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CONVERGENCE ISSUES IN THE THEORY AND PRACTICE OF ITERATIVE
AGGREGATION/DISAGGREGATION METHODS ∗

IVO MAREK†, PETR MAYER†, AND IVANA PULTAROV Á†

Abstract. Iterative aggregation/disaggregation (IAD) methods for the computation of stationary probability
vectors of large scale Markov chains form efficient practical analysis tools. However, their convergence theory is
still not developed appropriately. Furthermore, as in othermultilevel methods such as multigrid methods, the number
of relaxations on the fine level of the IAD algorithms which is to be executed plays a very important role. To better
understand these methods, in this paper we study some new concepts as well as their behavior and dependence
on the parameters involved in aggregation algorithms, and establish some necessary and/or sufficient conditions
for convergence. The theory developed offers a proof of convergence of IAD algorithms independent of whether
the governing iteration matrix is primitive or cyclic as one ofits main results. Another important result concerns a
comparison of the rates of convergence of two IAD processes. Some examples documenting the diversity of behavior
of IAD methods are given.
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1. Introduction. As documented in the literature (e.g., [2] and [14, Section 6.3]), ag-
gregation/disaggregation iterative (IAD) methods belongto competitive classes of methods
for the computation of stationary probability vectors of Markov chains and Leontief systems.
An appropriate convergence theory is still far from being complete—in the sense of a full
understanding of the dependence of these methods upon all the parameters influencing con-
vergence and its rate. The aim of this contribution is to explain some of the more subtle parts
of the theory. In particular, some new concepts, such as convergence indices, are introduced
and their properties are studied. These convergence indices allow one to establish some re-
lations between the number of relaxations on the fine level ineach iteration sweep and the
convergence/divergence behavior of the IAD methods. Some results in this direction appear
to be decisive in understanding the interplay between the basic iteration matrix and the IAD
algorithms. Consequently, a new important result is established: IAD processes return con-
vergent sequences of iterates without requiring the splittings, upon which the IAD algorithms
are based, to be convergent; for example, splittings leading to cyclic iteration matrices are not
only allowed but they may even be preferable in comparison with primitive iteration matrices
obtained using shifts of the originally cyclic iteration matrices.

2. Definitions and notation.

2.1. Generalities.As usual, we denote byρ(C) the spectral radius of the matrixC, i.e.,

ρ(C) = max
{

|λ| : λ ∈ σ(C)
}

,

whereσ(C) denotes the spectrum ofC. When we supposeC to be stochastic, we can assume
thatρ(C) = 1. Further, we define the quantity

γ(C) = sup
{

|λ| : λ ∈ σ(C), λ 6= ρ(C)
}

.
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We are going to callγ(C) the convergence factorof C. We also need another more general
characteristic of convergence. Therefore we give the following definition.

DEFINITION 2.1. For anyN × N matrix C = (cjk), wherecjk, j, k = 1, . . . , N , are
complex numbers, let us define the quantity

τ(C) = max
{

|λ| : λ ∈ σ(C), |λ| 6= ρ(C)
}

.

This quantity is calledthe spectral subradiusof C.
REMARK 2.2. LetC be anyN × N matrix. Then, obviously,

ρ(C) ≥ γ(C) ≥ τ(C),

with possible strict inequalities in place of the nonstrictones.
Let p be a positive integer andB an irreducible column stochastic matrix with spectral

decomposition

B = Q + Z,

whereQ2 = Q, QZ = ZQ = 0, ρ(Z) < 1, and

Q =

p
∑

j=1

λj−1Qj ,

with QjQk = QkQj = δjkQj , j, k = 1, . . . , p.
Note that the above formulae describe two essentially different situations: theprimitive

caseappears ifp = 1 and thecyclic caseif p > 1, respectively.

2.2. Aggregation communication. Let E = R
N , F = R

n, n < N , e = e(N) =
(1, . . . , 1)T ∈ R

N . LetG be a map defined on the index sets

G : {1, . . . , N}
onto

−−−→ {1, . . . , n}.

With this notation we can writeeT = (e(r1)
T , . . . , e(rn)T ), where

rj = card
{

j ∈ {1, . . . , N} : G(j) = j
}

.

Iterative aggregation/disaggregation communication operators are defined as

(Rx)j =
∑

j̄:G(j̄)=j

xj̄ ,

and

S = S(u),
(

S(u)x
)

j
=

uj

(Ru)j̄

(Rx)j̄ .

Obviously for anyu ∈ R
N , uT = (u1, . . . , uN ), uj > 0, j = 1, . . . , N , we have

RS(u) = IF

and

S(u)Ru = u,
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but, in general,

S(u)Rx 6= x.

For theaggregation projectionP (x) = S(x)R, we have

P (x)T e = e, ∀x ∈ R
N , xj > 0, j = 1, . . . , N,

and

P (x)x = x, ∀x ∈ R
N , xj > 0, j = 1, . . . , N.

We define theaggregated matrixas

B(x) = RBS(x).

3. IAD algorithms.

3.1. Algorithm SPV(B;T ; t, s;x(0);G; ε) (stationary probability vector algorithm).
LetB be anN×N irreducible stochastic matrix and̂x its unique stationary probability vector.
Further, letI−B = M −W be a splitting ofI−B, such thatT = M−1W is an elementwise
nonnegative matrix. Finally, lett, s be positive integers,x(0) ∈ R

N an elementwise positive
vector, andε > 0 a tolerance.
Step 1. Setk = 0.
Step 2. Construct theaggregated matrix(in the case ofs = 1, the irreducibility ofB implies

that ofB(x(k)))

B
(

x(k)
)

= RBsS
(

x(k)
)

.

Step 3. Find the unique stationary probability vectorz(k) from

B
(

x(k)
)

z(k) = z(k), e(n)T z(k) = 1, e(n) = (1, . . . , 1)T ∈ R
n.

Step 4. Let

Mx(k+1,m) = Wx(k+1,m−1), x(k+1,0) = x(k), m = 1, . . . , t,

and

x(k+1) = x(k+1,t), e(N)T x(k+1) = 1.

Step 5. Test whether
∥

∥x(k+1) − x(k)
∥

∥ < ǫ.

Step 6. If NO in Step 5, then let

k + 1 −→ k

and GOTO Step 2.
Step 7. If YES in Step 5, then set

x̂ := x(k+1)

and STOP.
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The error matrix is defined as

J
(

B;T ; t, s;G;x(0); ε
)

= T t
[

I − P (x)
(

B − Q1

)]−1(
I − P (x)

)

,

where we setQ1 = Q if p = 1 and

xT =
(

x1, . . . , xN

)

, xj > 0, j = 1, . . . , N.

When the dependence of the iteration sequence on the iteration matrix must be specified
explicitly, we writex(k)(T ) in place ofx(k), whereT = M−1W .

REMARK 3.1. Algorithm SPV can be easily modified in order to construct solutions for
Leontief systems, i.e.,x = Cx + b, with b ∈ R

N , C ∈ R
N×N elementwise nonnegative, and

limk→∞ Ck = 0. Let us denote the modified algorithm by Algorithm LM. Such algorithms
have been studied in [4]. It is shown in [7] that the error matrices of both classes of algorithms
are essentially the same. This is the reason why we are only going to study algorithms of class
SPV.

Algorithms of the type introduced in this section are known as Leontief procedures; they
were invented by Leontief around 1930 in his famous sectorial economy theory. Actually,
his sectorial variables are just aggregates of the initial variables, and the sectorial production
matrix is our aggregation matrix.

4. Some properties of IAD methods.According to the definition of the SPV algorithm,
the error-vector formula for the sequence of approximants reads

x(k+1) − x̂ = Jt(x
(k))(x(k) − x̂),

where [6]

Jt(x) = J
(

B;T t;x
)

= T t
[

I − P (x)Z
]−1(

I − P (x)
)

.

The matrixZ comes from the spectral decomposition ofB = Q + Z, whereQ2 = Q,
QZ = ZQ = 0, and1 /∈ σ(Z). Furthermore,Jt(x) = T t−1J1(x), t ≥ 1, holds for anyx
with all components positive.

We want to analyze the convergence properties of IAD methods, without the explicit
requirement that the basic iteration matrix is convergent,i.e., we do not assume that the limit

lim
k→∞

T k

exists.
REMARK 4.1. One of the most delicate questions concerning IAD methods is the follow-

ing: how to choose the number of smoothingt? The answer to this question is not a simple
matter, as illustrated by the following example. This takesus back to another basic ques-
tion, namely, how to aggregate? Some results concerning theconvergence issues of the SPV
algorithm with a small number of smoothingt can be found in [12].

EXAMPLE 4.2. Assume thatp > 1 is a positive integer and thatB is the transition matrix
of a Markov chain, which can be written in a block form as











B11 0 · · · 0 B1p

B21 B22 · · · 0 0

· · · · · · ·

0 0 · · · Bp,p−1 Bpp











.
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The iteration matrixT = M−1W is defined via the splittingI − B = M − W with

M = diag
{

B11, . . . , Bpp

}

, W = B + M − I.

We see that the iteration matrixT is blockp-cyclic.
The aggregation communication operators are chosen, such that

R = (1, . . . , 1)T

is 1 × N matrix and

S(x)z =
z

Rx
x, x ∈ R

N , xj > 0, j = 1, . . . , N, z ∈ R.

This means that the SPV algorithm reduces to the simple powermethod with the iteration
matrixT t. Assume that the off-diagonal blocks are elementwise positive. Obviously, the SPV
process possesses the following properties: it does not converge fort < p and it converges for
t = kp, k = 1, 2, . . .. We see that our IAD method preserves the nonconvergence property of
the original power method.

On the other hand, if the aggregation operators are chosen asshown above, i.e., each
single block of matrixB is aggregated to a1×1 matrix, the situation may change dramatically.
As an example, let us take the transition matrix whose off-diagonal row blocks satisfyBjk =
vju

T
jk, j 6= k, wherevj andujk, j, k = 1, . . . , n, are some vectors. Then, taking the same

splitting as in the example discussed in this section, the exact stationary probability vector is
obtained after at most two iteration sweeps [8].

The theoretical knowledge of the IAD methods expressed e.g.in Theorem4.4 and our
computational experience with such methods leads to the following conclusions: Even a quite
deep theoretical knowledge and a massive computational experience do not offer sufficient
information how to aggregate successfully. This is becausethe quantities relevant for deter-
mining suitable parameters are in practice very difficult toget. Our recommendation how to
obtain the parameters just mentioned is to exploit any knowledge and the knowledge coming
from the outside of mathematics in particular. By these statements we do not say that the
IAD methods should not be considered as suitable means for computations. Just the opposite
is true and in particular to determining the characteristics of Markov chains such as the sta-
tionary probability vectors, the mean first visit times matrices, etc. and solutions to problems
whose mathematical model states are probabilities.

4.1. Aggregation-convergence.Let us remind ourselves of a definition that is relevant
within in the context of IAD methods [7].

DEFINITION 4.3.Assume thatB is anN ×N irreducible stochastic matrix with station-
ary probability vector̂x andR andS(x) IAD communication operators. A splitting ofI −B,
where

I − B = M − W = M(I − T ), T ≥ 0,

is calledaggregation-convergentif

lim
k→∞

(

I − P (x̂)
)

T k = 0.

An interesting question is how to recognize that a splittingis aggregation-convergent.
When looking at the error-vector formula valid for any IAD constructed using the splitting

A = I − B = M(I − T ), T ≥ 0,(4.1)

we can summarize our knowledge concerning the class of IAD algorithms by the following
theorem.



ETNA
Kent State University 

http://etna.math.kent.edu

190 I. MAREK, P. MAYER, AND I. PULTAROVÁ

THEOREM 4.4 (see [7]). Consider AlgorithmSPV(B;M,W,T ; t, s = 1; G;x(0); ε)
with an irreducible stochastic matrixB, an aggregation-convergent splitting (4.1) and an
initial guess taken such thatx(0) ∈ Int R

N
+ . Then, there exist two positive integerst̃, t̂ and two,

generally different, neighborhoodsΩt̃(x̂) andΩt̂(x̂), such that AlgorithmSPV(B;M,W,T ;
t, s = 1;G;x(0); ε) returns a sequence of iterates{x(k)} for which

lim
k→∞

x(k) = x̂ = Bx̂, eT x̂ = 1,(4.2)

for t = t̃ andx(0) ∈ Ωt̃(x̂), or for t ≥ t̂ andx(0) ∈ Ωt̂(x̂).
REMARK 4.5. Theorem4.4 deserves some comments. Lett andt be the minimum of

thoset̃ ≥ 1 andt̂ for which (4.2) holds, respectively.
(a) First of all,t in (4.2) may be large, in particular ift = t. This effect is caused by

the “interaction” of the matricesP (x̂)B andP (x)T ; in the case ofT = B it may
also be caused by the possible nonnormality of(I −P (x))B[I −P (x)Z]−1. In this
context let us recall a popular problem of shuffling cards (see Greenbaum [3]).

(b) There may be lots of integersm and r such thatm < r < t and Algorithm
SPV(B;T ; t, s = 1;x(0); ε) is divergent fort = m and convergent fort = r
(see Example8.1).

(c) There are examples [13] showing thatSPV(B;B; t = 1, s = 1;x(0); ε) converges
andSPV(B;B; t = 2, s = 1;x(0); ε) does not.

EXAMPLE 4.6 (see [13]). Let us consider

B =













0 0 0 1/2 0
1 1/2 1/100 1/2 1/100
0 0 0 0 99/100
0 0 99/100 0 0
0 1/2 0 0 0













.

It can be shown that

ρ
(

J(x̂)
)

= 0.9855 < 1, for SPV
(

B;B; t = 1; s = 1;x(0); ε = 1.10−5
)

,

and

ρ
(

J(x̂)
)

= 1.1271 > 1, for SPV
(

B;B; t = 2; s = 1;x(0); ε = 1.10−5
)

.

5. Necessary and/or sufficient conditions for local and global convergence.LetG be
a mapping of the index set{1, . . . , N} onto{1, . . . , n}, andR andS(x) the corresponding
communication maps determining the aggregation projection P (x) = S(x)R [7]. Let B
denote a fixed irreducible column stochastic matrix andI − B = M − W its splitting, such
that the iteration matrixT = M−1W is elementwise nonnegative.

DEFINITION 5.1. A nonnegative integerr is calleda-indexof AlgorithmSPV(B;T =
M−1W ; t, s;G;x(0); ε) if this algorithm returns convergent sequences of iteratesfor t = r,
and divergent ones fort = r+1, where the integerr is the smallest among all such numbers.

DEFINITION 5.2. A positive integertb is called (convergence)b-index of Algorithm
SPV(B;T = M−1W ; t, s;G;x(0); ε) if tb is the smallest positive integer, such that SPV
algorithm returns convergent sequences of iterates for allt ≥ tb. If a considered SPV process
is not convergent, then we also say that itsb-index is zero.

In this section we are going to examine convergence issues concerning Algorithm
SPV(B; T = M−1W ; t, s;G;x(0); ε), formulated in terms of itsa and b indices. Before
we formulate the appropriate statements, we comment on Theorem 4.4 utilizing the above-
introduced convergence indices.
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REMARK 5.3. Parts of Theorem4.4 concerning the relation (4.2) can be reformulated
as follows: thea-index ofSPV(B;T ; t, s = 1;G;x(0); ε), which we denote byta, satisfies
ta ≥ t̃, and for theb-index, denoted bytb, we havetb ≤ t̂.

There are classes of stochastic matrices for which the SPV Algorithms possess small
a-indices, actually the smallest possible, i.e.,t̃ = 1; see [13]. To this class there belong
stochastic matrices possessing positive diagonals. The rate of convergence of SPV iterative
procedures with just one smoothing on the fine level for such matrices may be slow however.
To speed up the computational process is not an easy task because the process with number
of smoothingt = t̃ + m,m ≥ 1 may diverge for rather quite a lot of valuesm’s! We see that
though the relationB = C + γI, whereγ > 0 andC is elementwise nonnegative, implies
thatBk ≥ δkI for someδk > 0, index1 need not be theb-index ofBk.

The convergence indices just introduced allow us to formulate adequate conditions nec-
essary and sufficient for convergence and/or divergence of SPV algorithms. At this point a
note is appropriate. The counterexamples shown, as well as the appearance of the conver-
gence indices, are needed if one is to fully understand the convergence of IAD methods. On
the one hand, there are some irregularities in even the localconvergence behavior for cases
with a small number of smoothings and, on the other hand, the necessity of requiring a large
number of smoothings for guaranteeing global convergence.Only a good understanding of
as much as possible of all these convergence issues may give correct recommendations for
practical computations.

PROPOSITION5.4 (sufficient conditions for global convergence).Assume thatA = I −
B =M−W , whereB =P +Z, P 2 =P , PZ =ZP =0, T =M−1W , whereB is anN×N
irreducible stochastic matrix, andT = C + γI, whereγ > 0, is a nonnegative matrix.

Then there exist two positive integersr̃ and t̃, such that for anyx(0) ∈ R
N
+ ∩ range(T t),

t ≥ r̃, Algorithm SPV(B;T ; t, s;G;x(0); ε) for t ≥ t̃ and s ≥ 1 returns a convergent
sequence of iterates{x(k)}, i.e.,

lim
k→∞

x(k) = x̂ = Bx̂ = T x̂.

Proof. LetK = {x ∈ R
N
+ : [e(N)]T x = 1}. Since for everyx ∈ K

lim
k→∞

T kx = x̂eT x, eT x = 1,(5.1)

it follows that there is a positive integerr, such that

(

T tx
)

j
≥

1

2
(x̂)j , j = 1, 2, . . . , N andt ≥ r.

We want to prove that there is a positive integert̃, such that
∥

∥

∥
T t

[

I − P (x)Z
]−1(

I − P (x)
)

∥

∥

∥
< 1 ∀t ≥ t̃,(5.2)

wheneverx ∈ R
N
+ ∩ range(T r). For this purpose we utilize the relations

T = Q + U, Q = x̂eT , eT x̂ = 1, QU = UQ = 0, ρ(U) < 1,

w =
[

I − P (x)
]

w, λw = T t
[

I − P (x)Z
]−1(

I − P (x)
)

w, w 6= 0,

valid for any eigenpairλ andw, implying by (5.1) that

lim
k→∞

[

I − P (x)
]{

T t
}k

= lim
k→∞

(

I − P (x)
)

[x̂eT + U
]k

= 0, x ∈ K, t ≥ t.
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In other words, there is a positive integerť, such that

ρ
(

[

I − P (x)
]

T t
)

< 1, t ≥ ť.(5.3)

The compactness of the setK implies the existence of a constantτ independent ofx ∈ K,
such that relation (5.3) can be stated in a stronger form as

ρ
(

[

I − P (x)
]

T t
)

≤ τ < 1, t ≥ t uniformly with respect tox ∈ K.

Set

‖u‖P (x) =
∥

∥P (x)u
∥

∥

1
+

∥

∥

(

I − P (x)
)

u
∥

∥

1
, u ∈ R, x ∈ K.

It follows that
∥

∥

[

I − P (x)
]

T t
∥

∥

P (x)
< 1, t ≥ t.

Consequently, the required positive integer in (5.2) is obtained as

t̃ = min

{

t : κ
∥

∥

∥

[

I − P (x)
]{

T t
}t

∥

∥

∥

P (x)
< 1

}

,

where (since‖(I − P (x))‖P (x) = 1)

κ = max
{

∥

∥

∥

[

I − P (x)Z
]−1

∥

∥

∥

P (x)
: x ∈ range

(

T r
)

∩ R
N
+ , x

[

e(N)
]T

x = 1
}

.

The proof is complete.
REMARK 5.5. The above examples and Proposition5.4 show several reasons for hav-

ing difficulties in proving the global convergence of IAD methods. We must, therefore, con-
sider sufficient conditions for global convergence in lightof this. The conditions are rather
complicated from the viewpoint of computer implementationand the conditions guarantee-
ing global convergence may seem impractical. Thus, if one isinterested in computing the
stationary probability vector in practice, then one shouldbetter chooseSPV(B;T ; s =
1, t = 1;x(0); ε) yielding the approximation sequence{x(0)} locally convergent [10, 12]
thanSPV(B;T ; s = 1, t = 1;x(0); ε) with sufficiently larges andt in order to guarantee
global convergence.

REMARK 5.6. It may seem strange that such a simple statement with a quite trivial proof
may appear as new after a relatively long period of investigating IAD methods. The reason
might be the absence of a good understanding of the role of theindicest ands in the SPV
algorithm. The examples of Section8, showing, for example, thatSPV(B;B; t = 1, s =
1;G;x(0); ε) may not converge even locally whileSPV(B;B; t = 2, s = 1;G;x(0); ε) does,
have led us to define thea- andb- convergence indices and to find a way towards local and
global convergence of IAD algorithms.

PROPOSITION 5.7 (necessary condition for local convergence).Suppose that all free
variables of AlgorithmSPV (B; T = M−1W ; t = s = 1;x(0); ε) are fixed and

ρ
(

J
(

B;B; t, s = 1;x(0); ε)
)

< 1 ∀t ≥ t̂.

Then

ρ
((

I − P (x̂)
)

T t
)

< 1 ∀t ≥ t̂.
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Proof. Let us assume that the conclusion of Proposition5.7 is false. Then the spectral
resolution of the of matrix(I − P (x̂))T t reads

(

I − P (x̂)
)

T t =

p
∑

j=1

λjPj + F,

where

ρ(F ) < ρ
((

I − P (x̂)
)

T t
)

=
∣

∣λj

∣

∣ ≥ 1.

Let y ∈ R
N be such that

Pj0y 6= 0, j0 ∈
{

1, . . . , p
}

.

It follows that

lim inf
k→∞

∥

∥

[(

I − P (x̂)
)

T t
]k

y
∥

∥ > 0.

Thus, the implication
∥

∥J
(

B;B; t, s = 1;x(0); ε
)∥

∥ −→ 0 ast → ∞

is contradictory.
PROPOSITION5.8 (necessary and sufficient conditions for local convergence).Let tb ≥

0 be theb-index of AlgorithmSPV(B;T ; t ≥ tb, s = 1;G;x(0); ε). Then the following
conditions (i) and (ii) are equivalent.

(i) The SPV iterative process returns convergent sequencesof iterates.
(ii) The relation

ρ
((

I − P (x̂)
)

T t
)

< 1

holds for allt ≥ tb.
As a consequence of Propositions5.8and5.4we deduce the following theorem.
THEOREM 5.9. To every SPV AlgorithmSPV(B;T ; t, s = 1;G;x(0); ε) there belongs

a finiteb-index of convergence.
REMARK 5.10. Logically, the negation of the condition necessary for convergence de-

scribed in the above proposition is sufficient for divergence of the SPV iterative process.
However, according to the next proposition, divergence mayappear only in the extreme case
of the sufficient conditions taking place, i.e., ifρ((I − P (x̂))T ) = 1.

THEOREM 5.11. Let B be a column stochastic matrix andI − B = M − W =
M(I − T ) its splitting of a nonnegative type with iteration matrixT ≥ 0 and eT M =
ẽT = (η1e(r1)

T , . . . , ηne(rn)T ).
Then

ρ((I − P (x̂))T ) ≤ 1.

Proof. In order to estimate the spectral radius ofV = (I −P (x̂))T , we will consider the
matrix

D−1
(

I − P (x̂)
)

TD
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similar toV , where

D = diag

{

√

x̂1

η1
, . . . ,

√

x̂r1

η1
, . . . ,

√

x̂N−rn−1+1

ηn

, . . . ,

√

x̂N

ηn

}

.

DenotingTs = D−1TD we will utilize norm (A.1) with z = DMT e = Dẽ. An estimate of
‖Ts‖(z) is obtained using the relations

zT Ts = eT MDTs = eT MDD−1M−1WD = eT WD = eT MD = zT .

Thus,‖Ts‖(z) ≤ 1. An estimate of‖TT
s ‖(z) can be obtained from

Tsz = D−1M−1WDDMT e.

Further, since

D2MT e = x̂,

we have

Tsz = D−1M−1Wx̂ = D−1x̂ = DMT e = z.

Then‖Ts‖(z) ≤ 1 and‖TT
s ‖(z) ≤ 1. For the2-norm ofD−1(I − P (x̂))TD we have

∥

∥D−1
(

I − P (x̂)
)

TD
∥

∥

2
≤

∥

∥D−1
(

I − P (x̂)
)

D
∥

∥

2

∥

∥Ts

∥

∥

2

=
∥

∥D−1
(

I − P (x̂)
)

D
∥

∥

2
ρ
(

TT
s Ts

)

≤
∥

∥D−1
(

I − P (x̂)
)

D
∥

∥

2

∥

∥TT
s Ts

∥

∥

(z)

≤
∥

∥D−1
(

I − P (x̂)
)

D
∥

∥

2

∥

∥Ts

∥

∥

(z)

∥

∥TT
s

∥

∥

(z)

≤
∥

∥D−1
(

I − P (x̂)
)

D
∥

∥

2
.

SinceD−1(I − P (x̂))D is a symmetric projection, we get
∥

∥D−1
(

I − P (x̂)
)

TD
∥

∥

2
≤ 1.

Therefore,ρ((I − P (x̂))T ) ≤ 1.
REMARK 5.12. The assumptions of Theorem5.11were restricted to the case whereM

is chosen in such a way that

eT M = ẽT =
(

η1e
(

r1

)T
, . . . , ηne

(

rn

)T
)

.(5.4)

The reason was that in the proof we use a matrixD which has to fulfill the following three
properties:

(a) D is symmetric,
(b) D2MT e = x̂,
(c) D−1P (x̂)D is symmetric.

In the case of the special choice ofM given by relation (5.4), the matrixD can be diagonal
with

Dii =

√

x̂i

ck
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for i with G(i) = k as introduced in the proof of Theorem5.11. But when we do not as-
sume (5.4), the matrixD in a diagonal form does not fulfill these three conditions. When the
size ofB is N × N , the number of equations corresponding to these three conditions (a), (b)
and (c) are

N2 − N

2
, N,

N2 − N

2
,

respectively, and the sum of them isN2. Thus, it seems that such a matrixD can be found and
that the statement of Theorem5.11is valid without assumption (5.4). Still we cannot provide
the exact construction ofD yet.

6. Convergence of IAD within the class of irreducible stochastic matrices. If one
looks at the error-vector formula, one recognizes immediately that convergence will take
place if the spectral radiiρ(J(B, T, x(k))) < 1, k ≥ k̂ for somek̂. At a first glance, there
seems to be no reason guaranteeing convergence. The only factor in the product forming ma-
trix J(B, T k, x) that changes withk is T k. However,{T k} does not converge ifT is cyclic.
On the other hand, we have built up massive numerical evidence that the IAD processes with
iteration matricesTm, m = 1, 2, . . ., where

Mm =

(

1 +
1

m

)

I,

implying that

Tm =

(

1 + m

m

)−1(
1

m
I + B

)

=
1

1 + m
I +

m

1 + m
B,

showed a monotonically increasing rate of convergence for increasing indexm. This observa-
tion has led us to the conclusion that cyclicity of the iteration matrix is harmless. Our theory
confirms this claim.

Let us consider a subclass of the class of all irreducible Markov chains, whose transition
matrices are block cyclic. LetB be such a matrix. Then

B =





B11 · · · B1p

· · · · ·
Bp1 · · · Bpp



 = H









0 · · · 0 B̃1p

B̃21 · · · · 0
· · · · · ·

0 · · · B̃p,p−1 0









HT ,(6.1)

whereH is a permutation matrix.
AGREEMENT 6.1. In our analysis we will always assume that the examined stochastic

matrix is in a block form obtained by applying an aggregationmapG. This concerns in
particular the case of cyclic matrices, for which we assume the block form shown in (6.1).

Now we consider Algorithm3.1and assume that our transition matrixB has the form

B = Q + Z(B), ρ
(

Z(B)
)

≤ 1, 1 /∈ σ
(

Z(B)
)

,

and

Q2 = Q, QZ(B) = Z(B)Q = 0,

B as well asT have blocks of identical sizes andT is blockp-cyclic, i.e.,

T = M−1W =

p
∑

j=1

λj−1Qj + Z(T ), λ = exp

{

2πi

p

}

,



ETNA
Kent State University 

http://etna.math.kent.edu

196 I. MAREK, P. MAYER, AND I. PULTAROVÁ

where

Q2
j = Qj , QjQk = QkQj = 0, j 6= k,

QjZ(T ) = Z(T )Qj = 0,

ρ
(

Z(T )
)

< 1.

Defining

U =

p
∑

j=2

λj−1Qj + Z(T ),

we see that1 is not an eigenvalue ofP (x̂)Z(B), I − P (x̂)Z(B) is invertible, and

J(x̂) = T t
[

I − P (x̂)Z(B)
]−1(

I − P (x̂)
)

.

Suppose thaty is an eigenvector ofT corresponding to an eigenvalueλ such that|λ| = 1
and that̂x is the unique stationary probability vector ofB. Then, according to [1], the multi-
components of vectorŝx andy satisfy

y(j) = αj x̂(j), yT =
(

yT
(1), . . . , y

T
(p)

)

,

for someαj 6= 0, j = 1, . . . , p. It follows that

(

P (x̂)y
)

(j)
= x̂(j)

(

1

(Rx̂)j

)

(Ry)j

= αj x̂(j)
1

(Rx̂)j

(Rx̂)j

= y(j)

and, thus,

(

I − P (x̂)
)

y = 0.(6.2)

Let w be an eigenvector ofJ(x̂), i.e.,

J(x̂)w = λw.

Since

J(x̂) = J(x̂)
(

I − P (x̂)
)

,

we also have that

λ
(

I − P (x̂)
)

w =
(

I − P (x̂)
)

J(x̂)
(

I − P (x̂)
)

w.

Thus, together withw, the vector(I − P (x̂))w is an eigenvector ofJ(x̂) corresponding to
the sameλ.

Since, according to (6.2),

(

I − P (x̂)
)

Qj = 0,
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we have

(

I − P (x̂)
)

U =
(

I − P (x̂)
)

Z(T )

and, thus, there is ãt ≥ 1, such that

τ
(

T t
)

= ρ
(

(

I − P (x̂)
)(

Z(T )
)t

)

< 1, for t ≥ t̃.

It follows that there is ât ≥ t̃, such that

ρ
(

J(x̂)
)

= τ
(

T t
[

I − P (x̂)Z(B)
]−1(

I − P (x̂)
)

)

< 1 for t ≥ t̂.

Thus, we have convergence.
Summarizing we obtain the following theorem.
THEOREM 6.2. Let B be an irreducible stochastic matrix andI − B = M − W , its

splitting such that the iteration matrixT = M−1W is blockp-cyclic.
Then there exists a positive integert̂ and a neighbourhoodΩ(x̂), such that the SPV

Algorithm returns a sequence of iterates{x(k)}, such that

lim
k→∞

x(k) = x̂ = Bx̂ = T x̂,

wheneverx(0) ∈ Ω(x̂).
REMARK 6.3. Because of the counterexamples shown, generally one cannot prove more.

There are some results on the local convergence properties for some special types of the
aggregation algorithm [12].

7. A comparison result. Our numerous numerical experiments concerning the applica-
tion of AlgorithmSPV(B; I,B; t = 1, s = 1;x(0); ε) never failed to converge when applied
to practical problems. One possible explanation might be that in any neighbourhood of an ir-
reducible stochastic matrix for which a given SPV algorithmreturns divergent sequences of
iterates, there is another stochastic matrix for which the same algorithm returns convergent
sequences of iterates.

The next result enlightens to some extent the role of theb-index of the basic algorithm
SPV. An obvious fact is shown, namely that the smaller the spectral radius of the variable part
of the error matrix, the faster convergence of the corresponding SPV algorithm.

THEOREM 7.1. Let ‖ · ‖ denote any norm onRN and also the corresponding operator
norm. Further, letB be an irreducible stochastic matrix, and letI − B = Mj − Wj , where
Tj = M−1

j Wj , j = 1, 2, . . . be two splittings, such thatTj is elementwise nonnegative.
Assume that the inequality

∥

∥P
(

T t
2x

)

− P (x̂)
∥

∥ ≤
∥

∥P
(

T t
1x

)

− P (x̂)
∥

∥, x ∈ Ω1(x̂)(7.1)

holds for t ≥ t1, wheret1 is theb-convergence index ofSPV(B;T1; t, s = 1;G, x(0); ε)
and whereΩ1(x̂) is a corresponding neighbourhood of local convergence. Then Algorithm
SPV(B;T2; t, s = 1;G;x(0); ε) is locally convergent too withb-convergence indext2 ≤ t1.

Proof. Let x(k)(T t
j ) denote the iterate returned by AlgorithmSPV(B;T2; t, s = 1;G;

x(0); ε). Our goal is to show convergence of the sequence{x(k)(T t
2)} for t ≥ t1. By con-

structing the sequence we know that it is componentwise uniformly bounded and hence it is
precompact as a bounded set. Letỹ be any of its points of condensation and let us assume,
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without loss of generality, that the corresponding convergent subsequence coincides with that
of {x(k)(T t

2)}. Inequality (7.1) implies that
∥

∥P
(

x(k)
(

T2

))

− P (x̂)
∥

∥ ≤
∥

∥P
(

x(k)
(

T1

))

− P (x̂)
∥

∥

holds fork = 1, 2, . . . . Thus,

lim
k→∞

P
(

x(k)
(

T2

))

= P (x̂).

Local convergence of AlgorithmSPV(B;T ; t, s = 1G;x(0); ε) then follows according to the
next Proposition 7.2. The proof of Theorem7.1 is complete.

PROPOSITION7.2.Letx ∈ R
N ⊕ iRN , i2 = −1, satisfy

P (x) = P (x̂).

Then x̂ = x(1), wherex(1) is the vector returned after one iteration sweep of Algorithm
SPV(B;T2; t, s = 1;G;x(0) = x; ε).

8. Examples.
EXAMPLE 8.1. We compute the spectral radii of error matrices

Jt = Bt
(

I − P (x̂)Z
)−1(

I − P (x̂)
)

for a trivial example, namely for a primitive3 × 3 matrix

B =







a 0 b

1 − a 0 1 − b

0 1 0







and forG(1) = G(2) = 1, G(3) = 2. We assume thatt = 1, . . . , 15 and vary values ofa and
b. The values ofa andb represent situations of a nearly cyclic or a nearly reducible matrixB:

(i) a = b = 0.9, this means a nearly reducible matrixB,
(ii) a = b = 0.1, nearly reducible matrixB,

(iii) a = 0.9 andb = 0.1, nearly cyclic matrixB,
(iv) a = 0.1 andb = 0.9, nearly cyclic matrixB.

All of these four cases lead to local divergence fort = 1. The nearly reducible cases (i) and
(ii) differ significantly for increasingt. While in (i) the spectral radii decrease rapidly, the
spectral radii in (ii) decrease very slowly. The effect is more remarkable fora = b → 0 in
(ii). The behavior of nearly cyclic cases (iii) and (iv) alsodiffer for changingt. Thus, one can
see that even in such a trivial example, the choice of the aggregation groups is crucial.

EXAMPLE 8.2. While in Example 1 all choices ofa andb lead to a local convergent IAD
process for allt = 1, 2, . . . , 15, the situation is different for the matrix

B =















0 0 0 0.1 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0.9 0















.

We considerG(1) = G(2) = 1, G(3) = G(4) = G(5) = 2. In Figure8.2, we show the
spectral radii of the error matricesJt = Bt(I − P (x̂)Z)−1(I − P (x̂)) (solid line) and for
(I − P (x̂))Zt (dashed line) fort = 1, 2, . . . , 12. We can observe that smoothings with some
of the powers ofB lead to processes that diverge locally.
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FIG. 8.1.Spectral radii of the matricesJt for four different choices ofa andb in Example 1.
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FIG. 8.2.Spectral radii of the matricesJt (solid line) and(I − P (x̂))Zt (dashed line) in Example 2.

9. Concluding remarks. Summarizing our observations, we can say that the theory,
computer experiments, and practical computations confirm aview accepted in the literature,
namely that iterative aggregation/disaggregation methods are competitive means for comput-
ing the characteristics of Markov chains, in particular stationary probability vectors. Let us
recall that any IAD method possesses a finiteb-index of convergence independent of whether
the governing iteration matrix is primitive or cyclic. Thisproperty significantly distinguishes
the IAD methods from other methods. Other results we want to mention explicitly concerns
the theory of convergence indices including a new type of comparison of rates of conver-
gence. We have also observed examples showing the divergence of some SPV algorithms.
We show, however, that the divergence can take place only forindicest < tb, wheretb is the
convergenceb-index of the appropriate SPV algorithm.
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Appendix A. A special norm.
Let C be a realN × N matrix and letzT = (ζ1, . . . , ζN ), ζj > 0, j = 1, . . . , N . Define

‖C‖(z) = νz(C) = min
{

α ∈ R+ :
∣

∣CT
∣

∣z ≤ αz
}

,(A.1)

where|C| denotes the matrix of absolute values of elements of the matrix C.
PROPOSITIONA.1 (see [4]). Expression (A.1) is a norm on the space ofN ×N matrices

overR.
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