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CONVERGENCE ISSUES IN THE THEORY AND PRACTICE OF ITERATIVE
AGGREGATION/DISAGGREGATION METHODS *

IVO MAREK f, PETR MAYER', AND IVANA PULTAROV AT

Abstract. Iterative aggregation/disaggregation (IAD) methods far domputation of stationary probability
vectors of large scale Markov chains form efficient prattészalysis tools. However, their convergence theory is
still not developed appropriately. Furthermore, as in otheltilevel methods such as multigrid methods, the number
of relaxations on the fine level of the IAD algorithms whichashte executed plays a very important role. To better
understand these methods, in this paper we study some newpteraewell as their behavior and dependence
on the parameters involved in aggregation algorithms, arabksth some necessary and/or sufficient conditions
for convergence. The theory developed offers a proof of emence of IAD algorithms independent of whether
the governing iteration matrix is primitive or cyclic as oneitsfmain results. Another important result concerns a
comparison of the rates of convergence of two IAD processeae®xamples documenting the diversity of behavior
of IAD methods are given.
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1. Introduction. As documented in the literature (e.g2] pnd [L4, Section 6.3]), ag-
gregation/disaggregation iterative (IAD) methods belemgompetitive classes of methods
for the computation of stationary probability vectors ofiiav chains and Leontief systems.
An appropriate convergence theory is still far from beinghptete—in the sense of a full
understanding of the dependence of these methods upore adatameters influencing con-
vergence and its rate. The aim of this contribution is to @xpsome of the more subtle parts
of the theory. In particular, some new concepts, such asezgance indices, are introduced
and their properties are studied. These convergence Bdit®v one to establish some re-
lations between the number of relaxations on the fine levekich iteration sweep and the
convergence/divergence behavior of the IAD methods. Sawelts in this direction appear
to be decisive in understanding the interplay between tl&li@ration matrix and the IAD
algorithms. Consequently, a new important result is eistaddl: IAD processes return con-
vergent sequences of iterates without requiring the Bt upon which the 1AD algorithms
are based, to be convergent; for example, splittings legdisyclic iteration matrices are not
only allowed but they may even be preferable in comparisdh primitive iteration matrices
obtained using shifts of the originally cyclic iteration triees.

2. Definitions and notation.

2.1. Generalities. As usual, we denote y(C') the spectral radius of the matriX i.e.,
p(C) =max {|\ : A€ a(C)},

whereo (C') denotes the spectrum 6f. When we suppos€' to be stochastic, we can assume
thatp(C) = 1. Further, we define the quantity

7(C) =sup { |\ : A € a(C), A # p(C) }.
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We are going to cally(C) the convergence factaf C. We also need another more general
characteristic of convergence. Therefore we give thevioiig definition.

DEFINITION 2.1.For any N x N matrixC' = (cjx), wherec;, j,k = 1,..., N, are
complex numbers, let us define the quantity

7(C) =max {|A| : A € 0(CO), |A| # p(O)}.

This quantity is calledhe spectral subradius C.
REMARK 2.2. LetC be anyN x N matrix. Then, obviously,

p(C) > ~(C) > 7(C),

with possible strict inequalities in place of the nonstdnes.
Let p be a positive integer anB an irreducible column stochastic matrix with spectral
decomposition

B=Q+Z,

whereQ? = Q, Q7 = ZQ =0, p(Z) < 1,and
p
Q=>_¥"'Q;
j=1

with Q;Q = QrQ; = §;xQ;, J, k= 1,...,p.
Note that the above formulae describe two essentially reiffesituations: therimitive
caseappears ip = 1 and thecyclic casef p > 1, respectively.

2.2. Aggregation communication.Let £ = RY, F = R", n < N, e = e¢(N) =
(1,...,1)T € RV LetG be a map defined on the index sets

G:{1,...,N} 2% {1, ,n}.
With this notation we can write” = (e(r)7, ..., e(r,)T), where
rj=card{j€{l,...,N}:G(j) =j}.

Iterative aggregation/disaggregation communicationrapers are defined as

(Rx)J = Z T7,

7:9()=j
and
S = S(u), wmnxza%gm@;
Obviously for anyu € RN, u?' = (uy,...,uy),u; >0,7=1,...,N, we have
RS(u) =1Ir
and

S(u)Ru = u,
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but, in general,
S(u)Rx # x.

For theaggregation projectiorP(x) = S(x)R, we have

Px)'e=e, VzecRY, z; >0,7=1,...,N,
and

P(z)x =z, VYzeRY, z;>0,j=1,...,N.
We define theaggregated matrixas

B(x) = RBS(x).

3. IAD algorithms.

3.1. Algorithm SPV(B; T;t, s; 2(9); G; €) (stationary probability vector algorithm).
Let B be anN x N irreducible stochastic matrix aridts unique stationary probability vector.
Further, letl — B = M — W be a splitting off — B, such thafl’ = M~ is an elementwise
nonnegative matrix. Finally, let s be positive integers;(®) € RY an elementwise positive
vector, anct > 0 a tolerance.

Step 1. Setk = 0.
Step 2. Construct theaggregated matriXin the case of = 1, the irreducibility of B implies
that of B(z(*)))

B(a:(k)) = RBSS(.%‘(k)).
Step 3. Find the unique stationary probability vectdf) from
B(x(k))z(k) =20 em)Tz® =1, e(n)=(1,...,1)T eR".
Step 4. Let

Mgkttm) — W:L’(’”l’m*l), g(F+1.0) — l’(k), m=1,...,t,

and

2D = g1 o (N)T k1) — 1
Step 5. Test whether
[+ — 2 ®)|| < e,
Step 6. If NO in Step 5, then let
k+1—k

and GOTO Step 2.
Step 7. If YES in Step 5, then set

i = gkt

and STOP.
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The error matrix is defined as
J(B;T;t,5:G;2;¢) = T [I - P(a)(B - Q1)] ' (I - P(x)),
where we se); = Q if p =1 and
a’ = (z1,...,2n), x;>0, j=1,...,N.

When the dependence of the iteration sequence on the itreratitrix must be specified
explicitly, we writez*) (T') in place ofz(*), whereT = M ~1W.

REMARK 3.1. Algorithm SPV can be easily modified in order to condtaatutions for
Leontief systems, i.es; = Cz + b, with b € RV, C € R¥*Y elementwise nonnegative, and
limy ., C* = 0. Let us denote the modified algorithm by Algorithm LM. Suchaithms
have been studied id]. It is shown in [7] that the error matrices of both classes of algorithms
are essentially the same. This is the reason why we are oirly tmstudy algorithms of class
SPV.

Algorithms of the type introduced in this section are knowriLaontief procedures; they
were invented by Leontief around 1930 in his famous sedtedanomy theory. Actually,
his sectorial variables are just aggregates of the iniaakbles, and the sectorial production
matrix is our aggregation matrix.

4. Some properties of IAD methods.According to the definition of the SPV algorithm,
the error-vector formula for the sequence of approximasass

(k+1) _ »

x &= Jy(z®)(2® - 2),

where f]
Ji(z) = J(B; T z) = T'[I — P(2)Z] ' (I - P(x)).

The matrixZ comes from the spectral decomposition®f= Q + Z, whereQ? = Q,
QZ = ZQ = 0, and1 ¢ o(Z). FurthermoreJ;(z) = T*~1Jy(z), t > 1, holds for anyz
with all components positive.

We want to analyze the convergence properties of IAD methadbout the explicit
requirement that the basic iteration matrix is convergest, we do not assume that the limit

lim 7%
k—o0
exists.

REMARK 4.1. One of the most delicate questions concerning IAD nutligthe follow-
ing: how to choose the number of smoothittgThe answer to this question is not a simple
matter, as illustrated by the following example. This takesback to another basic ques-
tion, namely, how to aggregate? Some results concerningaféergence issues of the SPV
algorithm with a small number of smoothingan be found in12].

EXAMPLE 4.2. Assume that > 1 is a positive integer and that is the transition matrix
of a Markov chain, which can be written in a block form as

By 0O - - - 0 By
By By - - - 0 0

0 0 - - - Bpy—1 By
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The iteration matrixl’ = M ~1W is defined via the splitting — B = M — W with
M = diag {Bi1,...,Bpy}, W=B+M—1.

We see that the iteration matrixis blockp-cyclic.
The aggregation communication operators are chosen, sath t

R=(1,...,1)7
is1 x N matrix and
S(:c)z:Ria?, zeRY, z; >0, j=1,...,N, z€R.
X

This means that the SPV algorithm reduces to the simple povethod with the iteration
matrix T"*. Assume that the off-diagonal blocks are elementwise pesi®bviously, the SPV
process possesses the following properties: it does neeogafort < p and it converges for
t=kp k=1,2,.... We see that our IAD method preserves the nonconvergenpepyaf
the original power method.

On the other hand, if the aggregation operators are chosshaae above, i.e., each
single block of matrixB is aggregated to bx 1 matrix, the situation may change dramatically.
As an example, let us take the transition matrix whose afgdnal row blocks satisf;;, =
ujuJT,c, j # k, wherev; andu;, 5,k = 1,...,n, are some vectors. Then, taking the same
splitting as in the example discussed in this section, tlaetestationary probability vector is
obtained after at most two iteration sweef [

The theoretical knowledge of the IAD methods expressedire.gheorem4.4 and our
computational experience with such methods leads to thenfivig conclusions: Even a quite
deep theoretical knowledge and a massive computationariexge do not offer sufficient
information how to aggregate successfully. This is bec#luseuantities relevant for deter-
mining suitable parameters are in practice very difficulyyéd. Our recommendation how to
obtain the parameters just mentioned is to exploit any kadgé and the knowledge coming
from the outside of mathematics in particular. By theseestaints we do not say that the
IAD methods should not be considered as suitable means ffiopetations. Just the opposite
is true and in particular to determining the charactesstitMarkov chains such as the sta-
tionary probability vectors, the mean first visit times ns, etc. and solutions to problems
whose mathematical model states are probabilities.

4.1. Aggregation-convergencel et us remind ourselves of a definition that is relevant
within in the context of IAD methods7].

DEFINITION 4.3.Assume thaB is an N x N irreducible stochastic matrix with station-
ary probability vector and R and S(z) IAD communication operators. A splitting 6f B,
where

I-B=M-W=MI-T), T2>0,
is calledaggregation-convergeift

lim (I —P(2))T" =0.

k—o00

An interesting question is how to recognize that a splitim@ggregation-convergent.
When looking at the error-vector formula valid for any IAD abructed using the splitting

(4.1) A=T-B=MI-T), T>0,

we can summarize our knowledge concerning the class of I4brahms by the following
theorem.
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THEOREM 4.4 (see T]). Consider AlgorithmSPV (B; M, W, T; t,s = 1; G;z(9);¢)
with an irreducible stochastic matri®, an aggregation-convergent splitting.() and an
initial guess taken such that®) € Int Rf . Then, there exist two positive integérsand two,
generally different, neighborhoods; () and2; (&), such that AlgorithnSPV(B; M, W, T}
t,s = 1;G; 2(9; ¢) returns a sequence of iteratés*) 1 for which
(4.2) Jim ™ =& =Bz, eTi=1,
fort = andz(®) € Q;(2), orfort > f andz(® € Q;(2).

REMARK 4.5. Theoremt.4 deserves some comments. teindz be the minimum of
thoset > 1 and¢ for which (4.2) holds, respectively.

(a) First of all,z in (4.2) may be large, in particular if = ¢. This effect is caused by
the “interaction” of the matrice® (&) B and P(x)T’; in the case o’ = B it may
also be caused by the possible nonnormalitylof P(z))B[I — P(x)Z]~. In this
context let us recall a popular problem of shuffling carde (Geeenbaumd).

(b) There may be lots of integera andr such thatm < r < t and Algorithm
SPV(B;T; t,s = 1;2(°);¢) is divergent fort = m and convergent fot = r
(see Exampl8.1).

(c) There are example4J| showing thatlSPV(B; B; t = 1, s = 1;2(9); ¢) converges
andSPV(B; B; t =2, s = 1;2(9); ¢) does not.

ExXAMPLE 4.6 (see]d]). Let us consider

0 O 0 1/2 0
1 1/2| 1/7100 1/2 1/100
0O O 0 0 99/100
0 0 |99/100 O 0
0 172 0 0 0

It can be shown that
p(J(2)) =0.9855 <1, for SPV (B;B; t=1; s = L,z(®;e =1.107°),
and

p(J(#)) =1.1271 > 1, for SPV (B;B; t =2; s = 1;2%;e = 1.107°).

5. Necessary and/or sufficient conditions for local and gladd convergence.Let G be
a mapping of the index sétl, ..., N} onto{1,...,n}, andR andS(z) the corresponding
communication maps determining the aggregation projecki¢x) = S(z)R [7]. Let B
denote a fixed irreducible column stochastic matrix &nd B = M — W its splitting, such
that the iteration matri{’ = M~ is elementwise nonnegative.

DEFINITION 5.1. A nonnegative integer is calleda-index of AlgorithmSPV (B; T =
M~'W;t,s:G;z(9):¢) if this algorithm returns convergent sequences of iteréoes = r,
and divergent ones far= r + 1, where the integer is the smallest among all such numbers.

DEFINITION 5.2. A positive integert, is called (convergence)-index of Algorithm
SPV(B;T = M~'W;t,s;G;2(%);¢) if t, is the smallest positive integer, such that SPV
algorithm returns convergent sequences of iterates far all¢,. If a considered SPV process
is not convergent, then we also say thatisadex is zero.

In this section we are going to examine convergence issuasecaing Algorithm
SPV(B; T = M~'W:t,s;G;z(;¢), formulated in terms of its. andb indices. Before
we formulate the appropriate statements, we comment onréhre®.4 utilizing the above-
introduced convergence indices.
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REMARK 5.3. Parts of Theorem.4 concerning the relatiom(2) can be reformulated
as follows: thea-index of SPV(B; T;t, s = 1;G;x(9); ), which we denote by,, satisfies
t, > t, and for theb-index, denoted by, we havet, < t.

There are classes of stochastic matrices for which the SRjdrdhms possess small
a-indices, actually the smallest possible, i£.+= 1; see [L3]. To this class there belong
stochastic matrices possessing positive diagonals. Theofaonvergence of SPV iterative
procedures with just one smoothing on the fine level for suatrioes may be slow however.
To speed up the computational process is not an easy taskdeettee process with number
of smoothingt = £ +m, m > 1 may diverge for rather quite a lot of valuess! We see that
though the relatioB = C + ~I, wherey > 0 andC is elementwise nonnegative, implies
that B* > §,.I for somes;, > 0, index1 need not be thé-index of B¥.

The convergence indices just introduced allow us to forteudalequate conditions nec-
essary and sufficient for convergence and/or divergencd”df &gorithms. At this point a
note is appropriate. The counterexamples shown, as welleaappearance of the conver-
gence indices, are needed if one is to fully understand theezgence of IAD methods. On
the one hand, there are some irregularities in even the émralergence behavior for cases
with a small number of smoothings and, on the other hand, éessity of requiring a large
number of smoothings for guaranteeing global convergeQo#y a good understanding of
as much as possible of all these convergence issues mayaiexicrecommendations for
practical computations.

PrRoPOSITIONS.4 (sufficient conditions for global convergenc8ssume thatl = 7 —
B=M-W,wheteB=P+Z,P>=P,PZ=7ZP=0,T=M"'W,whereB is anN x N
irreducible stochastic matrix, an@l = C' + I, wherey > 0, is a nonnegative matrix.

Then there exist two positive integérandt, such that for any:(?) e Rf Nrange(T?),

t > 7, Algorithm SPV(B; T;t,s;G;x(9;¢) for t > £ ands > 1 returns a convergent
sequence of iteratelsr (¥}, i.e.,

klim %) =% = Bs =T3.

Proof. LetK = {z € RY : [e(N)]Tz = 1}. Since for every: € K
(5.1) lim T*z = geTz, eTa=1,
k—o0

it follows that there is a positive integey such that

1
t
(T:C>j25

(@);, j=12,...,Nandt>T.

We want to prove that there is a positive integesuch that

(5.2) |7t (1= P@)2) 7 (1 - P@)| <1 wex4,
wheneverr € RY Nrange(7™). For this purpose we utilize the relations

T=Q+U Q=zxe", f2=1, QU=UQ=0, plU) <1,
w=[I-P@)]w, Io=TI-P@)Z] " (I-P)w, w0,
valid for any eigenpaii andw, implying by (5.1) that

lim [1— P@){T'}" = lim (I - P(@))lze” +U]" =0, aek, t>1

oo o0
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In other words, there is a positive integesuch that
(5.3) p([l - P(a:)]Tt) <1, t>1

The compactness of the gétimplies the existence of a constantndependent of: € IC,
such that relationH.3) can be stated in a stronger form as

P([I - P(»“C)]Tt) <7 <1, t>7uniformly with respect ta: € K.
Set
lull pzy = || P(@)ul|, + || (I — P(x))u,, uweR, zek.
It follows that
[T = P@)] T p,, <1, t21.

Consequently, the required positive integer5r?) is obtained as

= min {t =Pl < 1},

where (sincé|(I — P(x))|| p(z) = 1)

K= maX{H [I— P(x)Z]ilH :z € range (T7) NRY, x[e(N)]Tx = 1}.

P(x)
The proof is completd]

REMARK 5.5. The above examples and Propositiof show several reasons for hav-
ing difficulties in proving the global convergence of IAD rhetls. We must, therefore, con-
sider sufficient conditions for global convergence in lighthis. The conditions are rather
complicated from the viewpoint of computer implementatéond the conditions guarantee-
ing global convergence may seem impractical. Thus, if onatexested in computing the
stationary probability vector in practice, then one shdoédter choose&SPV (B;T; s =
1, t = 1;2();¢) yielding the approximation sequenée(®)} locally convergent 10, 12
thanSPV(B;T; s = 1, t = 1;2(9); ¢) with sufficiently larges andt in order to guarantee
global convergence.

REMARK 5.6. It may seem strange that such a simple statement witheatgjuial proof
may appear as new after a relatively long period of invetigd AD methods. The reason
might be the absence of a good understanding of the role dhtlieest ands in the SPV
algorithm. The examples of Secti@ showing, for example, th&&PV(B;B; t = 1, s =
1;G; 2(9); ) may not converge even locally whitV(B; B; t = 2, s = 1;G; 2(*); ¢) does,
have led us to define the andb- convergence indices and to find a way towards local and
global convergence of IAD algorithms.

PrROPOSITIONS.7 (necessary condition for local convergencelippose that all free
variables of AlgorithmSPV (B; T = M~'W; t = s = 1;2(9); ¢) are fixed and

p(J(B;B;t, s = 1;33(0);5)) <1 Vt>t
Then

p((I—P@)T") <1 Vt=>ti.
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Proof. Let us assume that the conclusion of Propositiohis false. Then the spectral
resolution of the of matrix/ — P(2))T" reads

p
(I-P@)T" =Y _X\P;+F,
j=1

where
p(F) < p((I—P&)T") =|N| > 1.
Lety € RY be such that
Pjoy#(l joe{lavp}

It follows that

. ~ k

th.I_l,gf | [(I = P(2))T"] y|| > 0.
Thus, the implication

HJ(B;B;t, § = l;z(o);e)H — 0 ast—

is contradictoryl

PrROPOSITIONS.8 (necessary and sufficient conditions for local convecge.Lett;, >
0 be theb-index of AlgorithmSPV (B;T; t > t,, s = 1;G;2(?):¢). Then the following
conditions (i) and (ii) are equivalent.

(i) The SPV iterative process returns convergent sequerfaesrates.

(i) The relation

p((I—P@)T") <1

holds for allt > ;.

As a consequence of Propositidns and5.4 we deduce the following theorem.

THEOREM 5.9.To every SPV AlgorithrfBPV (B; T;t, s = 1;G; z(?); ¢) there belongs
a finite b-index of convergence.

REMARK 5.10. Logically, the negation of the condition necessarycfmmvergence de-
scribed in the above proposition is sufficient for divergendé the SPV iterative process.
However, according to the next proposition, divergence agpear only in the extreme case
of the sufficient conditions taking place, i.e.pif(I — P(£))T") = 1.

THEOREM 5.11. Let B be a column stochastic matrix anl— B = M — W =
M(I — T) its splitting of a nonnegative type with iteration matfix > 0 and e’ M =
el = (me(r)T, ... nue(ry,)T).

Then

p((I — P(@)T) < 1.
Proof. In order to estimate the spectral radiudoft= (I — P(&))T', we will consider the

matrix

D' (I—-P(2)TD
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similar toV, where

ol 4 TN T
Ddiag{ ﬂv'“, xm’.”7 M"“’ ‘TN}
m Uil Mn Tin

DenotingT, = D~'TD we will utilize norm (A.1) with z = DM7”e = Dé. An estimate of
| 5| (= is obtained using the relations

AT, =" MDT, =" MDD 'M WD =e?"WD =e"MD = 27.
Thus,||T|(-) < 1. An estimate of| 7. || ., can be obtained from
T,z =D '*M*WDDMe.
Further, since
D*MTe =z,
we have
T.z=D'M'Wi=D"'2=DM"e =2

Then||Ts||(.) < 1and||T]|..) < 1. For the2-norm of D~*(I — P(&))T D we have

SinceD (I — P(2))D is a symmetric projection, we get
|D~'(I - P(2))TD||, <1.

Thereforep((I — P(2))T) < 1.0
REMARK 5.12. The assumptions of Theoré&milwere restricted to the case whevé
is chosen in such a way that

(5.4) e’ M=¢l = (me(rl)T, . ,nne(rn)T).

The reason was that in the proof we use a mafriwhich has to fulfill the following three
properties:

(&) D is symmetric,

(b)y D2M7Te = %,

(c) D~1P(2)D is symmetric.
In the case of the special choice if given by relation $.4), the matrixD can be diagonal
with
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for ¢ with G(i) = k as introduced in the proof of Theorefnll But when we do not as-
sume b6.4), the matrixD in a diagonal form does not fulfill these three conditions. Wiie
size of Bis N x N, the number of equations corresponding to these three ttamsl{a), (b)
and (c) are

respectively, and the sum of them¥&. Thus, it seems that such a matfixcan be found and
that the statement of Theoresrl 1is valid without assumptiorb(4). Still we cannot provide
the exact construction dp yet.

6. Convergence of IAD within the class of irreducible stochstic matrices. If one
looks at the error-vector formula, one recognizes immedjathat convergence will take
place if the spectral radji(.J(B, T,2*)) < 1, k > k for somek. At a first glance, there
seems to be no reason guaranteeing convergence. The dwlyifathe product forming ma-
trix J(B,T*, z) that changes with is 7. However,{T*} does not converge ff is cyclic.
On the other hand, we have built up massive numerical eveltvat the IAD processes with
iteration matriceq’,,,, m = 1,2, ..., where

1
M,, = (1+ >I,
m

-1
1 1 1 )
Tm: ﬂ 7I_~_B :7I+L37
m m 14+m 1+m
showed a monotonically increasing rate of convergencenfoeasing indexn. This observa-
tion has led us to the conclusion that cyclicity of the itematmatrix is harmless. Our theory
confirms this claim.

Let us consider a subclass of the class of all irreduciblekihachains, whose transition
matrices are block cyclic. LgB be such a matrix. Then

implying that

By - - - Blp BO Lo 0 Bép
61 B=|- - - - - |=H|7 7 ' HT,

BB R .

p pp 0 . . . Bp,pfl 0

whereH is a permutation matrix.

AGREEMENT6.1. In our analysis we will always assume that the examined ssith
matrix is in a block form obtained by applying an aggregatimap G. This concerns in
particular the case of cyclic matrices, for which we assuheettiock form shown irg(1).

Now we consider Algorithn3.1 and assume that our transition matBxhas the form

B=Q+Z(B), p(Z(B)) <1, 1¢0o(Z(B)),
and
Q*=Q, QZ(B)=2(B)Q=0,
B as well asl" have blocks of identical sizes afidis blockp-cyclic, i.e.,

P ,
; 2
T=M"'W= E NTIQ,+ Z(T), A —exp{;z},

j=1
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where

Q;Z(T) = 2Z(T)Q; =0,
p(Z(T)) < 1.

Defining
p .
U= N'Q;+2(I),
j=2
we see that is not an eigenvalue dP(%)Z(B), I — P(%)Z(B) is invertible, and
J(&) =T'[I - P(&)2(B)] " (I - P(#)).
Suppose thaj is an eigenvector df’ corresponding to an eigenvaldesuch thatA| = 1

and thatz is the unique stationary probability vector Bf Then, according tolf], the multi-
components of vectors andy satisfy

- T T T
Yo) = 4Gy Y = (YY)

for somea; #0,j =1,...,p. It follows that

(P, = 30 (g ) (),
=) R;)j (RE);
=Y

and, thus,
(6.2) (I - P())y=0.
Let w be an eigenvector of (%), i.e.,
J(&)w = dw

Since

we also have that
/\(I - P(ﬁc))w = (I - P(a}))J(a}) (I - P(a?))w.

Thus, together withv, the vector(I — P(z))w is an eigenvector of () corresponding to
the same\.
Since, according to5(2),

(I— P(ﬁc))Qj =0,
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we have
(I = P@)U = (I = P(®) Z(T)
and, thus, there is@> 1, such that
(1) = p((1 - P@) (2(T))") <1, fort>1.
It follows that there is & > ¢, such that
p(J(@) = (T [1 = P@)Z(B)] (I - P(@)) <1 fort>1.

Thus, we have convergence.

Summarizing we obtain the following theorem.

THEOREM 6.2. Let B be an irreducible stochastic matrix and— B = M — W, its
splitting such that the iteration matrix = M ~'W is blockp-cyclic.

Then there exists a positive integeand a neighbourhood(#), such that the SPV
Algorithm returns a sequence of iteratgs*) }, such that

lim z*) =% = B¢ = T,

k—o0

whenever:©) € ().

REMARK 6.3. Because of the counterexamples shown, generally om@tarove more.
There are some results on the local convergence propeatiesofme special types of the
aggregation algorithmip].

7. A comparison result. Our numerous numerical experiments concerning the applica
tion of AlgorithmSPV (B; I, B; t = 1, s = 1;2(9); ¢) never failed to converge when applied
to practical problems. One possible explanation might beithany neighbourhood of an ir-
reducible stochastic matrix for which a given SPV algoritteturns divergent sequences of
iterates, there is another stochastic matrix for which #maesalgorithm returns convergent
sequences of iterates.

The next result enlightens to some extent the role ofitirelex of the basic algorithm
SPV. An obvious fact is shown, namely that the smaller thetsplradius of the variable part
of the error matrix, the faster convergence of the corredponSPV algorithm.

THEOREM 7.1.Let|| - || denote any norm o™ and also the corresponding operator
norm. Further, let3 be an irreducible stochastic matrix, and let- B = M; — W;, where
T; = Mj*Wj,j =1,2,... be two splittings, such thé&t; is elementwise nonnegative.

Assume that the inequality

(7.1) |P(T5z) — P(&)|| < ||P(T1z) — P(&)

’, JJEQl(i‘)

holds fort > t;, wheret, is theb-convergence index &PV (B;Ty; t,s = 1;G,z2();¢)

and whereQ); (Z) is a corresponding neighbourhood of local convergencenTAlgorithm

SPV(B;Ty; t,s = 1;G; 2(%); ¢) is locally convergent too with-convergence indet < t;.
Proof. Let z(*) (T) denote the iterate returned by Algorit®V (B; Ty; t,s = 1;G;

2(9); ). Our goal is to show convergence of the sequefcé) (T¥)} for t > t,. By con-

structing the sequence we know that it is componentwisetmify bounded and hence it is

precompact as a bounded set. zdie any of its points of condensation and let us assume,
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without loss of generality, that the corresponding coneatgubsequence coincides with that
of {z(®)(T%)}. Inequality (.1) implies that

|P@E® (1) - P(2)
holds fork = 1,2,.... Thus,

<||P(=™(T1)) - P(2)

lim Pz (Ty)) = P(&).

k—oo

Local convergence of AlgorithiiPV (B; T'; t, s = 1G; 2(9); ¢) then follows according to the
next Proposition 7.2. The proof of Theorétri is completed
PROPOSITION7.2.Letx € RY @RV, %2 = —1, satisfy

P(z) = P(@).

Theni = z(1), wherez(!) is the vector returned after one iteration sweep of Algarith
SPV(B;Ty; t,5 = 1;G; 20 = 2;¢).

8. Examples.
ExAMPLE 8.1. We compute the spectral radii of error matrices

Jo=B'(I - P(#)2)"' (I - P(#))

for a trivial example, namely for a primitivé x 3 matrix

a 0 b
B=|1—-a 0 1-b
0 1 0

and forG(1) = G(2) = 1, G(3) = 2. We assume that= 1,..., 15 and vary values of and
b. The values ofi andb represent situations of a nearly cyclic or a nearly redeaibatrix B:
() a =b=0.9, this means a nearly reducible matfsx

(i) @ =b= 0.1, nearly reducible matri,

(iii) a =0.9andb = 0.1, nearly cyclic matrixB,

(iv) a =0.1andb = 0.9, nearly cyclic matrix3.
All of these four cases lead to local divergenceifet 1. The nearly reducible cases (i) and
(i) differ significantly for increasing. While in (i) the spectral radii decrease rapidly, the
spectral radii in (ii) decrease very slowly. The effect isrencemarkable for = b — 0 in
(ii). The behavior of nearly cyclic cases (iii) and (iv) adiffer for changing:. Thus, one can
see that even in such a trivial example, the choice of theeggdiion groups is crucial.

ExAmPLE 8.2. While in Example 1 all choices afandb lead to a local convergent IAD

process foralt = 1,2,...,15, the situation is different for the matrix
0 00 01 1
10 0 0 O
B=1|01 0 0 O
0O 01 0 O
0O 0 0 09 O

We considerg(1) = G(2) = 1, G(3) = G(4) = G(5) = 2. In Figure8.2, we show the
spectral radii of the error matrices = BY(I — P(2)Z)~'(I — P(z)) (solid line) and for

(I — P(2))Z" (dashed line) for = 1,2, ..., 12. We can observe that smoothings with some
of the powers ofB3 lead to processes that diverge locally.
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a=09b=0.1

/

0.8

0.6

Spectral radii of J's

0.2

-0.2 ! ! ! ! ! ! !

Exponent t

F

o)

. 8.1.Spectral radii of the matriced; for four different choices aof andb in Example 1.

1.4
1.3F
1.2F

11rF

0.9F

Spectral radii of J's

0.8

0.7

0.6

0.5

Exponent t

FiG. 8.2.Spectral radii of the matriced; (solid line) and(/ — P(%))Z* (dashed line) in Example 2.

9. Concluding remarks. Summarizing our observations, we can say that the theory,
computer experiments, and practical computations confima\a accepted in the literature,
namely that iterative aggregation/disaggregation metlamd competitive means for comput-
ing the characteristics of Markov chains, in particulatistaary probability vectors. Let us
recall that any IAD method possesses a fihitadex of convergence independent of whether
the governing iteration matrix is primitive or cyclic. Thisoperty significantly distinguishes
the IAD methods from other methods. Other results we wanteation explicitly concerns
the theory of convergence indices including a new type of mamison of rates of conver-
gence. We have also observed examples showing the divergérsome SPV algorithms.
We show, however, that the divergence can take place onindarest < ¢,, wheret, is the
convergencé-index of the appropriate SPV algorithm.



ETNA
Kent State University
http://etna.math.kent.edu

200 I. MAREK, P. MAYER, AND |. PULTAROVA

Acknowledgments. The authors of this paper express their gratitude to anongmef-
erees and to the Editor of the special volume devoted toibomiwns delivered at the Applied
Linear Algebra Conference held in Harrachov in August 200d the Chief Editor for their
help in preparing the final version of the paper for publwatiin particular for their help in
managing a linguistic expertise. The work on which this dbntion is based was supported
by the Program Information Society under Project 1IET40@380Grant No. 201/09/1544 of
the Grant Agency of the Czech Republic and by the Grants Navid840770010 and No.
MSM 6840770001 of the Ministry of Education, Youth and Spartthe Czech Republic.

Appendix A. A special norm.
LetC be arealN x N matrix and letz” = ((1,...,(n),¢; > 0,5 =1,..., N. Define

(A1) ICl(z) = v2(C) =min{a € Ry : |CT |z < az},

where|C/| denotes the matrix of absolute values of elements of thebm@ltr
PROPOSITIONA.1 (see fi]). ExpressionA.1) is a norm on the space of x N matrices
overR.
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