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LARGE-SCALE KALMAN FILTERING USING
THE LIMITED MEMORY BFGS METHOD  *

H. AUVINENT, J. M. BARDSLEYf, H. HAARIOT, AND T. KAURANNET

Abstract. The standard formulations of the Kalman filter (KF) and egsh Kalman filter (EKF) require the
storage and multiplication of matrices of sizex n, wheren is the size of the state space, and the inversion
of matrices of sizen x m, wherem is the size of the observation space. Thus when botAndn are large,
implementation issues arise. In this paper, we advocategbef the limited memory BFGS method (LBFGS) to
address these issues. A detailed description of how to us&slBwithin both the KF and EKF methods is given.
The methodology is then tested on two examples: the firstgedacale and linear, and the second is small scale and
nonlinear. Our results indicate that the resulting methadiéch we will denote LBFGS-KF and LBFGS-EKEF, yield
results that are comparable with those obtained using KFEA(Ig respectively, and can be used on much larger
scale problems.
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1. Introduction. The Kalman filter (KF) for linear dynamical systems and thieeged
Kalman filter (EKF) for nonlinear but smoothly evolving dyni&cal systems are popular
methods for use on state space estimation problems. As thendion of the state space
becomes very large, as is the case, for example, in numevieather forecasting, the stan-
dard formulations of KF and EKF become computationallydotable due to matrix storage
and inversion requirements.

Computationally efficient variants of KF and EKF have beeawppsed for use on such
large-scale problems. The Reduced Rank Kalman Filter ou&etiOrder extended Kalman
filter (see, e.g.,4, 7, 30]) project the dynamical state vector of the model onto a logie
mensional subspace. The success of the approach depents yydicious choice of the
reduction operator. Moreover, since the reduction operatdypically fixed in time, the
dynamics of the system may not be correctly captured; 3def more details.

In the context of numerical weather forecasting, a greak afeattention has been given
to the filtering problem. The current state of the art is 4D-{é&ee, e.g.,9, 23]), which uti-
lizes a variational formulation of an initial value estinmat problem [L1, 14, 17]. 4D-Var has
been shown to be identical to a Kalman smoother when the ni@dskumed to be perfect
[16]. The resulting quadratic minimization problem is verygarscale 0*-107 unknowns)
and so efficient numerical optimization methods are nee&aailar to the methods in the
previous paragraph, the partial orthogonal decomposisased in p] to reduce the dimen-
sionality of the 4D-Var minimization problem. A more standi@pproach is to implement
a preconditioned conjugate gradient meth8d12, 22, 26]. In this context, a number of
different preconditioners have been tested.

In this paper, we take a different approach. In particula,facus our attention on the
Kalman filter itself, using the limited memory BFGS (LBFG&Y] iterative method for the
required large-scale matrix storage and inversion withinaddd EKF. More specifically, sup-
poseAx = b is a system, with symmetric positive definite matAx that requires solution,
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and or a low storage approximation Af-! is needed, within the KF or the EKF algorithms.
In such cases, LBFGS is a natural choice, since it generatbsabsequence of approxima-
tions of A~'b, and a sequence of symmetric positive definite mat|{®§1} approximating
A~ This choice is further supported by the result tAat'b is reached within a finite num-
ber of LBFGS iterations (assuming exact arithmeti), [21], and that ifk and full memory
BFGS is use(B,j1 = A~![22, Chapter 8]. A result regarding the accuracy of the LBFGS
Hessian approximations tA~! is also given in 21]; it depends upon the eigenvalues of
A'/?2BFA1/2; see Appendi. The use of LBFGS and its success in the examples that we
consider can be motivated by the fact that the covarianceicaatbeing approximated are
approximately low rank. In applications of intere§},[covariance information is contained
in slowly varying, low dimensional subspaces, making aa®itow-rank approximations
possible.

The idea of using the LBFGS method in variational data asation is not new; see,
e.g., [LO, 13, 17, 25, 27, 28, 29, 31]. In many of these references, the LBFGS Hessian or
inverse Hessian is used as a preconditioner for conjugatdieyt iterations, and even as an
approximate error covariance matrix for the backgrounohtar 3D- and 4D-Var variational
data assimilation. However, in the method presented heed, BFGS method is further used
for matrix inversion, in order to propagate effectively ttate estimate covariance informa-
tion forward in time. Moreover, we apply our methodology ke tKalman filter itself, not
to the variation formulation used by the 3D- and 4D-Var methfi7]. LBFGS can also be
incorporated in a fully variational formulation of the Kadm filter; see J].

As has been stated, the approach presented here uses theSL&g&ithm directly
within the context of the Kalman filter. The equivalence ofH®S and a certain precon-
ditioned conjugate gradient method (s€é][and AppendixA) suggests that our approach
and those cited above are similar. One advantage of the afiptbaches, however, is that
they can be incorporated into existing 3D- and 4D-Var codeslun practice.

An application of a similar methodology that could be usedct@mjunction with 3D-
and 4D-Var is presented ii[2]. The aim of the current paper is to demonstrate the use of
LBFGS within the standard (non-variational) formulatiditloe linear or extended Kalman
filter.

The paper is organized as follows. We present KF and EKF itic®e2, and then in
Section3 we present LBFGS-KF and LBFGS-EKF. We test these methodistwi numer-
ical experiments in Sectiof. Conclusions are then given in Sectidnand implementation
details of the LBFGS algorithm are contained in Appentlix

2. The Kalman filter. We consider the coupled system of discrete, linear stoichast
difference equations given by

(2.1) X = Mypxp_1 + €},
(2.2) vi = Kgxi + €.

In the first equationx;, denotes the x 1 state of the system at tinke My, is then x n linear
evolution operator; and} is an x 1 random vector known as the prediction error and is
assumed to characterize errors in the model and correspgndimerical approximations. In
the second equatiogy, denotes then x 1 observed datdi, is them x n linear observation
operator; ana@¢, is anm x 1 random vector known as the observation error. The predieio
ror e} and observation errar; are assumed to be independent and normally distributeld, wit
zero means and symmetric positive definite covariance Um@sg andCec., respectively.

We assume, in addition, that we have in hand estimates ofthetbtatex{*‘;, and its
positive definite covariance matri¢*'; at timek — 1. Moreover, we assume thaf*‘ , &7,
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ande? are independent random vectors. The goal is to then estigjétend its covariance

C¢st. In Bayesian terms, equatioB.9) provides the likelihood function in the estimation
step, while 2.1) gives the prior. By the assumptions eft ande{, the prior mean and the

prior covariance matrix are directly obtained froth?),

P _ t

x, = Mpxip™,

Cl = M,.Cy¥ My + C
BT YRS -1V ep:

The full negative-log posterior density given (up to an éigdiconstant) by Bayes’ theorem,
takes the form

1 _ 1 _
xiyr) = 5 (v — Kix) 'O (e — Koox) + 5 (x = x)T(C) 7 (x = x)),

and hence, we have
(2.3) xi* = argmin £(x|yr),
(2.4) Cet = V2(x|y) L.

Equations 2.3 and @.4) motivate the variational Kalman filter, which is the sulbjet[1].
However, they can also be used to derive the Kalman filterattiqular, noting thatZ.3) and
(2.4) can be alternatively written (se24] for detail)

X" = x) + Gr(yr — Kix}),
CzSt = Ci — Gkchz,

where
Gy, = CIK[[ (K, CJK] + Ceg) ',
we have the following standard formulation of the Kalmarefilt

The Kalman Filter
Step 0: Select initial guess§® and covarianc€§*?, and se& = 0.
Step 1: Compute the evolution model estimate and covariance:
(i) Computex;, = Mx¢*;
(i) ComputeC}, = M C;*" M| + C.».
Step 2: Compute the Kalman filter estimate and covariance:
(i) Compute the Kalman Gai6, = C; K} (K, C/ K] + Ceo) ™',
(i) Compute the Kalman filter estimaii“ = xﬁ + Gi(yk — kai);
(iii) Compute the estimate covarian€g** = C} — G, K, C}.
Step 3: Updatek := k£ + 1 and return to Step 1.
Note that it is typical to take the initial covarian€&** to be diagonal.

The extended Kalman filter (EKF) is the extension of KF whHad)( (2.2) are replaced by
(2.5) X = M(Xp-1) + €},

(2.6) yi = K(xx) + €,

where M andkC are (possibly) nonlinear functions. EKF is obtained by thiefving simple
modification of the above algorithm: in Step 1 (i), use indte& = M (x{*), and define

BM est p
= M, and K, = OK (x ).
ox ox

2.7) M,



ETNA
Kent State University
http://etna.math.kent.edu

220 H. AUVINEN, J. BARDSLEY, H. HAARIO, AND T. KAURANNE

We note thaiM;, and K, can be computed or estimated in a number of ways. For example,
the numerical scheme that is used in the solution of eitheetiolution or the observation
model defines a tangent linear code, which can be used to der}®); see, e.g.,12, 15].
However, a more common, but also more computationally esigenapproach is to use finite
differences to approximate (7).

3. Using LBFGS for large-scale Kalman filtering. When the model size is large,
the Kalman filter is known to be prohibitively expensive toplement. This motivates sev-
eral alternative approaches—most notably the 4D-Var ntethesed in large-scale appli-
cations such as numerical weather forecastB)([ 11, 12, 17, 23, 26] and oceanography
[4]. We instead focus our attention on the Kalman filter itsaing the limited memory
BFGS (LBFGS) P2 iterative method for the required large-scale matrix atg@ and inver-
sion within KF and EKF.

First, we give a general description of the LBFGS method forimizing

@) ) = 5{Au,u) — (b w),

whereA is ann x n symmetric positive definite matrix arlslis ann x 1 vector. It is given
by
The LBFGS method for quadratic minimization
v:=0;
ug := initial guess;
Bgl := initial inverse Hessian approximation;
begin quasi-Newton iterations

8y = VQ(UV) = Au, —b;

Vy = B;lgy,

Ty = (8, Vi) /(Vu, AV,);

Up41 = Uy — Ty Vy,

B! := LBFGS approximation t\ ~*;
end quasi-Newton iterations

In all of the examples considered in this pafd8s, was taken to be the identity matrix.
The limited memory formulations fdB !, and corresponding formulas f&,,, are found in
Appendix appendl. The stopping criteria for the LBFGS iierss is discussed in Sectidn

Some insight into the convergence properties of the LBFG&arkcan be obtained
by an appeal to its connection with the well-known conjugatalient (CG) method, which
described in detail in40, 21, 22, Section 9.1]. In particular, CG can be formulated aiseam-
orylessBFGS method. Moreover, in the presence of exact arithmeB&GS and iterates
from a certain preconditioned CG iteration are identi@d]] and hence finite convergence is
guaranteed. Thus it seems reasonable to suspect that LBH®GSwe convergence properties
similar to that of CG, which are well-known and have been esiteely studied. In particu-
lar, the early convergence of CG iterates within the domiisabspaces corresponding to the
largest eigenvalues of the coefficient matrix is likely gthby LBFGS iterates.

Next, we describe how LBFGS was used to make the Kalman fileeerefficient. We
make the reasonable assumption that multiplication bywbkigon and observation matrices
M, andK,, and by the covariance matricéssi and Ceo, is efficient, both in terms of
storage and CPU time. Additional computational challersge® for sufficiently large: due
to the storage requirements f@¥s!, which becomes a full matrix as the iterations proceed.
The same is also true f@?%. However, given that

(3.2) C} = M,Ci*'M} + C,r,
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storage issues are restricted to those @jf; typically the matrixCEz is assumed to be
diagonal.

A low storage approximation aE¢** can be obtained by applying the LBFGS algorithm
to the problem of minimizing3.1) with A = C¢{** andb = 0. The LBFGS matrixB,!
is then a low storage approximation @¢**)~! and formulas foIC¢** from [3]—and also
found in AppendixA.2—can be used.

Additionally, whenm is sufficiently large the computation 0K, CﬁK;f—i—CeZ V" Hyk—
K x}) that is required in Step 2, (ii) of the Kalman filter iteratiwill be prohibitively ex-
pensive.

For the approximation of K, C} K}, + Cco) ™' (yx — Kix}), we setA = K, CK +
Ceo andb =y, — K;x} in (3.1) and apply LBFGS to the problem of minimizing.().

The LBFGS Kalman filter method can now be presented.

The LBFGS Kalman Filter (LBFGS-KF)

Step 0: Select initial guess§** and covarianc® ., = C§**, and set = 0.

Step 1: Compute the evolution model estimate and covariance:
(i) Computex}, = Mx¢t;
(i) Define C} = M;B,M] + Cer.

Step 2: Compute the Kalman filter estimate and covariance:
(i) DefineA = (K CK} +C..) andb = y;,—K;x}, in (3.1) and compute
the LBFGS approximatiorB,. of A~—! andu, of A~ 'b.
(if) Compute the LBFGS-KF estimatef’’, = x|, + C/ K] u,;
(iii) Define A = C} - C/K} B, K C(~ C{*,) andb = 0 in (3.1) and compute
the LBFGS approximatioB . of C;ﬁfl using @A.2).

Step 3:Updatek := k£ + 1 and return to Step 1.

All operations with theC¢** and A~! are done using the LBFGS formulas; see Ap-
pendixA. As a result, LBFGS-KF is much less memory and computatipimansive than
KF making its use on large-scale problems more feasible cifgaly, the storage require-
ments for the LBFGS estimate 6f¢** are on the order ofn/ + 4n, where/ is the number
of stored vectors in LBFGS (typically 10-20), rather thah+- 4n [22, Section 9.1], and the
computational cost for both obtaining and using this esénis ordern. Furthermore, the
inversion of them x m matrix KkCQK;f—l—Csz is carried out in orderm operations and its
storage requirements are on the orde2wf? + 4m rather thanm? + 4m [22).

The accuracy of the LBFGS covariance approximations is gyomant question. An
analysis addressing this question in the similar variai@etting is performed in2]. We
believe that the results of that analysis should be similat BFGS-KF. Thus, we choose not
to repeat it here.

In the first example considered in the numerical experimdrB$GS-KF and KF are
compared and it is noted that LBFGS-KF is roughly 10 timegefagn terms of CPU time,
than KF when applied to the same problem. Moreover, usingyAIrLAB implementation,
LBFGS-KF can be used on significantly larger-scale problems

As we have mentioned, in our implementations of KF and LBARGSthe covariance
matricescsz andC.. are taken to be diagonal. This is not a necessary requirerivene
structured covariances can be used, containing importantipformation [17], however in
order to maintain the computational efficiency and low sgereequirements of LBFGS-KF,
Cer andC., must be comparable tvj, By andKy, B., respectively, in terms storage
requirements and the computational cost required for theitiplication.

In the next section, we test the algorithm on two example firkt is large-scale and
linear, while the second is small-scale and nonlinear. Timpgse of these experiments is
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to demonstrate that LBFGS-KF and LBFGS-EKF are effectigoi@thms. We leave their
comparison with other state of the art methods for approterf@lman filtering b, 8, 9, 11,
12, 14,17, 23, 26] for a later paper.

4. Numerical experiments. In this section, we present numerical results that justify
the use of LBFGS-KF. In particular, we apply the method to examples. The first is
sufficiently large-scale that the use of LBFGS-KF is judtifién particular, we assume the
following forced heat equation evolution model

Oz 0?x 9%z (u—2/9)? + (v —2/9)*

41 gr _ 0w 0w _
(4.1) ot o2 ooz AP &2 ’

wherez is a function ofu andv over the domaif2 = {(u,v) | 0 <wu,v < 1} anda > 0. In
our experiment, we will generate synthetic data usig)(with o > 0 and assume that the
evolution model is given by4(1) with o« = 0, which gives a model bias. The problem can
be made as large-scale as one wants via the choice of a suiffidi@e discretization of the
domains.

However, the well-behaved nature of solutions4flf—in particular the fact that its so-
lutions tend to a steady state—makes further experimetthsandifferent test case a necessity.
For this reason, we also test our method on a second examipieh wontains chaotic solu-
tions, and hence has unpredictable behavior. In particwkconsider the simple non-linear
model introduced and analyzed itg 19] and which is given by

9x' = (" — 2t — gt 4 8, 1=1,2,...,40,

ot

with periodic state space variables, i.e.,! = "', 20 = 2" andz"™! = 2!, n = 40.
Then @.2) is a chaotic dynamical system (cfL9]), which is desirable for testing purposes.
As the model is computationally light and shares many chartics with realistic atmo-
spheric models (cf.19)), it is commonly used for testing different data analysieemes for
weather forecasting.

(4.2)

4.1. An example with a large-scale linear evolution modelWe perform our first ex-
periments using mode#(1) using a uniformN' x N computational grid and the standard
finite difference discretization of both the time and sgatirivatives, which yields the fol-
lowing time stepping equatiory,+1 = Mx;, + f, whereM = I — AtL. HereL is given by
the standard finite difference discretization of the twoehsional Laplacian operator with
homogeneous Dirichlet boundary conditios, is chosen to guarantee stability, ahis the
constant vector determined by the evaluation of the fortangn in (4.1) at each of the points
of the computational grid.

We defineK;, = K for all k in (2.2), whereK is a matrix modeling an array of square
sensors on the computational grid. Assuming that each seon#lects a weighted average
of the state values in & x 3 pixel region centered at evesf" pixel in both thez andy
directions K will have dimensior{n/64) x n. We assume, further, that the weighted average
in the3 x 3 region is defined by

1 2
% 2 4
1 2

— N =

In our first test, we generate synthetic data using the lingahastic equations

Xp+1 = Mxy + £ + N(0, (0.506)°I),
Vi1 = Kxpi1 + N (0, (0.800bs)°1),
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with o = 3/4in (4.1) and wheres2, ando?, , are chosen so that the signal to noise ratios,
defined by||x¢||?/n?02, and||Kx,||%/n?0?, , respectively, are both 50. The initial condition
used for the data generation was

[xoli; = exp[—((u; = 1/2)* + (v; — 1/2)*)],
where(u;, v;) is theijth grid point.
In our implementation of KF, we used the biased models
(4.3) X1 = Mxy + N(0,02,1),

? ev

(4.4) Vi1 = Kxp1 + N(0,02,1),

with initial conditionsxy = 0 andCg* = 0.001I in Step 0 of the filter. We compare the
results obtained with the LBFGS-KF and KF, wheév¥e= 27 with j taken to be the largest
positive integer so that memory issues do not arise in the M¥d implementation for the
standard KF. For the computer on which the simulations wereeda laptop with 2G RAM
memory and a 1.8 GHz Core 2 Duo processor) the largest sues 5, makingV = 32 and
n = 1024. We note that in our implementation of the LBFGS method wittBFGS-KF, we
have chosen to take only 10 LBFGS iterations with 9 savedvecThese choices may seem
crude at first, however, more stringent stopping tolerarmeesor a larger number of stored
vectors did not appreciably affect the results for the exasthat we considered.

The purpose of this test is to show that the results obtaingdMBFGS-KF are compa-
rable results with those obtained with KF. To do this, we en¢s plot in Figuret.1 of the
relative error vector, which hagh component

[l = x|

[relative_error]; :=
x|

for both the LBFGS Kalman Filter and for the standard Kalmdtel We see that results

obtained using the two approaches yield similar, thoughdenttical, relative error curves.

Both curves eventually begin to increase once the forcing,teshich is not used in the state
space model in KF, has a prominent effect on the data; in @arfgtions, it is overwhelmed

by the diffused initial temperature. We also mention thahimlarge number of test runs that
we did using this large-scale model, our implementatiorhefltBFGS-KF was on average
about 10 times faster than was the standard KF.

Additionally, in Figure4.2, we present the filter estimates obtained from both KF and
LBFGS-KF together with the true state values at time poitaBd 70. Note that in the
early iterations of the filter, represented by time pointtB&, filter does not detect the source
because it is overwhelmed by the initial temperature andi<antained in the modedi(3),
(4.4). However, the source is detected once the initial tempegdtas sufficiently dissipated.

For a thorough comparison, we perform the same test usingsdbro2, ando?, , that
yield signal-to-noise ratios of 10. The relative error esun Figure4.3 result. Interest-
ingly, LBFGS-KF provides better results at the beginningha filtering period than does
KF. This can be explained, we believe, by the fact that a es@ation of sorts is implicitly
implemented via the use of a truncated LBFGS algorithm.

Finally, we chooser2, anda?, ; as in the original experiment, but take= 2, which
has the effect of making the state space model that is uséihwiBFGS-KF and KF less
accurate. When this is done, we obtain the solution curveeatng in Figuret.4 Thus
it seems that as the underlying evolution model becomesaessrate and the noise level
remains moderately low KF provides better results
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FIG. 4.1.Relative error curves for KF{) and LBFGS-KF (0). The horizontal axis represents the olztem time.

In order to show that satisfactory results can also be obthfior much larger scale prob-
lems, we takej = 8 which givesN = 256 andn = 65536. We take all other parameter
values to be those of the original experiment. Note, howehat the stability condition of
the time stepping scheme requires a much smaller time stepi$gproblem. A relative error
plot similar to those in the previous example is given in Feggd.5. We do not include an
error curve for the Kalman filter because memory issues pitat®implementation on our
computer for eitherV = 128 (n = 16384) or N = 256 (n = 65536).

The previous large-scale example remains orders of madgamaller than the typical
size of systems considered in practical weather models. téyged atN = 256 because
our experiments were performed on a laptop that could notlleaa larger-scale problem.
However, the discussion of computational cost and storaghd paragraph following the
description of the LBFGS-KF algorithm suggests that it ssalell with problem size. Thus
the use of LBFGS-KF on much larger-scale problems shoulaasilfle. Efficiency can be
further improved if several time steps are allowed in theviand model for each Kalman filter
iteration, much as is done in 4D-Var implementations. Initaald, to the degree that LBFGS
is parallelizable, LBFGS-KF will also be parallelizable.

4.2. An example with a small-scale, nonlinear evolution maal. In our next example,
we apply EKF and LBFGS-EKF to the problem of estimating tlatesvariables from data
generated using the nonlinear, chaotic evolution modg)( To generate the data, a time
integration of the model was first performed using a fourteniRunge-Kutta (RK4) method
with time-stepAt = 0.025. Analysis in [L9] suggests that wherd (2 is used as a test example
for weather forecasting data assimilation algorithms cti@racteristic time scale is such that
the aboveAt corresponds to 3 hours, which we will use in what follows.slaiso noted in
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FIG. 4.2.The top plots are of the true state at time points 35 and 70.riidele plots are of the Kalman filter

estimates at time points 35 and 70. The bottom plots are of BEGS Kalman filter estimates at time points 35
and 70.

[19] that for At < 0.5, the RK4 method is stable. The “true data” was generatedkigda
42920 time steps of the RK4 method, which corresponds3eb days. The initial state at the
beginning of the data generation we®d = 8 + 0.008 andz* = & for all i # 20.

The observed data is then computed using this true data. rticydar, after a365 day
long initial period, the true data is observed at every otitae step and at the last 3 grid
points in each set of 5; that is, the observation matrixis n with nonzero entries

1 (r,s) €{(j+i,5j+i+2)i=123,j=0]1,..,7}
[K]Ts: ;
0 otherwise

The observation error is simulated using the Gaussian randctor N (0, (0.15 o¢jim)°I)
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FIG. 4.5.Relative error curves for LBFGS-KF. The horizontal axisresgents the observation time.

whereo.i, IS a standard deviation of the model state used in climaicdébgimulations,
Ocim = 3.6414723. The data generation codes were written in MATLAB and weam-r
scribed by us from theci | ab codes written by the author ot §].

In our application of EKF and LFBGS-EKF, we assume the caliptechastic system

(4.5) Xpp1 = M(xz) + N(0, (0.05 0¢1im)°T),
(4.6) Vi1 = Kxpi1 + N(0, (0.15 0aim ) 1),

where M (xy,) is obtained by taking two steps of the RK4 method applied t9) (vith initial
conditionx;, with time-step0.025. We note that if the noise term is removed from5) and
the above initial condition is used, our data generatioeswhresults.

Due to the fact thatM is a nonlinear function, EKF must be used; seé&)(and @.6).
SinceC := K in (2.6) is linear,K; = K for all k£ in (2.7). However, a linearization of
the nonlinear evolution functioM is required. Fortunately, the computationNdf; in (2.7)
is performed by a routine in one of ttkexi | ab codes mentioned above and that we have
adapted for our use in MATLAB.

The initial condition used in implementation of both the E&#d LBFGS-EKF is defined
by [x0]i = [x%]; + N(0, (0.3 oeiim)?) for all 4, and the initial covariance was taken to be
C§*t = (0.13 0ciim)?I. In our implementation of the LBFGS method within LBFGS-EKF
we computed 10 iterations with 9 saved vectors.

In order to analyze the accuracy of the state estimafé¢sobtained by both EKF and
LBFGS-EKF we plot the vector with components

1
@7) N
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FI1G. 4.6.Plot of residual mean square error for LBFGS-EKF (0) and EKJ-dpplied to ¢.2).

in Figure4.6. We can see that the two methods yield comparable results.

In order to compare the forecasting abilities of the two apphes, we compute the
following forecast statistics at every 8th observatiorkelae 7 := {8i | i = 1,2,...,100}
and define

1 .
(4.8) [forcast_error;|; = 4—OHM4¢(X§“) - x;’_ﬁ‘éfiHQ, i=1,...,20,
where M, denotes a forward integration of the modelhbtime steps with the RK4 method.

Thus this vector gives a measure of forecast accuracy giyeghedrespective filter estimate
up to 80 time steps, or 10 days out. This allows us to definedtexést skill vector

1

. 1 .
(4.9) [forecast_skill]; = 100 Z[forecast_errorj]i, i=1,...,20,

Oclim et

which is plotted in Figurel.7. The results show that the forecasting skill of the two mdtho
is very similar, which suggests that on the whole, the qualitthe LBFGS-EKF estimates
is as high as those obtained using EKF. Figluiféalso illustrates the fact that the Lorenz 95
model @.2) is truly chaotic.

In the test cases considered here, a linear or linearizec&thmoakrix M, has been avail-
able. This is not true in important examples such as in nurakweather forecasting, where,
on the other hand, a tangent linear cotild [s available that provides a means of computing
the matrix vector produdv; x.

5. Conclusions. The standard implementations of KF and EKF become excelgding
time and memory intensive as the dimension of the underlgiatg space increases. Several
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FIG. 4.7.Plot of forecast skill vector for LBFGS-EKF (0) and EKH @pplied to ¢.2).

variants of KF and EKF have been proposed to reduce the dioren$ the system, thus
making implementation in high dimensions possible. TheuRed Rank Kalman Filter or
Reduced Order extended Kalman filter (see, e4g7,[30]) project the dynamical state vector
of the model onto a lower dimensional subspace. The sucédiss approach depends on a
judicious choice of the reduction operator. Moreover, sitite reduction operator is typically
fixed in time, they can suffer from “covariance leakd)].[ A typical cause of this is that
nonlinear systems do not generally leave any fixed lineaszade invariant.

In this paper, we propose the use of the limited memory BFG&-(&S) minimization
method in order to circumvent the computational compleaitd memory issues of standard
KF and EKF. In particular, we replace thex n, wheren is the dimension of the state
space, covariance matrices within KF and EKF with low steragproximations obtain using
LBFGS. The large-scale matrix inversions required in KF BiKdF implementations are also
approximated using LBFGS. The resulting methods are ddnoB+-GS-KF and LBFGS-
EKF, respectively.

In order to test these methods, we consider two test caseg-$gale linear and small
scale nonlinear. LBFGS-KF is applied in the large-scaledincase and is shown to be ef-
fective. In fact, our method exceeds the speed of standarydh order of magnitude, and
yields comparable results when both methods can be appligthermore, it can be used on
much larger scale problems. In the nonlinear, small scale,dsBFGS-EKF is implemented
and is also shown to give results that are comparable to thioséned using standard EKF.
We believe that these results suggest that our approachveedarther consideration.

The symmetric rank one (SR1) quasi-Newton method for mimimgi (3.1) could be
another attractive method for use within KF and EKF, sinaasb yields estimates of both
the minimizer and inverse Hessian. The main drawback ofguSiR1, however, is that the
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inverse Hessian approximations are not guaranteed to ligvpatefinite.

Appendix A. In this appendix, we give a general description of the LBFGShod for
minimizing

(Au,u) — (b,u),

N =

q(u) =

whereA is ann x n symmetric positive definite matrix arlalis ann x 1 vector. It is given
by.
The LBFGS method for quadratic minimization
v:=0;
ug := initial guess;
Bgl := initial inverse Hessian approximation;
begin quasi-Newton iterations

g, :=Vq(u,) = Au, — b;

Vy = B,jlgu,

Ty = <g1/a Vl/>/<vl/7 AVL/>;

Uy41 = Uy — TyVy,

B, ! := LBFGS approximation ta\ ~*;
end quasi-Newton iterations

A.1. The limited memory approximation for A=!. The BFGS matrixB, ! is com-
puted using recursion

B;—ijzl = VEBJIVV + pususg‘a
where

Sy = Upy4+1 — Uy,
d, := Vq(u,41) — Vg(u,),
py:=1/dTs,,
V, :=1-p,d,s;.
However, for large-scale problems the storage of the fullrind3; ! is infeasible, which

motivates the limited storage version of the algorithm. t&trationr, suppose that thg¢
vector pairs{s;,d;}"_" . are stored. Then we the LBFGS approximation of the inverse

i i=v—j

Hessian is given by

B =(Vy_1 V) )(Viej Vi)
+ Pufj(v:}r—l o 'V:}F—j+1)5vfj53—j(vufj+l V1)
+ Pu—j+l(V;Ffl o 'Vg;j+2)sl/—j+153lj+1(VV—j+2 tot Vu—l)
+
(A1) + Pu—1Sy—15,_1.
Assuming exact arithmetic and thatwe have thati,, converges to the unique minimizer
of ¢ in at mostn iterations, and ifn iterations are performeB;i1 = A"1[22. Inthe

implementation in this paper, howevgr<< n and LBFGS iterations are truncated before
convergence is obtained.
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It is proven in R1] that for quadratic minimization problems and exact linarsbes
LBFGS is equivalent to preconditioned conjugate gradieiti \iixed preconditioneB.
Thus its convergence rate is given 37]

Avor =M\
—utlE o< (2 7 —u*llz
||uk u || = (AN—k T HUO u ||A’

whereu* = A*lb, A= B(l)/QAB(l)/2 is N x N with eigenvalues; < X\ < --- < Ay and
Ivila =vTAv.

A.2. A low storage approximation of A. The required formulas are given if][and
take the following form. Let

S,,: [Sl,,j,...,Sl,,l], D,,: [d,,,j,...,dl,,l],
then
-1
e &S.;S, L, &S,
(A.2) B, =&&I1-[6.S, D, [ LT D, E

whereL,, andD,, are thej x j matrices
(L), = Sy_jo1+idv—j—14j, 1f i > ],
oo 0, otherwise.

and
D, = diag(sffjd,,_j, st ody, ).

We note that whey,, = 1 for all v in (A.2), we have an exact equality betweBp in (A.2)
and (@A.1). However, we have found that a more accurate Hessian ajppatign is obtained
if, following [ 22], we use the scaling, = d} ,d,_;/s! ,d,_; instead.

We note that the middle matrix imfA(2) has size2j x 25, which is of reasonable size
providedj is not too large, and its inversion can be carried out effityemsing a Cholesky
factorization that exploits the structure of the matrixe §& for details.
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