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A FULL-NEWTON APPROACH TO SEPARABLE NONLINEAR LEAST SQUARE S
PROBLEMS AND ITS APPLICATION TO DISCRETE LEAST SQUARES
RATIONAL APPROXIMATION  *

CARLOS F. BORGES$

Abstract. We consider a class of non-linear least squares problemsatdavidely used in fitting experimental
data. A defining characteristic of the models we will considethat the solution parameters may be separated into
two classes, those that enter the problem linearly and thagenter non-linearly. Problems of this type are known as
separable non-linear least squares (SNLLS) problems anafftem solved using a Gauss-Newton algorithm that was
developed in Golub and Pereyra [SIAM J. Numer. Anal., 10 89fp. 413—-432] and has been very widely applied.
We develop a full-Newton algorithm for solving this probleBxploiting the structure of the general problem leads to
a surprisingly compact algorithm which exhibits all of theellent characteristics of the full-Newton approach (e.g
rapid convergence on problems with large residuals). Ma@edor certain problems of quite general interest, the
per iteration cost for the full-Newton algorithm compareste favorably with that of the Gauss-Newton algorithm.
We explore one such problem, that of discrete least-sqdttieg of rational functions.
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1. Introduction. We wish to consider fitting a set of experimental détg y;) for
1 =1,2,...,m with a model of the form

Yy = Z cj(bj(aa t)7
j=1

wherea = [ a Q... Qg ]T is a set of parameters that enter non-linearly into the

model, and the coefficients= [ 1 ¢ ... ¢Cp ]Tobviouslyenterlinearly. This problem
can be more usefully viewed by constructinghadel matrixA whosei, j elementis given by
A(i, j) = ¢;(a,t;). Itis clear thatd is a function of bothy and thet; although we suppress
that in the notation for the sake of clarity. As theare fixed, our goal is to find values far
andc that minimize the length of the residual= y— Acwherey = [ 41 y2 ... Ym ]T.

It is clear that for a fixed value of the linear parameteks can be found by solving a
linear least squares problem. Linear least squares pradeewell understood and a variety
of excellent methods are known for their solutidn ¢, 7].

Henceforth, we shall assume thais a full rankR™*" matrix withm > n and letP be
the projection matrix that projects vectors onto the rarfgé.dn particular, we letP? = AA'
where AT = (ATA)71 AT is the Moore-Penrose generalized invérsé A which can be
used to solve the linear least squares problem yieldingA'y.

We note that? is both symmetricP” = P) and idempotent®? = P). The orthogonall
projectorP that projects onto the null space 4f is given byP+ =1 — P.

It is clear at this point that the residual, which is in factumdtion of«, is given by
r = P1y and we have effectively removed the linear parameters amdne®d to solve a
non-linear least squares problem to findOne particularly useful technique for solving this
problem is developed ir] and involves applying the Gauss-Newton method to the bgia
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1This is a formal derivation and it is worth noting that one skinot form generalized inverses as a method for
computingsolutions to linear least-squares problems.
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projection functional, in essence the normffy. The convergence of this approach and of a
variant first proposed ing] are elegantly analyzed i ]]. This variable projection approach
has found wide application in a variety of fields; see the ksneoverview of the history
and applications ing]. In the sequel we shall develop a full-Newton approach teisg this
problem which follows by extending the ideas #].[

Although the algorithm we derive is quite general, the sfiegractical problem that
motivated this development is rapid non-linear curve fiftto smaller data sets. This is a
problem of serious interest in systems that use contourdingdor data compression where
one must fit curves to many thousands of small data sets. Quhesygtem is developed in
[10] for compression of hand-written documents and it uses #@s&-Newton algorithm de-
veloped in P] for fitting B-spline curves to pen strokes to achieve thedsekefficiencies for
a practical compression algorithm. Another related apiin is compressing track infor-
mation for moving objects, etc. Although each individuabiplem may be small, the huge
number of problems that need to be solved makes it worthwisgply more sophisticated
techniques to their solution.

In light of this motivation we demonstrate the usefulnesshef full-Newton approach
first by briefly applying it to the fitting Bézier curves thataw described ing]. We then
carefully develop a specific algorithm for discrete ratibeggproximation in the least-squares
sense which we demonstrate on a few simple examples.

2. The Newton step. The key to deriving a full Newton algorithm for solving a non-
linear least squares problem is to build a quadratic modeéhfsquared norm of the residual
at the current point. and minimize that at each step; see, for instarigle The Newton step
is given by

(2.1) ay=—-H 1JTr,

whereJ = Vr is the Jacobian and

(2.2) H=J'J+5,

with

(2.3) S = Zri(a)VQTi(oz).
=1

In order to construct andS we will need the first and second partial derivativegaf with
respect to the non-linear parametears Henceforth, we shall use the subsciipin a matrix
to denote differentiation with respect to the variahle

To compute the first partial we follow the derivation presehin [4]. We begin by noting
that the projection matrix satisfies the equatidd = A. Differentiating both sides of this
equation with respect to; yields P, A + PA; = A;. SubtractingP A; from both sides and
regrouping yieldsP;, A = (I — P) A;. Which implies that?’; A = P+ A;. Multiplying both
sides on the right byt and usingAAf = P yields P,P = P+ A;At. Now transposing
and exploiting symmetry on the left giveBP; = (PLAZ-AT)T. And finally, sinceP is
idempotent P2 = P) differentiation yields the widely known result from]|

P,=P,P+ PP,
(2.4) — PLAAT 4 (P AAT)T
Now we need to extend this derivation in order to compute gw®sd partial derivative.

We begin by considering2(4) and using the product rule to take its partial derivativéhwi
respect tax;. Therefore,
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Py = (P), AAT + P A AT+ P A; (AT)
(2.5) +((Ph), Al + P A AT + PLa; (AT)j)T .
Now we note that
(PY), = ~P); =P,
which we may use to simplify2.5) giving
Py = —PA AT + PHAGAT + P4, (AT),
(2.6) + (~PAl + PrA AT+ P A; (AT)j)T .

Next, we need to compute the partial derivative/dfwith respect tax;. We begin by
differentiating both sides aP = AAT with respect tav;, which yields

Py = A;AT+ A(AT)
Rearranging gives
A(AN); =P — A;AT.
Multiplying on the left by AT and invoking the fact thatl™ A = T yields’
(AT), = ATP; — AT AT,

Substituting forP; from (2.4) yields

(A1), = AT (PL A4 4 (P A;47)") — AT 4,47,
And finally, invoking At P+ = 0 yields

(AT), = AT (PrA;A1)" — AT4; AT,
We can now substitute this expression in2ogf giving
P, ;= —PjA;AT + P A AT + P A AT (A;ANTPH — 4;AT) +
2.7) (=P A AT + PLAAT 4 PEAAT ((A;AN)TPE — 4;47))7
In the interest of brevity, we define
D;j = —PjA; AT + P A;; AT + P A AT ((A;ANT P — A;AT).

Substituting this definition into2.7) yields a compact expression for the second partial
derivative of the projector. In particular,

(2.8) P;; =D;;+ D,

2The assumption that be full-rank is important here.
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Now that we have expressions for the first and second padialatives we may proceed
to construct the Newton step. To soh&z1) we need to construct thé and.S matrices. We
begin by defining two useful quantities. First, the curresidual is given by
(2.9) r=Ply,
and second, the current solution is given by

(2.10) c=Aly.

Now, sinceJ = Vr it follows that thejth column of.J is given by—P;y which, invoking

(2.49),is
(2.11) — Pt Ajc— (AN ATy,
To constructS we note that followingZ.3) thei, j element ofS is given by
S(i,j) = —r'' Py.
Making use of 2.8), we find that
(2.12) S(i.j) = =" (Dij + Di;)y.
We will evaluate this in two parts. Consider first the quantit
(2.13) - r"Dyjy = —xT (—PjA; AT + P A AT + PEAAT (A;ADTPE — 4;AT)) y.
Invoking Pr = r and €.9) and @.10, we reduceZ.13 to
(2.14) —r"D;jy =rTPjAic —rT Ajje —rT A, AT(A; AT e 42T A, AT Ajc.
Substituting in forP; from (2.4) yields

—t"Dijy = v (P A;AT+ AT AT PR Aje—rT Ao —rT A, AT(4; AT e 42T 4,AT Ajc.
(2.15)

Now we note thatdfr = 0 and this reduces to

(2.16) —r'Dyy =rTAjATAjc — rT Ajje — rT A AT(A; AT e 1T A, AT Aje.

Next, we consider the second quantity. Omitting the detaitsan be reduced to

—y ' Djjr = —y" (~PjA; AT + P A AT + PHAAT (A;ANTPE — A;AT)) x
(2.17) = 1T A AT(A; ATy,

Substituting .16 and .17 into (2.12 and combining terms yields
(2.18) S(i,j) =rT A;ATAjc +rT A ATAje — 2rTA1-(ATA)*1AJTr —rl Ajje.

It is important to exploit symmetries and use care when canshg the S matrix in
order to minimize the operation count and enhance accuracy.
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3. Implementation details. Implementation details are important. First and foremost
is the careful construction of both theand S matrices. A simple observation can greatly
simplify this process; in particular, terms of the foujc andA;fr are ubiquitous inZ.11)
and @.18. We begin by constructing twoy x d auxiliary matrices. We shall call the first
matrix U. Its jth column is given by

(3.1) Ajc.

We shall call the second matrix. Its jth column is given by

(3.2) Alr.

Using these definitions ir2(11), we see that
J=—(PU+ANV).

At this point we will introduce two intermediate quantitigssimplify the notation going
forward. In particular, we define

(3.3) K =PtU
(3.4) L=(AHTV.

With these definitions, we find that
(3.5) J=—(K+1L),
or, equivalently,
(3.6) J=—-U-PU-L1)).
Itis also true that
(3.7) J')=KTK+L"L,
since the columns af are clearly elements of the range 4f and those of< are in the null
space ofA”.
Now we examineZ.18. We begin by considering the first term and noting that it lban

written in terms of thejth column ofV, which we shall denote by; and theith column of
U, which we shall denote bw;,

rTA; AT Aje = VJ»TATuZ-,

which is thei, j element of the matrik’” L. By the same argument, the quantity in the second
term of (2.18 is thei, j element of the matriX.” U. Similarly, the quantity in the third term
of (2.19 is twice thei, j element of the matrix” L.

Hence, if we letS be a matrix whose, j element is given by

(3.8) S(i,j) =" Aye,
then it follows that .18 leads to

(3.9) S=UTL+L"U-2L"L - 8S.
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Using (3.7) and 3.9 in (2.2) gives

(3.10) H=U"L+L"U+ K"K - L"L - 8,
or, noting thatP L = L, more compactly,

(3.11) H=U"U—-(U-L)"P(U-1L)-S.

Note that the most significant difference, in terms of corafiahal load, between the
Full Newton and the Gauss-Newton approaches is the cotisinuaf the S matrix. This re-
quires working withO(d?) partial derivatives (both first and second order partis)@posed
to justO(d) first partials for the Gauss-Newton approach. This can bafggnt if all of the
second partial derivatives are full rank. However, in a nemiif applications many of the
mixed partial derivatives vanish, are sparse, or have law,rand there can be a significant
savings by exploiting such structure. In Sectihnve present an example fror#][involving
the fitting of a Bézier curve to ordered two-dimensionakdahere all of themixedpartial
derivatives are identically zero. In this specific exampkesee only &0% increase in the
work per step by using a Full-Newton approach and reap alb#refits of greatly acceler-
ated convergence. In order to maximize efficiencies for aegsic model one must take full
advantage of any special structure of the partial derieativ

The other critical step is to deal with- and AT in a computationally responsible man-
ner. We begin by computing the full QR factorization of thedabmatrix A. In particular,

A=[Q Qﬂ[?]ﬂa

where[@Q; Q2] is anm x m orthogonal matrixR is n x n, upper-triangular, and invertible,
andIl is ann x n permutation. It is easily verified that

K= QQQgUa
L =R 11V,

and these forms should be used in any implementation. Thedwestep can then be calcu-
lated using either3.5) or (3.6) to construct/, and either 8.10 or (3.11) to constructH. It
should be noted that one clear advantage to usdrfiy in conjunction with 8.17) is that one
need not compute a full QR factorization in that casskianyQR factorization will suffice.
Of course, the speed advantage of, for example, a modifieh&Gehmidt approach needs to
be weighed against the numerical risk if the model matriis poorly conditioned. We note,
anecdotally, that this has not been an issue in any of the glearme have considered.

4. A brief example. As a brief example we consider the problem of fitting a Bézier
curve to ordered two-dimensional data. This problem isfcélyedeveloped in P] and we
refer the reader there for the details. The basic problembeastated as follows. Given
an ordered set of data poinf$u;, v;)}7, and a non-negative integer < m, find nodes
{ai}{2, and control pointg (z;, y;) }}_, that minimize

2 2
(4.1) Z u; — Z Bi(ai)z; | + | vi — Z B (i)y; ,
i=1 J=0 j=0
whereB? (a) is the;’'th Bernstein polynomial of degree, that is,
n n j n—j
B (a) = < j )oﬂ(l—a) 7,
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It is clear that the control points enter the problem lingard the nodes are the non-linear
parameters.

The critical observation is that all of the mixed partial iglatives taken with respect to
the nodes are identically zero. By exploiting this fact amel dther structure inherent to the
problem we find that we can compute the full-Newton step usinlg 50% more time than
computing the Gauss-Newton step. This in turn indicatesal3a% reduction in iterations
will be the break even point for switching to a full-Newtond=o

We tested this by using an existing Gauss-Newton code daseélm 2] and modifying
it to use the full-Newton step; we refer the reader2pfpr the details of the underlying al-
gorithm. We then applied it to a data set containing 23 pdaiken from an experiment on
a reacting chemical system which may have multiple steaatgstseed]. The experiment
samples the steady state oxidation r&t@chieved by a catalytic system for an input con-
centration of carbon monoxidé-,. The data is in log-log format and we show the results
of fitting with a sixth-degree Bézier curve. Note that i) this corresponds tan = 23
andn = 6. Even though the squared residual at the solution is venll i&0217) the
full-Newton algorithm converges in just 32 iterations asngared to 174 iterations for the
Gauss-Newton code. This greatly enhanced convergencetharenakes up for the increase
in per iteration cost.

5. Afull-Newton algorithm for discrete least squares raticnal approximation. As a
specific detailed example we now consider the importantlprolof fitting a rational function
of the form

o toett..+ et !
v= 1+ aqt + aot? + ...+ aytk

to data in the least-squares sense. This is clearly a sdpau@i-linear least squares problem
with the coefficients of the numerator entering the probleredrly and those of the denom-
inator non-linearly. The model matrid for this problem can be written in the suggestive
form A = D—! N where the numerator matriX is anm x n Vandermonde matrix,

1t .. t?71
1ty .. th?
1 oty .. tnt

and the denominator matri® —! is anm x m diagonal matrix,

1
w0 0
) 0 —qéz) 0
D= ,
1
O O Q(tnz)

whereq(t) = 1+ ait + aot? + ... + aytF.
We defin€l" to be them x m diagonal matrix,
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It is easily verified that

Aj=-D?T'N
(5.2) =-T'D7'A
and
A;; =2D 3TN
(5.3) = 2T D72 A,

Combining 6.2) with (3.1), we see that thgth column ofU is given by
(5.4) —T9D ' Ac,
and also, combinings(2) with (3.2), we see that thgth column ofV is given by
~ATD Ty,

It will be convenient to define an intermediate quantityhosejth column is given by
(5.5) — D 7y,
We note then that
(5.6) v =ATV.
Using 6.3) in (3.8) yields

S(i,j) =2eTTH D2 Ac
=TT D 'TID~ Ac.

It is not difficult to see then that
(5.7) S=2vTU.

Close inspection off.4) and 6.5) reveals that the columns &f and V' are just diagonally
scaled columns of a Vandermonde matrix. We introduce theixn&f defined by

ty 2.tk
5.8) M to t% 7.4
b 2, .tk
It follows that
(5.9) U=—-3dD"M,
where® = diag(Ac), and also that
(5.10) V =—UD M,

where¥ = diag(r). Moreover, we note that combining.g) with (3.4) yields
L= (AHTATY
(5.11) = PV,
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where P is the current projection, i.eP = Q:QT. Using 6.11) in (3.6) and invoking the
idempotence oP gives

J:—(U—P(U—V)).

Next, we invoke 5.9 and 6.10 to factor D—!M from the right to get a formula for the
Jacobian,

(5.12) J=(®—-P(®—-V)D ' M.
Next, using 6.7) and 6.11) in conjunction with the idempotence &éfin (3.11) gives
H=U"U—- W0 -V)TPU -V)-2VTU.

We then invoke %.9) and 6.10 to factor D—' A/ from the right and its transpose from the
left to get

(5.13) H=M"D""(®*- (2 - ¥)P(® - T) —200) D' M,
or, equivalently,
H=M"D"((®—-¥)P"(®—¥)—¥?) D M.

5.1. The algorithm. With the formulas necessary for computing the Newton step fo
rational approximation we developed a basic MATLAB codelienpenting the full-Newton
approach. The first algorithm uses.12 for J and 6.13 for H. The user specifies the
degree of the numerater— 1 and the denominatdrand may supply a starting guess for the
coefficients of the denominatas, fori = 1,...,¢. If no starting guess is given the code
generates one by solving the widely known linear least spiextension of the Newton-Padé
approximant. In particular, we find the least squares smutid

m

_ 2
Z (61 +coti + ... + et Y yi(ont + aot? + . 4 agth) — yz) )
i=1

This is implemented by solving

(5.14) min ||[Nc —YMa —y|,

whereY is diagonal matrix withy; ; = y;, and N and M are defined in%.1) and 6.98),
respectively.

Once we have a current guess foeach successive iteration begins by computirapnd
H using 6.12 and 6.13. We then evaluate the gradient usisigand the current residual,
and then solve for the Newton step using the Cholesky faztian of /. One weakness of
full-Newton methods is that/ may not be positive definite in a region of mixed curvature
and hence the Newton direction may not be a descent direciitimough there are a number
of methods for dealing with this we have implemented a vanp one that we have found
to be very reliable. In particular, if the Cholesky factation fails we regularizéf by arbi-
trarily shifting its spectrum to the right by a bit more thdretabsolute value of its leftmost
eigenvalue (we useld.2 x A\nin|). Once that is done we compute the Cholesky factorization
and solve for the Newton step.

Once a descent direction has been established it is ed¢entse some form of step size
control in order to get reasonable convergence. We haveechtmsuse a backtracking line
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search and have found this to work surprisingly well. We otiné implementation details
which can be found ind].

Finally, as a stopping criterion we terminated the alganitivhen the relative change in
the squared norm of the residual was less thamn'2.

For purposes of comparison we also created a Gauss-Newtla; ickentical to the full-
Newton code except that all calculations not needed for eaimg the Gauss-Newton direc-
tion are removed. In particular, after constructing theoléan with 6.12 we setH = J7.J
and proceed to solve for the Gauss-Newton step using thee€kofactorizatiorf. No regu-
larization is needed in this case so that code is also removed

5.2. Experimental results. We begin by considering two examples using measured
data, both of these are taken from the NIST Statistical Refeg Datasets for Nonlinear
Regressiort. The first involves measured data from an experiment on @ectrobility. This
data is due to R. Thurber and is considered to be of highecdiffi. There are 37 data points
to be fit to a model of the form

- Co + Clt —|— 02t2 —|— 03t3
Yo T ot + awt® + asts”

We consider two scenarios in order to compare the approadhdise first case we use
the starting guess suggested in the NIST testbed,of [ 1 4 .05 }T. In this case we

converge to the known solution of = [ 9663 3980 .0497 }T in 6 iterations with the
full Newton code as compared to 20 iterations with the Gausston code. In this case
the full Newton code resorts to regularization for the fikgbtsteps. In the second case we
provide no starting guess and hence the codes generate imge(bid4). In this case the
Full-Newton code converges ihiterations as compared 80 for Gauss-Newton. In this case
the full Newton code resorts to regularization only for thetfstep. It is worth noting that the
squared norm of the residual at the solution is rou@ll§2.7. Since it is well known that the
full-Newton approach generally outperforms Gauss-Newtben the residuals are large this
outcome is not surprising, although its magnitude is nottwo

To get a baseline notion of relative speed both codes wetedtesing MATLAB 7.0.4
on a Pentium(R) 4 with 504MB of RAM. Both scenarios were rud #re average time per
run over10, 000 runs was calculated. In the first scenario both codes run thélstarting
guess above, in the second scenario both codes were runaviitariing guess. The results
are summarized in Table.1, where we show the number of steps to converge, the average
time (measured in milliseconds), and the time ratio.

TABLE 5.1
Experimental Results for the Thurber data set

Full-Newton Gauss-Newton Ratio
Steps Time Steps Time
Case | 6  1.5454 20  2.9902 52%
Case Il 7 15007 30 4.5454 33%

SWe note that solving the normal equations is not a compurallp responsible approach. However, for the
purpose of the experiments that follow we found that cahefeblving for the Gauss-Newton step did not change
the convergence or final results but did add additional aedhwhich biased the time comparisons rather unfairly to
the benefit of the Full-Newton algorithm. Therefore we proettiall of the timings using Cholesky in order that the
algorithms would be competing on a level playing field.

4This data is available online at www.itl.nist.gov.
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The second example involves measured data from a NIST studiving scanning elec-
tron microscope line width standards. This data set is dée irby and is considered to be
of average difficulty. There are 151 data points to be fit to @ehof the form

- Co —|— Clt+ C2t2
YT ot + aot?

We consider the same two scenarios in order to compare theagpes. In the first case we
use the starting guess suggested in the NIST testbed ef [ —.0015 .00002 }T. The
results of this experiment are summarized in Téh@ It is worth noting that the squared
norm of the residual at the solution is rougldy05 and we see the full-Newton approach
comparing less favorably to Gauss-Newton when the residwshall as we might generally
expect. It is also noteworthy that for this data set the Nélwton code did not resort to
regularization in either case.

TABLE 5.2
Experimental Results for the Kirby data set

Full-Newton Gauss-Newton Ratio
Steps Time  Steps Time
Case | 5 24767 7 3.8659  64%
Case 4 22382 7 4.4928  50%

As an additional test we consider fitting a rational of thenfor

0 + Clt+02t2
y - 1+a1t+a2t2

to the functiony = v/1 — 22 on the interval—1, 1] and also to the functiop = cos = on the
interval [—7, w]. To give some notion of scaling we do this for three differeases: using
11, 101, and 501 evenly spaced points over the interval. Regation was not required in
any of these examples. The results are summarized in Taldend5.4

TABLE 5.3
Experimental Results for the= /1 — x2 data set

# Points Full-Newton Gauss-Newton Ratio Residual
Steps Time Steps Time

11 4 0.6268 5 0.8305 75% 8.91 x10~*

101 4 1.3843 8 2.6605 52% 3.68 x 1072

501 4 98.211 7 168.78  58%  8.50 x 102
TABLE 5.4

Experimental Results for the= cos z data set

# Points Full-Newton Gauss-Newton Ratio Residual
Steps Time  Steps Time

11 4 0.6356 7 0.8549 74% 2.42x 1072
101 4 1.3955 7 2.3812  59% 1.30 x 1071
501 4 86.802 7 167.88  52% 5.94x 107!

Finally, we consider a function with more complex behavinmarticular, we will try to
fit y = e~*<>s4% on the interval0, 7]. We begin by trying to fit the function with a rational



ETNA

Kent State University
http://etna.math.kent.edu

68 C. F. BORGES

with both numerator and denominator being degteand using 20 equally spaced points.
In this case the full-Newton algorithm converges in just tEdtions with a final squared
residual 0f6.6916 x 10~! and it resorts to regularization for each of the first foupsteThe
Gauss-Newton algorithm converges in 13 iterations but terg unsatisfying approximation
with a squared residual 6£9470 (there are two poles inside the interval). This is not untisua
in our experience; anecdotally, we have observed that fh&lawton algorithm is rather less
likely to stall out far from the optimal solution.

We ran this test a second time using 100 evenly spaced paidtasing a higher order
rational (numerator and denominator both degree 6). Incsée both algorithms converge to
a nice solution with a squared residual23965 x 10~! but the full-Newton code requires
only 20 iterations in contrast to the 25 required by the Gadsaton code, moreoveritrunsin
just71% of the time required by the latter. It is very interesting tethat in this experiment
the full-Newton code resorts to regularization for eachhdf first 10 steps. However, even
thoughi itis regularizing fully half of the time it still nateably outperforms the Gauss-Newton
code.

6. Conclusion. We have derived a full-Newton approach for separable noeali least
squares problems. The derivation results in a surprisiogihgpact formula for computing the
Newton step. Experiments show that the method can sulsitgntprove the convergence
rate at the expense of additional per iteration costs. leenghat for problems where the
second partial derivatives of the model matrix have spestialcture the additional costs of
using a full-Newton approach may be minimal and hence theargal convergence rate can
lead to substantially faster solutions. This was briefly destrated using an example from
parametric curve fitting where all of the mixed partials ateritically zero (and structured).

We then applied our derivation of the Newton step to the mobbf discrete least squares
rational approximation. This very important problem hagracture that leads to a surpris-
ingly compact form for the Newton step. We showed with selvexamples that the full-
Newton approach can significantly outperform the Gaussibewpproach.
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