
Electronic Transactions on Numerical Analysis.
Volume 35, pp. 57-68, 2009.
Copyright  2009, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University

http://etna.math.kent.edu

A FULL-NEWTON APPROACH TO SEPARABLE NONLINEAR LEAST SQUARE S
PROBLEMS AND ITS APPLICATION TO DISCRETE LEAST SQUARES

RATIONAL APPROXIMATION ∗

CARLOS F. BORGES†

Abstract. We consider a class of non-linear least squares problems that are widely used in fitting experimental
data. A defining characteristic of the models we will consider is that the solution parameters may be separated into
two classes, those that enter the problem linearly and thosethat enter non-linearly. Problems of this type are known as
separable non-linear least squares (SNLLS) problems and are often solved using a Gauss-Newton algorithm that was
developed in Golub and Pereyra [SIAM J. Numer. Anal., 10 (1973), pp. 413–432] and has been very widely applied.
We develop a full-Newton algorithm for solving this problem. Exploiting the structure of the general problem leads to
a surprisingly compact algorithm which exhibits all of the excellent characteristics of the full-Newton approach (e.g.
rapid convergence on problems with large residuals). Moreover, for certain problems of quite general interest, the
per iteration cost for the full-Newton algorithm compares quite favorably with that of the Gauss-Newton algorithm.
We explore one such problem, that of discrete least-squaresfitting of rational functions.

Key words. separable nonlinear least squares, rational approximation

AMS subject classifications.65F20, 65D10, 41A20

1. Introduction. We wish to consider fitting a set of experimental data(ti, yi) for
i = 1, 2, ..., m with a model of the form

y =

n
∑

j=1

cjφj(α, t),

whereα =
[

α1 α2 ... αd

]T
is a set of parameters that enter non-linearly into the

model, and the coefficientsc =
[

c1 c2 ... cn

]T
obviously enter linearly. This problem

can be more usefully viewed by constructing amodel matrixA whosei, j element is given by
A(i, j) = φj(α, ti). It is clear thatA is a function of bothα and theti although we suppress
that in the notation for the sake of clarity. As theti are fixed, our goal is to find values forα

andc that minimize the length of the residualr = y−Ac wherey =
[

y1 y2 ... ym

]T
.

It is clear that for a fixed value ofα the linear parametersc can be found by solving a
linear least squares problem. Linear least squares problems are well understood and a variety
of excellent methods are known for their solution [1, 6, 7].

Henceforth, we shall assume thatA is a full rankR
m×n matrix withm > n and letP be

the projection matrix that projects vectors onto the range of A. In particular, we letP = AA†

whereA† =
(

AT A
)−1

AT is the Moore-Penrose generalized inverse1 of A which can be
used to solve the linear least squares problem yieldingc = A†

y.
We note thatP is both symmetric (PT = P) and idempotent (P 2 = P). The orthogonal

projectorP⊥ that projects onto the null space ofAT is given byP⊥ = I − P .
It is clear at this point that the residual, which is in fact a function ofα, is given by

r = P⊥
y and we have effectively removed the linear parameters and now need to solve a

non-linear least squares problem to findα. One particularly useful technique for solving this
problem is developed in [4] and involves applying the Gauss-Newton method to the variable

∗Received August 30, 2008. Accepted for publication December 15, 2008. Published online on April 14, 2009.
Recommended by M. Benzi.

†Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA 93943 (borges@nps.edu).
1This is a formal derivation and it is worth noting that one should not form generalized inverses as a method for

computingsolutions to linear least-squares problems.

57

ETNA
Kent State University

http://etna.math.kent.edu

58 C. F. BORGES

projection functional, in essence the norm ofP⊥
y. The convergence of this approach and of a

variant first proposed in [8] are elegantly analyzed in [11]. This variable projection approach
has found wide application in a variety of fields; see the excellent overview of the history
and applications in [5]. In the sequel we shall develop a full-Newton approach to solving this
problem which follows by extending the ideas in [4].

Although the algorithm we derive is quite general, the specific practical problem that
motivated this development is rapid non-linear curve fitting to smaller data sets. This is a
problem of serious interest in systems that use contour encoding for data compression where
one must fit curves to many thousands of small data sets. One such system is developed in
[10] for compression of hand-written documents and it uses the Gauss-Newton algorithm de-
veloped in [2] for fitting B-spline curves to pen strokes to achieve the needed efficiencies for
a practical compression algorithm. Another related application is compressing track infor-
mation for moving objects, etc. Although each individual problem may be small, the huge
number of problems that need to be solved makes it worthwhileto apply more sophisticated
techniques to their solution.

In light of this motivation we demonstrate the usefulness ofthe full-Newton approach
first by briefly applying it to the fitting Bézier curves that was described in [2]. We then
carefully develop a specific algorithm for discrete rational approximation in the least-squares
sense which we demonstrate on a few simple examples.

2. The Newton step.The key to deriving a full Newton algorithm for solving a non-
linear least squares problem is to build a quadratic model for the squared norm of the residual
at the current pointαc and minimize that at each step; see, for instance, [3]. The Newton step
is given by

αN = −H−1JT
r,(2.1)

whereJ = ∇r is the Jacobian and

H = JT J + S,(2.2)

with

S =

m
∑

i=1

ri(α)∇2ri(α).(2.3)

In order to constructJ andS we will need the first and second partial derivatives ofP⊥ with
respect to the non-linear parametersαi. Henceforth, we shall use the subscripti on a matrix
to denote differentiation with respect to the variableαi.

To compute the first partial we follow the derivation presented in [4]. We begin by noting
that the projection matrix satisfies the equationPA = A. Differentiating both sides of this
equation with respect toαi yieldsPiA + PAi = Ai. SubtractingPAi from both sides and
regrouping yieldsPiA = (I − P)Ai. Which implies thatPiA = P⊥Ai. Multiplying both
sides on the right byA† and usingAA† = P yields PiP = P⊥AiA

†. Now transposing

and exploiting symmetry on the left givesPPi =
(

P⊥AiA
†
)T

. And finally, sinceP is
idempotent (P 2 = P) differentiation yields the widely known result from [4],

Pi = PiP + PPi

= P⊥AiA
† +

(

P⊥AiA
†
)T

.(2.4)

Now we need to extend this derivation in order to compute the second partial derivative.
We begin by considering (2.4) and using the product rule to take its partial derivative with
respect toαj . Therefore,

ETNA
Kent State University

http://etna.math.kent.edu

FULL-NEWTON SNLLS ALGORITHM 59

Pij =
(

P⊥
)

j
AiA

† + P⊥AijA
† + P⊥Ai

(

A†
)

j

+
(

(

P⊥
)

j
AiA

† + P⊥AijA
† + P⊥Ai

(

A†
)

j

)T

.(2.5)

Now we note that
(

P⊥
)

j
= (I − P)j = −Pj,

which we may use to simplify (2.5) giving

Pij = −PjAiA
† + P⊥AijA

† + P⊥Ai

(

A†
)

j

+
(

−PjAiA
† + P⊥AijA

† + P⊥Ai

(

A†
)

j

)T

.(2.6)

Next, we need to compute the partial derivative ofA† with respect toαj . We begin by
differentiating both sides ofP = AA† with respect toαj , which yields

Pj = AjA
† + A

(

A†
)

j
.

Rearranging gives

A
(

A†
)

j
= Pj − AjA

†.

Multiplying on the left byA† and invoking the fact thatA†A = I yields2

(

A†
)

j
= A†Pj − A†AjA

†.

Substituting forPj from (2.4) yields

(

A†
)

j
= A†

(

P⊥AjA
† +

(

P⊥AjA
†
)T

)

− A†AjA
†.

And finally, invokingA†P⊥ = 0 yields

(

A†
)

j
= A†

(

P⊥AjA
†
)T − A†AjA

†.

We can now substitute this expression into (2.6) giving

Pi,j = −PjAiA
† + P⊥AijA

† + P⊥AiA
†
(

(AjA
†)T P⊥ − AjA

†
)

+
(

−PjAiA
† + P⊥AijA

† + P⊥AiA
†
(

(AjA
†)T P⊥ − AjA

†
))T

.(2.7)

In the interest of brevity, we define

Di,j := −PjAiA
† + P⊥AijA

† + P⊥AiA
†
(

(AjA
†)T P⊥ − AjA

†
)

.

Substituting this definition into (2.7) yields a compact expression for the second partial
derivative of the projector. In particular,

Pi,j = Di,j + DT
i,j .(2.8)

2The assumption thatA be full-rank is important here.

ETNA
Kent State University

http://etna.math.kent.edu

60 C. F. BORGES

Now that we have expressions for the first and second partial derivatives we may proceed
to construct the Newton step. To solve (2.1) we need to construct theJ andS matrices. We
begin by defining two useful quantities. First, the current residual is given by

r = P⊥
y,(2.9)

and second, the current solution is given by

c = A†
y.(2.10)

Now, sinceJ = ∇r it follows that thejth column ofJ is given by−Pjy which, invoking
(2.4), is

− P⊥Ajc − (A†)T AT
j r.(2.11)

To constructS we note that following (2.3) thei, j element ofS is given by

S(i, j) = −r
T Pijy.

Making use of (2.8), we find that

S(i, j) = −r
T

(

Di,j + DT
i,j

)

y.(2.12)

We will evaluate this in two parts. Consider first the quantity

− r
T Dijy = −r

T
(

−PjAiA
† + P⊥AijA

† + P⊥AiA
†
(

(AjA
†)T P⊥ − AjA

†
))

y.(2.13)

InvokingP⊥
r = r and (2.9) and (2.10), we reduce (2.13) to

− r
T Dijy = r

T PjAic − r
T Aijc − r

T AiA
†(AjA

†)T
r + r

T AiA
†Ajc.(2.14)

Substituting in forPj from (2.4) yields

−r
T Dijy = r

T (P⊥AjA
†+A†T

AT
j P⊥)Aic−r

T Aijc−r
T AiA

†(AjA
†)T

r+r
T AiA

†Ajc.

(2.15)
Now we note thatA†

r = 0 and this reduces to

− r
T Dijy = r

T AjA
†Aic − r

T Aijc − r
T AiA

†(AjA
†)T

r + r
T AiA

†Ajc.(2.16)

Next, we consider the second quantity. Omitting the details, it can be reduced to

− y
T Dijr = −y

T
(

−PjAiA
† + P⊥AijA

† + P⊥AiA
†
(

(AjA
†)T P⊥ − AjA

†
))

r

= −r
T AiA

†(AjA
†)T

r.(2.17)

Substituting (2.16) and (2.17) into (2.12) and combining terms yields

S(i, j) = r
T AjA

†Aic + r
T AiA

†Ajc − 2rT Ai(A
T A)−1AT

j r − r
T Aijc.(2.18)

It is important to exploit symmetries and use care when constructing theS matrix in
order to minimize the operation count and enhance accuracy.

ETNA
Kent State University

http://etna.math.kent.edu

FULL-NEWTON SNLLS ALGORITHM 61

3. Implementation details. Implementation details are important. First and foremost
is the careful construction of both theJ andS matrices. A simple observation can greatly
simplify this process; in particular, terms of the formAjc andAT

j r are ubiquitous in (2.11)
and (2.18). We begin by constructing twom × d auxiliary matrices. We shall call the first
matrixU . Its jth column is given by

Ajc.(3.1)

We shall call the second matrixV . Its jth column is given by

AT
j r.(3.2)

Using these definitions in (2.11), we see that

J = −
(

P⊥U + (A†)T V
)

.

At this point we will introduce two intermediate quantitiesto simplify the notation going
forward. In particular, we define

K = P⊥U(3.3)

L = (A†)T V.(3.4)

With these definitions, we find that

J = − (K + L) ,(3.5)

or, equivalently,

J = − (U − P (U − L)) .(3.6)

It is also true that

JT J = KT K + LT L,(3.7)

since the columns ofL are clearly elements of the range ofA, and those ofK are in the null
space ofAT .

Now we examine (2.18). We begin by considering the first term and noting that it canbe
written in terms of thejth column ofV , which we shall denote byvj and theith column of
U , which we shall denote byui,

r
T AjA

†Aic = v
T
j A†

ui,

which is thei, j element of the matrixUT L. By the same argument, the quantity in the second
term of (2.18) is thei, j element of the matrixLT U . Similarly, the quantity in the third term
of (2.18) is twice thei, j element of the matrixLT L.

Hence, if we letŜ be a matrix whosei, j element is given by

Ŝ(i, j) = r
T Aijc,(3.8)

then it follows that (2.18) leads to

S = UT L + LT U − 2LT L − Ŝ.(3.9)

ETNA
Kent State University

http://etna.math.kent.edu

62 C. F. BORGES

Using (3.7) and (3.9) in (2.2) gives

H = UT L + LT U + KT K − LT L − Ŝ,(3.10)

or, noting thatPL = L, more compactly,

H = UT U − (U − L)T P (U − L) − Ŝ.(3.11)

Note that the most significant difference, in terms of computational load, between the
Full Newton and the Gauss-Newton approaches is the construction of theŜ matrix. This re-
quires working withO(d2) partial derivatives (both first and second order partials) as opposed
to justO(d) first partials for the Gauss-Newton approach. This can be significant if all of the
second partial derivatives are full rank. However, in a number of applications many of the
mixed partial derivatives vanish, are sparse, or have low rank, and there can be a significant
savings by exploiting such structure. In Section4, we present an example from [2] involving
the fitting of a Bézier curve to ordered two-dimensional data where all of themixedpartial
derivatives are identically zero. In this specific example we see only a50% increase in the
work per step by using a Full-Newton approach and reap all thebenefits of greatly acceler-
ated convergence. In order to maximize efficiencies for any specific model one must take full
advantage of any special structure of the partial derivatives.

The other critical step is to deal withP⊥ andA† in a computationally responsible man-
ner. We begin by computing the full QR factorization of the model matrixA. In particular,

A = [Q1 Q2]

[

R

0

]

Π,

where[Q1 Q2] is anm×m orthogonal matrix,R is n×n, upper-triangular, and invertible,
andΠ is ann × n permutation. It is easily verified that

K = Q2Q
T
2 U,

L = Q1R
−T ΠV,

and these forms should be used in any implementation. The Newton step can then be calcu-
lated using either (3.5) or (3.6) to constructJ , and either (3.10) or (3.11) to constructH . It
should be noted that one clear advantage to using (3.6) in conjunction with (3.11) is that one
need not compute a full QR factorization in that case, askinnyQR factorization will suffice.
Of course, the speed advantage of, for example, a modified Gram-Schmidt approach needs to
be weighed against the numerical risk if the model matrixA is poorly conditioned. We note,
anecdotally, that this has not been an issue in any of the examples we have considered.

4. A brief example. As a brief example we consider the problem of fitting a Bézier
curve to ordered two-dimensional data. This problem is carefully developed in [2] and we
refer the reader there for the details. The basic problem canbe stated as follows. Given
an ordered set of data points{(ui, vi)}m

i=1 and a non-negative integern < m, find nodes
{αi}m

i=1 and control points{(xj , yj)}n
j=1 that minimize

m
∑

i=1













ui −
n

∑

j=0

Bn
j (αi)xj





2

+



vi −
n

∑

j=0

Bn
j (αi)yj





2










,(4.1)

whereBn
j (α) is thej’th Bernstein polynomial of degreen, that is,

Bn
j (α) =

(

n

j

)

αj(1 − α)n−j .

ETNA
Kent State University

http://etna.math.kent.edu

FULL-NEWTON SNLLS ALGORITHM 63

It is clear that the control points enter the problem linearly and the nodes are the non-linear
parameters.

The critical observation is that all of the mixed partial derivatives taken with respect to
the nodes are identically zero. By exploiting this fact and the other structure inherent to the
problem we find that we can compute the full-Newton step usingonly 50% more time than
computing the Gauss-Newton step. This in turn indicates that a 33% reduction in iterations
will be the break even point for switching to a full-Newton code.

We tested this by using an existing Gauss-Newton code developed in [2] and modifying
it to use the full-Newton step; we refer the reader to [2] for the details of the underlying al-
gorithm. We then applied it to a data set containing 23 pointstaken from an experiment on
a reacting chemical system which may have multiple steady states; see [9]. The experiment
samples the steady state oxidation rateR achieved by a catalytic system for an input con-
centration of carbon monoxideCCO. The data is in log-log format and we show the results
of fitting with a sixth-degree Bézier curve. Note that in (4.1) this corresponds tom = 23
andn = 6. Even though the squared residual at the solution is very small (0.00217) the
full-Newton algorithm converges in just 32 iterations as compared to 174 iterations for the
Gauss-Newton code. This greatly enhanced convergence morethan makes up for the increase
in per iteration cost.

5. A full-Newton algorithm for discrete least squares rational approximation. As a
specific detailed example we now consider the important problem of fitting a rational function
of the form

y =
c1 + c2t + ... + cntn−1

1 + α1t + α2t2 + ... + αktk

to data in the least-squares sense. This is clearly a separable non-linear least squares problem
with the coefficients of the numerator entering the problem linearly and those of the denom-
inator non-linearly. The model matrixA for this problem can be written in the suggestive
form A = D−1N where the numerator matrixN is anm × n Vandermonde matrix,

N =











1 t1 ... tn−1
1

1 t2 ... tn−1
2

...
...

...
1 tm ... tn−1

m











,(5.1)

and the denominator matrixD−1 is anm × m diagonal matrix,

D−1 =













1
q(t1) 0 ... 0

0 1
q(t2) ... 0

...
. . .

...
0 0 ... 1

q(tm)













,

whereq(t) = 1 + α1t + α2t
2 + ... + αktk.

We defineT to be them × m diagonal matrix,

T =











t1 0 ... 0
0 t2 ... 0
...

. . .
...

0 0 ... tm











.

ETNA
Kent State University

http://etna.math.kent.edu

64 C. F. BORGES

It is easily verified that

Aj = −D−2T jN

= −T jD−1A(5.2)

and

Ai,j = 2D−3T i+jN

= 2T i+jD−2A.(5.3)

Combining (5.2) with (3.1), we see that thejth column ofU is given by

− T jD−1Ac,(5.4)

and also, combining (5.2) with (3.2), we see that thejth column ofV is given by

−AT D−1T j
r.

It will be convenient to define an intermediate quantityV̂ whosejth column is given by

− D−1T j
r.(5.5)

We note then that

V = AT V̂ .(5.6)

Using (5.3) in (3.8) yields

Ŝ(i, j) = 2rT T i+jD−2Ac

= 2rT T iD−1T jD−1Ac.

It is not difficult to see then that

Ŝ = 2V̂ T U.(5.7)

Close inspection of (5.4) and (5.5) reveals that the columns ofU andV̂ are just diagonally
scaled columns of a Vandermonde matrix. We introduce the matrix M defined by

M =











t1 t21 ... tk1
t2 t22 ... tk2
...

...
...

tm t2m ... tkm











.(5.8)

It follows that

U = −ΦD−1M,(5.9)

whereΦ = diag(Ac), and also that

V̂ = −ΨD−1M,(5.10)

whereΨ = diag(r). Moreover, we note that combining (5.6) with (3.4) yields

L = (A†)T AT V̂

= P V̂ ,(5.11)

ETNA
Kent State University

http://etna.math.kent.edu

FULL-NEWTON SNLLS ALGORITHM 65

whereP is the current projection, i.e.,P = Q1Q
T
1 . Using (5.11) in (3.6) and invoking the

idempotence ofP gives

J = −
(

U − P (U − V̂)
)

.

Next, we invoke (5.9) and (5.10) to factorD−1M from the right to get a formula for the
Jacobian,

J = (Φ − P (Φ − Ψ))D−1M.(5.12)

Next, using (5.7) and (5.11) in conjunction with the idempotence ofP in (3.11) gives

H = UT U − (U − V̂)T P (U − V̂) − 2V̂ T U.

We then invoke (5.9) and (5.10) to factorD−1M from the right and its transpose from the
left to get

H = MT D−1
(

Φ2 − (Φ − Ψ)P (Φ − Ψ) − 2ΦΨ
)

D−1M,(5.13)

or, equivalently,

H = MT D−1
(

(Φ − Ψ)P⊥(Φ − Ψ) − Ψ2
)

D−1M.

5.1. The algorithm. With the formulas necessary for computing the Newton step for
rational approximation we developed a basic MATLAB code implementing the full-Newton
approach. The first algorithm uses (5.12) for J and (5.13) for H . The user specifies the
degree of the numeratorn− 1 and the denominatork and may supply a starting guess for the
coefficients of the denominator,αi for i = 1, . . . , q. If no starting guess is given the code
generates one by solving the widely known linear least squares extension of the Newton-Padé
approximant. In particular, we find the least squares solution to

m
∑

i=1

(

c1 + c2ti + ... + cntn−1
i − yi(α1t + α2t

2
i + ... + αktki) − yi

)2
.

This is implemented by solving

min
c,α

‖Nc− Y Mα − y‖,(5.14)

whereY is diagonal matrix withyi,i = yi, andN andM are defined in (5.1) and (5.8),
respectively.

Once we have a current guess forα each successive iteration begins by computingJ and
H using (5.12) and (5.13). We then evaluate the gradient usingJ and the current residual,
and then solve for the Newton step using the Cholesky factorization ofH . One weakness of
full-Newton methods is thatH may not be positive definite in a region of mixed curvature
and hence the Newton direction may not be a descent direction. Although there are a number
of methods for dealing with this we have implemented a very simple one that we have found
to be very reliable. In particular, if the Cholesky factorization fails we regularizeH by arbi-
trarily shifting its spectrum to the right by a bit more than the absolute value of its leftmost
eigenvalue (we used|1.2× λmin|). Once that is done we compute the Cholesky factorization
and solve for the Newton step.

Once a descent direction has been established it is essential to use some form of step size
control in order to get reasonable convergence. We have chosen to use a backtracking line

ETNA
Kent State University

http://etna.math.kent.edu

66 C. F. BORGES

search and have found this to work surprisingly well. We omitthe implementation details
which can be found in [3].

Finally, as a stopping criterion we terminated the algorithm when the relative change in
the squared norm of the residual was less than10−12.

For purposes of comparison we also created a Gauss-Newton code, identical to the full-
Newton code except that all calculations not needed for computing the Gauss-Newton direc-
tion are removed. In particular, after constructing the Jacobian with (5.12) we setH = JT J

and proceed to solve for the Gauss-Newton step using the Cholesky factorization.3 No regu-
larization is needed in this case so that code is also removed.

5.2. Experimental results. We begin by considering two examples using measured
data, both of these are taken from the NIST Statistical Reference Datasets for Nonlinear
Regression.4 The first involves measured data from an experiment on electron mobility. This
data is due to R. Thurber and is considered to be of higher difficulty. There are 37 data points
to be fit to a model of the form

y =
c0 + c1t + c2t

2 + c3t
3

1 + α1t + α2t2 + α3t3
.

We consider two scenarios in order to compare the approaches. In the first case we use

the starting guess suggested in the NIST testbed ofα0 =
[

1 .4 .05
]T

. In this case we

converge to the known solution ofα =
[

.9663 .3980 .0497
]T

in 6 iterations with the
full Newton code as compared to 20 iterations with the Gauss-Newton code. In this case
the full Newton code resorts to regularization for the first two steps. In the second case we
provide no starting guess and hence the codes generate one using (5.14). In this case the
Full-Newton code converges in7 iterations as compared to30 for Gauss-Newton. In this case
the full Newton code resorts to regularization only for the first step. It is worth noting that the
squared norm of the residual at the solution is roughly5642.7. Since it is well known that the
full-Newton approach generally outperforms Gauss-Newtonwhen the residuals are large this
outcome is not surprising, although its magnitude is noteworthy.

To get a baseline notion of relative speed both codes were tested using MATLAB 7.0.4
on a Pentium(R) 4 with 504MB of RAM. Both scenarios were run and the average time per
run over10, 000 runs was calculated. In the first scenario both codes run withthe starting
guess above, in the second scenario both codes were run with no starting guess. The results
are summarized in Table5.1, where we show the number of steps to converge, the average
time (measured in milliseconds), and the time ratio.

TABLE 5.1
Experimental Results for the Thurber data set

Full-Newton Gauss-Newton Ratio
Steps Time Steps Time

Case I 6 1.5454 20 2.9902 52%
Case II 7 1.5007 30 4.5454 33%

3We note that solving the normal equations is not a computationally responsible approach. However, for the
purpose of the experiments that follow we found that carefully solving for the Gauss-Newton step did not change
the convergence or final results but did add additional overhead which biased the time comparisons rather unfairly to
the benefit of the Full-Newton algorithm. Therefore we produced all of the timings using Cholesky in order that the
algorithms would be competing on a level playing field.

4This data is available online at www.itl.nist.gov.

ETNA
Kent State University

http://etna.math.kent.edu

FULL-NEWTON SNLLS ALGORITHM 67

The second example involves measured data from a NIST study involving scanning elec-
tron microscope line width standards. This data set is due toR. Kirby and is considered to be
of average difficulty. There are 151 data points to be fit to a model of the form

y =
c0 + c1t + c2t

2

1 + α1t + α2t2

We consider the same two scenarios in order to compare the approaches. In the first case we

use the starting guess suggested in the NIST testbed ofα0 =
[

−.0015 .00002
]T

. The
results of this experiment are summarized in Table5.2. It is worth noting that the squared
norm of the residual at the solution is roughly3.905 and we see the full-Newton approach
comparing less favorably to Gauss-Newton when the residualis small as we might generally
expect. It is also noteworthy that for this data set the full-Newton code did not resort to
regularization in either case.

TABLE 5.2
Experimental Results for the Kirby data set

Full-Newton Gauss-Newton Ratio
Steps Time Steps Time

Case I 5 2.4767 7 3.8659 64%
Case II 4 2.2382 7 4.4928 50%

As an additional test we consider fitting a rational of the form

y =
c0 + c1t + c2t

2

1 + α1t + α2t2

to the functiony =
√

1 − x2 on the interval[−1, 1] and also to the functiony = cosx on the
interval [−π, π]. To give some notion of scaling we do this for three differentcases: using
11, 101, and 501 evenly spaced points over the interval. Regularization was not required in
any of these examples. The results are summarized in Tables5.3and5.4.

TABLE 5.3
Experimental Results for they =

√

1 − x2 data set

Points Full-Newton Gauss-Newton Ratio Residual
Steps Time Steps Time

11 4 0.6268 5 0.8305 75% 8.91 × 10−4

101 4 1.3843 8 2.6605 52% 3.68 × 10−2

501 4 98.211 7 168.78 58% 8.50 × 10−2

TABLE 5.4
Experimental Results for they = cos x data set

Points Full-Newton Gauss-Newton Ratio Residual
Steps Time Steps Time

11 4 0.6356 7 0.8549 74% 2.42 × 10−2

101 4 1.3955 7 2.3812 59% 1.30 × 10−1

501 4 86.802 7 167.88 52% 5.94 × 10−1

Finally, we consider a function with more complex behavior.In particular, we will try to
fit y = e−x cos 4x on the interval[0, π]. We begin by trying to fit the function with a rational

ETNA
Kent State University

http://etna.math.kent.edu

68 C. F. BORGES

with both numerator and denominator being degree4 and using 20 equally spaced points.
In this case the full-Newton algorithm converges in just 12 iterations with a final squared
residual of6.6916 × 10−1 and it resorts to regularization for each of the first four steps. The
Gauss-Newton algorithm converges in 13 iterations but to a very unsatisfying approximation
with a squared residual of6.9470 (there are two poles inside the interval). This is not unusual
in our experience; anecdotally, we have observed that the full-Newton algorithm is rather less
likely to stall out far from the optimal solution.

We ran this test a second time using 100 evenly spaced points and using a higher order
rational (numerator and denominator both degree 6). In thiscase both algorithms converge to
a nice solution with a squared residual of2.3965 × 10−1 but the full-Newton code requires
only 20 iterations in contrast to the 25 required by the Gauss-Newton code, moreover it runs in
just71% of the time required by the latter. It is very interesting to note that in this experiment
the full-Newton code resorts to regularization for each of the first 10 steps. However, even
though it is regularizing fully half of the time it still noticeably outperforms the Gauss-Newton
code.

6. Conclusion. We have derived a full-Newton approach for separable non-linear least
squares problems. The derivation results in a surprisinglycompact formula for computing the
Newton step. Experiments show that the method can substantially improve the convergence
rate at the expense of additional per iteration costs. It is seen that for problems where the
second partial derivatives of the model matrix have specialstructure the additional costs of
using a full-Newton approach may be minimal and hence the improved convergence rate can
lead to substantially faster solutions. This was briefly demonstrated using an example from
parametric curve fitting where all of the mixed partials are identically zero (and structured).

We then applied our derivation of the Newton step to the problem of discrete least squares
rational approximation. This very important problem has a structure that leads to a surpris-
ingly compact form for the Newton step. We showed with several examples that the full-
Newton approach can significantly outperform the Gauss-Newton approach.

REFERENCES

[1] Å. BJÖRCK, Numerical Methods for Least Squares Problems, SIAM, Philadelphia, PA, 1996.
[2] C. F. BORGES ANDT. A. PASTVA, Total least squares fitting of Bézier and B-spline curves toordered data,

Comput. Aided Geom. Design, 19 (2002), pp. 275–289.
[3] J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear

Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983.
[4] G. H. GOLUB AND V. PEREYRA, The differentiation of pseudo-inverses and nonlinear least-squares prob-

lems whose variables separate, SIAM J. Numer. Anal., 10 (1973), pp. 413–432.
[5] , Separable nonlinear least squares: the variable projection method and its applications, Inverse Prob-

lems, 19 (2003), pp. R1–R26.
[6] G. H. GOLUB AND C. F. VAN LOAN, Matrix Computations, Third ed., The Johns Hopkins University Press,

Baltimore, MD, 1996.
[7] R. J. HANSON AND C. L. LAWSON, Extensions and applications of the Householder algorithm for solving

linear least squares problems, Math. Comp., 23 (1969), pp. 787–812.
[8] L. K AUFMAN , A variable projection method for solving separable nonlinear least squares problems, BIT, 15

(1975), pp. 49–57.
[9] S. P. MARIN AND P. W. SMITH , Parametric approximation of data using ODR splines, Comput. Aided

Geom. Design, 11 (1994), pp. 247–267.
[10] C. NELSON, Contour encoded compression and transmission, Master’s thesis, Department of Computer Sci-

ence, Brigham Young University, Provo, UT, 2006.
[11] A. RUHE AND P.-Å. WEDIN, Algorithms for separable nonlinear least squares problems, SIAM Rev., 22

(1980), pp. 318–337.

