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GAUSSIAN DIRECT QUADRATURE METHODS FOR DOUBLE DELAY
VOLTERRA INTEGRAL EQUATIONS ∗

ANGELAMARIA CARDONE†, IDA DEL PRETE‡, AND CLAUDIA NITSCH‡

Abstract. In this paper we consider Volterra integral equations with two constant delays. We construct Direct
Quadrature methods based on Gaussian formulas, combined with a suitable interpolation technique. We study the
convergence and the stability properties of the methods andwe carry out some numerical experiments that confirm
our theoretical results.

Key words. Volterra integral equations, Direct Quadrature method, Gaussian quadrature formulas, convergence,
stability

AMS subject classifications.65R20

1. Introduction. In this paper we consider double delays Volterra integral equations
(VIEs) of the type

y(t) = f(t) +

t−τ1
∫

t−τ2

k(t − τ)g(y(τ))dτ, t ∈ [τ2, T ],(1.1)

with y(t) = φ(t), t ∈ [0, τ2], τ1, τ2 ∈ R+, whereφ(t) is a known function such that

φ(τ2) = f(τ2) +

τ2−τ1
∫

0

k(τ2 − τ)g(φ(τ))dτ.(1.2)

We assume that the functionsf(t), k(t), andφ(t) are at least continuous on[0, T ], on [τ1, τ2]
and on[0, τ2], respectively, and thatg(y) satisfies the Lipschitz condition. These assumptions
ensure existence, uniqueness, and continuity of the solution of (1.1) [7]. By successively
differentiating (1.1) it is easy to verify thaty(l), l = 1, 2, . . . presents some points,θ1, ..., θZ ,
of primary discontinuities (θ1 := τ2 for y′; θ1 := τ2, θ2 := τ2 + τ1, θ3 := 2τ2 for y′′;...),
and it is continuous in]lτ2, T ].

Double delay VIEs arise in the mathematical modeling of population dynamics, whose
present history depends only on a finite and variable part of the past history. For example,
equations of the form (1.1) model the growth of a population structured by age with a finite
life span [1, 4].

The numerical treatment of (1.1) has been carried out only recently and in the specialized
literature a few papers can be found on this topic. To our knowledge, the only numerical
methods for the equation (1.1) have been constructed in [6, 7], where Direct Quadrature
(DQ) methods based on Newton-Cotes formulas have been proposed.

The aim of our research is to extend the class of numerical methods for solving equation
(1.1) to DQ methods based on Gaussian quadrature formulas. It is known that Gaussian
formulas ensure a higher order of accuracy and have better stability properties than Newton-
Cotes formulas [2]. On the other hand, the use of DQ methods based on Gaussian formulas
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produces several problems. As a matter of fact, such methodsrequire the knowledge of the
solution at some points not belonging to the mesh. In order toovercome this difficulty we
have chosen to use an interpolation technique.

We have studied the convergence properties of the constructed methods and we have
proven that their order of convergence is the minimum between the order of convergence of
the Gaussian formula and the degree of accuracy of the interpolating polynomial.

The study of numerical stability of our methods has been carried out on the following
test equation, introduced in [7]:

y(t) = 1 +

∫ t−τ1

t−τ2

(λ + µ(t − s))y(s)ds, t ∈ [τ2, T ],

λ, µ ∈ R. We have found sufficient conditions under which the numerical solution pro-
duced by our method shows the same behavior as the analyticalone. In particular we have
determined the bound and the limiting value of the numericalsolution.

Section2 contains the construction of the method and in Section3 the convergence anal-
ysis is carried out. The numerical stability of our method istreated in Section4. In Section5,
we report some numerical experiments that confirm the theoretical results stated in Sections3
and4. In Section6, some concluding remarks and future developments are reported.

2. The method. Let ΠN = {tj : 0 < t0 < t1 < · · · < tN = T } be a partition of the
time interval[0, T ] with constant stepsizeh = tj+1 − tj , j = 0, . . . , N − 1, and assume that
there existn1 andn2, positive integers, such that

h =
τ1

n1
=

τ2

n2
.(2.1)

In the following we denote byyj an approximation to the exact solutiony(tj) of (1.1). Let
{ξk}

m
k=1 and{ωk}

m
k=1 be the nodes and the weights of anm-point Gaussian quadrature for-

mula on[0, 1]. Then, them-point Gaussian quadrature formula on[0, h] has nodes{ξkh}m
k=1

and weights{hωk}
m
k=1,

∫ h

0

Φ(ξ)dξ ≈ h
m

∑

k=1

ωkΦ(ξkh),(2.2)

whereΦ(ξ) is any continuous integrand function.
The integral equation (1.1) at the mesh points is

y(tj) = f(tj) +

∫ tj−τ1

tj−τ2

k(tj − τ)g(y(τ))dτ, j = n2 + 1, . . . , N.(2.3)

The integral in (2.3) can be written as

∫ tj−τ1

tj−τ2

k(tj − τ)g(y(τ))dτ =

n21
∑

r=1

∫ h

0

k(qrh − τ)g(y(tj−qr
+ τ))dτ,(2.4)

wheren21 := n2 − n1, qr := n2 − r + 1. We discretize each of the integrals on[0, h] by the
quadrature rule (2.2), thus obtaining

y(tj) ≈ f(tj) + h

n21
∑

r=1

m
∑

k=1

ωkk(qrh − ξkh)g(y(tj−qr
+ ξkh)),

j = n2 + 1, . . . , N.

(2.5)
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The points,tj−qr
+ ξkh, k = 1, . . . , m, r = 1, . . . , n21, do not belong to the meshΠN .

In order to overcome this problem, we adopt an interpolationtechnique, similar to that used
in [5] to discretize a linear delay integro-differential equation. We construct the Lagrange
interpolating polynomialP(x) of degrees for the data points,

(tj−qr−s
−

, yj−qr−s
−

), . . . , (tj−qr
, yj−qr

), . . . , (tj−qr+s+
, yj−qr+s+

),

with s := s− + s+, ands−, s+ ∈ N, that is,

P(x) =

s+
∑

l=−s
−

Ll(x)yj−qr+l,(2.6)

whereLl is thelth fundamental Lagrange polynomial with nodestj−qr−s
−

, . . . , tj−qr+s+
.

We replacey(tj−qr
+ ξkh) byP(tj−qr

+ ξkh) in (2.5), thus obtaining the numerical method,

yj = f(tj) + h

n21
∑

r=1

m
∑

k=1

ωkk(qrh − ξkh)g(P(tj−qr
+ ξkh)),

j = n2 + 1, . . . , N.

(2.7)

In the following it will be useful to observe that

Ll(tj−qr
+ xh) = Pl(x),

wherePl is the lth fundamental Lagrange polynomial determined by the nodes, −s−, . . . ,
s+, namely,

Pl(x) =

s+
∏

i=−s
−

i6=l

x − i

l − i
.(2.8)

Thus the method (2.7) can be written equivalently as

yj = f(tj) + h

n21
∑

r=1

m
∑

k=1

ωkk(qrh − ξkh)g





s+
∑

l=−s
−

Pl(ξk)yj−qr+l



 ,

j = n2 + 1, . . . , N.

(2.9)

The method (2.7) depends on the parameterss−, s+ andm, which have to satisfy some
suitable conditions for its applicability. First, in ordernot to require values of the solution
outside[0, T ], we have to require that

s− ≤ 1.

In addiction, a necessary and sufficient condition to avoid the use of future mesh points (where
the numerical solution is not yet known) is

s+ ≤ n1 + 1.(2.10)

Thus, we have0 ≤ s− ≤ 1 and0 ≤ s+ ≤ n1 + 1. Finally, we observe that, if (2.10) holds
ands+ 6= n1 + 1, then the method (2.7) is explicit.
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3. Convergence analysis.In the previous section we have constructed our method by
using two kinds of approximations, one arising from the discretization of the integral in (1.1)
by the Gaussian quadrature formula (2.2), and another one arising from the computation of
the unknown values of the solution by the interpolating polynomial (2.6). Therefore, in the
convergence analysis, we have to take into account the contributions to the errors of both
approximations.

In the following we assume thath satisfies the condition (2.1), which implies that the
discontinuity pointsθ1, ..., θZ of order≤ s+1 are all included in the meshΠN . Furthermore,
we assume that

∀j, r ∃z : eithertj−qr−s
−

, ..., tj−qr+s+
∈ [θz , θz+1] or

tj−qr−s
−

≥ θZ or tj−qr+s+
≤ θ1

(3.1)

hold. Condition (3.1) may be satisfied by a suitable choice ofs− ands+.
Now we are able to prove the following theorem.
THEOREM 3.1. Let yj be the numerical solution of (1.1) obtained by the method (2.7)

with 0 ≤ s− ≤ 1 and0 ≤ s+ ≤ n1 + 1. Letp = min(2m, s + 1) andq = max(2m, s + 1),
where2m is the order of the quadrature formula (2.2) ands is the degree of the interpolating
polynomial (2.6). Assume thatf ∈ Cs+1([0, T ]), k ∈ Cq([τ1, τ2]), φ ∈ Cs+1([0, τ2]),
g ∈ Cq(R), andg satisfies the Lipschitz condition. Then, for sufficiently small step sizeh,
the errorej = y(tj) − yj satisfies

max
1≤j≤N

|ej | ≤ Chp,

for some finiteC not depending onh.
REMARK 3.2. From the smoothness hypotheses onφ, f , andk, the exact solutiony(t)

of (1.1) is at leasts + 1 times continuously differentiable on[θz, θz + 1], z = 1, ..., Z − 1,
and on[0, θ1] and [θZ , T ]. From the expression fory(ν)(t), ν = 0, ..., s + 1, obtained by
successively differentiating (1.1) with respect tot, it is readily seen that both the left and right
limits of y(ν)(t) ast −→ θz exist and are finite.

Proof of Theorem3.1. Taketj ∈ [θz , θz+1], with z ∈ 1, . . . , Z − 1. We have

ej =

n21
∑

r=1

[

∫ h

0

k(qrh − τ)g(y(tj−qr
+ τ))dτ − h

m
∑

k=1

wkk(qrh − ξkh)g(P(tj−qr
+ ξkh))

]

.

We can rewrite the error asej =

n21
∑

r=1

(Bjr + Djr), where

Bjr :=

∫ h

0

k(qrh − τ)g(y(tj−qr
+ τ))dτ −

∫ h

0

k(qrh − τ)g(P(tj−qr
+ τ))dτ

and

Djr :=

∫ h

0

k(qrh − τ)g(P(tj−qr
+ τ))dτ − h

m
∑

k=1

wkk(qrh − ξkh)g(P(tj−qr
+ ξkh)).

Thus, lettingL be the Lipschitz constant forg, we have

|Bjr| ≤ L

∫ h

0

|k(qrh − τ)| |Ijr(τ)| dτ

+L

∫ h

0

|k(qrh − τ)|

∣

∣

∣

∣

∣

∣

s+
∑

l=−s
−

Pl(τ/h)(y(tj−qr+l) − yj−qr+l)

∣

∣

∣

∣

∣

∣

dτ,
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where

Ijr(τ) = y(tj−qr
+ τ) −

s+
∑

l=−s
−

Pl(τ/h)y(tj−qr+l)

is the interpolation error attj−qr
+τ . By condition (3.1) and Remark3.2, there existsCs > 0,

such that

|Ijr(τ)| ≤ Csh
s+1, ∀τ ∈ [0, h].

We observe that the constantCs whens is large has an exponential behaviour, since it depends
on the Lebesgue constant. Therefore,

|Bjr | ≤ C̄sh
s+2 + C1h

s+
∑

l=−s
−

|ej−qr+l|,(3.2)

whereC̄s = L Cs max
t∈[τ1,τ2]

|k(t)| andC1 = L max
l∈{−s

−
,...,s+}

max
x∈[0,1]

|Pl(x)| max
t∈[τ1,τ2]

|k(t)|. Djr is

the Gauss-Legendre quadrature error in[0, h] for the functionk(qrh − τ)g(P(tj−qr
+ τ).

Then, there exists̃Cm > 0 such that [3, (2.7.12), p. 98]

|Djr| ≤ C̃mh2m+1 .(3.3)

By (3.2) and (3.3) it follows that

|ej | ≤

n21
∑

r=1



C̄sh
s+2 + C1h

s+
∑

l=−s
−

|ej−qr+l| + C̃mh2m+1





= (τ2 − τ1)
(

C̄sh
s+1 + C̃mh2m

)

+ C1h

s+
∑

l=−s
−

|ej−qr+l|

≤ Cs,mhp + C1h

j
∑

i=0

|ei|.

Therefore,

|ej | ≤
Cs,m

1 − C1h
hp +

C1

1 − C1h
h

j−1
∑

i=0

|ei|.

Now we apply the Gronwall-type inequality [2, p. 41], and, since there are no starting errors,
we get

|ej| ≤
Cs,m

1 − C1h
hp e

C1
1−C1h

T .

Therefore,ej = O(hp) ash → 0 and the theorem follows.
Theorem3.1 allows us to choose the parameters of the method by balancingefficiency

and accuracy, as shown in the following example.
EXAMPLE 3.3. The best way to achieve order 2 is the 1-node Gaussian quadrature

formula (m = 1) combined with the linear interpolation (s = 1). The choicess− = 0, s+ = 1
yield

ω1 = 1, ξ1 = 1/2,(3.4)

P(x) =
tj−qr+1 − x

h
yj−qr

+
x − tj−qr

h
yj−qr+1.(3.5)
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4. Numerical stability. Our next task is to study the stability properties of our numeri-
cal methods with respect to test equation introduced in [7],

y(t) = 1 +

∫ t−τ1

t−τ2

(λ + µ(t − τ))y(τ)dτ, t ∈ [τ2, T ],(4.1)

λ, µ ∈ R, according to the following definition.
DEFINITION 4.1. A numerical method is stable with respect to (4.1) when its application

to (4.1) gives a numerical solution behaving like the continous one.
It is known that the stability analysis for test equations isthe starting point for the inves-

tigation of the stability properties of the method for more general equations.
We make the following definitions:

ρ := λ(τ2 − τ1) +
µ

2
(τ2

2 − τ2
1 ),(4.2)

α := −
1

2µ
(λ + µτ1)

2, β :=
1

2µ
(λ + µτ2)

2,

Φ := max
[0,τ2]

|φ(t)|.

(4.3)

In the theorem below we summarize some theoretical results about the bound and the
limiting value of the analytical solution of (4.1) [7].

THEOREM 4.2. Assume that one of the following sets of conditions holds:
a) (λ + µτ1)(λ + µτ2) ≥ 0, |ρ| < 1,
b) (λ + µτ1)(λ + µτ2) ≤ 0, |α| + |β| < 1.

Theny(t) is bounded for allt ≥ 0 and

|y(t)| ≤
1

1 − (|α| + |β|)
+ Φ.

Moreover,

lim
t→+∞

y(t) =
1

1 − ρ
.

The numerical solution of (4.1) obtained by the method (2.9) is

yj = 1 + h

n21
∑

r=1

m
∑

k=1

ωk(λ + µh(qr − ξk))

s+
∑

l=−s
−

Pl(ξk)yj−qr+l,(4.4)

j = n2 + 1, . . . , N . Let us define the sets of indices

R1 = {(r, k) : λ + µh(qr − ξk) ≤ 0} , R2 = {(r, k) : λ + µh(qr − ξk) > 0} ,(4.5)

and

L1 := {l : Pl(ξk) ≤ 0, k = 1, ..., m} = {(−1), 2, 4, . . . , 2l, . . .}
L2 := {l : Pl(ξk) > 0, k = 1, ..., m} = {0, 1, 3, . . . , 2l + 1, . . .}.

(4.6)

According to formula (2.8) all the zeros ofPl(x) are integers. Therefore, in (0,1)Pl(x)
cannot vanish, that isPl(x) has a constant sign in(0, 1). Hence,Pl(x) assumes the same sign
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at all the nodesξk, k = 1, ..., m (which belong to(0, 1); see formula (2.2)) and equalities
(4.6) follow. Moreover, we will use

α(h) = h
∑

r,k∈R1

wk(λ + µh(qr − ξk)),

β(h) = h
∑

r,k∈R2

wk(λ + µh(qr − ξk)).
(4.7)

We set

σ := max
k=1,...,m

∑

l∈L1

|Pl(ξk)|.(4.8)

Since
s+
∑

l=−s
−

Pl(ξk) = 1, ∀k = 1, . . . , m, we obtain

s+
∑

l=−s
−

|Pl(ξk)| ≤ 2σ + 1, ∀k = 1, . . . , m.(4.9)

Our first result establishes some sufficient conditions for the boundedness of the nume-
rical solution (4.4).

THEOREM 4.3. Assume that one of the following set of conditions holds:
a) (λ + µτ1)(λ + µτ2) ≥ 0, (2σ + 1)|ρ| < 1,
b) (λ + µτ1)(λ + µτ2) ≤ 0, (2σ + 1)(|α(h)| + |β(h)|) < 1.

Then

|yj | ≤
1

1 − (2σ + 1)(|α(h)| + |β(h)|)
+ Φ, j = 1, ..., N.(4.10)

Proof. We rewrite (4.4) as

yj = 1 + δh

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))Pqr
(ξk)yj

+h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))
∑

l 6=qr

Pl(ξk)yj−qr+l,

(4.11)

whereδ = 1 if s+ = n1 +1 (implicit method; see Section2), otherwiseδ = 0. The sum over
l 6= qr containss + 1 − δ terms.

a) We consider the caseλ + µx > 0 for x ∈ [τ1, τ2], since the caseλ + µx < 0 can be
treated similarly. From (4.11) it follows that

(1 − δΘ)|yj | ≤ 1 + h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))
∑

l 6=qr

|Pl(ξk)||yj−qr+l|,

whereΘ := h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))|Pqr
(ξk)|. Now we proceed step by step. For

j < n2 + 1, sinceyj = y(tj) = ϕ(tj), then|yj| < Φ. For j = n2 + 1, sinceδΘ < 1, we
have

|yn2+1| ≤
1 + ((2σ + 1)ρ − δΘ)Φ

1 − δΘ
.
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For j = n2 + 2, we have

(1 − δΘ)|yn2+2| ≤ 1 + ((2σ + 1)ρ − δΘ)max

(

Φ,
1 + ((2σ + 1)ρ − δΘ)Φ

1 − δΘ

)

.

Now assume thatΦ < 1
1−(2σ+1)ρ . Then we have

|yn2+2| ≤
1

1 − δΘ

(

1 +
(2σ + 1)ρ − δΘ

1 − δΘ

)

+

(

(2σ + 1)ρ − δΘ

1 − δΘ

)2

Φ.

Since(2σ+1)−δΘ
1−δΘ < 1,

|yn2+2| ≤ Φ +
1

1 − (2σ + 1)ρ
.

Continuing with the same procedure, we can prove

|yj| ≤ Φ +
1

1 − (2σ + 1)ρ
, j = 1, . . . , N,(4.12)

which is equivalent to (4.10), since in this case|α(h)| + |β(h)| = ρ.
We arrive at the same result whenΦ ≥ 1

1−(2σ+1)ρ .
b) By (4.11) we get

(1 − δΘ)|yj| ≤ 1 + h

n21
∑

r=1

m
∑

k=1

wk|λ + µh(qr − ξk)|
∑

l 6=qr

|Pl(ξk)||yj−qr+l|,(4.13)

whereΘ := h

n21
∑

r=1

m
∑

k=1

wk|λ + µh(qr − ξk)||Pqr
(ξk)|. As in the case a), we proceed step by

step. We find that|yj | ≤ Φ, j = 0, . . . , n2, andδΘ < 1. Therefore, forj2 + 1, we have

|yn2+1| ≤
1 + Φ((2σ + 1) (|α(h)| + |β(h)|) − δΘ)

1 − δΘ
.(4.14)

For j = n2 + 2, from (4.13) and (4.14), we obtain

|yn2+2| ≤
1

1 − δΘ

[

1 +
(2σ + 1)(|α(h)| + |β(h)|) − δΘ

1 − δΘ

]

+

(

(2σ + 1)(|α(h)| + |β(h)|) − δΘ

1 − δΘ

)2

Φ

≤ Φ +
1

1 − (2σ + 1)(|α(h)| + |β(h)|)
,

Here we have assumed thatΦ ≤ 1/(1 − (2σ + 1) (|α(h)| + |β(h)|)). The opposite case can
be treated in an analogous way. By proceeding step by step thetheorem follows.

In addition to the previous results, we can show that the limit of the numerical solution
is the same as for the analytical solution.

THEOREM 4.4. Let the conditions of Theorem4.3be satisfied. Then

lim
j→∞

yj =
1

1 − ρ
,
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with ρ given by (4.2).
Proof. If l′ = lim inf

j→∞
yj andl′′ = lim sup

j→∞
yj, then there exist two subsequences

{yju
}

ju
, {yjv

}
jv

such thatl′ = lim
u→∞

yju
≤ lim

v→∞
yjv

= l′′, with

yju
= 1 + h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))

s+
∑

l=s
−

Pl(ξk)yju−qr+l,(4.15)

yjv
= 1 + h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))

s+
∑

l=s
−

Pl(ξk)yjv−qr+l.(4.16)

a) If we assume thatλ + µτ1 > 0 andλ + µτ2 > 0, then we can split the sum overl
in (4.15) into two parts according to the sign of the Lagrange fundamental polynomials,

yju
= 1 + h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))
∑

l∈L1

Pl(ξk)yju−qr+l

+h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))
∑

l∈L2

Pl(ξk)yju−qr+l.

(4.17)

By computing the limit inferior of both sides of (4.17) and by recalling that
l′ = lim

u→∞
yju

= lim inf
u→∞

yju
, we get

l′ ≥ 1 + ᾱ(h)l′′ + β̄(h)l′,(4.18)

where

ᾱ(h) = h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))
∑

l∈L1

Pl(ξk),

β̄(h) = h

n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))
∑

l∈L2

Pl(ξk).

In the same way, by considering (4.16) and by computing the limit superior, we find that

l′′ ≤ 1 + ᾱ(h)l′ + β̄(h)l′′,(4.19)

By substracting (4.18) to (4.19), we find that

l′′ − l′ ≤ (β̄(h) − ᾱ(h))(l′′ − l′).

Sinceβ̄(h) − ᾱ(h) ≤ (2σ + 1)|ρ| < 1, we havel′′ = l′ and, thus,yj admits a limiting value
l′′ = l′ = y∗, where

y∗ =
1

1 − ρ
.

As a matter of fact, whenj → +∞ in the (4.4), we have

y∗ = 1 + ρy∗,
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by recalling that
s+
∑

l=−s
−

Pl(ξk) = 1 and observing thath
n21
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk)) = ρ.

In a similar way, we are able to prove the theorem whenλ + µτ1 < 0 andλ + µτ2 < 0.

b) The equation (4.4) can be written as

yj = 1 + h
∑

r,k∈R1

wk(λ + µh(qr − ξk))
∑

l∈L1

Pl(ξk)yj−qr+l

+h
∑

r,k∈R1

wk(λ + µh(qr − ξk))
∑

l∈L2

Pl(ξk)yj−qr+l

+h
∑

r,k∈R2

wk(λ + µh(qr − ξk))
∑

l∈L1

Pl(ξk)yj−qr+l

+h
∑

r,k∈R2

wk(λ + µh(qr − ξk))
∑

l∈L2

Pl(ξk)yj−qr+l.

Therefore, by computing the limit inferior, we find that

l′ ≥ 1 + ¯̄α(h)l′′ + ¯̄β(h)l′,

where

¯̄α(h) = h
∑

r,k∈R1

wk(λ + µh(qr − ξk))
∑

l∈L2

Pl(ξk)

+h
∑

r,k∈R2

wk(λ + µh(qr − ξk))
∑

l∈L1

Pl(ξk),

¯̄β(h) = h
∑

r,k∈R1

wk(λ + µh(qr − ξk))
∑

l∈L1

Pl(ξk)

+h
∑

r,k∈R2

wk(λ + µh(qr − ξk))
∑

l∈L2

Pl(ξk),

(4.20)

By following the same procedure foryjv
, we obtain

l′′ ≤ 1 + ¯̄α(h)l′′ + ¯̄β(h)l′,

and

l′′ − l′ ≤ (¯̄β(h) − ¯̄α(h))(l′′ − l′) = (|¯̄β(h)| + |¯̄α(h)|)(l′′ − l′).

If |¯̄β(h)| + |¯̄α(h)| ≤ (2σ + 1)(|β(h)| + |α(h)|) < 1, thenl′′ = l′ = l and

lim
j→∞

yj = l = y∗.

By means of Theorems4.3and4.4, we have shown the following theorem.
THEOREM 4.5. Assume that one of the following set of conditions holds:
a) (λ + µτ1)(λ + µτ2) ≥ 0, (2σ + 1)|ρ| < 1,
b) (λ + µτ1)(λ + µτ2) ≤ 0, (2σ + 1)(|α(h)| + |β(h)|) < 1.

Then the method (2.7) is stable with respect to the test equation (4.1).
Here we have used Definition4.1of numerical stability.
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In order to establish a connection between the behavior of the numerical solution pro-
duced by our method and the behavior of the analytical solution, provided that the stepsizeh
is sufficiently small, we need this final result.

THEOREM 4.6. Letα(h) andβ(h) be defined by (4.7. Then

lim
h→0

α(h) = α and lim
h→0

β(h) = β,

whereα andβ are defined by (4.3).

Proof. Let us suppose thatµ > 0. Thenλ + µx < 0 for x < −λ/µ. The op-
posite case can be treated in the same way. Letqr̄+1h be the rightmost point, such that
λ + µqr ≤ 0. HenceR1 = {(r, k) : r > r̄, k = 1, ..., m} ∪

{

(r̄, k) : k = k̄, ..., m
}

and
R2 =

{

(r̄, k) : k = 1, ..., k̄ − 1
}

∪ {(r, k) : r = 1, ..., r̄ − 1 ek = 1, ..., m} for a suitablēk.
It follows that

α(h) = h

n21
∑

r=r̄+1

m
∑

k=1

wk(λ + µh(qr − ξk)) + h

m
∑

k=k̄

wk(λ + µh(qr̄ − ξk))

=

qr̄+1h
∫

τ1

(λ + µx)dx + h
m

∑

k=k̄

wk(λ + µh(qr̄ − ξk))

=
1

2µ

[

(λ + µqr̄+1h)2 − (λ + µτ1)
2
]

+ h

m
∑

k=k̄

wk(λ + µh(qr̄ − ξk))

= α + p(h),

with

p(h) =
1

2µ
(λ + µqr̄+1h)2 + h

m
∑

k=k̄

wk(λ + µh(qr̄ − ξk)),

and

β(h) = h
k̄−1
∑

k=1

wk(λ + µh(qr̄ − ξk)) + h
r̄−1
∑

r=1

m
∑

k=1

wk(λ + µh(qr − ξk))

= h

k̄−1
∑

k=1

wk(λ + µh(qr̄ − ξk)) +

τ2
∫

qr̄h

(λ + µx)dx

= h

k̄−1
∑

k=1

wk(λ + µh(qr̄ − ξk)) +
1

2µ

[

(λ + µτ2)
2 − (λ + µqr̄h)2

]

= β − q(h),

with

q(h) =
1

2µ
(λ + µqr̄h)2 − h

k̄−1
∑

k=1

wk(λ + µh(qr̄ − ξk)).

According to the definition of̄r, it follows thatqr̄+1h → −λ/µ and(k̄ − 1) → m ash → 0.
As a consequence

lim
h→0

p(h) =
1

2µ
(λ + µ (−λ/µ))2 = 0
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and

lim
h→0

q(h) = lim
h→0

1

2µ
(λ + µqr̄h)2 − h

m
∑

k=1

wk(λ + µh(qr̄ − ξk))

= lim
h→0

1

2µ
(λ + µqr̄h)2 −

∫ qr̄h

qr̄+1h

(λ + µx)dx = lim
h→0

1

2µ
(λ + µqr̄+1h)2 = 0.

REMARK 4.7. Theorem4.6 shows that, when the stepsizeh is sufficiently small, both
sufficient conditions of Theorem4.5differ from the hypotheses of Theorem4.2by the pres-
ence of the factor(2σ + 1), if σ 6= 0. However, it is always possible to determine the
parameters of the method in such a way that the numerical solution mimics the behavior of
the analytical solution.

In the following section, we will illustrate how to choose the best parameters of the
method.

5. Numerical experiments. Theorems3.1and4.5establish that the parameters influ-
ences both convergence and the stability of the method (2.7). For a concrete application of
the method, one has to consider the following points:

• s should be chosen ass = 2m − 1 in order to preserve the order of the Gaussian
quadrature formula without loss of efficiency;

• For any stable equation of type (1.1) there exists a stable method of orderp ≥ 2;
• The parameterσ, which determines the stability of the method, is equal to zero

for s = 1 ands− = 0, and increases withs, thus limiting the order of the method.
According to Theorem4.5, asρ or β−α approach one (that is the analytical solution
is almost unstable), the maximum order of convergence we mayexpect is lower. In
Table5.1 we list some practical choices ofs and ofs− with respect to the value
of ρ (the same holds forβ − α, if h is sufficiently small) and the corresponding
orderp, which guarantee stability of the method. These values are not the maximal
ones, since they come from the sufficient but not necessary conditions for stability
of Theorem4.5.

Now we illustrate the performance of our methods for equations of the type

y(t) = f(t) +

t−τ1
∫

t−τ2

(λ + µ(t − τ))g(y(τ))dτ, t ∈ [τ2, T ],(5.1)

with τ1 = 0.5, τ2 = 1.0, T = 5.0, λ = 1.0, µ = 1.2.
We have chosen the following methods of type (2.7):
1. order 2 method, with s− = 0, s+ = 1, m = 1 (3.4)–(3.5),

TABLE 5.1
Practical choices of the parameters of the method.

ρ s s− p

[0.110, 0.235] 9 1 10
[0.235, 0.417] 7 1 8
[0.417, 0.615] 5 1 6
[0.615, 0.857] 3 1 4
[0.857, 1] 1 0 2
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TABLE 5.2
Correct digits for problem (5.1)–(5.2).

Gauss Newton-Cotes
h p = 2 p = 4 p = 2 p = 4

0.1 3.04 5.62 2.87 5.29
0.05 3.64 6.80 3.46 6.49
0.025 4.24 8.00 4.06 7.69
0.0125 4.84 9.19 4.65 9.03
0.00625 5.45 10.40 5.25 10.29
0.003125 6.05 11.60 5.86 11.47

TABLE 5.3
Correct digits for problem (5.1)–(5.3).

h p = 2 p = 4

0.1 1.82 4.12
0.05 2.16 5.32
0.025 2.70 6.52
0.0125 3.29 7.72
0.00625 3.89 8.93
0.003125 4.49 10.13

2. order 4 method, with s− = 0, s+ = 3, m = 2,
3. order 6 method, with s− = 1, s+ = 4, m = 3,
4. order 8 methods, with s− = 0, s+ = 7, or s− = 1, s+ = 6, andm = 4.

All four methods are explicit. Analogous tests carried out with implicit methods have pro-
duced similar results.

We have tested the convergence properties of our methods on the folloowing two prob-
lems [7]:

• problem (5.1) with

g(y) = 1, f(t) s.t. y(t) = e−t, φ(t) = e−t;(5.2)

• problem (5.1) with

g(y) = (1 + y)2, f(t) s.t. y(t) = sin t, φ(t) = sin t;(5.3)

In Tables5.2–5.3 the number of correct digits values (cd) of the solution of (5.1) obtained
by the methods 1 and 2, are listed for different values ofh. These tables clearly show that
our methods produce the desired order according to Theorem3.1. Moreover, in Table5.2,
we have compared our results with those obtained by the only other numerical approach we
know, that is, DQ methods based on Newton-Cotes formulas (inparticular the trapezoidal
and Simpson 3/8 formulas) [7]: the errors of the two families of methods are very similar,in
spite of the error of approximation due to the interpolationtechnique used for the Gaussian
formulas.

In order to test the sharpness of the estimates of the stability parameters of our methods,
we have carried out a large number of numerical experiments.Here the most significant ones
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FIG. 5.1. On the left:λ = −1, µ = −1.2, |ρ| = 0.95, (2σ + 1)|ρ| = 0.95, p = 2, s− = 0, h = 0.1. On
the right: λ = −1, µ = −1.2, |ρ| = 0.95, (2σ + 1)|ρ| = 1.54, p = 6, s− = 1, h = 0.1.
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4 order 6

FIG. 5.2. On the left:λ = −1, µ = 1, |ρ| = 0.25, (2σ + 1)|ρ| = 0.6, p = 8, s− = 1, h = 0.1. On the
right: λ = −1, µ = −1.2, |ρ| = 0.95, (2σ + 1)|ρ| = 2.84, p = 6, s− = 0, h = 0.1.

are reported. We consider the performances of the method (2.7) when applied to the test
problem

y(t) = f(t) +

t−τ1
∫

t−τ2

(λ + µ(t − τ))y(τ)dτ, t ∈ [τ2, T ],(5.4)

with τ1 = 0.5, τ2 = 1.0 andf such thaty(t) = t sin t. In our examplesλ andµ satisfy the
hypotheses of Theorem4.2for the stability of the analytical solution. Problems of type (5.4)
may be assimilated to the test equation (4.1) with the simplified assumptionf(t) ≈ f(0), as
it is usually done in the formulation of test equations; see [6] and references therein.

The numerical solution (*-) and the analytical one (-) are compared in Figures5.1–5.3,
for different values of the parametersλ andµ and for different choices of the parameters of
the method. Figures5.1–5.2show tests related to the case(λ+µτ1)(λ+µτ2) > 0. When the
hypothesisa) of Theorem4.5 is satisfied, the numerical solution behaves like the analytical
one (left plots of Figures5.1 and5.2), while in the other case instability could arise, both
for s− = 0 and fors− = 1 (right plots of Figures5.1-5.2). Similar results are found when
(λ + µτ1)(λ + µτ2) < 0. This is illustrated in Figure5.3. We emphasize that we dispose of
high order and stable methods, as shown by test of Figure5.2, where an order 8 method is
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FIG. 5.3.λ = 8, µ = −10, β − α = 0.65, (2σ + 1)(β(h) − α(h)) = 0.95, p = 4, s− = 0, h = 0.1. On
the right: λ = 8, µ = −10, β − α = 0.65, (2σ + 1)(β(h) − α(h)) = 1.06, p = 6, s− = 1, h = 0.1.

used.
Our tests confirm what we have noticed in Remark4.7about the influence of the factor

2σ + 1 on the numerical stability: for example, in the right plot ofFigure5.1, |ρ| < 1 but
σ = 0.083, so that(2σ + 1)|ρ| > 1 and instability occurs. We observe that the estimate on
the stability parameter(2σ + 1)|ρ| or (2σ + 1)(β(h) − α(h)) is quite sharp, as shown for
example by Figure5.3, where(2σ + 1)(β(h) − α(h)) varies between the values 0.95 and
1.06.

In the example illustrated by the right plot of Figure5.2, ρ is very close to 1 and so, in
principle, we expect an order of accuracy not exceeding 2 fora stable method; see Table5.1.
Therefore, in order to increase the order, we have applied a cubic spline interpolation tech-
nique (which is supposed to have order 4). This method provedto be stable; on the other
hand also our DQ method of order 4 with the Lagrange interpolating polynomial is stable and
guarantees the same accuracy.

6. Concluding remarks. In this paper we constructed Direct Quadrature methods based
on Gaussian quadrature formulas for equation (1.1). In order to solve the problem of the
evaluation of the solution at points not belonging to the mesh, an interpolation technique
has been used. In Theorem3.1we have shown that the order of convergence of the method
depends both on the order of convergence of the Gaussian formula and on the degree of
accuracy of the interpolating polynomial.

In order to complete the study of the method proposed, we analyzed the stability with
respect to a class of significant test equations introduced in [7]. We found sufficient conditions
for numerical stability. These conditions are such that, ifthe starting problem satisfies the
conditions of Theorem4.2, then it is easy to determine the parameters of the method that
secure the stability of the numerical solution. The numerical experiments clearly confirm the
theoretical results and show the sharpness of the estimatesof the stability parameters. Finally
we note that, in order to increase the order of convergence when ρ is close to one, it may
be possible to consider another interpolation technique such as one using cubic splines. This
new approach, together with other approximation techniques, requires complete analysis of
convergence and numerical stability. We intend to dedicatea future work to this topic.
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