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GAUSSIAN DIRECT QUADRATURE METHODS FOR DOUBLE DELAY
VOLTERRA INTEGRAL EQUATIONS *

ANGELAMARIA CARDONET, IDA DEL PRETE!, AND CLAUDIA NITSCH

Abstract. In this paper we consider Volterra integral equations with tonstant delays. We construct Direct
Quadrature methods based on Gaussian formulas, combirtiechwuitable interpolation technique. We study the
convergence and the stability properties of the methodsaandarry out some numerical experiments that confirm
our theoretical results.
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1. Introduction. In this paper we consider double delays \Volterra integralagigns
(VIEs) of the type

t—Tl

(1.1) mw:ﬂw+/iw—ﬂmmmw,teMjL

t—Tz
with y(t) = ¢(t), t € [0, 2], 71, 2 € Ry, whereg(t) is a known function such that

T2—T1

(12) ¢m>:ﬂmm-/’Mn—ﬂmaﬂMr

0

We assume that the functiori§t), k(t), and¢(t) are at least continuous ¢@, 7], on |7y, 73]

and on[0, 72, respectively, and that(y) satisfies the Lipschitz condition. These assumptions
ensure existence, uniqueness, and continuity of the saluti (1.1) [7]. By successively
differentiating (L.1) it is easy to verify thay("), I = 1,2, ... presents some point,, ..., 0,

of primary discontinuitiest; := 7 for y/; 61 := 7, 0 := 70 + 71, 03 := 275 for y”';...),
and it is continuous ifi o, T].

Double delay VIEs arise in the mathematical modeling of pafioen dynamics, whose
present history depends only on a finite and variable patefpiast history. For example,
equations of the forml(1) model the growth of a population structured by age with adini
life span [L, 4].

The numerical treatment of (1) has been carried out only recently and in the specialized
literature a few papers can be found on this topic. To our Kadge, the only numerical
methods for the equatiorl (l) have been constructed i6,[7], where Direct Quadrature
(DQ) methods based on Newton-Cotes formulas have been ggdpo

The aim of our research is to extend the class of numericaiodstfor solving equation
(1.2) to DQ methods based on Gaussian quadrature formulas. hawik that Gaussian
formulas ensure a higher order of accuracy and have bettieilist properties than Newton-
Cotes formulasq]. On the other hand, the use of DQ methods based on Gaussianl&s
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produces several problems. As a matter of fact, such metteoplsre the knowledge of the
solution at some points not belonging to the mesh. In ordeveycome this difficulty we
have chosen to use an interpolation technique.

We have studied the convergence properties of the consttunethods and we have
proven that their order of convergence is the minimum beihatbe order of convergence of
the Gaussian formula and the degree of accuracy of the witgipg polynomial.

The study of numerical stability of our methods has beeni@émut on the following
test equation, introduced i

t—71
v =1+ [ Ok eds,  te )
t—To
A, € R. We have found sufficient conditions under which the nunarsolution pro-
duced by our method shows the same behavior as the analgtiealln particular we have
determined the bound and the limiting value of the numesoéition.

Section2 contains the construction of the method and in Secithe convergence anal-
ysis is carried out. The numerical stability of our methotiésted in Sectiod. In Section,
we report some numerical experiments that confirm the thieateesults stated in Sectiofis
and4. In Section6, some concluding remarks and future developments areteghor

2. The method. LetIly = {t; : 0 <ty < t1 < --- < ty = T} be a partition of the
time intervall0, T'] with constant stepsize =¢; 1 —t;,j =0,..., N — 1, and assume that
there existn; andns, positive integers, such that

(2.1) he L _ T2
ny N9

In the following we denote by; an approximation to the exact solutigi;) of (1.1). Let
{&}, and{wi}}", be the nodes and the weights of@apoint Gaussian quadrature for-
mula on0, 1]. Then, then-point Gaussian quadrature formula[@nk] has node$é,h}i:
and weights{ hwy, 7™,

h m
2.2) JRGIET) sEten)
k=1

where® (&) is any continuous integrand function.
The integral equatioril(1) at the mesh points is

@3) )= 1)+ [ TR - glym)dr, et LN,

i T2

The integral in 2.3) can be written as

tj—T1 n21 h
(2.9) / Bt — T)g(y(r)dr =Y /0 B(geh — T)g(y(ti_q, +7))dr,

T2

wherens; := na — n1, ¢, := na — r + 1. We discretize each of the integrals [onh] by the
quadrature ruled.2), thus obtaining

2.5) y(t) ~ f(t) + 1> > wrk(arh — Seh)g(y(ti—q, + kD)),
jemptt N
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The points,t;_,,. + &h, k = 1,...,m, 7 = 1,...,n9, do not belong to the mediy.

In order to overcome this problem, we adopt an interpolat@mhnique, similar to that used
in [5] to discretize a linear delay integro-differential eqoati We construct the Lagrange
interpolating polynomialP (z) of degrees for the data points,

(tijrfs— ) yijr757)7 ceey (tj*qTayj*qr)v ceey (tj*qurSJr ) yj*qurSJr)v

with s := s_ + s, ands_, sy € N, that s,

S+
(2.6) Pla)= Y Li(x)yj—q+1
l=—s_
where/; is thelth fundamental Lagrange polynomial with nodes,, —_, ..., tj_q, 4, -

We replacey(t;—q, +&xh) by P(tj—q,. +&ch) in (2.5), thus obtaining the numerical method,

nz21 m

2.7) vi = ft;) + h; ; wik(geh — &h)g(P(t;—q, + &kh)),
j=mno+1,...,N.
In the following it will be useful to observe that
Li(tj—q, +zh) = Pi(z),

where P, is theth fundamental Lagrange polynomial determined by the nodas, ...,
54, namely,

(2.8) P = ] =2

il

Thus the method7) can be written equivalently as

(2.9) y; = f(t;) + hz Zwkk(qrh —&kh)g Z P&k)Yi—a,+1 | »
r=1k=1 l=—s_

j:n2—|—1,...,N.

The method?2.7) depends on the parameters, s, andm, which have to satisfy some
suitable conditions for its applicability. First, in ordeot to require values of the solution
outside[0, 7', we have to require that

s_ <1.

In addiction, a necessary and sufficient condition to avwédlise of future mesh points (where
the numerical solution is not yet known) is

(2.10) sy <my+1.

Thus, we havé < s_ < 1and0 < s < n; + 1. Finally, we observe that, if2(10 holds
andsy # nj + 1, then the method(7) is explicit.
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3. Convergence analysisln the previous section we have constructed our method by
using two kinds of approximations, one arising from the giization of the integral in1(.1)
by the Gaussian quadrature formufad), and another one arising from the computation of
the unknown values of the solution by the interpolating poiyial 2.6). Therefore, in the
convergence analysis, we have to take into account theibotitms to the errors of both
approximations.

In the following we assume théit satisfies the conditior2(1), which implies that the
discontinuity point®, ..., 07 of order< s+1 are all included in the medh . Furthermore,
we assume that

Vj,r Jz: eithert;_g s .. tjg 4s, €[0.,0.41] oOF
(3.1)
tj—qr—s, > 92 or tj—q7~+8+ < 91

hold. Condition 8.1) may be satisfied by a suitable choicesafands.. .

Now we are able to prove the following theorem.

THEOREM 3.1. Lety; be the numerical solution ofl(1) obtained by the metho (7)
with0 < s_ <1and0 < sy <mnj + 1. Letp = min(2m, s + 1) andg = max(2m, s + 1),
where2m is the order of the quadrature formula@.Q) ands is the degree of the interpolating
polynomial @.6). Assume thayf € C*T1([0,7)), k € C«([r1,72]), o € CT([0,72]),

g € C1(R), andg satisfies the Lipschitz condition. Then, for sufficienthalsistep sizeh,
the errore; = y(t;) — y; satisfies
max |e;| < ChP,

1<GEN
for some finite”' not depending on.

REMARK 3.2. From the smoothness hypothesesg o, andk, the exact solutiom(t)
of (1.1) is at leasts + 1 times continuously differentiable df.,0, + 1],z =1,...,Z — 1,
and on[0,6,] and [0z, T]. From the expression fay")(t), v = 0,...,s + 1, obtained by
successively differentiatind.(1) with respect ta, it is readily seen that both the left and right
limits of y(*)(t) ast — 6., exist and are finite.

Proof of Theoren®.1 Taket; € [0.,0..1], withz € 1,...,Z — 1. We have

n21

h m
ej_zl / karh — 7)g(y (s, +7)dr — b'S wik(aeh — Eh)g(P(t;_q, +Exh)| -

r=1 k=1

n21
We can rewrite the error ag = Z(Bjr + Dj,.), where

r=1

h h
Bj, = / k(geh — 7)g(y(tjq, +7))d7 — / k(goh — 1)g(P(t—q, +7))dr

and

h m
Dy, = /0 k(grh — T)g(P(tj—q, +7))dT — > wik(grh — &h)g(P(tj—q, + &),
k=1

Thus, lettingL be the Lipschitz constant fgr, we have

h
Bl <L / k(goh — )| |Liv (7)| dr

54

h
L / k(g = | S Pr/B)(yts—gs1) — 05—qr0)| d,

l=—s_
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where
S+

Lin(m) = y(tjg, +7) = > Pr/R)y(tj—g.+1)

l=—s_

is the interpolation error &, +7. By condition 8.1) and Remarl8.2, there exist€’s > 0,
such that

L (T)] < Csh®*Y, Y7 €0,h].

We observe that the constarit whens is large has an exponential behaviour, since it depends
on the Lebesgue constant. Therefore,

S+

(3-2) |Bje| < Coh*2 +Cih Y lejog,ils

l=—s_
whereC, = L Cy max |k(t)|andC; = L  max max |P(z)] max |k(t)|. D, is

te[T1,72] le{—s_,...,s4+ } z€[0,1] te[r1,72] ’

the Gauss-Legendre quadrature errof(in:] for the functionk(g.-h — 7)g(P(tj—q. + 7).
Then, there exist€’,, > 0 such that, (2.7.12), p. 98]
(3.3) |Dj,| < Cpph2m+t.

By (3.2 and @.3) it follows that

nay S+
les| <D Cal®™ 4+ Cah Y7 Jejmg il + Conh®
r=1 l=—s_

S+
= (TQ - 7'1) (C’ShSJrl =+ C«thm) + Clh Z |€ijr+l

l=—s_

J
< Csﬂnhp + Clhz |€i|.
1=0
Therefore,
Csm Cl —
9 P .
—on o Clhh; leil

Now we apply the Gronwall-type inequalit®,[p. 41], and, since there are no starting errors,
we get

lej| <

] < 7
=1 Cih
Thereforeg; = O(h?) ash — 0 and the theorem follows. 0O

Theorem3.1 allows us to choose the parameters of the method by balaefiicgency
and accuracy, as shown in the following example.

ExampLE 3.3. The best way to achieve order 2 is the 1-node Gaussiadraiuse
formula (m = 1) combined with the linear interpolatior & 1). The choices_ = 0,54 =1
yield

<
hP el—Clh,T'

(34) W1 = 17 51 = 1/21
ti_ —x T —t;i_
(3.5) P(z) = %yg‘—qr + %?Jﬂrﬂ-
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4. Numerical stability. Our next task is to study the stability properties of our nume
cal methods with respect to test equation introduced]in [

t—71
(4.2) y(t) =1+ / N+ wp(t —7))y(r)dr, t € [m,T],
t—To
A, 1 € R, according to the following definition.

DEFINITION 4.1. A numerical method is stable with respect4olf when its application
to (4.1) gives a numerical solution behaving like the continous one

It is known that the stability analysis for test equationthis starting point for the inves-
tigation of the stability properties of the method for moengral equations.

We make the following definitions:

4.2 pi=ANm—1)+ g(TQZ — 7'12),
1 2 1 2
a:=—2—(/\—|—/m'1) , Bi=—\+pm)?,
% 2p
(4.3)
O := max |o(t)].
max 6(0)

In the theorem below we summarize some theoretical reshtistethe bound and the
limiting value of the analytical solution ofi(1) [7].
THEOREM4.2. Assume that one of the following sets of conditions holds:
a) (A +pr)(A+pm) 20, |p| <1,
b) (A +p71)(A+ pr2) <0, Jo| + |8 < 1.
Theny(t) is bounded for alk > 0 and

1
lyt)| < —————< + ®.
1 —(laf +18])
Moreover,
1
li )= ——.
Aim y() =,

The numerical solution of4(.1) obtained by the metho@(9) is

n21 m St

(4.4) yi =1+ > weM+ phigr — &) D Pul&r)i-g 115
r=1k=1 l=—s_
j=mno+1,...,N. Letus define the sets of indices

(4.5) Ry = {(r, k) : X+ ph(gr — &) <0}, Ro={(r,k) : X+ ph(q, — &) > 0},
and

Ly ={l:P(&) <0, k=1,...,m}={(-1),2,4,...,2,...}

48 L i RE) S0 k=1,..m}={0,1,3,....20+1,...}.

According to formula 2.8) all the zeros ofP,(x) are integers. Therefore, in (0,5 (x)
cannotvanish, thati8;(z) has a constant sign i, 1). Hence P, (x) assumes the same sign
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at all the nodesy, £ = 1,...,m (which belong to(0, 1); see formulaZ?.2)) and equalities
(4.6) follow. Moreover, we will use

ah) =h Y we(A+ phg — &)),

4.7 rk€ERy

(4.7) B(h) =h Z wi (A + ph(gr — &))-
r,k€ Ry

We set

(4.8) 0= max Z | P (&x)I-

S
Since Z P/(&) =1,Yk=1,...,m, we obtain

l=—s_

S+
(4.9) Y PG <2041, VEk=1,...,m.

l=—s_

Quir first result establishes some sufficient conditionsHtieritoundedness of the nume-
rical solution @.4).
THEOREMA4.3. Assume that one of the following set of conditions holds:
a) (A +pm)(A+ ) > 0, (20 +1)[p| < 1,
b) (A+ pr) (A + pir2) < 0, (20 + 1)(Ja(h)] + |B(R)]) < 1.
Then
1

O O IO R ] A

(4.10)

Proof. We rewrite ¢.4) as

yi =14+0h> > weA+ ph(gr — &) Py, (&)v;
(4.11) S
thy > wk(A -+ ph(ar =€) D Pilr)yi-q,+1:
r=1k=1 l#qr

whered = 1if s, = ny + 1 (implicit method; see Sectia®), otherwise) = 0. The sum over
[ # ¢, containss + 1 — § terms.

a) We consider the case+ px > 0 for z € 11, 72|, since the casg + pa < 0 can be
treated similarly. From4.17) it follows that

(1=380)y;l < 1+hY > w4 phiar — &) D> 1PUER)Yj g 41,
r=1 k=1 l#qr
where© := hz Zwk()\ + ph(gr — &k))| Py, (§:)|- Now we proceed step by step. For
r=1 k=1

Jj < ng+1,sincey; = y(t;) = ¢(t;), thenly;| < ®. Forj = ns + 1, sinced® < 1, we
have

1+((20+1)p—00)®
< .
Yno+1] < 1-60
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Forj = no + 2, we have

(1= 00)[ynyr2| <1+ ((20 4 1)p — 6O) max (@, 1+ ((20+1)p— 5@)@) |

1-00

Now assume thad < . Then we have

1
1—(20+1)p

1 (20 4+ 1)p — 6O (20 +1)p— 60\ >
< B .
|y"2+2’|—1—5®(1+ =60 )+( =60 ®

B (2041)—60
Since~—~—5— < 1,

1

BT N S—
lnatel < @+ 752y

Continuing with the same procedure, we can prove

1

4.12 <o+ —

j=1,....N,

which is equivalent to4.10), since in this casgx(h)| + [3(h)| = p.
We arrive at the same result whén> L

T (2o Dp"
b) By (4.11) we get
(4.13) (1-00)ly;| <1+ hz Zwk|/\ + ph(gr — &k)l Z [P (&)Y —q,+115
r=1k=1 I#qr
where© := hz Zwk|/\ + ph(qr — &)l Py, (§x)]- As in the case a), we proceed step by
r=1 k=1

step. We find thafy;| < @, j =0, ...,n9, andé© < 1. Therefore, forj, + 1, we have

1+ 9(20 + 1) (Ja(h)| +[6(h)]) — 66)
1-00

Forj = no + 2, from (4.13 and @.14), we obtain

L[y, @ot (k)] + B - 5
el < g |14 m] }

(20 + 1)(la(h)] + |B(h)]) — 60\*

* < 160 > ®
1

(20 + 1)(la(h)| + [B(R)])”

Here we have assumed thiat< 1/(1 — (20 + 1) (Ja(h)| + |B(R)|)). The opposite case can
be treated in an analogous way. By proceeding step by stehebesm follows. |

In addition to the previous results, we can show that thetlohthe numerical solution
is the same as for the analytical solution.

THEOREM4.4. Let the conditions of Theorem3be satisfied. Then

(4.14) Ynat1] <

<o
+1_

li 1
m Yy; = —,
j~>ooy'7 1 —pP
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with p given by 4.2).
Proof. If I = hm 1nf y; and!” = lim sup y;, then there exist two subsequences

jﬂoo

Wit ik, such thaf,’ = lim y;, < lim y;, = 1", with
U— 00 V— 00

na1 m

(4.15) =1+h) > welA+ ph(g — &) Z Pi(&k)Yju—ar+15
r=1k=1 l=s_
nz21 m

(4.16) i, = 1+h Y>> we(A + ph(gr — &) zjﬂék%v%u
r=1 k=1 l=s_

a) If we assume thaX + p7m; > 0 and A + pm > 0, then we can split the sum over
in (4.19 into two parts according to the sign of the Lagrange fundaaigolynomials,

nai1 m
vi, = 140> Y wpA+ phlar — &) > Pi&k)Yj, -, 11
(417) . ’r‘mlk 1 leL
+hY Y T weA+ ph(ar — &) Y P&k i gt
r=1k=1 €Ly

By computing the limit inferior of both sides ofi(17) and by recalling that
"= lim y;, = liminfy;,, we get

(4.18) I'>1+am)l" + B,

where

a(h) =YY we(\+ phlgr — &) > Pulér),
k=1

r=1 lel,
Bh) =hY > we(A+ phlgr — &) D> Pul&r)-
r=1k=1 leLl>

In the same way, by considering.(L§ and by computing the limit superior, we find that
(4.19) " <1+ah)l' + B,
By substracting4.18 to (4.19, we find that

1" =1 < (B(h) — a(h)(1" = 1)

SinceB(h) — a(h) < (20 + 1)|p| < 1, we have” = I’ and, thusy; admits a limiting value
" =1 =y* where

1
I—p

*

y =
As a matter of fact, whep — +oc in the (4.4), we have

vy =1+ py",



ETNA

Kent State University
http://etna.math.kent.edu

210 A. CARDONE, I. DEL PRETE, AND C. NITSCH
nz21 m
by recalling that Z P;(&) = 1 and observing thdtz Zwk AN+ ph(q- — &) =p
l=—s_ r=1k=1

In a similar way, we are able to prove the theorem whenpm < 0 and\ + um < 0.

b) The equation4.4) can be written as

yj=1+h Z wr (A + ph(gr — &) Zplfk Yj—qr+l

r,kER1 lely
+h Z wr(A + ph(g. — &) Z P(&k)yj—q,+1
r,kER1 leLs
+h Z wr(A + ph(g. — &) Z P(&k)yj—q,+1
r,kER> lely
+h Y weN A+ ph(gr = &) D P&k )Ysi—go 41
r,kERo leLs

Therefore, by computing the limit inferior, we find that

U'>1+am)l" +Bh),

where

ath) =h Z wr (X + ph(gr — &) ZPlfk

rkER, €L,
+hz wr(A + ph(qr — &) szfk

(4.20) _ rkER, €L,
Bh) =h Y weA+phier— &) > Pulés)

r,kER, leL,
+h > we(A+ ph(ar — &) D P&,

rkER2 lEL>

By following the same procedure fgg, , we obtain
U <1+am)l” + B,
and
=1 < (B(h) —a(m) " =) = (1B +am)h” =1).
If |3(R)| + |a(h)] < (20 + 1)(|8(h)] + |a(h)]) < 1, then” =1’ =l and
lim y; =l =y". O
Jj—o0
By means of Theorem&.3and4.4, we have shown the following theorem.
THEOREM4.5. Assume that one of the following set of conditions holds:
a) A+ pum)(A+ pm2) >0, (20 4+ 1)|p| < 1,
b) (A+pm)(A+ pm2) <0, (20 + 1)(Ja(h)] +|6(h)]) <1

Then the method(7) is stable with respect to the test equatidnij.
Here we have used Definitigh1of numerical stability.
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In order to establish a connection between the behaviorehtimerical solution pro-
duced by our method and the behavior of the analytical smiyuprovided that the stepsize
is sufficiently small, we need this final result.

THEOREMA4.6. Leta(h) and3(h) be defined by4.7. Then

lim a(h) = a and lim (k) = 6,
wherea and 5 are defined by4.3).

Proof. Let us suppose that > 0. Then\A + uz < 0 for z < —A/u. The op-
posite case can be treated in the same way. ¢keth be the rightmost point, such that
A+ pgr < 0. HenceRy = {(r,k):r>7 k=1,..,m} U{(7,k): k=k,..,m} and
Ry={(r,k):k=1,..,k=1}U{(rk):r=1,..,F —1ek =1,..,m} for a suitablek.

It follows that

ah)=h Y Y wp(A+ ph(gy — &) +h > we(X + phigr — &)
r=r+1k=1 k=Fk
qrt1h m
_ / O+ )z + b we(A+ ph(gr — &)
4 k=k
_ % [0+ 1rs10)> = 0+ 17)?] + 1 S we(h + ph(gr — €))
k=k
= a+p(h),
with
(1) = 5= g h)? 1Y -+ (g = ).
k=k
and
E—1 -1 m
B(h) =Y wk(A+ ph(gr — &) +h Y > wie(A+ phig, — &)
k=1 r=1kLk=1
k—1 72
= h >\ phlar = 60) + [ O+ s
k=1 qrh
E—1 1
=hY we(\+ ph(g: — &) + o (A + p72)? = (A + pgrh)?]
k=1
= ﬁ - q(h)a
with
1 E—1
q(h) = ﬂ()\ + pgrh)? — h Z wi (A + ph(gr — &)).
k=1

According to the definition of, it follows thatg:.;h — —\/p and(k — 1) — m ash — 0.
As a consequence

Tim p(h) = i(x (A2 =0
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and

.1 ) —
Yim q(h) = lim 5 (A + pgrh) —h Y wi(A + ph(gr — &)

k=1
= li 1(/\+ #h)? /q (A + px)dr = 1 1()\+ ah)?=0. O
= fm o K - prr)dr = am 2 Har1n)” = 0.

REMARK 4.7. Theoremi.6 shows that, when the stepsizas sufficiently small, both
sufficient conditions of Theorerh.5 differ from the hypotheses of Theoreft2 by the pres-
ence of the factof2c + 1), if o # 0. However, it is always possible to determine the
parameters of the method in such a way that the numericaiieolmimics the behavior of
the analytical solution.

In the following section, we will illustrate how to chooseetlbest parameters of the
method.

5. Numerical experiments. Theorems3.1and4.5 establish that the parametenflu-
ences both convergence and the stability of the metRodl. (For a concrete application of
the method, one has to consider the following points:

e s should be chosen as= 2m — 1 in order to preserve the order of the Gaussian
guadrature formula without loss of efficiency;

e For any stable equation of typ&.() there exists a stable method of orger 2;

e The parametes, which determines the stability of the method, is equal tmze
for s = 1 ands_ = 0, and increases with, thus limiting the order of the method.
According to Theorem.5 asp or 3 — « approach one (that is the analytical solution
is almost unstable), the maximum order of convergence weearpgct is lower. In
Table5.1 we list some practical choices efand ofs_ with respect to the value
of p (the same holds fof — «, if h is sufficiently small) and the corresponding
orderp, which guarantee stability of the method. These values atr¢éhe maximal
ones, since they come from the sufficient but not necessangitions for stability
of Theorem4.5,

Now we illustrate the performance of our methods for equmeiof the type

t—T1
(5.1) y(t) = () + / Ot ult - T)g(y(r)dr, € [m,T),
t—7o
with 71 = 0.5, 7 = 1.0, T = 5.0, A = 1.0, = 1.2.

We have chosen the following methods of tyger]:
1. order 2 method, with s_ =0, s+ =1, m =1 (3.49—(3.5),

TABLE 5.1
Practical choices of the parameters of the method.

p s|s- | p
(0.110,0.235] | 9| 1 | 10
0.235,0417] | 7|1 | 8
(0.417,0.615] | 5|1 | 6
0.615,0.857] | 3|1 | 4
0.857, 1] 110 | 2
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TABLE 5.2
Correct digits for problem%.1)—(5.2).

Gauss Newton-Cotes
0.1 3.04 5.62 2.87 5.29
0.05 3.64 6.80 3.46 6.49
0.025 4.24 8.00 4.06 7.69
0.0125 4.84 9.19 4.65 9.03
0.00625 5.45 10.40 5.25 10.29
0.003125 6.05 11.60 5.86 11.47
TABLE 5.3

Correct digits for problem.1)—(5.3).

h p=2 p=4

0.1 1.82 412
0.05 2.16 5.32
0.025 2.70 6.52
0.0125 3.29 7.72
0.00625 3.89 8.93
0.003125 4.49 10.13

2. order 4 method, with s_ =0, s+ =3, m = 2,

3. order 6 method, with s_ =1,sy =4, m =3,

4. order 8 methods, withs_ =0,s; =7,0rs_ =1, s =6, andm = 4.
All four methods are explicit. Analogous tests carried outhvimplicit methods have pro-
duced similar results.

We have tested the convergence properties of our methodsedioltoowing two prob-

lems [7]:

e problem 6.1) with

(5.2) gly) =1, fO)sty(t)=e"o(t)=c"
e problem 6.1) with
(5.3) g(y) = (1+19)%  f(t) s.ty(t) =sint, ¢(t) = sint;

In Tables5.2-5.3the number of correct digits valuead) of the solution of §.1) obtained
by the methods 1 and 2, are listed for different value#.ofThese tables clearly show that
our methods produce the desired order according to The8rémMoreover, in Tables.2,
we have compared our results with those obtained by the ahsrmumerical approach we
know, that is, DQ methods based on Newton-Cotes formulapditicular the trapezoidal
and Simpson 3/8 formulas]]: the errors of the two families of methods are very simiiar,
spite of the error of approximation due to the interpolatiechnique used for the Gaussian
formulas.

In order to test the sharpness of the estimates of the sygbdrameters of our methods,
we have carried out a large number of numerical experimétdse the most significant ones
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FIG.5.1. OntheleftA = —1, u = —1.2, |p| = 0.95, (20 + 1)|p| = 0.95,p=2,s_ =0, h =0.1. On
theright: A = —1, u = —1.2, |p| = 0.95, (20 + 1)|p| = 1.54,p = 6,s_ = 1, h = 0.1.
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FIG.5.2.0ntheleftA = -1, =1, |p| = 0.25, (20 +1)|p| = 0.6,p =8, s— = 1, h = 0.1. On the
right: A= —1, u = —1.2,|p| = 0.95, (20 + 1)[p| = 2.84,p = 6,5_ = 0, h = 0.1.

are reported. We consider the performances of the metAadl Wwhen applied to the test
problem

(5.4) y(t) = f(t) + /(/\+u(t—7))y(7)dﬂ t € [, T,

t—Tz

with 77 = 0.5, » = 1.0 and f such thaty(¢) = ¢sint. In our examples\ andy satisfy the
hypotheses of Theorem2for the stability of the analytical solution. Problems op&y(5.4)
may be assimilated to the test equatidri) with the simplified assumptiofi(t) ~ f(0), as
it is usually done in the formulation of test equations; sd@pd references therein.

The numerical solution (*-) and the analytical one (-) arenpared in Figure$.1-5.3,
for different values of the parameteksand . and for different choices of the parameters of
the method. Figures.1-5.2show tests related to the caset um ) (A + p72) > 0. When the
hypothesis:) of Theorem4.5is satisfied, the numerical solution behaves like the aitallyt
one (left plots of Figure$.1 and5.2), while in the other case instability could arise, both
for s = 0 and fors_ = 1 (right plots of Figures.1-5.2). Similar results are found when
(A + p71)(A 4 pm2) < 0. This is illustrated in Figur®é.3 We emphasize that we dispose of
high order and stable methods, as shown by test of Fiftewhere an order 8 method is
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FIG.5.3.A =8, u = —10, 8 — a = 0.65, (20 + 1)(3(h) — a(h)
=1.06,p=6,s_=1h=0.1.

the right: A = 8, ju = —10, 8 — & = 0.65, (20 + 1)(B(h) — a(h))

used.

Our tests confirm what we have noticed in Remérkabout the influence of the factor
20 + 1 on the numerical stability: for example, in the right plotRigure5.1, [p| < 1 but
o = 0.083, so that(20 + 1)|p| > 1 and instability occurs. We observe that the estimate on
the stability parametef2o + 1)|p| or (20 + 1)(3(h) — «(h)) is quite sharp, as shown for
example by Figuré.3, where(20 + 1)(8(h) — «(h)) varies between the values 0.95 and
1.06.

In the example illustrated by the right plot of Figuse?, p is very close to 1 and so, in
principle, we expect an order of accuracy not exceeding 2 f&table method; see Taliel
Therefore, in order to increase the order, we have appliagbé&spline interpolation tech-
nique (which is supposed to have order 4). This method préwdsk stable; on the other
hand also our DQ method of order 4 with the Lagrange intetpagolynomial is stable and
guarantees the same accuracy.

6. Concluding remarks. Inthis paper we constructed Direct Quadrature methodsbase
on Gaussian quadrature formulas for equatibri)( In order to solve the problem of the
evaluation of the solution at points not belonging to the mes interpolation technique
has been used. In Theoreil we have shown that the order of convergence of the method
depends both on the order of convergence of the Gaussiaruf@ramd on the degree of
accuracy of the interpolating polynomial.

In order to complete the study of the method proposed, weyaedlthe stability with
respect to a class of significant test equations introducgg.i We found sufficient conditions
for numerical stability. These conditions are such thathé starting problem satisfies the
conditions of Theorem.2, then it is easy to determine the parameters of the methdd tha
secure the stability of the numerical solution. The nuns@xperiments clearly confirm the
theoretical results and show the sharpness of the estimiies stability parameters. Finally
we note that, in order to increase the order of convergenanwlis close to one, it may
be possible to consider another interpolation techniqel ss one using cubic splines. This
new approach, together with other approximation techrégequires complete analysis of
convergence and numerical stability. We intend to dediadteure work to this topic.



ETNA

Kent State University
http://etna.math.kent.edu

216 A. CARDONE, I. DEL PRETE, AND C. NITSCH

REFERENCES

[1] D.BREDA, C. CUSULIN, M. IANNELLI, S. MASET, AND R. VERMIGLIO, Stability analysis of age-structured
population equations by pseudospectral differencing ndghl. Math. Biol., 54 (2007), pp. 701-720.

[2] H. BRUNNER AND P. J.VAN DER HOUWEN, The Numerical Solution of Volterra Equatigngol. 3, North-
Holland, Amsterdam, 1986.

[3] P.J.Davis AND P. RaBINOWITZ, Methods of Numerical Integratioisecond ed., Academic Press, New York,
1984.

[4] M. 1ANNELLI, Mathematical Theory of Age-Structured Populations DyranApplied Mathematics Mono-
graphs C.N.R., Vol. 7, Giardini, Pisa, 1995.

[5] T. LuzyaNINA, K. ENGELBORGHS AND D. Roosg Computing stability of differential equations with
bounded distributed delayslumer. Algorithms, 34 (2003), pp. 41-66.

[6] E. MESSINA, E. Russo AND A. VECCHIO, A stable numerical method for Volterra integral equatiorithw
discontinous kernell. Math. Anal. Appl., 337 (2008), pp. 1383-1393.

, A convolution test equation for double delay integral equag J. Comput. Appl. Math., 228 (2009),

pp. 589-599.

(7]




