¢, —wj;A(r, — AR, c,).

10The IDR(s) variant of Sectiorb will differ in the choice of points used ir8(4).

Go=R3

FIGURE 3.3.Cases = 1: Construction ofr4 andrs. Termination withvs = o (for details se€4.1).
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This formula illustrates that IDR) differs considerably from most commonly used Krylov
space solvers such as CG,@E5, or GCR. The difference is that i.¢) not onlyr,, is mul-
tiplied by A, but alsor,,_, . .., r,—1. This means that, in the terminology df], IDR(s) is
a(s+1,s+ 1)-step method, while, e.g., CG|BG are(2, 1)-step methods, THOMIN(k)
is a(k, 1)-step method, and the untruncated GCR (s@ 1)-step method.

As mentioned beforey; can only be chosen when we construct the first poigtirthat
iS, rpy1 With n + 1 = n;. The formuler,, 11 = (I —w;A) v,, suggests that we choose so
that||r,,+1|| is minimal among alt of the formr = (I — w;A) v,,, thatis, we choose it such
thatr, 1 1L Av,:

(Av,,vy)

Note that this value ab; may turn out to be zero or close to zero. As irCB STAB, this is a
source of breakdown or instability, but it is easily cureddbyposing another value that does
not minimize the residual locally.

Finally, we need to address the fact that it does not suffio®istruct residuals,, and
v,,, but that we also need the corresponding approximate salufj andx!, € xo + KC,,. It
is readily verified that

(3.8) v, =1, —AR,c, <<— x) = x, — AX,, cp,
(3.9 rpt1 = (I—wjA)v, <= Xpi1:=wjvy,+X,.

There are several ways to rearrange these four recursi@hsoacombine them with the
iterate-residual relationships; s&t5]. Also in the “prototype algorithm” of33] a different,
but equivalent set of recursions is used. It includes théograt (3.6) for x,,41,

(3.10) Xpt1 =X, — AXp ¢ +wji(r, — ARjcyp)

and the relatiol\r,, = —AAx,,.

Note that here, as in any competitive set of recursions, thmtost of computing
xn € Xo + IKC,, consists ofr + 1 matrix-vector products (MVs) wittA. Regarding memory,
one needs just to storkecolumns of eacl?, AX,,, andAR,,, plus a few singleV-vectors.

3.3. Characterization by orthogonality. Clearly, the dimension @j; gets reduced due
to taking the intersection with thgV — s)—dimensional spac&. This dimension reduction
is viewed as the basic force behind IDR and gave the methedite. However, dimension
reduction in Krylov space solvers is not at all a unique feaf IDR. In fact, projection
based methods can be understood in a similar way. For exathpleharacterizatior2(2) of
the BICG residuals could be written as

r, € Eﬂ; N(ro+ AK,),

where £, = K, = K.(A* Tp), and for CR, GCR, and GMEs the same is true with
L, = AK,. What s differentin IDR is tha@; is not an orthogonal complement of a Krylov
subspace. However, due to the form of the recursioq{ #, G, turns out to be the image
of an orthogonal complement of a Krylov subspace. This tésumplicit in Subsection 5.1
of [33] and has been explicitly formulated i&%):

(3.11) G = {Qj(A)W lw L /cj(A*,P)} = Q;(A) [K; (A, P)*-

Here, as before);(t) := (1 — wit)--- (1 — w;t) € P7, andk;(A*, P) is the jth block
Krylov subspace generated By from thes columns ofP, which are assumed to be a basis
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of SL. Note that when we chood®, = P, this block Krylov subspace is the same as in
ML (k)BICG; see 2.5. Note also that the largey; the larger isiC;(A*, P), and thus the
smaller isgG;.

To prove B.11), let us repeat here the argument fradd][that is linked to the recursions
that we have just discussed and provides further insightte (duction proof of §.17) in
[29 is different.) We start from3.1) and @.3) and the observation that, € G;_; must
likewise be of the form

A% (I—u}jflA)V;, V;l S gJ;Q ﬂSﬂ(I‘Q‘FA’Cnfl),

V;l = (I - wj_gA) V;:, V:: S gj_g NnNSN (I‘o + AICn_g),

vU™2 = (T - wA)Wpy1, Wni1 € GoNSN(rg+ AK, ji1).
Starting at the bottom, we can also write (wWith = 1):

W1 = Qo(A)w,1 €Go NS,
Vsljiz) =AW, €G1 NS,

v, =Q 2(A)wp1 €G2NS,

V= Qj_l(A)Wn_‘_l S gj_l NS,
ryt1 = Qj (A)WnJrl S gj.

Since{Q,}]_} is a basis of?;_; we see that
Q(A)Wn_H esS (VQ € Pj_1),

that is, P*Q(A)w,,+1 = o € C® or, in other wordsw,,+1 L Q(A*)P, VQ € P;_q, or
Wpt1 L K; (A, P). In summary, we conclude that any; € G, is of the form

(312) rpp1 = Qj (A)Wn+1, Wyl € goﬂSﬁ(I‘o-i-AICn_j_‘_l), Wpt1 L ICJ‘ (A*, P)

This proves8.11). For simplicity, we may replace+ 1 by n here and, for our records, write
anyr, € G; (n=nj,...,nj4+1 — 1) as

(313) r, = QJ(A)Wn, w, €EGNSN (I‘O + AICn_j), w, L ICj (A*, P)

Note that fom = n; — 1 andn = n;, the polynomials associated with, have the same
degreew,, € ro + AK,; ;. (Thatis why we chose as index forw,,, although this is not
the degree of the associated polynomial.)

In the generic case, for fixed we will constructi; 1 —n; = s+ 1 linearly independent
vectorsw,, that provides + 1 linearly independent vectors, (with n; <n < n;;1). So, as
long as we stay in the generic casg,= j (s + 1).

Moreover, generically, fon = n; = j(s + 1) wherew,, € ro + AK;; andw,, L
;i (A", P) with dim IC; (A", P) = js = dim AK;,, there is auniquew,, satisfying 8.13,
since it can be characterized as the solution of a lineaesystith ajs x js matrix that can
be assumed to be nonsingular in the generic case:

THEOREM3.2 ([33)). Assumethat; = j(s+1),7 =1,2,...,J, and that the iterates
x,, and residuals:,, of IDR(s) are forn < n; uniquely constructible by the recursio(3)
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and (3.4) with the choice(n) = s and the coefficients,, from (3.5). Then, forj < J, the
residualsw,,; andr,,; are uniquely characterized by the conditid@s13.

COROLLARY 3.3. Under the assumptions of Theorén?, and if the same parameters
wj (1 <j < J) have been chosen, the IDR iteratesx,,; and residuals-,,; are identical to
the iteratesx; and residuals; of BICGSTAB (if s = 1) or ML (s)BICGSTAB (if s > 1),
respectively.

But the s other vectorsw,, (with n; < n < n;41), and thus also the corresponding
residualsr,,, are not uniquely determined b$.(3. We cannot expect that they appear in
BICGSraB or ML (s)BICGSTAB, and, in fact, they usually do not.

4. Thecase s = 1 and the comparison with BICGSTAB. If s = 1, the subspac§ is a
hyperplane determined by a single vegtor. S. So the matriXP consists of the single col-
umnp now. By Corollary3.3 whens = 1, every other set of vectofsw,,, r,,, vi,—1, Xp, - - - }
(with n even) is uniquely determined up to the choice of the parasiete If the latter are
chosen as in BCGSraB (and they usually are), andif, := p in BICGSTAB, then

BiCGSTAB BiCGSTAB BICG

(4.1) I2j =15 ) X2j = X; , Woj =T;

So there remains the question whether and ho@®SrAB and IDR1) differ. In order
to answer this question, we will look at the polynomial restons that mirror the recursions
for the Krylov space vectors generated by the two methods.

4.1. Recursionsand orthogonality propertiesof IDR(1). Whens = 1, the recursions
(3.9 and B.9) of IDR(s) simplify to

Vp i=TIp _Wn(rn _rn—1)7 X;z = Xn_'yn(xn _xn—l)a

4.2
(4.2) rpt1 = (I —wjA) vy, Xnp41 1= X, +W;Vp,

wheren > 1, j = | (n + 1)/2]. The first line can be written

Vi = (1 - ’Vn)rn + Ynrn-1, X% = (1 — Vn)Xn + YnXn—1,

to emphasize that,, lies on the straight line through, andr,,_;, and likewisex/, lies on
the line throughx,, andx,, 1. By (3.9, 7, := 'y(") = (p,r,) / {p, Ar,_1) is chosen such
thatv, € S, thatis,v,, L p. This is illustrated in the Figure3.2 and3.3. The parameter
w; is usually chosen to maks; as short as possible; this means thgtis orthogonal to
Avy;_1; see B.7). (This property is not taken into account in the figures.)

From (@.1) and @.13 we know that

BICG

(4.3) Wai =

J

= pPj (A)I‘Q 1 kv:j,

wherep; is still the jth Lanczos polynomial, and where naﬁy = K,; (A", p). According to
(3.13, wa;41 is represented by a polynomjal,, € P;,, and

(44) W2j41 = Z)\jJrl(A.)rO 1 ﬁj.
So, sincer, = (I — wjA)v,—1 = Q;(A)w,, we have

r, = Q;(A)w, = (A) 5 (A ) !f "= 2],’
J+1 ro if n=2j+1,

J(A)p
(4.5) )? _
{ A)ro if n=2j—1,
v = Qi1 (A)w,q =

pJ+1 A)I‘O if n= 2]
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Inserting these formulas inte,, = (1 — ~v,)r,, + v.rn—1 We get, after a short calcula-
tion, forn = 25 + 1 andn = 2j, respectively,

pi+1(t) == (1 —y2j41) Pj+1(t) + 2541 0,8 (1 =10,1,2,...),
Pi1(t) == (1 = 2;5) (1 —wjt) p;(t) + 725 p5(t)  (GF=1,2,...).
4.2. Comparison with the recursions and orthogonality properties of BICGSTAB.

The Lanczos (residual) polynomigls and the BCG search direction polynomiais; are
formal orthogonal polynomiald=OP$ in the sense that, far# j,

(4.6)

pilp; = (BT, p(A)re) =0 = (%7, 1)) =0,

? J

3 ) J

aiJ_tcrj < <Ei(A*)F0, AO’j (A)I'0> =0 < <VE»;|CG AVE?ICG> = O,

j “° are the search directions and the “shadow” search diresti@spec-
tively, that appeared in the recursio2s3g—(2.3). Since{po, ..., p;—1}and{oo,...,0;-1}
both sparP;_1, we actually have

BICG ~BI
wherev.  andv,

BICG BICG

Pj 1 Pj_l, 0j 1y Pj—l’ <~ r; 1 IACJJ‘, v 1a IEJ».

Here, L o denotes formal orthogonality with respect to the formalinner product., .) 5.
In summary, the basic B G recursionsZ.3h, (2.39, (2.39, and @.3h upon which BCG-
STAB builds too, are mirrored by the following recursions fgrando;:

(4.7) piv1(t) == pi(t) —ajtoj(t),  0541(t) = pja(t) +5; 0;(t) -
~—— ~—~ ~—~— ~—— —— ~—
l'Pj L’P]‘71 l'Pj71 1t Pj l'Pj lt'Pj71

Here, botha; and3; are chosen so that the new polynomiajs; ando;; feature the
indicated orthogonality properties, by which they are umeig determined up to a scalar
multiple.

In contrast, in IDR1), by (4.6), (4.3), and @.4),

pi+1(t) == (1 —y25) (1 —wjt) pj(t) +v25 pi(t),
—— ~—— — —~—
1P 1LPi_2 1P 2

pi+1(t) == (1 = y2541) Pi+1(t) +y2541 ps(t) -
N——— SN—— e
1P, 1P 4 1P 4

Comparing these recursions fgr;, p;) with (4.7) we easily see that

(1 = v2541) (Pj+1(t) — pj(t)) = —a;j to;(t).

So,
~ Qi
(4.8) Pi1(t) = pi(t) = T——ta;(?),
- V2j+1

or, after multiplication by(2;(¢) and translation into the Krylov space,
Ozj' BiCGSTAB BICGSTAB BICG

(49) roji1 =T — m As. y Wheresj = QJ(A)V
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FIGURE4.1.Cases = 1: The connection betweeBi CGSTAB and IDR(1).

This formula expresses the odd-indexed [DRresidualsrs;1 in terms of quantities from
BICGSrAB and the IDR coefficient,; 1. We illustrate the connection in Figufel While
BICGSraB implicitly constructsp;,1 by enforcing a biorthogonality condition on a poly-
nomial that lies on the line determined py and¢ o;, IDR(1) first generates by the second
recursion in 4.6) the polynomiap;_; that lies on that line and then also enforces this condi-
tion.

Let us finally note that the parametey, which is in 3.7) chosen to make,; orthogonal
to Avy;_1, is indeed the same in IDR) and BCGSTAB, sincevsy;_; is the same in both
methods.

4.3. How does the original IDR differ from IDR(1)? In contrast to IDR1) of [33],
where @.2) holds for alln. > 1, for n odd, the original IDR of40] used the recursions

(4.10) Vi i=Tp — 7, (Cn1 — Tn_2), X, = Xp — Yp(Xn—1 — Xn_2),
rpt1 = (I —wjA)v,, Xn41 1= X, + WV,

with v/, := (p,r,,) / (p, Ar,_2). So, here, when computing the “intermediate iteratg;
one modifiesx,, by a step in the same direction as has been used in the presteusor
modifyingx,,_1.

Moreover, in contrast to what we have stated here, the newdPét [33 computes the
residual differences actually asr,, = —AAx,. This couples the recursions far, and
r,, more tightly, and thus reduces the gap between the reclysiomputed residual and the
true residual. This gap is known to be closely linked to thiaiaable accuracy that can be
achieved with a Krylov space solver; ség 15, 27].

BICGSTAB

The IDR Theorem still applies, and stkh; = x; . This follows from the fact that
the arguments of Subsecti@tB are still applicable.

5. IDR(s) with locally biorthogonal residuals. Recently, van Gijzen and Sonneveld
[38] came up with a new version of IDR), in which, in the regular case assumed throughout
this section, each of consecutive “intermediate” residuals, , 1. is orthogonal to a growing
subset of the prescribed columnp;, of P:

(51) rnj+kJ_{p1,...,pk}, kIl,...,S.

For clarity, we will call this algorithmiDR(s)BI10 here!!

UActually, the set{r,x} and{p;} are not biorthogonal, but by a triangular linear transfdfarawe could

replace the basiép; } of S+ by {p’} so that{r,, ;. +} and{p;} are biorthogonal. However, the transformation
would depend op.
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IDR(s)BIO still fits into the IDR framework in the sense that the IDR dtem3.1and
the orthogonality result of Theoret2as well as its Corollarg.3still apply. One important
aspect where it differs from the original IDR is in the ansatz for recursively constructing
r,;++ from previous residuals: while the original version useshie formula 8.4) for v,,
the latests residual differences (i.e., the choida) = s) for all n, in IDR(s)BIO that sum
involves thes residual differences

Arp, =Ar,, s 1 €G; 1 NAK,, 41,

Arnj,1+sfl = Arnj72 S gjfl N AIanflv

none of which relates to a residual that liesdpalready. So, in the case= 1, there is
an analogy to the original IDR of Sonneveld]]; see ¢.10. Additionally, these residual
differences are actually replaced by another setwdctors

gnj,l = gnjfsfl S gjfl N AIan,1+1a

gnj,1+sfl = gnj72 S gjfl N AIanfla

that are multiples of the residual differences and thus atdmogonal to a growing subset of
the s prescribed columngy:

(5.2) 8n; 1tk L{P1,...,Pr}, k=0,...,5—1

However, these residual differences are not defined aséydiat undergo a linear transfor-
mation to imposeq.2). Note that in 6.2, the range of the indek is shifted by 1; so for
k = 0, the orthogonality condition is empty.

To construct preliminary vectors ig;, we now define, fon = n; + k (k = 0,...,s),
vectorsv,, € S by the ansatz

(53) Vp =TIy — Z’Yi(n)gnj—l‘i’ifl =r, — ijlcn,
i=1
where
Gj1 = [ 8nj—1 -+ 8n;-1 ] ) Cn = %") ,an) } ’

¢, is determined by the condition, 1. R(P). So we have, as ir3(4) and @.5),
(5.4) cp = (P*Gj_1) " P*r,, Vi =Ty — G, cp.

Here, the projection alon§ is onR(G;_1), that is, on a space that only dependsjon 1
and therefore is the same fer+ 1 values ofn. Consequently, the matriR* G,_; in the
s+ 1 linear systems foe,, is also the same. (However, the systems cannot be solvedet on
because the vectar, in the right-hand sid®*r,, results from the previous system.)

The elegance of IDR)BIO comes from special features that result from the imposed
orthogonality conditionsH.1) and 6.2). Due to 6.2), the matrix

55 Myi={l e =m0 ma, g | =PTG
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is lower triangular, and du& (1) the matrix with thes right-hand side®*r,, (n = n;,...,n;+
s—1),

(56) F={o") 1 =[fu, oo Fugemt =P [1n, . o ]

is lower triangular, too. Consequently, the matrix with theolutionsc,, of Mc,, = f,, for
n=mnj,...,nj+s—1,

nj+k'—1)y s _ — —
(5.7) C;= {%-( " )}i,k/zl =lcn -0 Cngts1 | =M 'F;

is also lower triangular. So itsth columnc,,, -1 only depends on theg—%’+1)th trailing
principal submatrix (of ordes — &’ + 1) of M,_;, whereas its first’ — 1 entries are zero. In
other words, the possibly nonzero entriespf, /1 result from a(s — k) x (s — k') linear
system. This means in particular that the recurs®f) (becomes shorter whilk increases:
forlzn:nj—i-k,k:O,...,s—l,

s
(58) Vp i=Tp — Z Vgn)gnj,ri—i—l =TIy — Gj—lcn-
i=k+1

This not only reduces the computational cost, but it alloascuoverwriteG;_; by G; and
M; by M, inside the loop ovek; for details, see the pseudocode 3&]f

We still need to explain how we find+ 1 residualsr,; 1 » € G; (k = 0,...,s) so that
(5.1) holds for the last of them, and how we construct a new setsofectorsg,,, 1 € G;
(k=0,...,s — 1) satisfying 6.2. We may use the orthogonality conditioris 1) with j
replaced byj — 1 and 6.2) as induction assumption. For the initializatign=¢ 0), such sets
can be constructed by a one-sided Lanczos process that mesriie generation of a basis
for Ks+1 with orthogonalization with respect to the columnskf Of course, at the same
time, approximate solutions, . . . x, need to be constructed, too, but they are obtained using
essentially the same recursions.

Among thes + 1 residuals inG;_; satisfying the orthogonality condition, the last one,
r,, 1, is orthogonal to all columns @, whencer,,;, 1 € S. So, in accordance wittb(8)
for k = s, where the sum is empty, we can choese ; = r,, 1, and thus

(59) I'n]. = (I—WJA) I'njfl.

Next, forn = n; + k > n;, anyv,, obtained from%.8) liesinG;_; N SN (ro + AK,,). So,
by the recursive definition af;,

FrnJrl = (I — LUjA) Vp =TIy — ijlcn - ijvn
is a tentative residual i, N (ro + AK,+1). Sincer,, € G; N (ro + AK,,),
(510) gn =r, —,fn+1 = ijlcn + (.UjAVn S gj N A’Cn+1,

too; but in order to serve as a column@f;, it needs to be replaced lgy, satisfying the
orthogonality condition

(5.11) g, L{p1,...,px}, n=n;+k k=0,...,s—1

12Note that in the presentation of this and other formulas3# fhe notationw,, ; with n = njy1 — 1
(k=1,...,s)isused, while here = n; + k (k=0,...,s —1)andk’ =k + 1.
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This can be achieved by applying a Gram-Schmidt-like preiceursively, the projection of
gn = 8n,+r Onthe spanog, , ..., g,—1 along the span opy, ..., px is subtracted from
g, toyieldg, = gn,++ € G; N AK, 1. This can be expressed as follows: for= 0 the
condition 6.11) is empty, s@g,,; := gn;; then,forn =n; +k, k=0,...,5 -1,

(5.12) n Za Vgn it =8n— [ 8, - Bur ]ay),
where

(]) —_ * -1 * o~ k
(5.13) a’ = ([pl pk] [gnj - ]) [pl pk} g, € C".
Here, thek x k matrix [ p1 ...px }* [ 8, --- 8n-1 ] isthekth leading principal

submatrix ofP*G; = M, and thus it is lower triangular. Therefors, (J) can be found

by forward substitution. Of course, the diagonal elemerﬁité = P;gn,;-1+: Need to be
nonzero. Otherwise the process breaks down and the ortabtyorondition 6.11) cannot
be satisfied for some. For the whole block this step is summarized by

(514) G = [ gn] Ag,nj+571 } = GjAJv
with A unit upper triangular an®*G; = M, lower triangular. Above the diagonal}

contains the — 1 coefficients vectoragj) (in column 2) toa(” (in the last column). Hence,

M;AY = (P*G;)A] is an LU decomposition di/[J = P*G;.

Amazingly, When we replace this classical Gram- Schmkﬁ-brocess by a modified
Gram-Schmidt-like process as suggesteds3i@,[there is no need to solve triangular linear
systems.

In matrix notation the first sweep of the modified Gram-Schiie process can be
summarized as

W &g
" .= G,BY,

where the upper triangular matrﬁ§1) is given by

1 -39 _g) )
12 13 e 1s
1 0 .. 0 ~
B — , . 40 = (P, &n, 1)
3 - S -
1 0
1
(with k=1,. — 1), and has the effect that, by subtracting a multiple of the Giolumn
n; Of G, columns 2 tos of G, are transformed into columns 6}71) that are orthogonal to
p1 Then fort = 2,. -1, |n further analogous sweeps, by subtracting a multipléef t

tth columng“ +1,3) 1 of Gf Y, columns/ + 1 to 5 of Gy ! are transformed into columns

of Ggé) that are additionally orthogonal foy:

GY =g VBY, =251,
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(g) - . .
whereB; "’ for /= 2,...,s — 1is given by

r1 0 ... 0 7
J) (1)
L (pesi)
0 S . o ? n+k
B! = 0 ... 0 |, Bh,= D
. : <pfagnj+g_1>
1 0
L I

(withk=4¢,...,5—1). UItimater, the columns of
(5.15) G; =G\ =G,B"BYY...B{"
satisfy the orthogonality conditiorb(11), and thus are identical to those obtained yL.D).

Moreover, the comparison wittb (14 reveals that

v _ (prWR® =D\ "' _R/e-DR6-2)  H1)
(5.16) Aj_(Bj B?...B| ) B UBEY . B,

whereﬁy) = (By))—1 is obtained by replacing Bg.e) the coefficientsﬁéf,@rl by +ﬁ§f,2+1.
In view of the special structure of the matric%é), one can conclude fronb(16 that

513 1 = aﬁ Of course, the matrice§., Glg.l), e Ggs_l), G; can all be stored in the
same place.
Finally, since by induction (within a block) both, andg,, are orthogonal tg, . . ., px,

and moreover;,, € ro + AK, andg,, € AK,,+1, we getr, 11 € rg + AK, 4 satisfying
(5.1) according to

asaneny

#k+1,k+1

(5.17) Tpil =Ty — (m=n;+k k=0,...,s—1),

Wheregb andu(” are diagonal elements &f; andM;, which enforce that,, 1 L pr+1,
as can be checked easily.

As has been noted i3f] and can be seen by premultiplying. {7 with P*, the columns
of F; can be updated in an elegant way, too:

(49)
(5.18) f,41:=1f, — qj’gf)l A e (n=nj+k k=0,...,5—1).

Mg+ k1
So far, we have concentrated on the possibility of constrgafficiently residuals sat-
isfying the orthogonality propertie$ (1), but we still need to give formulas for the recursive
computation of the approximate solutioxs; and due to the relatioAr,, = — AAx,,, these
formulas will lead to other options for updating the residua
In general, update formulas far, are fairly easily obtained from those fof, and here
this is true also. Let us define

u, = A_lgn,
u, =Alg,,
Uj_l = [ Up; ; ... Up;—1 ] = A_lGj_l.
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Then, from £.10, we get
(5.19) u, :=Uj_1c, +wjvy € Kngi,
which allows us to replacé(10 by
(5.20) g, = Au,.

This helps to couple the updatesxgf andr,, and thus to avoid a fast growth of the residual
gap mentioned before. Moreoves, {29 translates into

k
(5.21) u,, = ﬁn—ZaZ(.,j,ZunjH,l m=n;+k k=1,...,s—1).
i=1

Finally, from (5.17) we get

()
(5.22) Xpt1 ::xn—i-%un (n=n;+k k=0,...,s—1).
g1 k+1
These are the formulas on which the IDR pseudocod&ih i based. But what makes
this formulation so ingenious is the fact that it minimizesmory usage by systematically
overwriting data that is no longer used. On the other hand,rttakes the code harder to

understand.

6. Comments and conclusions. The various IDR algorithms may still be not as well
understood as other algorithms that are directly deriveehfthe Lanczos process (be it sym-
metric or non-symmetric), but their close relationship amkbzos-based algorithms certainly
helps us to understand them.

6.1. Thecase s = 1. This case is easy, because in exact arithmetic the everddde
IDR(1) iterates and residuals are exactly the€CB STAB iterates and residuals. However, as
we have seen, the recursions are not the same, and thereifopgssible that IDRL) is more
stable than BCGSTAB or vice versa. The odd-numbered IDR iterates and residuals have
no counterpartin the originalIB GSTAB algorithm.

The existence of all BCGSTAB iterates, i.e., all even IDR) iterates, requires that all
B1CG residuals exists, and therefore any serious Lanczokdwea and any so-called pivot
breakdown cause IBGSTAB and IDR(1) to break down unless extra precautions against
such breakdowns have been implemented. This follows fraabt that the BOMIN ver-
sion and the BORESs version of BCG break down at the same times: the existence of the
residuals implies the existence of the coupled two-ternunstons [L3]. Additionally, the
choice of the parametets; is the same in BCGSTAB and IDR(1), so a breakdown due to
w; = 0 will occur at the same time in both methods; but in both it moadasy to fix. It is
conceivable that there are further causes for breakdowBR{1). On the other hand, the
recovery procedure in case of a breakdown seems to be mugplesiim IDR(1); but so far,
it seems to be less understood and less documented thanG& BAB [14].

While IDR(1) and BCGSraB produce in exact arithmetic essentially the same results
based on a common mathematical background, they are ctifidgent algorithms obtained
by different approaches.

13From Proposition 5.1 in5] one may get the impression that®G StaB and IDR(1) are nearly identical. But
the authors do not compare the original®5 StAB recursions with the original IDR) recursions.
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6.2. Thecases > 1. Therelation BCG ~~ BICGSTAB ~ IDR(1) is matched by the re-
lation ML(s)BICG~~ ML (s)BICGSTAB ~ IDR(s), but the similarity between M(s)BICG-
StaB and IDR(s) is weaker than betweenBGSraB and IDR(1). In IDR(s) there is
some freedom in choosing the“intermediate” iterates and residuals because, unlike in
ML (s)BICGSTAB, the vectorsw,, in (3.13 need not satisfy the strict conditio.() of
an “intermediate” ML(s)BICG residual, but only the weaker block orthogonality coindit
w, L K;(Ar,P) of (3.13. With the IDR approach, such vectors can be obtained witbhmu
simpler recursions, which, in addition, allow consideeafdéxibility that may enable us to
overcome breakdowns.

The many published numerical examples of IBR[25, 33, 38] show the fast conver-
gence of this method and the superiority of the choice 1. Due to the careful choice
of the numerical examples and the restriction to small \&abfe, where the method is less
costly than for large, the numerical results are more relevant than those of YandgChan
[41], who applied their MIl(s)BICGSTAB with large s and mostly without preconditioning
to rather ill-conditioned test matrices. Heuristicallyjs plausible that these methods are
particularly effective for such examples. In®G, the basis ofC,, tends to be somewhat
ill-conditioned if A is far from Hermitian. Moreover, its construction is prooddss of bi-
orthogonality, which can be expected to be stronger whésill-conditioned andh is large.
When constructing in Ms)BICG a basis of the block Krylov subspace(A*, Ry), we can
start with s orthonormal basis vectors and work with the dimensjaf ordern/s of each
single Krylov subspace. Then, for the same value,ofie can expect the basis of the block
Krylov subspace to be better conditioned. A similar improeat of the condition of the
basis can be expected when we compai@BSrAB to ML (s)BICGSTAB or IDR(s), and it
seems to be relevant also in preconditioned problems teat@rextremely ill-conditioned.

The effectiveness of this improvement due to changing tted @ieft”) space and using
a better conditioned basis is quite surprising. The disgowé this effect is due to Yeung
and Chan41], but the equally strong improvement of IDR over IDR(1), which seems to
rely partly on the same effect, was discovered indepenglarttécade later by Sonneveld and
van Gijzen. Additionally, the left-hand side block Krylopace that is implicitly used by
both ML(s)BICGSTAB and IDRs) seems to be more effective in capturing the spectrum.
By choosing in IDRs) this space (i.e., the matriR) appropriately — and perhaps even
adaptively — depending on some knowledge on the spectruf,abne may be able to
further speed up convergence.

The other fundamental fact is that in the framework of Laisezpe product methods,
multiple left projections can reduce the MV count. By theuetibn of the MV count we
understand a smaller ratio between the search space donengi; < n < n;41) and the
number;js of orthogonality conditions satisfied by,,. Forn = n; = j(s + 1), this ratio
is 1+ 1, while for CGS and BCGSTAB it is 2. This also applies both to Mls)BICG-
StaB and IDR(s), but not to ML(s)BICG, where building up the left block Krylov space
costss MVs per value ofj, while ML(s)BICGSTAB and IDR(s) achieve the same effect
with just one MV. Therefore, MLs)BICG is not competitive with MILs)BICGSTAB or
IDR(s), except perhaps in situations where the Lanczos-type ptadethods fail due to
roundoff problems. (It is well known that the recursion dméénts produced by ECG-
STAB are usually less accurate than the same coefficients prddycBICG, and there are
problems where BCG STAB fails to converge, while BCG succeeds.) For this reason, Yeung
and Chan41] introduced ML(s)BICG only as a tool for deriving M[s)BICGSTAB.

IDR(s) also inherits from BCGSrAB the disadvantage that for a problem with real-
valued data, the parametess are all real-valued (when chosen in the standard way), and
therefore the zeros; ' of ; cannot approximate complex eigenvaluesfofwell. This
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problem has been addressed b\CB StaB2 [12] and later by BCGSTAB(¢) [24, 27] by
building up$2; from polynomial factors of degre® and/, respectively. An adaptation of
IDR(s) to include this idea in an efficient way is not so straightfardvand requires a mod-
ifiction to the framework. This topic is addressed #8|[and [35], which were published
while this paper was reviewed.
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