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STRUCTURAL AND RECURRENCE RELATIONS FOR
HYPERGEOMETRIC-TYPE FUNCTIONS BY NIKIFOROV-UVAROV METHO D*

J. L. CARDOSO, C. M. FERNANDES, AND R. ALVAREZ-NODARSE!

Abstract. The functions of hypergeometric-type are the solutigns= v, (z) of the differential equation
o(2)y" + 7(2)y’ + Ay = 0, whereo and T are polynomials of degrees not higher thziand 1, respectively,
and )\ is a constant. Here we consider a class of functions of hyoengtric type: those that satisfy the condition
A+vr! + %u(u —1)o” = 0, wherev is an arbitrary complex (fixed) number. We also assume tieatdlefficients
of the polynomialso and+ do not depend ow. To this class of functions belong Gauss, Kummer, and Hermit
functions, and also the classical orthogonal polynomilisthis work, using the constructive approach introduced
by Nikiforov and Uvarov, several structural propertiestud typergeometric-type functiops= v, (z) are obtained.
Applications to hypergeometric functions and classicéh@gonal polynomials are also given.
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1. Introduction. When solving numerous theoretical and applied quantum arécal
problems, one is led to potentials that can be solved awcalijtj see, e.g.,d, 13, 19, 21, 22,
23]. In most cases the Schrodinger equation for such potlsrdén be transformed into the
generalized hypergeometric-tydéferential equation]5] which has the form

UN(Z) _|_ T(Z) ’U/(Z) + G(Z) U(Z) — O,

o(z) o
whereo, ¢ and7 are polynomialsdeg[o] < 2, deg[s] < 2 anddeg[7] < 1. By a certain
change of dependent variable (s&&,[Section 1, pp. 1-3]) this equation can be transformed
into the hypergeometric-type equation

(1.1) a(2)y"(2) + 7(2)y'(2) + My(2) = 0,

whereos andr are polynomials of degrees not higher than two and one, ctisply, and\ is a
constant. Their solutions are knowntagergeometric-type functioasd to this class belong
the Bessel, Airy, Weber, Whittaker, Gauss, Kummer, and Hterfunctions, the classical
orthogonal polynomials, among others.

The class of functiong = y,(z) we are dealing with in this work corresponds to the
solutions of the hypergeometric equatidnl) under the condition

-1
A+vr + 7y(y )cr” =0,

wherev is a complex number. One basic important property of thisccta functions is that
their derivatives are again hypergeometric-type funcsiomhe converse is also true when
deglo(s)] = 2 Vv deg[r(s)] = 1: any hypergeometric-type function is the derivative of a
hypergeometric-type functioiMore precisely, we have the following resuliiss] Section 2,

p. 6].
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1. if y = y(2) is a solution of {.1) then, then-th derivative ofy(z), v, (z) := y(™)(2),
is a solution of

(1.2) o (2)0!(2) + Tn(2)VL (2) + pinvn(2) = 0,
where
(1.3) Tn(2) = 7(2) + no’(2)
and
P = pin(X) = X+ n7’ + @U";

2. if v,(2) is a solution of {.2) andyuy, # 0 fork =1,...,n — 1, thenv,, = 3™ (2)
wherey = y(z) is a solution of {.1).
Joining these two properties it is possible to derive mamgoproperties15, pp. 14, 207,
and 265]. Numerous structural properties of this class ntfions have been studied in the
last two decade$[ 6, 7, 8, 9, 25, 26].

The recurrence relations for the special functions (and thuthe associated wave func-
tions) are interesting not only from the theoretical poihview (they are useful for comput-
ing the values of matrix elements of certain physical questi see, e.g. 5] and references
therein), but also they can be used to numerically compet®dlues of the functions as well
as their derivatives, as is shown in our previous pagEfdr the case of Laguerre polynomi-
als and the associated wave functions of the harmonic aswmiland of the hydrogen atom.
Nevertheless, we need to point out that, although the renae relations seem to be more
useful for the evaluation of the corresponding functiorasitbther direct methods, one should
be very careful when using them; see, e.g., the nice sunigy&4] on numerical evaluation
and the convergence problem that appears when dealingewitiinence relations, or the most
recent results]7, 18] for the case of the hypergeometric functiof .

In the present paper we obtain, in a unified way, several adgelecharacteristics (re-
currence and structural relations) for the solutions oftthpergeometric equatior (1), i.e.,
for the hypergeometric-type functions. In particular, wedfiseveral new recurrence and
structural relations for the solutions of the hypergeometguation {.1) in terms of the
polynomial coefficientsr andr, namely, Theorem8.3and 3.5, Corollaries3.8, 3.9, 3.1Q
3.12 and3.14 For the particular cases tifypergeometricconfluent hypergeometriend
Hermiteequations, some of these results can be obtained also hy th&mproperties of the
hypergeometric functions; segf, Section 33]. However, here we will use an alternative and
more generatlirectapproach based on the Nikiforov and Uvarov methtlg §3—54], which
allows us to obtain recurrences relatiank carte In this case we concentrate our effort on
the not so well known fourth-term recurrence relations far hypergeometric-type functions.
Another advantage of this method is that it enables deawatf the recurrences in terms of
the coefficients of the differential equatioh.{), and therefore it can be easily implemented
in any computer algebra system; see, e[

Finally, let us mention that many of the recurrence relaiovolving derivatives can
be obtained by appropriate combinations of three recuereglations of the hypergeometric-
type functions; namely, the three-term recurrence refagiod the two differentiation formu-
las of these functions given i’]} see identities (5), (27), and (30), pp. 713, 716, and 717,
respectively. This technique in not recommended, sincednesponding computations are
cumbersome and the resulting coefficients are not, in gemsraimple as the ones we present
here. Let us also mention that for the case when the coeffsaieandr of the equation.1)
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change with the spectral paramelel general theory that extents the Nikiforov-Uvarov one
is presented in]7].

The structure of the paper is as follows: In Sectidhe preliminary results are presented.
The main results of the paper are in Sectiynwvhere three four-term recurrence relations
are obtained and from them, several three-term recurregle¢ians are explicitly written
down. Finally, in Sectiort, applications to the hypergeometric, confluent hypergenme
and Hermite functions, as well as to the classical orthofooignomials are given.

2. Preliminaries. Here we will follow the notation and results dff]. The above prop-
erties1 and2 allow us to construct a family of particular solutions Gf1) for a given\. In
fact, whenu,, = 0, (1.2) has the particular solution, (z) = C, (constant). By propert,
vn(2) = y™ wherey = y(z) is a solution of {.1). This means that when

-1
(2.2) A=\, = —n1 — 7n(n2 )O'N,
the equation.1) has a (particular) polynomial solutiartz) = y,.(z), with deg[y,,(2)] = n.
Such polynomials are known g®lynomials of hypergeometric ty@d correspond to the
case when\ = ), is given by @.1). In particular, for them we have tieodrigues formula

B,

2 () p(2)] ™
e @0t

where theB,,,n =0, 1,2, ..., are normalizing constants ap¢k) is a solution of the Pearson
equation

(2.3) [0(2)p(2)]" = 7(2)p(z) .

Assuming thap is an analytic function on and inside a closed contdsurrounding the
points = z and making use of the Cauchy’s integral theorem (see, (@), fve may write

G [ o),
(2.4) Yn(2) = p(Z)/C(S—Z)(n+1)d ’

where theC,, = n!B,,/(27i) is a normalizing constant andz) satisfies 2.3). This suggests
to look for a particular solution ofl(.1) of the form

e’ a"(s)p(s)
(2.5) Yu(2) = p(z)/c(s_z)(u+l)d ’

whereC,, is a normalizing constant andis an arbitrary complex parameter connected with
A by

vw =1

(2.6) A=A, = v = 2

The following theorem asserts that the above suggestionas t

Theorem A [15, p. 10]. Let p(z) satisfy the Pearson equatioB.8), wherev is a solution
of (2.6), and letD be a region of the complex plane which contains the piecesvisaoth
curveC of finite length. Then, equatiori.(l) has a particular solution of the form2(5)
provided that the function Si(j))(’j(fz) Jfork=1,2,

e are continuous as functions of the variables C, z € D;
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e for each fixeds € C, they are analytic as functions efe D;
andC is such that% F o 0, wheres; ands- are the endpoints af.

s1
If the integral in @.5) is an improper one, then the result remains valid if the eogence of
the integral is uniform10, p. 188].

In the next sections, generalizing.g), we will use the notation

(2.7) 7.(2) =71(2) +vo'(2) =71,2+7,(0), veC,

and, in order to keep valid proper®yof Sectionl, we will restrict ourselves to the condition
deglo(s)] =2 Vv deg[r(s)] = 1.

3. Recurrence relations for the hypergeometric-type fundbns. Now we are ready
to establish the main results of this paper.

3.1. Four-term recurrence relations. First, we prove the following theorem.
THEOREM3.1. Consider the hypergeometric-type functi@b’gl(z), y,(,k) (2), yl(,k+1)(z),
andy,(f:;l)(z) defined by2.5). Suppose that(z) is a solution of 2.3) and

S2

a”(s)p(s)  m| _ _
(3.2) Ws =0, m=0,1,2,..

el

S1

wheres; and s, are the end points af. Then, there exist polynomial coefficients; (=),
i =1,2,3,4, not all identically zero, such that

(32)  Au(2)y () + Aok (2)y (2) + Ask (2)y8HD (2) + A (2)y {1 (2) = 0.
Moreover, the functiond;;, i = 1,2, 3, 4 are given by

(3.3)

Ann(3) = 7l rbsss Thes 740G = 7 (71 (000'0) = a0(0))
C(il (R(z) - 20’(2)),

Aok(2) = (v=k)7y 4T hi {(R(z) —za’(z)) (7',,,1 (2) "7 —a’(z)r;,1> —T’HU”U(Z)} 7

X

Asi(z)= [TLI,T% R(z)+ (v — k)

2
A _ C, ’ ’ 7
w(z)= — k:)C ” Ty ATuo1Ty10 o(z),

whereR(z) is an arbitrary function ot.
Proof. From [L5, Eq. (9), p. 17], we have

cP o (s)p(s) !
(k) — v P (n) _ r
(3.4 Y, (2) () /C (5= o)t ds, Cy jlzlo Tuijo C,.

Now, using [L5, Egs. (4), p. 16 and (9), p. 17],

o 1 T,-1(8)a" "1 (s)p(s
(3.5) g (2) = o k/c 1((5)_ Z)U(k)p( ) 4.
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Substituting the above expressiosd and @.5) in

S(2) = A (2)y (2) + Az (2)yS) (2) + Az (2)yF D (2) + Aan )y (2),

we obtain
o’ 1(s)p(s
(3.6) S — /C (5)0(5) p )5

where

o
P(s) = A(2)CL,0(2) + Aa(2) 0 ()71 (s) + Asi(2)C8 Do (s) +
kD)
(3.7) A (2) T (5)a(s).
Let us define afunctlo@( z, s) which is, for every fixed:, a polynomial ins such that
“H(s)p(s) 0 [ d”(s)p(s)

( —z)V- w Pls) = Os | (s — z)v—k—1

If such a function) exists, then the integraB(6) vanishs by the boundary conditioris 1),

and therefore3.2) holds. Let us show that the aforementioned functibalways exists.
Taking the derivative of the right hand side of the last eifyyadne gets

Q(z,5)

38) P(s)=[r-1(8)(s—2)—(v—k—1)0(9)]Q(z,8) + o(s)(s — z)%—g(z, s).

Comparing the expression3.{) and 3.8), we may conclude that, with respect to the vari-
ables, deg [Q(z, s)] = deg, [Q(z, s)] < 1. Thus, using the expansions

Q(z.5) = Q(z2) + 2202, 2)(5 - ),

B9  n(s)=7(2) +7(s—2), o(s)=0(2)+0'(2)(s —2)+ %(s -2,
as well as2.7), we have
(3.10)

k c®
A(2)CP0(2) + An(2) 2

To-1(2)0(2) + Az (2)CF Vo (2)+

C(k+11)
+Au(2) e (2)o(2) = —(v = k= 1)o(2)Q(, 2),
(k) (k+1)

An(2) Pl 0(2) + Au(2) O o () + A4k<z>(’;”+1k [7(2)0"(2) 470 (2)] =

(2)Qz2) — (v — k= 290(:) 22, 2)

(k+1) "
g

Ask(Z)CékH)% + Aar(2) yyilk T(2) 5 + 70’ (2)| = T Q2 2)+

G2z ),

(k+1)

0
A4k(Z)Vl’iT{,0’” = 27':;+k —Q
— 2

A s (2,2) .
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Therefore, we have an indeterminate linear system of fouaggns with six unknowns: the
functionsA;,(z), i = 1,2,3,4, and the coefficients in the variabteof the polynomial (on
s) Q(z, s). This guarantees not only the existence of the functibnsgz), i = 1,2, 3, 4, but
also of the polynomiaf)(z, s) introduced above. Assuming that # 0, the above system
can be written as

Au@)0i0() = -2 (@) - S0 0520 ¢

T, 0s
s Gt (et =) |
(k)
Aoi(2) VCZ n = 0'(2:)17'; - (7',,71 (2) — =0 (z)T,,,l)(Q(z,z) TU,(Z)%—?(Z,Z))
2 0
)
A = 7 [ Q)+ (BP0 -0 - Sy ) )
CAD g Tugi g
Aur(z) uilkz == Tz a—cj(z,z)

Substituting the valued;x, i = 1,2, 3, 4, from above in the equatiod(2), which is a homo-

geneous linear equation, choosigz, z) = %(2, z)R(z)/o”, whereR(z) is an arbitrary

function of z, using relations3.4) for the Constantﬂsn), and simplifying the common fac-
tors, we get the non-trivial solutior3(3). O

Notice that formulaed.3) are still valid fore” = 0. This is a consequence &.¢) and
the principle of analytic continuation. Moreover, if oneotisesR(z) to be a polynomial
in z then the corresponding expressions for the coefficidni$z), i = 1,2, 3,4, in (3.3 are
polynomials inz. Finally, let us mention that this method enables one tottoctsother types
of solutions, not necessarily polynomials, sifg€) is an arbitrary function of.

REMARK 3.2. Let us briefly analyze the cases wheh= 0. In this case, from3.3),
we have two possibilities.

1. Ifdeglo(s)] =1 A deg[r(s)] =1, thenAy, = 0.

2. Ifdeglo(s)] =0 A deg[r(s)] =1, thenAdy, =0 = Ayy.
Since we are looking for solutions with coefficients;(z), i = 1,2, 3,4, which do not
vanish at the same time, we need to compare the expressionsagd @.8). From this
analysis follows thatlegs[Q(z, s)] = 0. In the first cas&)(z, s) is a constani 0, while in
the second on@(z, s) is identically zero. Notice that in both cases the resulsiystems are
not equivalent to3.10. The coefficients in these two cases are given as follows,

e whendego =1,0(s) = o(2) + o'(s — z) andr(s) = 7(2) + 7'(s — 2), by

Ag(z) = 62'%1 T’ (TIO'(Z) -0 T,,_l(z)),
Aoi(2) = (v — k)T’ o,
Asip(2) = —(v — k) (U’)2 —270(2),

(2)
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e whendego =0, 0(s) = o(z) andr(s) = 7(z) + 7'(s — 2), by

C
Alk(z) = _O

C,
Agi(z) = — C“ ' A (2),

v

whereAs (z) and A4 (z) are arbitrary polynomials in.
In a similar fashion we can prove the following theorem.

THEOREM 3.3. Consider the functions of hypergeometric tygq%fll)(z), y,(,k)(z),

y,(,k+1)(z), andy,(f:il)(z). Suppose thai(z) is a solution of 2.3), satisfying condition3.1).
Then, there exist polynomial coefficiedg, (=), i = 1,2, 3,4, not all identically zero, such
that

(k+1)

(311) Bu(2)yy " (2) + Bar(2)yl? (2) + Bar (2)y" 0 (2) + Bun(2)yy 5 (2) = 0.
Moreover, the function®;,, i = 1,2, 3, 4, are given by
(3.12)

Buk(a) = s [0 (00 — 7 (7 000/ (0) — 700 (0)) ]

(R(z) - 20’(2)),
Bok(2) = —(v — k)TLT%71T£+k,1 {R(z)n’,fl + (T,,_l(z)o” — 20'(2)7'1’,71)],

2

2

/!
v

Tl/(z) - 2Tll/éo'l(z)‘| Tllfl(z)v

Buyk(z)=(v — k)o” Gy Ty 1TvaTu—1(2),
Oqul 2 2
whereR(z) is an arbitrary function ot.
REMARK 3.4. As in Remarlk3.2, wheno” = 0 from (3.12), the following two cases

apply.

1. Ifdeglo(s)] =1 A deg[r(s)] = 1, thenBy; = 0.

2. Ifdeglo(s)] =0 A deg[r(s)] =1, thenBy;, = 0.
Solving the corresponding systems, we find
e dego =1anddegt =1,0(s) =0(z) + 0o'(s — z) andr(s) = 7(z) + 7/ (s — 2)

2C
B = 2 ! v— -7 ;
1k(2) . (cr Too1(2) — 7 cr(z))
Bop(2) = (v — k)7,
ng (Z) = —273uf2k—2 y
Cy
B = —k);
(e) = o= b

e dego =0anddegt =1,0(s) = o(z) andr(s) = 7(z) + 7'(s — z)
Cllfl

Bsi(z) = —C T(2) A1k (2),
Ollfl Cl/
B4k(Z) = _T/CV+1 (1/ — k)Alk(Z) — mAgk(z’) s

whereBj(z) and By (2) are arbitrary polynomials ia.
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THEOREM 3.5. Consider the functions of hypergeometric tyyg@l(z), y,(,k)(z),

yl(,k+1)(z), andy,(j’ir)l(z). Suppose that(z) is a solution of 2.3), satisfying condition3.1).
Then, there exist polynomial coefficiedids, (z), ¢ = 1,2, 3,4, not all identically zero, such
that

3.13)  Dur(2)yM1(2) + Dar(2)ytP (2) + Dar(2)yF D (2) + Dar(2)y™), (2) = 0.

Moreover, the function®;, i = 1,2, 3, 4 are given by
(3.14)

Dy, =

v ! ! / /
TVT,,+]2671 TV+§72 (H(Z) — Tl/*%) X

Cy_1
720 0%F + 7 (o) = ' (O)71(0)) |,

2
1 ! ! 1
. N _ 9 o' (0)r, —7,(0)o
KT(O)U a'(0)r ) 5 Tu—1(2) + H(2) 7 },
D3, = —Tl,flTL_%TéflTl/, (H(z) — T{,+;2€,1) o(z),

o’ C, / / /
Dy =H)(v—k)y—k+1)— T, 1Ty _1Tv-1,
2 Cl/+1 2

2

whereH (z) is an arbitrary function of.
Proof. Substituting 8.4) and @.5) in the equation

S(2) = Di(2)y$1 (2) + Dai(2)y) (2) + Daw(2)y$+V (2) + Dar(2)y, (2),

we obtain

o’ Hs)p(s
SG) = e o e Pls)ds,

(k)
ka(z)ﬂ,,l(s) + D3 CFVg(s)+

(3.15)

@—k_U@_kf@ﬂﬁd$+n@hwﬂ@y

Reasoning as in the proof of Theor&m, we define a polynomia(z, s) in the variables
such that

o’ 1(s)p(s 0 a’(s)p(s
%P(S)—$ %Q@S) -

Therefore, if the boundary conditions.() hold, S(z) = 0 and @.13 follows. Taking the
derivative of the right-hand side we find

(3.16) P(s)=[r-1(8)(s—2)— (v —k—=1)0(s)]Q(z,5) + o(s)(s — z)%—?(z, s).

Hence, by comparing3(15 with (3.1, we conclude thaideg, [Q(z,s)] = 0, i.e.,
Q(z, s) = f(z), which we choose, without loss of generality, equal to
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Substituting the expansion3.9) of 7,,_1 (s), 7., (s), ando (s) in powers ofs — z in (3.19
and @B.16, we obtain

(k)

le/ 1( )+D3k(Z)Cl(/k+l)+
"

I S

C(k) Ol(,;jr)l

v / D C(k+l) / D
y— e Bt Dak O 0 @) + Dan e

= 7(2),

Cy
leC,, 1+ D2k

Dyy,

Doy,

(k+1)0" C(i)l
D3, CF = 4+ D - V)1 = Tusnoi -
WG+ Da e iy O Ty = T

Assuminge” # 0, from last equation we get

D3k(Z)Cl(/k+1) = 5 | Tvtr—1 — D4k(z)
2

Choosing now

Dy (2) = R(2)Thin- ,
A Cl(/i)la(z)T T
2

whereR(z) is an arbitrary function of, we obtain
D (2)C5 Y = TM (1= R(2))
loadd

and therefore
v—k)(v—k+ 1)
C(k)sz/ %

= %T# (1 — R(z))a(z)7

Du@0) = o (r(0)- 20 ) @)+ 2Ry rhagn (20 -2,

D3y (Z)C£k+l)

Ty—1 a” Tv
- 2 (0 (0
le(z)cl(,k,)lz_—,r ,1(2) |E7—u71(z)_7 Ty— 1+2R( )T:/Jrk*l <U (//) - ; (/ )):| -
T o 2 o T,

T,0(2)+7(2)T-1(2) 2 ,
Ty = 0@ (1= R(2)).
2

(v—k-— l)a(z)—R(z)Tﬁ#

If we now substitute the above valuBs;,, i = 1,2,3,4,in (3.13, putR(z) = H(2) /Tl k1,
where H(z) is a function ofz, and simplify the resulting expressions, we obtain2the val-
ues 3.149. O

Notice that if we choosé/(z) to be a polynomial irz, then the corresponding coeffi-
cientsA;, i = 1,2,3,4, will be polynomials inz, too. Formulaed.14 are still valid, by
analytic continuation, whes”” = 0.

REMARK 3.6. In the case whew’ = 0, from (3.14), the following two cases apply.
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1. Ifdeglo(s)] =1 A deg[r(s)] = 1, thenDyy(z) = 0.

2. Ifdeglo(s)] =0 A deg[T(s)] = 1, thenDg(z) = 0 = Agp(2).
Thus, a similar analysis yields

e inthefirstcaseg(s) = o(z) + o(s — z) andr(s) = 7(z) + 7' (s — 2)

Dy(z) = %Ty(z) (T’cr(z) — U’Ty,l(z)),
Doy(z) = (v — k)o'1,(2),
Dsy(z) = —2730-r0(2),
Dyi(z) = CCV (v—k—-1)(v-k)o;
V1
e inthe second case(s) = o(z) andr(s) = 7(z) + 7/ (s — 2)
Dik(z) = —Ccl:il (v—k—170(2),
Doy (2) = —(v — k)7(2),
D3 (2) = o(z2),
Dyi(z) = Ofil v—k—-1)w-k).

3.2. Three-term recurrence relations. In general, in order to obtain three-term recur-
rence relations involving functions of hypergeometriceygnd their derivatives of any order,
one could follow the technique described in the previouisercsee, e.g.,45. Here we will
obtain several three-term recurrence relations thatfoffom TheorenB.1(Corollaries3.7-
3.9), Theorem3.3 (Corollary 3.10 and Theoren8.5 (Corollaries3.11-3.14), when one of
the coefficientsd;(z), i = 1,2, 3, 4, is chosen to be identically zero. Since the proofs of all
Corollaries are quite similar we will include here only thesfione.

COROLLARY 3.7.

(3.17) Eu(2)y (2) + Ba(2)y ) (2) + Ear(2)yl'37" () = 0,
Elk(z) = _TLJF#TII/’
(3.18) Eai(2) = =10’ (0) + % (1 (0) = 7,2),
— Ol’ /
Esp(2) = Coa Tyt

Proof. Using the fact thaf?(z) in Theorem3.1is an arbitrary polynomial ot and
puttingR(z) = 20”'(z), we getA;; = 0. Thus, relation$.2) becomes

Ee(2)yiP(2) + Bai (2)yF 0 (2) + Ban(2)y(h (2) =0,
where the coefficient®:, = Aoy, Eor = Asp andEs, = Ay are given by

Ei(2) = —(v — ]{)T{,+§,1 d"o(z),

—k 1
Foi(2) = v - "o (z) ~3 (270" (0) + 7,0"2 — 1,(0)0") | ,

v
!/
T,
OU V21 p
—o"o(2).
v+l Ty,

Ei(z) = (v — k)
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Hence, after some simplifications, we obtadnl@. 0
The previous three-term recurrence relation was publighgd relations (6)—(7), p. 663].

COROLLARY 3.8.

(3.19) Fuio(2)y$? (2) + Far(2)y$P (2) + P ()b (2) = 0,
Fig(z) = %T£+k,2 |:7'1,_1(0) (Tll,la/(O) - %TV_1(0)> - (TL1)2U(O):| X

(3.20)¢ Fak(2) = (v — k)% _, (0—HTII,Z +0'(0)1), — U—”T,,(O)) X

(G0 = 0Oy = 1) = 7Tl o),
Cy,
For(e) = G mha e o0 ()

COROLLARY 3.9.

Gir(2)y (2) + Gar (2)yFH 0 (2) + Gar(2)y ) (2) = 0,

Cy
Cui(2) = sy Thapa ) [12(0)0” = 274 (71 (0)0(0) = 710(0)) |
v—k / " / / "_1
Gor(z) = —5 T5-1 (7'1,(0)0 —20'(0)1, — 0 Tyz) X

(Tl,_l (0)o"” — 25" (0)7)_4 — o"Tl',_lz) + 27’%_17# T _1Tho(2),

Cy
T/Z_IT{,% (Ty,l(())a” — 20" (0)7,_4 — G”T,L_lz).

Gor(2) = (v = k) 7% g

COROLLARY 3.10.

L ()80 (2) + Lo (2)y$P (2) + T (2)y 57 (2) = 0,

162) = g [ O (o' Oty = s (0)) = () 0(0)]

2
x[o )7~ % (n(0) = 712)].
Li(2) = (v — k= )} _y7) (a/(o)T;_l - %”T,,_l(o)) 47, (0)7

/ ! / /
+T%717V_1TU_%TUZ,

[N

C
I (2) = -7 :1 T%_lTL%TU_l(Z).
v
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COROLLARY 3.11.

T2y (2) + T (2)y$P (2) + Jan(2)yl) (2) = 0,

C, o'
Jik(2) = O—%Tﬁ#ﬂi 7,1 (0'(0)7,-1(0) — o (0)7],_,) — 7371(0)7 )

Jok(2) = —T%_IT;_% (707,12 + 7' 72—k (0) + 0" (k7(0) — 7121, (0))] ,

Cy
J3k(Z) = (V — k + 1)@7‘%_17{,%17';_1.
This Corollary was first published ir2p, relations (5)—(8), p. 713] and it is nothing else than
the standardthree-term recurrence relation for the derivative of angesrof the hypergeo-
metric function.
COROLLARY 3.12.

Lun(2)y) (2) + Low(2)yH 0 (2) + Lan(2)y?1 (2) = 0,

le(z) = T{,+;2€,1 Tu(z)u
Lok(2) = 1,0(2),

Cy
Lgk(Z) = —(I/ — k —+ 1)0—17:,,1 .
v+ 2

COROLLARY 3.13.

M (2)y$?, (2) + Moy (2)y$P (2) + Mai(2)yF+ (2) = 0,

Cu 1
Mi(2) = == Thases |21 (0) % + 7y (0(0)7_y = 0" (0)7-1(0) )|
Coy 2
—k -
Mok (2) = v 5 T%_lTL_l (cr”z +20'(0) — U,,T/fﬂ())) ,
Ty—1

Msy(z) = T%_lTL_lU(Z).

The above relation was first obtained if) felations (30)—(31), p. 717].
COROLLARY 3.14.

N (2)y®1(2) + Now (2)y%D(2) + Nar(2)yt, (2) = 0,

Cy,
’ /
le(z) = = Tv+k—2Tv4k—1
v—1 2 2

x |71 (0) (20 O)r s = 7(0)0") =2 (711) 0(0) 2),

Nop(z) = 27’%_1TL_ 1 {TII,TL_lz + 1, (0)7_y + 70" (0) (v — k)} o(z),

2

Cy
Ty _1Th_1 {o”Tl/,_lz +20"(0)r,—1 —o”7(0)] .
2 2

Nap(z) = —(v—k)(v —k+ 1)Ou+1 ?
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REMARK 3.15. To conclude this section let us mention that, in spitthe fact that
the Nikiforov and Uvarov method used here allows us to obtiarecurrence relations in
Theorems3.1and3.3directly, in principle, Theorem3.1can be obtained also by combining
appropriately the known Corollari€s7 and3.13 In a similar way, it is possible to obtain
Theorem3.3by a suitable combination of Corollari@s7 and3.1Q Finally, we point out that
the Nikiforov and Uvarov technique is required in order tdaib the new Corollang.1Q

4. Applications.

4.1. Recurrence relations for hypergeometric-type functbns. We can reduce equa-
tion (1.1) to a canonical form by a linear change of independent vizial\ccording to
[15, 16], there exist three different cases, corresponding to tfierdnt possibilities for the
degree ob:

e deg(o(2)) =2:

(4.1) z1=2)u" + [y = (a+B+1)z]u —afu=0.
This corresponds to equatioh. () with

(4.2) o(z) =2(1 - 2), T(2) =~ — (a—i—ﬁ—i—l)z, A= —af.

e deg(o(2)) =1:
(4.3) zu”—i—(’y—z)u’—au:().

This is equation.1) with

(4.4) o(z) = z, T(z) =7 — 2, A=—a.

e deg(o(2)) =0:
(4.5) u' —2zu +2vu=0.

This corresponds to equatioh. () with
(4.6) o(z) =1, T(z) = =2z, A=2v.

Equations4.1), (4.3, and @.5 are known as thbypergeometricconfluent hypergeometric
andHermiteequations, respectively. Explicit solutions of these ¢hddferent equations are
well known; see, e.g. 15, 16]. In [15, §20, Section 2, p. 258] particular solutions were found
using the corresponding integral representations: thefggometrid’(«, 3, v, z), confluent
hypergeometrid’(«, v, z), and HermiteH,, (z) functions. In terms of the generalized hyper-
geometric notationd], the first two correspond teF; («, 5;; z) and1 Fi («; vy; z), respec-
tively. We will use, for these functions, the normalizatimonsidered in15, §20, Section 2,
p. 255].

We remark that it(z) has a double root, then the generalized hypergeometrieegpa-
tion can be reduced to an equation where the correspondir)gs of degree onel5, pp. 3,4].

Here we will present recurrence relations that follow frolmedrems3.1, 3.3, and3.5,
and some particular examples from the corresponding Gaiedl. In the sequeR(z) repre-
sents an arbitrary function of
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4.1.1. Relations derived from Theorens.1
e Hypergeometric equatigrsee ¢.1) and @.2). From @.2) and @.6) it follows that
v = —aorv = —f. Choosingr = —aq, relation 3.2 is fulfilled with

Awe(2) = —ala = )(B+F)B+k—1)(B =78 - a+1)(R(z) - 1+22),
Asi(2) = (@ = D@+ K)(B-1)(B+k)(B —a+1)x
{(rx)-1+2:)[0-22)B-a-D) = ((r—a-1) = (B-a+1)z)]-
(B-a-1z01-2}
Age(2) = —(a = 1)(B — (B —a - 1)z(1 - 2)x
[(B=a+ 1B+ KRE)—(a+ k) ((1=0) = (B-a + 1))~ (B-a) (B-a + 1)(1-22)],
Au(2)=(a+R)B(B — D(a = 7)(8 — a = 1)z(1 - 2).

e Confluent hypergeometric equatiosee ¢.3) and @.4). Using @.4) and @.6) we
find v = —a, being relation 8.2) fulfilled with

A1k(z) = —aq, Azk(z) =a+k, A‘;k(z) =z, A4k(z) =0.

e Hermite equationsee ¢.5 and @.6). Using now &.6) and @.6) we conclude that
v may be an arbitrary complex number and relati8rg) is fulfilled with

A1k(z) = —21/7 Azk(z) = 07 A‘;k(z) = 17 A4k(z) =0.

4.1.2. Relations derived from Theoren8.3.
e Hypergeometric equatigrsee ¢.1) and @.2). This corresponds to = —a (or
v = —() and relation 8.11) is fulfilled with

Bir(2) = ala —1)B(B — a+1)(8 — a—2)(R(z) — 1+ 22),

Bai(2) = —(a=1)(a + K)(B-1)(B8 + kl ~1)(B-a + 1) [(3-7) - (B—a—1)(R(z) + 2],
Ba(2) = (a = 1)(B-D](r—a=1) = (B-a-1)2|x

[(B=a)(B=a +1)(1-22)=R(z)(8 + k=1)(B=a + 1)~ (a + k) (y=a) = (B—a + 1)z,

Bu(z)=—(a+k)BB-1)(r - )[(r—a-1) = (B-a-1)z].

e Confluent hypergeometric equatiosee ¢.3 and @.4). This corresponds to
v = —« and relation 8.117) is fulfilled with

Bip(z) =a, Bap(z)=—(a+k), Bsk(z)=(y—a—1)—2z Bax(z)=0.

e Hermite equationsee ¢.5 and @.6). Relation 8.17) is fulfilled, for an arbitrary
complex number, with

B1k(z) =V, ng(z) =V — k, ng (Z) = —Zz, B4k(z) =0.

4.1.3. Relations derived from Theorens.5.
e Hypergeometric equatigrsee ¢.1) and @.2). This corresponds to = —a (or
v = —() and relation 8.13 is fulfilled with

Dix(2) = —ala— 1)(B+ k)(B+k —1)(6 —7)(8 — o +1)[R(z) — (- )],
Dar(2) = (@ = 1)(a+k)(8 = 1)(B+k)(B - a)x
{lB=m-B-a-1]B-a+1D)+REEB-3a+2y+1)},
Dar(2) = (a = 1)(B-1)(B—a=1)(B-a)B-a+1)(RE) — (B+K)=(01-2),
Dur(2)=R(2)(a+k)(a+k = 1)B(B—-1)(y—a)(8 - a—1).
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e Confluent hypergeometric equatiosee ¢.3 and @.4). This corresponds to
v = —« and relation 8.13 is fulfilled with

le(z) = —q, Dzk(z) =a-+k, D;;k(z) =z, D4k(z) =0.

e Hermite equationsee ¢.5 and @.6). This corresponds to = —« and relation
(3.13 is fulfilled with

le(z) = 21/7 ng(z) = 07 D;;k(z) = —17 D4k(z) =0.
In the following we will putk = 1 and use the identitiedp, p. 261]
/ af / «@
2o Fy' (o, By 5 2) = ~ oF1(a+1, B+ 19+ 15 2), 151 (o575 2) = 5 1P (a+159+152).

4.1.4. Relations derived from Corollary3.7.

e Hypergeometric functianThis corresponds to = —« (or v = —/3). Substituting
the quantities4.2) in (3.17—(3.18, we find the following recurrence relation for the
hypergeometric function:

(=B =1)2Fi (o, B 2) + B(a —7) 2Fi(a, B+ Ly + 15 2)+
a[(B-v+1)+ (B-a+1)z]2F(a+ 1,8+ 1Liy+152) =0.

e Confluent hypergeometric functiohhis correspondste = —a. Therefore,8.17)—
(3.19 vyield, for the hypergeometric confluent function, the éaling recurrence
relation

YiFi(aiv;2)+ (v —a) 1Fi(gy+Liz) +a1Fi(a+ Ly +1;2) =0.

e Hermite functionLetr be an arbitrary complex number. Substitutidgdj in (3.17)—
(3.18, we find the following very well known relation for the Hertaifunction:

v1(2) = 2(v + 1) Hy(2).

Other recurrences relations can be obtained from the otbeslldries3.8-3.14 Since
the technique is similar we just present here the resulgtagions.

4.1.5. Relations derived from Corollary3.8.
e Hypergeometric function.

Hal(B=7+1) = (B-a+1)][(B-7) - (B-a-1)z]-
Bl(B =) —1]2(1 = 2)} s Fi(a, B3 2)+
ay(B-=7)[(B-a+1)z— (B—7+1)] 2Fi(a+1,8v2)+
Fla—7)(B—a—-1)z(1—-2)2Fi(a, 8+ 1,7+ 1;2) =0.
e Confluent hypergeometric function.
—v(a+2) 1P (y2) + (v — @)z 1 Fi(ogy + 1;2) + ay 1 Fi(a+ 1593 2) = 0.
e Hermite function.

H), 1 (z) =2(v+1)H,(2).
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4.1.6. Relations derived from Corollary3.9.
e Hypergeometric function.

Hlal(B-7+1) = (B-a+D:[(B-7) - (B-a-1)3]+
BB —a)? —1]2(1 - z)} 2Fi(a+ 1,8+ Ly +1;2)+
+67(B—7)(B—a+1) 2P (a+1,06;7;2)—
52(04—7)[(5—7) - (ﬁ—a—1)z} 2P, B+1;7+1;2) =0.
e Confluent hypergeometric function.
—(a+z2) 1R (a+1;7+12)+ (a—7)z 1 Fi(os v+ 1;2) +y1 Fi(e+ 1;9;2) = 0.
e Hermite function.
H.(2) = 2v H,_y(2).

4.1.7. Relations derived from Corollary3.10Q
e Hypergeometric function.

YB-D][(@+)(B-a+1)(r=0) +(1—a)(B-a—-1)(F+1)-
(B-a+1)(8-a)(8—a—1)z] 2R (87 2)+
FPla-1)](r—a=1)=(B-a—-1)2]2F(@f+ 1y +12)+
aﬁ(a—i—l)(’y—ﬁ){('}/—ﬁ— 1)+ (5—a+1)z] oFi(a+2,8+1;7+1;2)=0.
e Confluent hypergeometric function.
7[(7 —2a—1) —z} Py (057 2) + (a0 — ) [(7— a—1) - z} V(s + 15 2)+
ala+1)1F(a+2;7+1;2) =0.
e Hermite function.
H),,  (z) =2(v+1) Hy(z).

4.1.8. Relations derived from Corollary3.11
e Hypergeometric function.

(B-1)(r—a)(B—a—-1)2Fi(a—1,672)+
(B-a){[(B-a)*~1]z = (a+5+1)(7-20) + 2(y — ala+1)) } 2 Fi (o, 57 2) +
af—a+1)(y—B)2Fi(a+1,6;7;2) =0.
e Confluent hypergeometric function.
(v—a)1Fi(a—1;7;2) + [Z— (v 20&)} 1Fi(asy32) —arFi(a+1;7;2) = 0.
e Hermite function.

Hy11(2) —22Hy(2)+2vH,_1(2) = 0.
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4.1.9. Relations derived from Corollary3.12
e Hypergeometric function.

By(a=v)2Fi(a=1Bv2)+y(B-1)[(v—a) = (B-a+ 1)4 2 Fi(a, By 2)+
af(B—a+1)z(1—-2)2Fi(a+1,8+1;7+1;2) =0.
e Confluent hypergeometric function.
v(a—)1F (oc—lw;Z)ﬂ[(v—a)—Z} 1F1(a;7; 2)+az 1 Fi(at1;9+152) = 0.
e Hermite function.
H,11(2) —22H,(2) + H,(2) = 0.

4.1.10. Relations derived from Corollary3.13
e Hypergeometric function.

Yy =8)+(8—a- 1)4 oF1 (0, B;7;2) + (8 = 7) e Fi (e + 1, 8575 2) —
BB—a—-1)z(1—2)2Fi(a+1,8+1;7+1;2) =0.
e Confluent hypergeometric function.
yiFi(a+ Lyi2) —vili(ay;2) — zaFi(e+ 1y + 1;2) = 0.
e Hermite function.
H!(2)=2vH, 1(2).

4.1.11. Relations derived from Corollary3.14
e Hypergeometric function.

Bla=)[(r-8)+ (B-a-1)z]sFi(a—1,872)+

Yy =B)(B-a-1)[(r—a) = (B-a+1)z] 2Fi(a+1,572)+

5(5—04){{(5—04)2 . 1}z+2aﬁ—~y(a+ﬂ— 1)}2F1(a+1,5+1;~y+1;z) —0.
e Confluent hypergeometric function.

v(y = a) 1Fi(a - 1;79;2) _7((7_@ —z) V(o 15 2)+
Bz(y—z2)1Fi(a+1;7+1;2)=0.
e Hermite function.
H)(z) =2vH,_1(2).

REMARK 4.1. Notice that we can interchangendg in (4.1). Therefore, several other
recurrence relations can be obtained by interchangiagdg in all relations obtained from
Corollaries3.7-3.14corresponding to the hypergeometric equatibri); Notice also that the
relation derived in Sectios.1.8for the confluent hypergeometric function was first publghe
in [15, p. 267].

REMARK 4.2. Notice that the Bessel equation

2u 4o + (22— 1) u=0,
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whose solutions,, = Z, are called théBessel functions of order, can be transformed, by
the change of the dependent variable= ¢(z)y, whereg(z) = z"¢** [15, p. 202] into the
equation

2y + iz + 20+ 1)y +i(2v+ 1)y =0,

i.e., into the hypergeometric confluent differential eduat(4.3) with v = 2v + 1 and
a=v+ %; see [L5, p. 254]. Then, the recurrence relations for the solutiohthe hy-
pergeometric confluent differential equation can be usedyémerating several recurrence
relations for the Bessel functions.

REMARK 4.3. The Airy function is a solution of the equation

v +2u=0,
which is a particular case of the Lommel equation

1—2 2 2.2
UN—F Oév,+ (67Z7*1)2+u

v=0.

z 22

Its solutions can be expressed in terms of the Bessel funcHp of order v by
v(z) = 22, (B27) ,witha = 1, v = 1, 8 = 2, andy = 2, and therefore, the recur-
rence relations for the Airy functions follow from the recemces of the Bessel functions; see
Remark4.2.

4.2. Recurrences for polynomials of hypergeometric typeThe polynomials of hy-
pergeometric type,,(z) := y,(z) are particular cases of the functions of hypergeometric
type v, (z) when the parameter = n is a non-negative integer, being (z) := y.(z) a
particular solution of the equatiod (I) where\ is given by @.1). They can be represented
by the Rodrigues formula2(2), where B,, are normalizing constants andz) satisfies the
Pearson equatior2(3), or by their integral representatio.), where

n!B,

2mi

(4.7) C, =

If a,, denotes the leading coefficient of the polynomgialz), then (seel5])

n—1

(48) Qp = Bn H 7-;,+72n—1 y G0 = BO :

m=0

If a,, = 1, theny,(z) is said to be anonicpolynomial.

The polynomials of hypergeometric type are the classicbimmomials, i.e., the Hermite
H,(z), LaguerreL®(z), and JacobP2:#(z) polynomials.

A very important property of the orthogonal polynomials lie tthree-term recurrence
relation

an(z) = Oénanrl(Z) + ﬁnpn(z) + 'Vnpnfl(z)-

For computing the coefficients,, 3., andy,, we can use Corollar§.11with £ = 0 as it has
been done ing5]. Other important properties of these polynomials are thealled raising
and lowering operators (see, e.dl])[that can be obtained from Corollari€s12and3.13
respectively. Since they were studied using this method@f fve will omit them here.
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TABLE 4.1
The classical orthogonal polynomials

Pn(z) | Hn(2) Ly (2) PP (2)
o(z) 1 z 1— 22
7(2) -2z | —z4+a+1| —(a+B8+2)z+8—«
An 2n n nn+a+pG+1)
p(z) | e 2e " (1—2)*(1+ 2)°
a>—1 a, > —1
e el B I e

Here we will study another recurrence relation. Namely,dbealled structure relation
by Marcellan et. al{4],

Pr/1+1(z) +rnP’r/L(z) _i_SnPfl,l(Z)
n+1 n n—1

(4.9) Po(z) = , n>2,

wherer,, ands,, are some constants. This relation constitutes anotheactaization the-
orem for the classical orthogonal polynomials. A complételg of such structure relations
was done in]].

COROLLARY 4.4, For the monic hypergeometric-type polynomials, the follhgwecur-
rence relation holds

(4.10) in(2) = A1(2)9p11(2) + A2(2)9,,(2) + As(2)d, 1 (2),

where the coefficientsl;, i = 1,2, 3, are given by

n+1’

i (2) L (7], 7 (0) 470 1(0)7), )0 —20" (07} 7],
Z fry

2 TLT;7%77/171 ’

A=
A3(2) _ (1 _ :L*l ) 27,4 (7'7/1710'(0) — Tnfl(())o'/(())) + Tnfl(O)O'N.

! 2 (7'7'171)27'7’1_%

(4.11)

2
1
2

Proof. SinceR(z) in Theorem3.3is an arbitrary polynomial ir, we will define the
functionQ(z), such that

_ " 7',,,1(2) 2+ Q(Z) )

!
T,_1 2
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Then @.11) holds and the corresponding coefficiemMsy (z), i = 1,2, 3, 4, become

Oy 2+4Q(2) 211 (1v-1(0)0'(0) — 7/ _10(0)) — 71 (0)0”

Ax(2) = ,
16(2) Co1 Q2 2(IJ—I<J)TZ,,,1T%71
Agk(z) = 1,
L R ()0 = 20 ()T e (2)(2 Q)T
- — 2
42 = oo T T |
2
27,
1 C, v_1
A4k(2) B Q(Z) Cuy1 Tll/T:/+k—1 '
2

—1
Since the polynomials are monic, b¥.8), B, = (HZ;IO Tilw,l) . Then choosing
2
Q(z) = —27/_. /7., and settingk = 0, the equations3.11) transform into .10,
2 2

whereas .12 leads to ¢.11). Notice that in £.9), 7, = nA, ands,, = (n— 1)A3. O
We obtain from formulas4.10—(4.11) of Corollary4.4the following identities,

Hu2) = — () L56) = — 5 (L5n) () + (L))
PO = g PO+ s g ra sy PO
- iz a)in ) (P (2),

Cn+a+8-1)2n+a+0)22n+a+B+1)
for the Hermite, Laguerre, and Jacobi polynomials, respelgt

4.3. Further examples. In this section we will present several relations for thesslaal
polynomials that follow from the Theoren3sl, 3.3, and3.5. In order to obtain the following
relations, whereR(z) represents an arbitrary function ef; see Sectiod.2and Tablet. 1

4.3.1. Relations derived from Theoren8.1
e Jacobi polynomials.

Ag(2) =an(n+ 1) (@ +n)(B+n)(a+B+n)(a+B+n+k)(a+f+n+k+1)x
(a+ B4 2n +2)(R(2) + 42),

Agp(z) =(n+1)(n—k)(a+B+n)a+B+n+k+1)(a+B+2n—1)(a+F+2n)x
(a+8+2n+2)[(R(z)+42) ((B - a) + (@ + B+ 2n)2) + (a+ 8+ 20)(1 - 2%)],

Agi(2) = (n+1)[(a+ B+ n+k+1)(a+ 5+ 2n+2)R(2)+
2(n—k)((ﬁ—a)—(a+ﬁ+2n+2)z)+4(a+6+2n+1)(a+ﬁ+2n+2)z]x
(a+B+n)(a+B+2n—1)(a+B+2n)2(1 - 22),

A (2)=—=2(n —k)(a+B8+n)a+B8+2n—1)(a+8+2n)*(a+8+2n+1)x
(a4 B+2n+2)(1—22).

e Laguerre polynomials.
Aip(z) = —n(a+n), Aw(z)=—(n—k), Ask(z)=2 Aw(z)=0.
e Hermite polynomials.

A(z) = —n, Ag(z) =0, Ase(z) =1, Au(z)=0.
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4.3.2. Relations derived from Theoren8.3.
e Jacobi polynomials.

Aig(2) = 4n(n +1)(a +n)(B+n)(a+ B+ n)(a+ B +n+k+1)x
(a+ B+ 2n+2)(R(2) +42),

Agi(z) = —=(n —k)(@+B+n)a+B+n+k+1)(a+f+2n—1)(a+ 8+ 2n)x
(a+6+2n+2)[R(z)(a+ﬁ+2n)+2((ﬁ—a)+(a+6+2n—2)z>],

Ag(2) = (@ +B+n)(a+B+2n - 1)(a+B+20)((B - a) = (a+ B +2n)z)
[2(n—k)<(5—a)—(a+6+2n+2)z) — (a4 B+2n+2)x
((a+6+n+k+1)R(z)—4(a+6+2n)z)],

Agr(z)==(n = k)(a+ B+ n)(a+B+2n —1)(a+ B+ 2n)(a+ 5+ 2n+ 1)x
(a+ﬁ+2n+2)((ﬁ—a)—(a+ﬁ+2n)z).

e Laguerre polynomials.
Aie(z) = —n(a+n), Aw(z)=n—k, As(z)=—(a+n—2z),Aw(z)=0.
e Hermite polynomials.
A(2) = —n, As(2) = —2(n—k), Asi(z)=2, Au(z)=0.

4.3.3. Relations derived from Theoren8.5.
e Jacobi polynomials.

Ak(2) = dn(n+ (@ +n)B+n)a+B+n)atf+n+k)a+B+nthti)x
(a+,3+2n+2)(R(z)+(a+,3+2n+1)),

As(2) = (n = k) (n+ D)@+ B+ n)(a+B+n+k+1)(a+B+2n—1)(a+8+2n)x
(a+ﬁ+2n+1))[((ﬁ—a)+(a+ﬁ+2n)z)(a+ﬁ+2n+2)—2(ﬁ—a)R(z)],

Asi(z) = —(n+ 1)(a+ B+ n)(a+ B+2n —D(a+ B8 +2n)*(a+ B+ 2n+ 1)x
(a+6+2n+2)(R(z)+(a+6+n+k+1))(1—z2),

Agp(2)=—2R(2)(n —k)(n —k+ 1)(a+ B+ n)(a+ B+ 2n—1)(a+ 8 +2n)?x
(a+B+2n+1)(a+8+2n+2).

e Laguerre polynomials.
A(2) =n(a+n), Aw(z)=n—k, As(z)=—2z Awu(z)=0.
e Hermite polynomials.
Aig(z) =n, Ao(2) =0, Asi(z)=—1,Au(z) =0.

4.3.4. A known identity for the Laguerre polynomials. To conclude this paper, we
derive a very well-known formula for the Laguerre polynotsiasing the method described
here. Putting: = 0 in relations 8.19—(3.20, for the Laguerre polynomials, we obtain

!
(4.12) @)L (@) + Ax(@) L (@) + A3 (@) (LT (@) =0,
where, by 4.7), the coefficientsd;, i = 1,2, 3, are given by

Ai(z) =a+n, Ax(x)=x—n, As(x)==x.
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Then, @.12 leads to the well-known formula for the Laguerre polynolsiia
I
2 (LEh(@) = (=)L) (@) - (a+n) LY, @),

Let us also point out that for Jacobi polynomials, if one ¢ders, in Theoren3.5, k = 0,
v = n, andC, = 2Bz then the corresponding coefficients soluti@nl@ gives the four-

27y !

term recurrence relation stated idg, Corollary 1.1, p. 729].
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