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LARGE-SCALE KALMAN FILTERING USING
THE LIMITED MEMORY BFGS METHOD ∗

H. AUVINEN†, J. M. BARDSLEY‡, H. HAARIO†, AND T. KAURANNE†

Abstract. The standard formulations of the Kalman filter (KF) and extended Kalman filter (EKF) require the
storage and multiplication of matrices of sizen × n, wheren is the size of the state space, and the inversion
of matrices of sizem × m, wherem is the size of the observation space. Thus when bothm andn are large,
implementation issues arise. In this paper, we advocate theuse of the limited memory BFGS method (LBFGS) to
address these issues. A detailed description of how to use LBFGS within both the KF and EKF methods is given.
The methodology is then tested on two examples: the first is large-scale and linear, and the second is small scale and
nonlinear. Our results indicate that the resulting methods, which we will denote LBFGS-KF and LBFGS-EKF, yield
results that are comparable with those obtained using KF andEKF, respectively, and can be used on much larger
scale problems.
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1. Introduction. The Kalman filter (KF) for linear dynamical systems and the extended
Kalman filter (EKF) for nonlinear but smoothly evolving dynamical systems are popular
methods for use on state space estimation problems. As the dimension of the state space
becomes very large, as is the case, for example, in numericalweather forecasting, the stan-
dard formulations of KF and EKF become computationally intractable due to matrix storage
and inversion requirements.

Computationally efficient variants of KF and EKF have been proposed for use on such
large-scale problems. The Reduced Rank Kalman Filter or Reduced Order extended Kalman
filter (see, e.g., [4, 7, 30]) project the dynamical state vector of the model onto a lower di-
mensional subspace. The success of the approach depends upon a judicious choice of the
reduction operator. Moreover, since the reduction operator is typically fixed in time, the
dynamics of the system may not be correctly captured; see [9] for more details.

In the context of numerical weather forecasting, a great deal of attention has been given
to the filtering problem. The current state of the art is 4D-Var (see, e.g., [9, 23]), which uti-
lizes a variational formulation of an initial value estimation problem [11, 14, 17]. 4D-Var has
been shown to be identical to a Kalman smoother when the modelis assumed to be perfect
[16]. The resulting quadratic minimization problem is very large-scale (104-107 unknowns)
and so efficient numerical optimization methods are needed.Similar to the methods in the
previous paragraph, the partial orthogonal decompositionis used in [5] to reduce the dimen-
sionality of the 4D-Var minimization problem. A more standard approach is to implement
a preconditioned conjugate gradient method [8, 12, 22, 26]. In this context, a number of
different preconditioners have been tested.

In this paper, we take a different approach. In particular, we focus our attention on the
Kalman filter itself, using the limited memory BFGS (LBFGS) [22] iterative method for the
required large-scale matrix storage and inversion within KF and EKF. More specifically, sup-
poseAx = b is a system, with symmetric positive definite matrixA, that requires solution,
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and or a low storage approximation ofA−1 is needed, within the KF or the EKF algorithms.
In such cases, LBFGS is a natural choice, since it generates both a sequence of approxima-
tions ofA−1b, and a sequence of symmetric positive definite matrices{B−1

k } approximating
A−1. This choice is further supported by the result thatA−1b is reached within a finite num-
ber of LBFGS iterations (assuming exact arithmetic) [20, 21], and that ifk and full memory
BFGS is usedB−1

n+1 = A−1 [22, Chapter 8]. A result regarding the accuracy of the LBFGS
Hessian approximations toA−1 is also given in [21]; it depends upon the eigenvalues of
A1/2BkA1/2; see AppendixA. The use of LBFGS and its success in the examples that we
consider can be motivated by the fact that the covariance matrices being approximated are
approximately low rank. In applications of interest [6], covariance information is contained
in slowly varying, low dimensional subspaces, making accurate low-rank approximations
possible.

The idea of using the LBFGS method in variational data assimilation is not new; see,
e.g., [10, 13, 17, 25, 27, 28, 29, 31]. In many of these references, the LBFGS Hessian or
inverse Hessian is used as a preconditioner for conjugate gradient iterations, and even as an
approximate error covariance matrix for the background term in 3D- and 4D-Var variational
data assimilation. However, in the method presented here, the LBFGS method is further used
for matrix inversion, in order to propagate effectively thestate estimate covariance informa-
tion forward in time. Moreover, we apply our methodology to the Kalman filter itself, not
to the variation formulation used by the 3D- and 4D-Var methods [17]. LBFGS can also be
incorporated in a fully variational formulation of the Kalman filter; see [2].

As has been stated, the approach presented here uses the LBFGS algorithm directly
within the context of the Kalman filter. The equivalence of LBFGS and a certain precon-
ditioned conjugate gradient method (see [21] and AppendixA) suggests that our approach
and those cited above are similar. One advantage of the citedapproaches, however, is that
they can be incorporated into existing 3D- and 4D-Var codes used in practice.

An application of a similar methodology that could be used inconjunction with 3D-
and 4D-Var is presented in [1, 2]. The aim of the current paper is to demonstrate the use of
LBFGS within the standard (non-variational) formulation of the linear or extended Kalman
filter.

The paper is organized as follows. We present KF and EKF in Section 2, and then in
Section3 we present LBFGS-KF and LBFGS-EKF. We test these methods with two numer-
ical experiments in Section4. Conclusions are then given in Section5, and implementation
details of the LBFGS algorithm are contained in AppendixA.

2. The Kalman filter. We consider the coupled system of discrete, linear stochastic
difference equations given by

xk = Mkxk−1 + ε
p
k,(2.1)

yk = Kkxk + ε
o
k.(2.2)

In the first equation,xk denotes then×1 state of the system at timek; Mk is then×n linear
evolution operator; andεp

k is a n × 1 random vector known as the prediction error and is
assumed to characterize errors in the model and corresponding numerical approximations. In
the second equation,yk denotes them×1 observed data;Kk is them×n linear observation
operator; andεo

k is anm×1 random vector known as the observation error. The prediction er-
ror ε

p
k and observation errorεo

k are assumed to be independent and normally distributed, with
zero means and symmetric positive definite covariance matricesC

ε
p

k
andCε

o
k
, respectively.

We assume, in addition, that we have in hand estimates of boththe statexest
k−1 and its

positive definite covariance matrixCest
k−1 at timek − 1. Moreover, we assume thatxest

k−1, ε
p
k,
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andε
o
k are independent random vectors. The goal is to then estimatexest

k and its covariance
Cest

k . In Bayesian terms, equation (2.2) provides the likelihood function in the estimation
step, while (2.1) gives the prior. By the assumptions onε

p
k andε

o
k, the prior mean and the

prior covariance matrix are directly obtained from (2.1),

x
p
k = Mkx

est
k−1,

C
p
k = MkC

est
k−1M

T
k + C

ε
p

k
.

The full negative-log posterior density given (up to an additive constant) by Bayes’ theorem,
takes the form

ℓ(x|yk) =
1

2
(yk − Kkx)T C−1

ε
o
k
(yk − Kkx) +

1

2
(x − x

p
k)T (Cp

k)−1(x − x
p
k),

and hence, we have

xest
k = arg min

x
ℓ(x|yk),(2.3)

Cest
k = ∇2ℓ(x|yk)−1.(2.4)

Equations (2.3) and (2.4) motivate the variational Kalman filter, which is the subject of [1].
However, they can also be used to derive the Kalman filter. In particular, noting that (2.3) and
(2.4) can be alternatively written (see [24] for detail)

xest
k = x

p
k + Gk(yk − Kkx

p
k),

Cest
k = C

p
k − GkKkC

p
k,

where

Gk = C
p
kK

T
k (KkC

p
kK

T
k + Cε

o
k
)−1,

we have the following standard formulation of the Kalman filter.

The Kalman Filter
Step 0:Select initial guessxest

0 and covarianceCest
0 , and setk = 0.

Step 1:Compute the evolution model estimate and covariance:
(i) Computexp

k = Mkx
est
k−1;

(ii) ComputeCp
k = MkC

est
k−1M

T
k + C

ε
p

k
.

Step 2:Compute the Kalman filter estimate and covariance:
(i) Compute the Kalman GainGk = C

p
kK

T
k (KkC

p
kK

T
k + Cε

o
k
)−1;

(ii) Compute the Kalman filter estimatexest
k = x

p
k + Gk(yk − Kkx

p
k);

(iii) Compute the estimate covarianceCest
k = C

p
k − GkKkC

p
k.

Step 3:Updatek := k + 1 and return to Step 1.
Note that it is typical to take the initial covarianceCest

k to be diagonal.

The extended Kalman filter (EKF) is the extension of KF when (2.1), (2.2) are replaced by

xk = M(xk−1) + ε
p
k,(2.5)

yk = K(xk) + ε
o
k,(2.6)

whereM andK are (possibly) nonlinear functions. EKF is obtained by the following simple
modification of the above algorithm: in Step 1 (i), use instead xp = M(xest

k ), and define

(2.7) Mk =
∂M(xest

k−1)

∂x
, and Kk =

∂K(xp)

∂x
.
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We note thatMk andKk can be computed or estimated in a number of ways. For example,
the numerical scheme that is used in the solution of either the evolution or the observation
model defines a tangent linear code, which can be used to compute (2.7); see, e.g., [12, 15].
However, a more common, but also more computationally expensive, approach is to use finite
differences to approximate (2.7).

3. Using LBFGS for large-scale Kalman filtering. When the model sizen is large,
the Kalman filter is known to be prohibitively expensive to implement. This motivates sev-
eral alternative approaches—most notably the 4D-Var method—used in large-scale appli-
cations such as numerical weather forecasting [8, 9, 11, 12, 17, 23, 26] and oceanography
[4]. We instead focus our attention on the Kalman filter itself,using the limited memory
BFGS (LBFGS) [22] iterative method for the required large-scale matrix storage and inver-
sion within KF and EKF.

First, we give a general description of the LBFGS method for minimizing

(3.1) q(u) =
1

2
〈Au,u〉 − 〈b,u〉,

whereA is ann × n symmetric positive definite matrix andb is ann × 1 vector. It is given
by

The LBFGS method for quadratic minimization
ν := 0;
u0 := initial guess;
B−1

0 := initial inverse Hessian approximation;
begin quasi-Newton iterations

gν := ∇q(uν) = Auν − b;
vν = B−1

ν gν ;
τν = 〈gν ,vν〉/〈vν ,Avν〉;
uν+1 := uν − τνvν ;
B−1

ν := LBFGS approximation toA−1;
end quasi-Newton iterations

In all of the examples considered in this paper,B0 was taken to be the identity matrix.
The limited memory formulations forB−1

ν , and corresponding formulas forBν , are found in
Appendix append1. The stopping criteria for the LBFGS iterations is discussed in Section4.

Some insight into the convergence properties of the LBFGS method can be obtained
by an appeal to its connection with the well-known conjugategradient (CG) method, which
described in detail in [20, 21, 22, Section 9.1]. In particular, CG can be formulated as amem-
orylessBFGS method. Moreover, in the presence of exact arithmetic,LBFGS and iterates
from a certain preconditioned CG iteration are identical [21], and hence finite convergence is
guaranteed. Thus it seems reasonable to suspect that LBFGS will have convergenceproperties
similar to that of CG, which are well-known and have been extensively studied. In particu-
lar, the early convergence of CG iterates within the dominant subspaces corresponding to the
largest eigenvalues of the coefficient matrix is likely shared by LBFGS iterates.

Next, we describe how LBFGS was used to make the Kalman filter more efficient. We
make the reasonable assumption that multiplication by the evolution and observation matrices
Mk andKk, and by the covariance matricesC

ε
p

k
andCε

o
k
, is efficient, both in terms of

storage and CPU time. Additional computational challengesarise for sufficiently largen due
to the storage requirements forCest

k , which becomes a full matrix as the iterations proceed.
The same is also true forCp

k. However, given that

(3.2) C
p
k = MkC

est
k MT

k + C
ε

p

k
,
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storage issues are restricted to those forCest
k ; typically the matrixC

ε
p

k
is assumed to be

diagonal.
A low storage approximation ofCest

k can be obtained by applying the LBFGS algorithm
to the problem of minimizing (3.1) with A = Cest

k andb = 0. The LBFGS matrixB−1
ν

is then a low storage approximation of(Cest
k )−1 and formulas forCest

k from [3]—and also
found in AppendixA.2—can be used.

Additionally, whenm is sufficiently large the computation of(KkC
p
kK

T
k +Cε

o
k
)−1(yk−

Kkx
p
k) that is required in Step 2, (ii) of the Kalman filter iterationwill be prohibitively ex-

pensive.
For the approximation of(KkC

p
kK

T
k +Cε

o
k
)−1(yk −Kkx

p
k), we setA = KkC

p
kK

T
k +

Cε
o
k

andb = yk − Kkx
p
k in (3.1) and apply LBFGS to the problem of minimizing (3.1).

The LBFGS Kalman filter method can now be presented.

The LBFGS Kalman Filter (LBFGS-KF)
Step 0:Select initial guessxest

0 and covarianceB# = Cest
0 , and setk = 0.

Step 1:Compute the evolution model estimate and covariance:
(i) Computexp

k = Mkx
est
k ;

(ii) DefineC
p
k = MkB#MT

k + C
ε

p

k
.

Step 2:Compute the Kalman filter estimate and covariance:
(i) DefineA = (KkC

p
kK

T
k +Cε

o
k
) andb = yk−Kkx

p
k in (3.1) and compute

the LBFGS approximationsB∗ of A−1 andu∗ of A−1b.
(ii) Compute the LBFGS-KF estimatexest

k+1 = x
p
k + C

p
kK

T
k u∗;

(iii) Define A = C
p
k−C

p
kK

T
k B∗KkC

p
k(≈ Cest

k+1) andb = 0 in (3.1) and compute
the LBFGS approximationB# of Cest

k+1 using (A.2).
Step 3:Updatek := k + 1 and return to Step 1.

All operations with theCest
k andA−1 are done using the LBFGS formulas; see Ap-

pendixA. As a result, LBFGS-KF is much less memory and computationally intensive than
KF making its use on large-scale problems more feasible. Specifically, the storage require-
ments for the LBFGS estimate ofCest

k are on the order of2nℓ + 4n, whereℓ is the number
of stored vectors in LBFGS (typically 10-20), rather thann2 + 4n [22, Section 9.1], and the
computational cost for both obtaining and using this estimate is ordern. Furthermore, the
inversion of them × m matrixKkC

p
kK

T
k +Cε

o
k

is carried out in orderm operations and its
storage requirements are on the order of2mℓ + 4m rather thanm2 + 4m [22].

The accuracy of the LBFGS covariance approximations is an important question. An
analysis addressing this question in the similar variational setting is performed in [2]. We
believe that the results of that analysis should be similar for LBFGS-KF. Thus, we choose not
to repeat it here.

In the first example considered in the numerical experiments, LBFGS-KF and KF are
compared and it is noted that LBFGS-KF is roughly 10 times faster, in terms of CPU time,
than KF when applied to the same problem. Moreover, using ourMATLAB implementation,
LBFGS-KF can be used on significantly larger-scale problems.

As we have mentioned, in our implementations of KF and LBFGS-KF, the covariance
matricesC

ε
p

k
andCε

o
k

are taken to be diagonal. This is not a necessary requirement. More
structured covariances can be used, containing important prior information [17], however in
order to maintain the computational efficiency and low storage requirements of LBFGS-KF,
C

ε
p

k
andCε

o
k

must be comparable toMk, B# andKk, B∗, respectively, in terms storage
requirements and the computational cost required for theirmultiplication.

In the next section, we test the algorithm on two examples. The first is large-scale and
linear, while the second is small-scale and nonlinear. The purpose of these experiments is
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to demonstrate that LBFGS-KF and LBFGS-EKF are effective algorithms. We leave their
comparison with other state of the art methods for approximate Kalman filtering [5, 8, 9, 11,
12, 14, 17, 23, 26] for a later paper.

4. Numerical experiments. In this section, we present numerical results that justify
the use of LBFGS-KF. In particular, we apply the method to twoexamples. The first is
sufficiently large-scale that the use of LBFGS-KF is justified. In particular, we assume the
following forced heat equation evolution model

(4.1)
∂x

∂t
= −

∂2x

∂u2
−

∂2x

∂v2
+ α exp

[

−
(u − 2/9)2 + (v − 2/9)2

σ2

]

,

wherex is a function ofu andv over the domainΩ = {(u, v) | 0 ≤ u, v ≤ 1} andα ≥ 0. In
our experiment, we will generate synthetic data using (4.1) with α > 0 and assume that the
evolution model is given by (4.1) with α = 0, which gives a model bias. The problem can
be made as large-scale as one wants via the choice of a sufficiently fine discretization of the
domainΩ.

However, the well-behaved nature of solutions of (4.1)—in particular the fact that its so-
lutions tend to a steady state—makes further experiments with a different test case a necessity.
For this reason, we also test our method on a second example, which contains chaotic solu-
tions, and hence has unpredictable behavior. In particular, we consider the simple non-linear
model introduced and analyzed in [18, 19] and which is given by

(4.2)
∂xi

∂t
= (xi+1 − xi−2)xi−1 − xi + 8, i = 1, 2, . . . , 40,

with periodic state space variables, i.e.,x−1 = xn−1, x0 = xn andxn+1 = x1, n = 40.
Then (4.2) is a chaotic dynamical system (cf. [19]), which is desirable for testing purposes.
As the model is computationally light and shares many characteristics with realistic atmo-
spheric models (cf. [19]), it is commonly used for testing different data analysis schemes for
weather forecasting.

4.1. An example with a large-scale linear evolution model.We perform our first ex-
periments using model (4.1) using a uniformN × N computational grid and the standard
finite difference discretization of both the time and spatial derivatives, which yields the fol-
lowing time stepping equationxk+1 = Mxk + f , whereM = I − ∆tL. HereL is given by
the standard finite difference discretization of the two-dimensional Laplacian operator with
homogeneous Dirichlet boundary conditions,∆t is chosen to guarantee stability, andf is the
constant vector determined by the evaluation of the forcingterm in (4.1) at each of the points
of the computational grid.

We defineKk = K for all k in (2.2), whereK is a matrix modeling an array of square
sensors on the computational grid. Assuming that each sensor collects a weighted average
of the state values in a3 × 3 pixel region centered at every8th pixel in both thex andy
directions,K will have dimension(n/64)×n. We assume, further, that the weighted average
in the3 × 3 region is defined by

1

16





1 2 1
2 4 2
1 2 1



 .

In our first test, we generate synthetic data using the linearstochastic equations

xk+1 = Mxk + f + N(0, (0.5σev)
2I),

yk+1 = Kxk+1 + N(0, (0.8σobs)
2I),
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with α = 3/4 in (4.1) and whereσ2
ev andσ2

obs are chosen so that the signal to noise ratios,
defined by‖x0‖

2/n2σ2
ev and‖Kx0‖

2/n2σ2
obs respectively, are both 50. The initial condition

used for the data generation was

[x0]ij = exp[−((ui − 1/2)2 + (vj − 1/2)2)],

where(ui, vj) is theijth grid point.
In our implementation of KF, we used the biased models

xk+1 = Mxk + N(0, σ2
evI),(4.3)

yk+1 = Kxk+1 + N(0, σ2
obsI),(4.4)

with initial conditionsx0 = 0 andCest
0 = 0.001I in Step 0 of the filter. We compare the

results obtained with the LBFGS-KF and KF, whereN = 2j with j taken to be the largest
positive integer so that memory issues do not arise in the MATLAB implementation for the
standard KF. For the computer on which the simulations were done (a laptop with 2G RAM
memory and a 1.8 GHz Core 2 Duo processor) the largest suchj was 5, makingN = 32 and
n = 1024. We note that in our implementation of the LBFGS method within LBFGS-KF, we
have chosen to take only 10 LBFGS iterations with 9 saved vectors. These choices may seem
crude at first, however, more stringent stopping tolerancesand/or a larger number of stored
vectors did not appreciably affect the results for the examples that we considered.

The purpose of this test is to show that the results obtained with LBFGS-KF are compa-
rable results with those obtained with KF. To do this, we present a plot in Figure4.1 of the
relative error vector, which haskth component

[relative error]k :=
‖xest

k − xk‖

‖xk‖
,

for both the LBFGS Kalman Filter and for the standard Kalman Filter. We see that results
obtained using the two approaches yield similar, though notidentical, relative error curves.
Both curves eventually begin to increase once the forcing term, which is not used in the state
space model in KF, has a prominent effect on the data; in earlyiterations, it is overwhelmed
by the diffused initial temperature. We also mention that inthe large number of test runs that
we did using this large-scale model, our implementation of the LBFGS-KF was on average
about 10 times faster than was the standard KF.

Additionally, in Figure4.2, we present the filter estimates obtained from both KF and
LBFGS-KF together with the true state values at time points 35 and 70. Note that in the
early iterations of the filter, represented by time point 35,the filter does not detect the source
because it is overwhelmed by the initial temperature and is not contained in the model (4.3),
(4.4). However, the source is detected once the initial temperature has sufficiently dissipated.

For a thorough comparison, we perform the same test using values forσ2
ev andσ2

obs that
yield signal-to-noise ratios of 10. The relative error curves in Figure4.3 result. Interest-
ingly, LBFGS-KF provides better results at the beginning ofthe filtering period than does
KF. This can be explained, we believe, by the fact that a regularization of sorts is implicitly
implemented via the use of a truncated LBFGS algorithm.

Finally, we chooseσ2
ev andσ2

obs as in the original experiment, but takeα = 2, which
has the effect of making the state space model that is used within LBFGS-KF and KF less
accurate. When this is done, we obtain the solution curves appearing in Figure4.4. Thus
it seems that as the underlying evolution model becomes lessaccurate and the noise level
remains moderately low KF provides better results
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FIG. 4.1.Relative error curves for KF (∗) and LBFGS-KF (o). The horizontal axis represents the observation time.

In order to show that satisfactory results can also be obtained for much larger scale prob-
lems, we takej = 8 which givesN = 256 andn = 65536. We take all other parameter
values to be those of the original experiment. Note, however, that the stability condition of
the time stepping scheme requires a much smaller time step for this problem. A relative error
plot similar to those in the previous example is given in Figure 4.5. We do not include an
error curve for the Kalman filter because memory issues prevent its implementation on our
computer for eitherN = 128 (n = 16384) or N = 256 (n = 65536).

The previous large-scale example remains orders of magnitude smaller than the typical
size of systems considered in practical weather models. We stopped atN = 256 because
our experiments were performed on a laptop that could not handle a larger-scale problem.
However, the discussion of computational cost and storage in the paragraph following the
description of the LBFGS-KF algorithm suggests that it scales well with problem size. Thus
the use of LBFGS-KF on much larger-scale problems should be feasible. Efficiency can be
further improved if several time steps are allowed in the forward model for each Kalman filter
iteration, much as is done in 4D-Var implementations. In addition, to the degree that LBFGS
is parallelizable, LBFGS-KF will also be parallelizable.

4.2. An example with a small-scale, nonlinear evolution model. In our next example,
we apply EKF and LBFGS-EKF to the problem of estimating the state variables from data
generated using the nonlinear, chaotic evolution model (4.2). To generate the data, a time
integration of the model was first performed using a fourth order Runge-Kutta (RK4) method
with time-step∆t = 0.025. Analysis in [19] suggests that when (4.2) is used as a test example
for weather forecasting data assimilation algorithms, thecharacteristic time scale is such that
the above∆t corresponds to 3 hours, which we will use in what follows. It is also noted in
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FIG. 4.2.The top plots are of the true state at time points 35 and 70. Themiddle plots are of the Kalman filter
estimates at time points 35 and 70. The bottom plots are of theLBFGS Kalman filter estimates at time points 35
and 70.

[19] that for ∆t ≤ 0.5, the RK4 method is stable. The “true data” was generated by taking
42920 time steps of the RK4 method, which corresponds to5365 days. The initial state at the
beginning of the data generation wasx20 = 8 + 0.008 andxi = 8 for all i 6= 20.

The observed data is then computed using this true data. In particular, after a365 day
long initial period, the true data is observed at every othertime step and at the last 3 grid
points in each set of 5; that is, the observation matrix ism × n with nonzero entries

[K]rs =

{

1 (r, s) ∈ {(3j + i, 5j + i + 2) | i = 1, 2, 3, j = 0, 1, . . . , 7},
0 otherwise.

The observation error is simulated using the Gaussian random vectorN(0, (0.15 σclim)2I)
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FIG. 4.3.Relative error curves for KF (∗) and LBFGS-KF (o). The horizontal axis represents the observation time.
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FIG. 4.4.Relative error curves for KF (∗) and LBFGS-KF (o). The horizontal axis represents the observation time.
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FIG. 4.5.Relative error curves for LBFGS-KF. The horizontal axis represents the observation time.

whereσclim is a standard deviation of the model state used in climatological simulations,
σclim := 3.6414723. The data generation codes were written in MATLAB and were tran-
scribed by us from thescilab codes written by the author of [15].

In our application of EKF and LFBGS-EKF, we assume the coupled stochastic system

xk+1 = M(xk) + N(0, (0.05 σclim)2I),(4.5)

yk+1 = Kxk+1 + N(0, (0.15 σclim)2I),(4.6)

whereM(xk) is obtained by taking two steps of the RK4 method applied to (4.2) with initial
conditionxk with time-step0.025. We note that if the noise term is removed from (4.5) and
the above initial condition is used, our data generation scheme results.

Due to the fact thatM is a nonlinear function, EKF must be used; see (2.5) and (2.6).
SinceK := K in (2.6) is linear,Kk = K for all k in (2.7). However, a linearization of
the nonlinear evolution functionM is required. Fortunately, the computation ofMk in (2.7)
is performed by a routine in one of thescilab codes mentioned above and that we have
adapted for our use in MATLAB.

The initial condition used in implementation of both the EKFand LBFGS-EKF is defined
by [xt0]i = [xtrue

t0 ]i + N(0, (0.3 σclim)2) for all i, and the initial covariance was taken to be
Cest

0 = (0.13 σclim)2I. In our implementation of the LBFGS method within LBFGS-EKF,
we computed 10 iterations with 9 saved vectors.

In order to analyze the accuracy of the state estimatesxest
k obtained by both EKF and

LBFGS-EKF we plot the vector with components

[rms]k =

√

1

40
‖xest

k − xtrue
k ‖2(4.7)
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FIG. 4.6.Plot of residual mean square error for LBFGS-EKF (o) and EKF (∗) applied to (4.2).

in Figure4.6. We can see that the two methods yield comparable results.
In order to compare the forecasting abilities of the two approaches, we compute the

following forecast statistics at every 8th observation. Take j ∈ I := {8i | i = 1, 2, . . . , 100}
and define

[forcast errorj ]i =
1

40
‖M4i(x

est
j ) − xtrue

j+4i‖
2, i = 1, . . . , 20,(4.8)

whereMn denotes a forward integration of the model byn time steps with the RK4 method.
Thus this vector gives a measure of forecast accuracy given by the respective filter estimate
up to 80 time steps, or 10 days out. This allows us to define the forecast skill vector

(4.9) [forecast skill]i =
1

σclim

√

1

100

∑

j∈I

[forecast errorj ]i, i = 1, . . . , 20,

which is plotted in Figure4.7. The results show that the forecasting skill of the two methods
is very similar, which suggests that on the whole, the quality of the LBFGS-EKF estimates
is as high as those obtained using EKF. Figure4.7also illustrates the fact that the Lorenz 95
model (4.2) is truly chaotic.

In the test cases considered here, a linear or linearized model matrixMk has been avail-
able. This is not true in important examples such as in numerical weather forecasting, where,
on the other hand, a tangent linear code [14] is available that provides a means of computing
the matrix vector productMkx.

5. Conclusions. The standard implementations of KF and EKF become exceedingly
time and memory intensive as the dimension of the underlyingstate space increases. Several
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FIG. 4.7.Plot of forecast skill vector for LBFGS-EKF (o) and EKF (∗) applied to (4.2).

variants of KF and EKF have been proposed to reduce the dimension of the system, thus
making implementation in high dimensions possible. The Reduced Rank Kalman Filter or
Reduced Order extended Kalman filter (see, e.g., [4, 7, 30]) project the dynamical state vector
of the model onto a lower dimensional subspace. The success of this approach depends on a
judicious choice of the reduction operator. Moreover, since the reduction operator is typically
fixed in time, they can suffer from “covariance leaks” [9]. A typical cause of this is that
nonlinear systems do not generally leave any fixed linear subspace invariant.

In this paper, we propose the use of the limited memory BFGS (LBFGS) minimization
method in order to circumvent the computational complexityand memory issues of standard
KF and EKF. In particular, we replace then × n, wheren is the dimension of the state
space, covariance matrices within KF and EKF with low storage approximations obtain using
LBFGS. The large-scale matrix inversions required in KF andEKF implementations are also
approximated using LBFGS. The resulting methods are denoted LBFGS-KF and LBFGS-
EKF, respectively.

In order to test these methods, we consider two test cases: large-scale linear and small
scale nonlinear. LBFGS-KF is applied in the large-scale linear case and is shown to be ef-
fective. In fact, our method exceeds the speed of standard KFby an order of magnitude, and
yields comparable results when both methods can be applied.Furthermore, it can be used on
much larger scale problems. In the nonlinear, small scale case, LBFGS-EKF is implemented
and is also shown to give results that are comparable to thoseobtained using standard EKF.
We believe that these results suggest that our approach deserves further consideration.

The symmetric rank one (SR1) quasi-Newton method for minimizing (3.1) could be
another attractive method for use within KF and EKF, since italso yields estimates of both
the minimizer and inverse Hessian. The main drawback of using SR1, however, is that the
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inverse Hessian approximations are not guaranteed to be positive definite.

Appendix A. In this appendix, we give a general description of the LBFGS method for
minimizing

q(u) =
1

2
〈Au,u〉 − 〈b,u〉,

whereA is ann × n symmetric positive definite matrix andb is ann × 1 vector. It is given
by.

The LBFGS method for quadratic minimization
ν := 0;
u0 := initial guess;
B−1

0 := initial inverse Hessian approximation;
begin quasi-Newton iterations

gν := ∇q(uν) = Auν − b;
vν = B−1

ν gν ;
τν = 〈gν ,vν〉/〈vν ,Avν〉;
uν+1 := uν − τνvν ;
B−1

ν := LBFGS approximation toA−1;
end quasi-Newton iterations

A.1. The limited memory approximation for A−1. The BFGS matrixB−1
ν is com-

puted using recursion

B−1
ν+1 = VT

ν B−1
ν Vν + ρνsνs

T
ν ,

where

sν := uν+1 − uν ,

dν := ∇q(uν+1) −∇q(uν),

ρν := 1/dT
ν sν ,

Vν := I− ρνdνs
T
ν .

However, for large-scale problems the storage of the full matrix B−1
ν is infeasible, which

motivates the limited storage version of the algorithm. At iterationν, suppose that thej
vector pairs{si,di}

ν−1
i=ν−j are stored. Then we the LBFGS approximation of the inverse

Hessian is given by

B−1
ν = (VT

ν−1 · · ·V
T
ν−j)(Vν−j · · ·Vν−1)

+ ρν−j(V
T
ν−1 · · ·V

T
ν−j+1)sν−js

T
ν−j(Vν−j+1 · · ·Vν−1)

+ ρν−j+1(V
T
ν−1 · · ·V

T
ν−j+2)sν−j+1s

T
ν−j+1(Vν−j+2 · · ·Vν−1)

+
...

+ ρν−1sν−1s
T
ν−1.(A.1)

Assuming exact arithmetic and thatj, we have thatuν converges to the unique minimizer
of q in at mostn iterations, and ifn iterations are performedB−1

n+1 = A−1 [22]. In the
implementation in this paper, however,j << n and LBFGS iterations are truncated before
convergence is obtained.



ETNA
Kent State University 

http://etna.math.kent.edu

LARGE-SCALE KALMAN FILTERING USING THE LIMITED MEMORY BFGSMETHOD 231

It is proven in [21] that for quadratic minimization problems and exact line searches
LBFGS is equivalent to preconditioned conjugate gradient with fixed preconditionerB0.
Thus its convergence rate is given by [22]

‖uk − u∗‖2

Ã
≤

(

λN−k − λ1

λN−k + λ1

)2

‖u0 − u∗‖2

Ã
,

whereu∗ = A−1b, Ã = B
1/2

0 AB
1/2

0 is N × N with eigenvaluesλ1 ≤ λ2 ≤ · · · ≤ λN and
‖v‖

Ã
= vT Ãv.

A.2. A low storage approximation ofA. The required formulas are given in [3] and
take the following form. Let

Sν = [sν−j, . . . , sν−1], Dν = [dν−j , . . . ,dν−1],

then

(A.2) Bν = ξνI− [ξνSν Dν ]

[

ξνS
T
ν Sν Lν

LT
ν −Dν

]−1 [

ξνS
T
ν

DT

]

,

whereLν andDν are thej × j matrices

(Lν)i,j =

{

sT
ν−j−1+idν−j−1+j , if i > j,

0, otherwise.

and

Dν = diag(sT
ν−jdν−j , . . . , s

T
ν−1dν−1).

We note that whenξν = 1 for all ν in (A.2), we have an exact equality betweenBν in (A.2)
and (A.1). However, we have found that a more accurate Hessian approximation is obtained
if, following [ 22], we use the scalingξν = dT

ν−1dν−1/s
T
ν−1dν−1 instead.

We note that the middle matrix in (A.2) has size2j × 2j, which is of reasonable size
providedj is not too large, and its inversion can be carried out efficiently using a Cholesky
factorization that exploits the structure of the matrix; see [3] for details.
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