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ON THE FAST REDUCTION OF SYMMETRIC RATIONALLY GENERATED
TOEPLITZ MATRICES TO TRIDIAGONAL FORM  *

K. FREDERIX!, L. GEMIGNANI, AND M. VAN BAREL

Abstract. In this paper two fast algorithms that use orthogonal siritylaransformations to convert a symmetric
rationally generated Toeplitz matrix to tridiagonal forme aleveloped, as a means of finding the eigenvalues of the
matrix efficiently. The reduction algorithms achieve cofficeency by exploiting the rank structure of the input
Toeplitz matrix. The proposed algorithms differ in the at®bf the generator set for the rank structure of the input
Toeplitz matrix.
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1. Introduction. The design of fast algorithms for Toeplitz matrices is a widetive
research field in structured numerical linear algebra. Ohth® most fruitful ideas relies
upon the exploitation of the relationships between the eriogs of Toeplitz matrices and
Laurent series, whose domain is the unit circle in the complane. An up-to-date survey
of this beautiful mathematical theory can be found 6h [For a given complex function
f(z) = Z;:’ioo t;z7 defined for|z| = 1 we denotel,, = (t;_;)};_, then x n Toeplitz
matrix generated by the functigf{z), known as theymbolof T;,, » > 1. The representation
of a Toeplitz matrix by its symbol is a way to capture the duoe which enables the initial
matrix problem to be recast into a functional setting.

The knowledge of the eigenvalues and the singular valuesefblitz matrices is of con-
siderable interest in many applications, especially tierées analysis and signal processing;
see B5, 36, 37] and the references given therein. Efficient algorithmseha@en devised for
Hermitian Toeplitz matrices generated by a Laurent polyiabor a rational function.

The methods by Trencl3f, 33] and by Bini, Pan and Di Benedettd,[3, 5] employ the
specific form of the generating function to efficiently ewatll the characteristic polynomial
pn(z) = det(zI — T,) and/or the Newton ratip,,(z)/p!,(z). The resulting methods are
suited for the computation of a few selected eigenvalués,of

Alternatively, the eigenvalue algorithms proposed 1n 7] and [15] for banded and
rationally generated symmetric Toeplitz matrices, retipely, can be used to compute the
whole eigensystem df,,. Here the approach is to find an approximation of the inpuplitee
matrix T, in a certain algebra of matrices that are simultaneouslgatialized by a fast
trigonometric transform. In the rational case the eigebfmm for T, is thus converted to a

generalized eigenproblem for the matrix penHﬁll) + 2z — z(H,(f) + fo)), where for
1=1,2, a belongs to the considered matrix algebra and is of small rank. By similar-
ity the pencil is further transformed into the modified fo@” + Z\" — z(D,(f) + Z,(f)),
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where fori = 1,2, DY is diagonal andank(Z(f)) = rank(ZS)).

The latter (generalized) eigenproblem can be addressediigrming a sequence of
successive rank-one updates. The eigensystem of a magmci(pmodified by a rank-one
correction is obtained by solving the associasedular equatioi24, 7]. The caveat of this
strategy is that at each step the complete eigensystem oingherturbed matrix (pencil) is
required. It is well known25, 41] that computing the eigenvectors of a matrix can be prone
to numerical instabilities and ill-conditioning probleragen if the matrix is Hermitian. For
this reason, the method is not recommended whenever ongidkeavalues of’,, are sought.

If, otherwise, we are interested in computing both the eigkres and the eigenvectorsBf
then special techniques such as26][should be considered in the practical implementation
of the updating process.

In this paper we propose a novel eigenvalue algorithm forragiric rationally gen-
erated Toeplitz matrices based on the matrix technologyak-structuredmatrices. The
systematic study of this class of structured matrices wiisiied in [L9, 20, 21, 22, in the
monographl4] and in [38]. The interested reader can consult the bo@@s40] for more de-
tails concerning rank structured matrices. The approx@meatk-structure of general Toeplitz
matrices has been investigated 80[42, 31] for the purpose of finding efficient direct and
iterative linear solvers.

First, the interplay between Toeplitz matrices and Lausenies is used to establish the
exact rank structure of rationally generated Toeplitz mas. Then, we develop efficient al-
gorithms to compute thgeneratorf the rank structure from the coefficients of the Laurent
polynomials defining the rational symbol. Two generatos setsociated with two different
representations of the rank structures are specificalljyaed. Finally, we adapt the al-
gorithms developed ing| 18] and [LZ] to efficiently transform by similarity the symmetric
Toeplitz matrix represented in condensed form via the gaEpes of its rank structure into
a tridiagonal form. Efficient available QR implementatiara be used to compute all the
eigenvalues of a Hermitian tridiagonal matrix usifgn?) flops.

The complexity of our composite eigensolvers depends omitten of the matrix and
on its rank structure. It is shown that the rank structure lbarspecified byD(n - g(I, m))
parameters, wherkandm denote the degrees of the numerator and the denominatoe of th
symbol, respectively, ang{z, y) is a polynomial of low degree independentnf andm. If,
as is usual in applications,>> max{l, m} then the overall cost of our eigenvalue algorithms
is O(n?). Furthermore, all the computations are carried out usintagntransformations
and, therefore, the algorithms are both fast and numeyioaliust.

The paper is organized as follows. In Sectiynwe provide a description of the rank
structure of symmetric rationally generated Toeplitz rcass. In SectiorB, we develop fast
algorithms to compute a condensed representation fortiistare and to transform by uni-
tary similarity the input Toeplitz matrix represented viggenerators into a tridiagonal form.
In Section4, an alternative tridiagonalization procedure dealinghvétdifferent generator
set is presented. In Sectidi we discuss the practical implementation of our eigenvalue
algorithms and report the results of numerical experimamni$ comparisons. Finally, our
conclusions are stated in Sectién

2. Rank structure of symmetric rationally generated Toepliz matrices. Let

l

a(z) =ao+az+...+agz?, c(z)=cz” +.o ez e tazt.. +ad,

be two real Laurent polynomials, whesg, . .., a, andco, ..., ¢ are realaq, ¢; # 0, and,
moreovera(z) has no zeros ifz| < 1. Then the rational function
c\z
t(z) = (2)

a(z)a(l/z)
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admits a Laurent expansion

o0
t(Z) = Z t‘j‘zj, tj ceR,
j=—o00
in an open annulus around the unit circle in the complex plage

Here we investigate the rank structure of the symmetrionaily generated Toeplitz
matrices

to  t1 ... tnq
Tn _ tl c }Rnxn7
: . . tq
tho1 ...t to

for increasingn.

The first result gives a useful decompositiontof) as considered inlfg]. For the sake
of simplicity, in the sequel a (Laurent) polynomial of negatdegree is understood to be the
zero polynomial and, similarly, a banded matrix with negathandwidth reduces to the zero
matrix.

THEOREM 2.1. There exist a polynomial(z) of degree at mosi and a symmetric
Laurent polynomiak(z) of degree at mogt— ¢ such that

(2.1) c(2) = s(z)a(z)a(1/z) + p(1/z)a(z) + p(z)a(1/2),

which implies

c(2) p(1/2) | p(2)
(2.2) t(z) = ——~— =s(2) + + —=.
a(z)a(1/z) a(l/z) = a(z)

Proof. We first determine s(z) = Zﬁ;g_l s;;z' by imposing that
q(z) = c(z) — s(z)a(z)a(1/z) has degree less than or equalgtoFroma,, agp # 0 it fol-
lows thata(z)a(1/z) = 3:—q 7)1%" is a symmetric Laurent polynomial of degree exactly
g, that is,y, # 0. The condition on the degree gfz) = g}q ﬁmzi is then equivalent to
determiningsy, . . . , s;—4 to satisfy the invertible triangular linear system

Ya
Sl—q (&)
Yq—1 _
S1 Cq+1
V2q+1—1 -+ Vg-1 Vg

Now observe that the computationefz) = po + p12 + . . . + pyz? is reduced to solving the
linear system

(23) jp:/aa pT:[p07"'apq]7 ﬁT:[ﬁOa---aﬁq]a
where7 € Rlet1)x(a+1) js the Toeplitz-plus-Hankel matrix defined by

ap ... ... Qq ap ... ... Qq
(2.4) J = A e

an Qg
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Since all the zeros af(z) have modulus greater than 1 it can be shots} that 7 is invert-
ible and thereforg is uniquely obtained from2(3). O

The additive decompositior2(2) of the symbol(z) yields additive decompositions for
the Toeplitz matriceq;,, n > 1, which can be used to establish their rank structures. To
be precise, for any given pair of natural numbérg n andm < n let us denote by
Fim,n C C"*" the class ofr x n rank structured matriced = (a;;) € C™*" satisfy-
ing the rank constraints

(2.5) max rankA(k+1:n,1:k) <l max rank A(1: k,k+1:n) <m,
1<k<n-—1 1<k<n-—1
whereB(i: j,k: 1) is the submatrix o8 with entries having row and column indices in the

ranges throughj andk throughl, respectively.
THEOREM2.2.Foranyn > 1, we have

(2.6) Tp = Sn + Qn,

where S,, is a symmetric banded Toeplitz matrix with bandwidth at miost ¢ and
Qn € Fy.q.n- Whence, it follows thaf,, € F7 . With m” = max{l, ¢}.

Proof. ~ We can assume thatleg(p(z)) < deg(a(z)). If, otherwise,
deg(p(z)) = deg(a(z)) = ¢, we can considep(z) = p(z) — da(z) with § determined
so thatdeg(p(z)) < ¢. Moreover, let us suppose that the zefgs. .. 4 of a(z) are all
distinct. Then the partial fraction decompositionpdt)/a(z) gives

M _ ~ pi
a(z) Z z

- ¢ T M

pi

Since|u;| > 1 it follows that ——— has a convergent Taylor series expansion in an open

Z =
disk centered at the origin of radius greater than 1. By ghtforward calculations we obtain
that the rationally generated Toeplitz matrix with symber— is an upper triangular ma-

trix belonging toFy ; ,,. The proof is then completed by |nvok|ng a continuity arguairie
eliminate the conditions on the zerosadt) being distinct. 0O

It is worth noting that from the proofs of Theorerisl and2.2 it follows that the addi-
tive decompositionZ.6) is essentially unique in the sense that b8thand@,, are uniquely
defined up to a diagonal correction which does not affect ttagik structures. In the next
sections the properties of this decomposition are explaieorder to design a fast and nu-
merically robust tridiagonalization procedure for the maf’,.

3. Condensed representation of’},. A basic preliminary step in the efficient reduction
of symmetric rationally generated Toeplitz matrices imtdihgonal form is the computation
of a condensed representation of the matrix entries, he.coefficients of the associated
symbol, according to the rank-structure-revealing decasitipn stated in Theore@.2. The
desired quadratic cost of the tridiagonalization schemexctieved by working directly on
this representation rather than on the input data. Therraléas that, unlike the Toeplitz-like
structure, the rank structure is maintained during the @seso that the amount of work does
not increase significantly.

Let us assume that the rational symbg!) is given in the form 2.2) specified by the
polynomialss(z), a(z) andp(z). Note that if we know; = deg(a(z)), then these polynomi-
als can be computed from the coefficients of the Laurentserie(z) in O(1% + ¢?) flops.
The matrix.s,, is a symmetric banded Toeplitz matrix of bandwidth ¢ and, therefore, it



ETNA

Kent State University
http://etna.math.kent.edu

FAST REDUCTION OF SYMMETRIC TOEPLITZ MATRICES 133
can be specified compactly by its matrix entries, that is cthefficients ofs(z). In this and
the next section we design algorithms that compute a pasiration for the rank structured
matrix ),, based on the knowledge @fz) andp(z). Adding these two representations yields
the input description for the matrik,, which is modified in the tridiagonalization process.

For the sake of notational simplicity here and hereafter @gtrict ourselves to the case
[ < ¢, meaning that),, andT,, can only differ from the elements on the diagonal, that
is, T, = al, + Q,, n > 1. The general case can be treated similarly with just some
technical modifications. To represef,, there are several possibilities. We can use the
quasiseparable?[)], the Givens-weight or the unitary-weight representafibi]. Once this
representation is obtained, several algorithms can betassalve the corresponding system
of linear equationsZ2, 10] or to solve the eigenvalue problerd, 9, 18, 17]. Solving the
linear system can be performeddr{¢>n) flops. Solving the eigenvalue problem can be done
in several ways, e.g., one can directly use ¢hg-algorithm on the rank structured matrix
Q. or one can transfornd),, into an orthogonally similar Hessenberg (and by symmetry
tridiagonal) matrix. The reduction into a tridiagonal matequiresO(qn?) flops.

In this section, we describe a tridiagonalization algaeritexploiting the quasisepara-
ble representation af,,, whereas, in the next section an alternative approach barséiue
Givens-weight parametrization is presented.

3.1. The quasiseparable representationLet7,, T,, denote the lower triangular Toeplitz
matrices (of size as appropriate in the equations) corratipg to the polynomials(z) and
p(z) respectively. Then we can expregs as follows [L7]:

(3.1) Qu=T,"T,+T,T,".
Note that the first term is a lower triangular Toeplitz matiixd the second term is its trans-
pose.

A representation for the rank structure @f, can be easily obtained by partitionifigy
and7}, in block bidiagonal form. Suppose that= m -q + %k, 0 < k£ < ¢. The block
partitioning of 1, and7), is

A\O EO
—A_l AO B—l BO
T, = —A_, Ty = By )
—A,1 AO B*l BO
whereAy, By € R¥*k A_, B_, € RIxk, Aj,Bj € R1%4, j =0,-1,and
ao Po
a1 ao b1 Do
AO - . ) BO - . ’
(g—1 a1 aop Pg—1 P1 Po
ag  Gg—1 ay Pq Pg-1 P1
Ay =- ' , Boi= ' S
g Qg1 Pq  DPg—1
Qq Pq
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and

Ag = Ao(1: k,1: k), By = Bo(1: k,1: k),

A=A (1:qq—k+1:q), By =B_1(1: ¢,¢ — k+1: ).

Let F, € R7*? be the companion matrix associated wittu(z 1), i.e.,

—a1/ag —az/ap ... —ag/ag
1 0 0
Fl = :
1 0

From Barnett’s factorizatiord], it follows that
Ay Ayt = FL

Since the spectral radius 6 is less than 1, the power sequence of the matrix tends to zero.
LetA = A,lAgl € R9**, The inverse off, is the block matrix given by

- ~ -

At
AgTA Ayt
Tt = AgtFIA AgtFa
| AGESTVIA | AR AT RS A

Therefore, by using3.1) we arrive at the following block condensed representaiof., .

THEOREM 3.1. The symmetric Toeplitz matri@,, defined by(3.1) can be partitioned
in a block form@Q,, = (QET}’H%, WhereQz(-Z-) € R"¥ M ni =k ng = ..om = q,
QEZ) =Qj-iforj>i>2,and

om | A FTYNY iz =1,
,] Aal . Fg(l_‘j_l) . Flv lf 7 _] Z 17 .] Z 27
where
I = ABy+B_1, T1=FIBy+B_1.

Representations of this form for rank structured matricagehbeen introduced irlf, 20]

in the framework ofjuasiseparablenatrices and matrices with smadlankel rank In order
to merge the rank structures 6, and.S,,, we find a suitable decomposition 6, by per-
forming a step of block Neville elimination. Ld8,, be the block lower bidiagonal matrix
partitioned commensurable with,, and defined by

I,




ETNA

Kent State University
http://etna.math.kent.edu

FAST REDUCTION OF SYMMETRIC TOEPLITZ MATRICES 135

Then we have the following theorem.
THEOREM3.2. The matrixP, = B, - Q,, - BI is a symmetric block tridiagonal matrix
with subdiagonal blocks

PQ(,Z): gnl)v Pi(ri,i:Pf:Q?_EQOvzgiva

and diagonal blocks
Py =Q, P = Q83 = Qo,
and
Pz(?) =P =Qo+3QX" —2Q1 —Q{x", 3<i<m+1.
From this theorem we conclude that
(3.2) T,=B,' (P, +aB,-B) B, =8B,'-27,-B,7,
where the “middle” factor
Zn=P,+aB, Bl

is a banded matrix with bandwidtty — 1 at most. In the next subsection we exploit this
representation of’,, for the design of an efficient tridiagonalization proceduidote that
when! > ¢ the “middle” factorZ,, = P, + B,S,B]l is a banded matrix with bandwidth
q+1—1atmost.

3.2. Tridiagonal reduction algorithm. In this section we describe a fast block algo-
rithm for reducingdr’, into tridiagonal form by unitary transformations. In pripke the reduc-
tion may be carried out using the scalar algorithm givenlig for rank structured matrices
represented in quasiseparable form. The efficiency coulidiftkeer improved by adjusting
the algorithm to work directly with block rather than scatprasiseparable representations,
similarly to the approach followed ir2[l] for the QR factorization of rank structured ma-
trices. Although the generalization is possible, the foB®)(of T,, suggests the use of a
different block reduction scheme related to the scalarrteple proposed ing).

The building blocks of the tridiagonalization procedure #re QR factorization of small
matrices of size)(q) and standard bulge-chasing schemes for banded redu&t#hn et

B! = B andz, = z\"). Moreover, letU/(!) ¢ R27%24 pe an orthogonal matrix deter-
mined to satisfy
(1)
(1)T Iq o R
IR

whereUl(ll), U2(12) € R7*7 and R(M € R7*4 is upper triangular. It is immediately seen that

)

the block Givens-like matrix

1 1
Ury U

T
v = 1 1
Ui Uz

T
¢ = Im—2)q+k ® UM
is such that
Iy,

gV .pO) — pr)(k +1:(m—=2)g,k+1: (m—2)q)

ymo2RM ... SRW | RO yl}
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The matrix on the right-hand side can be rewritten as

Iy,
BO (k+1: (m—2)g,k+1: (m—2)q) (I o RM Ul(lg) )
(m—2)q+k 0 U2(12)
smo2pM srRM ’
Izq
L o L 0 i
Set
-l -
B _ BY (k +1: (m = 2)g. k + 1: (m — 2)q)
ym2RrM YRM
0 . 0 &

and

R o)

Z\) = (L(m—-2)q+k ® o ) z0 m-2)g+x @
0 U272

Itis found thatZ,(Ll) is still block tridiagonal.
Now let U(?) € R29*24 e the orthogonal matrix determined to satisfy

, U(2)T[ L, }:[3(2)},

2 2
vy U
RMDY 0

U(Q)T = 2 2
v Uy

whereR(?) ¢ R7*4 is upper triangular. Let us define the block Givens-like maf? by

T
G = Iy U 1L,

Observe that
f L )
B (k+1: (m=3)q,k+1: (m—3)q)
G®? . WM =
TmUSR® L .. mr® | R® U8
0 I 0 0 U2(12)
L Iy |

Again we can write

G? . B = g2 (L(m—-3)q+k ® @ Ly),
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where
e ;
By(LO)(k—i- 1: (m—=3)g,k+1: (m—3)q)
B2 —
" SR .. XRO®
0 e - 0 |,
Set
[ R(2) U(2) R(2) U(2)
2D = Im—s3)qrk © @ | 910 2 (Ign—3)q41 @ o | el)"
I 0 U272 0 U2,2

As a result of these matrix multiplications the block trigitaal structure oV is destroyed.
Specifically, we have that

2 2 2 T
@) Zr(n)—l,m—l Z7(n,)m—1 Zr(n-)ﬁ-l,m—l
_ ) _ C) — 2 2 2
Z((m—=3)g+k:n,(m—3)g+k: n) %(7)17)7”71 %;g;)m Z(n(;)zrl,m ,
Zerl.,mfl Zerl,m Zm+1,m+1

thatis, a bulge in positiofm+1, m—1) and its symmetric analogue in position—1, m+1)
appear. To chase away this bulge we can determine an ortabgmrix W (1) e R24%24
such that the matrix

2 2
W(l)T Zr(n,)m—l Zr(n,)m
73 72

m+1,m—1 m+1,m

is upper triangular. Then the transformation
T
Z7(12) — (I(m,Q)quk 5> w ) - Z,(ZQ) . (I(m,Q)quk S¥ W(l))

is used to restore the block tridiagonal structureZif’. It is worth noting thatB'? and
(Ltm—2)g+k @ W) commute so that the process can continue in a similar fashiore
overall complexity isO(m?q?) = O(n?q) flops.

4. An alternative approach. In this section, an alternative method for reducig
into tridiagonal form by unitary transformations is debexil. The proposed approach relies
upon the construction of a Givens-weight representationtfe rank structured matrig),,
based on the knowledge afz) andp(z); see equation3(1). In the following subsections,
the algorithm that computes a Givens-weight represemtdtio the rank structured matrix
Q.. based on the knowledge ofz) andp(z), and the algorithm to bring the matrix into
Hessenberg form is explained.

4.1. Givens-weight representation.A rank structured matrix can be represented by a
Givens-weight representation. It is a compact internatesgntation which consists of a
sequence of Givens arrows which have widtfthis means that the Givens arrow consists
of r Givens transformations, with the rank of the structure blocks), and a weight matrix
containing compressed information about the elementsaimahk structure. The weights are
stored during this process of determining the sequencewarSiarrows.
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XXX XX XX

XXX XX X|X

(@) (b)

FIG. 4.1. Example of a Givens-weight representation: (a) the rankcitre, (b) the corresponding Givens-
weight representation.

Figure4.1(a)shows an example of the kind of rank structured matrix whéatoinsidered
in this paper. Figurel.1(b)shows the corresponding Givens-weight representatiomef t
rank structured matrix. At the left the arrows denote thee@i arrows (consisting of
Givens transformations, in this case= 2), and the elements in gray denote the weights.
The representation is internal. Therefore elements oaitsie rank structure are not touched.
For a more detailed description about the computation df sucompact representation the
interested reader is referred to]].

Computing a Givens-weight representation &y, consists of finding a sequence of
Givens arrows whose product is the orthogonal magriguch that

QTQn = Rqa

with R, a lower banded matrix with subdiagonals. It is important to see now that applying
an orthogonal transformatiap” to the rows ofQ,, is the same as applyin@ to the columns
of T}, in the first term and to the columns @}, in the second term ir3(J), i.e.,

(4.1) QT Qn = (T.Q)™'T, + (T,Q) T, T.

The matrix@ is the product of a sequence of Givens arrows which consig@Gifens trans-
formations where each Givens arrow works from right to leftioe columns of the matrix and
makes a subdiagonal @, zero. It can be shown thai, @ is a nonsingular upper triangular
matrix (havingg nonzero superdiagonals) whilg () is a banded matrix havingsuperdiag-
onals. Thereforé¢T,Q)~'T, hasq subdiagonals an@l},Q)* T, * hasq subdiagonals. The
sequence of Givens arrows consistingdbivens transformations is the Givens-part of the
Givens-weight representation.

The Givens transformations and the weights are determiméttei same order as when
computing a Givens-weight representation, meaning gaimg the bottom to the top of the
structure. Instead of working on the matf,, we will work on the matrixl;, by making it
upper triangular to determine the weights. The algorithexislained for & x 7 matrix with
q = 2. Thisis shown in Figuré.2

In fact, the algorithm only requires the information of thestfiterm7,17,, because the
second term describes the upper triangular pa®ef But for completeness the result of
the actions of the algorithm on the mat, and the second terffi’ T, *" are also shown.
The bold box in@,, denotes the weights which we want to compute or which alréwdye
been computed. In the other matrices (the sum), it denogesléments we have to compute
to obtain the weights. Note thdt,, T is represented as a matrix in the figures and not
T, T, T, respectively.

Before we can start to makg, upper triangular, the weights of the bottenblocks are
computed, denoted in the bold box@h, in Figure4.2(a) These elements lie inside the rank
structure, but no Givens transformations will act on theothe real elements will be stored.
To compute these elements, only information of the elemientise two bold boxes of the
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-1 T =T

Qn Ta Tp Tp Ta
r - r -1 - r O -1
X X X X X X X X X XX X X X X
XXX X X X X X X X X X X X X X X
X X X X X X X XX X X X X X X X X X X
XXX X XX X = X X X X X X + XX X XXX
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(a) Computation of the weights of the bottanilocks.
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XX XX X X X X X XX X
X X X X X X X X X X X X X X X X X
XXX X XX X XX X X X X X X X X X X
X X X X X X X = X X X X X X + XX X X X X
[ | RSP x < X XXXX X [ X X X X X X
[] XXX X XXX X X X X [ X X X X X
X X X X X X X X X
(b) Making the bottom row o, upper triangular.
[l
r — r -1 — r ar -1
X X X X X X X X X XX X X X X
XXX X X X X X X X X X X X X X X
XX XX X X X XX X X X X X X X X X X
X X X X X X X = X X[X X X[X + XX X XX X
[ ><><><><><>< X[ RIX[X X[X[x [ >< X X X
C ><><><><>< X X XX X[X X 5 X XX X X
X X XX X XXX X

(c) Computation of the weight of the+ 1 structure block.

FI1G. 4.2.Computation of the weights.

termT, T, is required; see Figuré.2(a) The product of the bold boxes in the second term
will give an upper triangular matrix, so this cannot be of amluence on the elements which
we want to compute.

To compute these weights, the elements of a submatrix of gizel) x (¢ + 1) of T,
are required. Let us represent the whole lower block trideaguatrix 7, and its inverse by

[ A o0 1 At 0
Ta—|:B C:|5Tu, _|:—C_1.BA_1 C—l ’

with A € C(n—a-Vx(n—a=1) B ¢ Cclarx(n=a=1) gndC e ClarD*(a+1) Matrix C~1 is
the submatrix (denoted in the bold box in the first term of Fegli2(a) we need to compute
the weights. Instead of inverting the whole matffix only the inversion of a small submatrix
is necessary. The weights of theébottom structure blocks are obtained by multiplying the
inverse ofC' with the corresponding columns @,. This is shown in Figuré.2(a) This step

is a preparation step because no Givens transformatioresaoenputed.

Now the actual construction of the Givens-weight represtion is explained. In general,
the matrixT, will be successively made upper triangular by applying @s/&#ansformations
and the corresponding weights will be computed. The proststs with creating zeros in a
specific row ofT, (this row corresponds to the row in the matéd,, where we want to create
zeros) by applying Givens transformations to the columns of this matrix. To bmplete,
the transposed Givens transformations have to be applidtetmatrix@),, and also to the
second term; this is shown in Figude2(b)(gray elements denote compressed elements). It
is considered that the transposed Givens transformatidp,ois only applied to the columns
inside the rank structure. This limited number of columnsalied the action radius of the
Givens transformation. The action radius is denoted witbld bine in Figure4.2(b)

Now it is possible to compute the weight of the structure klothis time the second
term also has no influence on the weight. To compute the weighinverse of a submatrix
of T,Q1 (Q1 is the product of the Givens transformations already applied to the columns
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FI1G. 4.3.Givens-weight representation @}, .

of the matrix) of sizg¢ + 1) x (¢+ 1), C, is neededT,Q; is upper block triangular and we
represent the matrix and its inverse as follows:

A 0 0 A1 0 0
T.Q.=| B C D |, (T.Q) '=| -Cc'BA™' Cc' —C'DE™! |,
0 0 E 0 0 E-1

with A € C(n—a=2)x(n—q-2) B c Ccla+tD)x(n—¢=2) ¢ c CclatDx(e+1) 1 e Cler)x1 gnd
E € C. Only the inverse of the small matrix, of size(q+1) x (¢+1), is required to compute
the weight. When this inverse is computed, it can be mudtgphvith the corresponding
column of7}, to obtain the weight of the structure block; see Figéir&(c)

This process of making a row @f, upper triangular and then computing the weight by
inverting a small submatrix of size+ 1 x ¢+ 1 and multiplying it to the corresponding column
of T}, is continued until all the weights of the blocks in the ramsture are computed. After
each step, the bold box ifi, ' 7}, will move up along the diagonal by one element. The result
of the algorithm is shown in Figuré.3. The ¢ Givens transformations which belong to one
weight are represented by a Givens arrow of wiglth

4.2. Tridiagonal reduction algorithm. The next step is to reduce the rank structured
matrix with the corresponding Givens-weight represeatainto a Hessenberg (and by sym-
metry tridiagonal) matrix. To do this the method to trangfa given matrix with a Givens-
weight representation into a Hessenberg matrix discuss§t?] is simplified. In [L2], the
given Givens-weight representation is transformed inter@xreating Givens-weight repre-
sentation and then the matrix is brought in Hessenberg formpdeling off the tails of the
Givens transformations meanwhile making the structureksdmne-by-one upper triangular,
or in other words, bringing the columns in Hessenberg form.

In this paper, the transformation to a zero-creating Giweeght representation is omit-
ted and the process is not going to peel off the tails of the@@\transformations. The process
is split into two parts: in the first part the precomputed Givarrows are applied outside the
rank structure and in the second part the matrix is brougbthtessenberg form.

During the first part, the precomputed Givens transfornmestare applied in the same or-
der as when constructing the Givens-weight representéiii) to the elements outside the
rank structure. This means that the Givens transformatoaspplied successively outside
their action radii. During the second part, each column @ulght into Hessenberg form by
applying a Householder transformation. Also the symmetthe matrix will be exploited.

The initial situation of the algorithm is shown in Figute3(this is the end situation of the
construction of the Givens-weight representation). Feheseight, there are precomputed
Givens transformations. These are combined in a Givensvasfovidth ¢, and each Givens
arrow has a specific action radius. The algorithm appliestimeputed Givens arrows of the
Givens-weight representation successively to the elesnemiside the rank structure (or in
other words, outside the action radius) in the same orddrgswere computed. In order to
preserve the eigenvalue spectrum, the transposes of tlea&ikansformations are applied to
the columns.
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X X X X

XX XX XX XX

XX X XX X XX X XX X

X X X X X X XX X XX X
[ XXX X [ X XX X X X XX XX X
[ XX X [ XX X [ X X|X [ XX X
X X X X

FIG. 4.4. Exploiting symmetry. (a) Compute the required superdiagelement, and fill it in into the weight
matrix, (b) Apply the current Givens transformation to tevs, (c) Apply the transposed Givens transformation to
the columns, (d) The current superdiagonal element haslearoymore, and therefore it is removed from the weight
matrix.

In Figure4.4, the exploitation of the symmetry is explained. Only thegdiaal and the
q subdiagonals are considered, since the rest is known by symnT he first Givens arrow
is decomposed into itg Givens transformations. When we want to apply the currene@s
transformation (denoted in bold) to the rows, the correslsuperdiagonal element has to
be computed (by symmetry) and has to be filled in into the waigdtrix. This is shown in
Figure4.4(a)

Then the Givens transformation can be applied outside thera@dius until the column
of the added superdiagonal element; see Figué€b) Notice that after this the top element
of the corresponding weight element is turned from gray tateylsee Figuretl.4(c) This
weight element is “completely released”, meaning that neen@@vens transformations act
on it (the other Givens transformations have smaller aatialii). To complete the similarity
transformation, the transposed Givens transformationdé® applied to the columns; see
Figure4.4(c) Now the superdiagonal element has no role anymore, theréfs removed
from the weight matrix; see Figure4(d)

The same principle as explained in Figdré is used during the whole algorithm. So,
the same principle is done for the second Givens transfoomat the first Givens arrow.
The result is shown in Figuré.5(a) Notice that after the application of the Givens arrow, the
corresponding weight is “completely released”.

Starting from Figuret.5(a) the flow of the algorithm is explained. Apply theGivens
transformations of the current Givens arrow outside thefioa radius, as explained in Fig-
ure4.4(this is shown in Figuré.5(a} 4.5(b). Notice that when this is done, the matrix has
no ¢ subdiagonals anymore, and some fill-in elements appeaeim#trix. This is shown in
Figure4.5(b) The next step is to remove these fill-in elements (in Figuigb)there is only
one fill-in element located at positidiT,4)) by applying Givens transformations to create
again a matrix withy subdiagonals. Because of similarity reasons, the traespGivens
transformation is also applied to the columns. This proceskown in Figuret.5(c}4.5(d)

This process of applying the Givens transformations oetsiie rank structure and re-
moving the fill-in elements is continued until all the Givearsows are applied outside their
action radius. At the end, a matrR = QQ,,Q* with ¢ subdiagonals is obtained. Then the
matrix R + oI has to be transformed into a Hessenberg (or by symmetragatial) matrix.

Note that wherl > ¢ the matrix.S,, has to be updated under the action of the Givens
transformations of the Givens-weight representatio@gf S = Q5,,Q". The matrixS is a
matrix with [ subdiagonals. The sum of the two matride@snd.S results in a matrix with
subdiagonals which has to be transformed into a Hessenbarixm

To bring the matrix into Hessenberg form the columns are ginbone-by-one into Hes-
senberg form, this time starting at the top of the structéwgain the symmetry is exploited.
Figure4.6(a)gives the matrix when the first column has already been brongh Hessen-
berg form. This is done by applying a Householder transfaiona Notice that there is a
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X X X X
X X X X X X X
] XXX ] X X X T XXX ] Hx
] [ X X[X[X ] X X X ] XX X ] X X
C A x C X}—Fﬁii X§§$><>< XX
X X X X XPX X L XX XX X X X

@ (b) © (d)

F1G. 4.5.Process to apply the Givens transformation outside the sanicture. (a) Apply the current Givens
transformation to the rows and the transposed Givens tmnsdtion to the columns, remove the current superdiag-
onal element, (b) Apply the current Givens transformatmithe rows and the transposed Givens transformation to
the columns, remove the current superdiagonal elemenRéa)ove the fill-in element by applying a Givens trans-
formation to the rows and also the transposed Givens transdton to the columns, (d) The matrix has again
subdiagonals. The next Givens transformation can be agplie

X X

XX X XX XX
XX XX XX XX XX XX
XXX XXX XX
XXX X XX XX XXX XXX

XXX XXX XX XXX X
XXX XXX XXX XXX XX
@) (b) © (d)

FIG. 4.6.Process to bring the matrix into Hessenberg form. (a) Figdumn has been brought in Hessenberg
form, (b) Apply Givens transformation to make block uppinigular, (c) Apply the transposed Givens transforma-
tion to the columns, (d) Remove superdiagonal elemengentiat there has been some fill in.

fill-in element in position(5, 2).

Now the second Householder transformation has to be apfaieaoringing the second
column into Hessenberg form (second structure block hagtoine upper triangular). Be-
fore this can be done some superdiagonal elements have tdied;ssee Figuré.6(b) To
complete the similarity transformation the Hermitian sposed operation has to be applied
to the columns; see Figure6(c) After this there will be fill-in elements in columidsand4;
see Figuret.6(d) These will be removed when the next column is brought inteddaberg
form by applying another Householder transformation.

This process is continued until the Hessenberg form is nbthiNow efficient algorithms
can be used to compute the eigenvalues of the matrix.

5. Numerical results. To check the accuracy and the numerical stability of the pseg
fast tridiagonalization algorithms, we have performedesalnumerical experiments. For the
sake of comparison the algorithm of Secti®nnamedalg_1, exploiting the quasiseparable
representation of the input matrix entries and the algoritti Sectiond, referred to aglg_2,
dealing with the Givens-weight representation of theseienhave been implemented in
MATLAB *. To test the proposed algorithms, first three typical nuoatréxamples taken
from [35] are tested and then more specific test problems are coesiddrhe first three
examples are the following:

1. The Toeplitz matrix (Kac, Murdock and Szed®]) considered is:
T, = (0.57hr

i,j=1-
The corresponding rational function is

oy 0.75
@) = T osna =051

IMATLAB is a registered trademark of The MathWorks, Inc.
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TABLE 5.1
Numerical errors generated kalg 1 for examplel, 2, 3.

n Examplel Example2 Example3
10 1.0x 1075 6.4x10716 1.6x 1017
50 2.0x 10715  12x10"1% 32x10°15
100 4.1x1071% 1.7x1071% 33 x10°1°
500 1.4x1071% 35x1071% 1.0x10"14
1000 23 x107™ 56x107'%  1.6x 1014

TABLE 5.2
Numerical errors generated katg 2 for examplel, 2, 3.

n Examplel Example2 Example3
10 52x 10716 66x10"1® 1.3x10"1
50 1.1x1071%  1.3x1071% 26x1071°
100 1.4x1071  1.2x107% 4.1 x1071®
500 1.7x1071% 41x1071% 82x10-1°
1000 1.6 x 107 4.0x10~1® 1.8x 10715

2. The rational function is

1z) 27235271 4+15—352+ 22
Z) =
a(z)a(z~1) ’

wherea(z) = (1 — 0.1z)(1 — 0.22).
3. The rational function is
28— 22 2 1422 — 224 283
t(z) = :
a(z)a(z=1)

wherea(z) =1 — 0.4z — 0.4722 + 0.2125.

The computed eigenvalues are compared to the exact eigesvaithe matrix’,, which
are computed with the functiosi g in MATLAB. The results of the numerical experiments
of these three examples are shown in Téhleand Table5.2 for algorithmalg_1 andalg_2,
respectively. Specifically, the tables contain the re&agvwrors (in norm) between the com-
puted and exact eigenvalues for the three examples andediiffmatrix sizes. The accuracy
of the two algorithms is comparable, the computed eigemgbre very accurate in all the
cases, and the error increases slightly when the matrixmsizeases.

The previous three examples are simple examples becausalthes forq are small
g =1,2,3, (I = 0,2,3). Therefore other specific problems will be tested. For ejoe
value of ¢, we will distinguish three different cases for the zerostwd polynomiala(z)
(these are the poles ofz)). The polynomiak(z) does not vary in the three cases and its
degree equals the degree of polynomigl) (I = ¢). The zeros of the polynomial are chosen
outside but close to the unit circle in three different wayscasel, the argument of the poles
are normally distributed around the unit circle; in c&esome zeros ofi(z) are clustered
together but there are still zeros at the left of the unitleirand in casa all the zeros are
located at one side of the unit circle. Figuiel shows the localization of the zeros @fz)
ande(z) for ¢ = 6.

The main goal of these numerical experiments is the invastig of the behaviour of
the fast algorithms under less favourable conditions. hti@dar, as an effect of the location
of the poles it is seen that the coefficients of the Laurenaagn of the rational function
1/(a(z)a(z~1) vary much in magnitude. This implies that the inverse of tingy dnatrix [/
in (2.4) can also have a large norm thus yielding a large absolute @rrthe computed
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Imaginary part
o
Imaginary part
Imaginary part

15

0.5 0 05 5 0 05
Real part Real part

(a) Case 1 (b) Case 2 (c) Case 3

5 o 05
Real part

FiIG. 5.1. Localization of the zeros af(z) andc(z) around the unit circle foy = 6. A plus sign denotes a
zero ofa(z), and a circle denotes a zero ofz).

solutionp of the linear system2(3). Suppose thagh — p = §. Then from

p(1/z)  pz) _p(/z)  p(z) | 0(1/z)a(z) +d(z)a(l/z)
a(l/z) * a(z)  a(l/z) * a(z) * a(z)a(1/z) ’

it follows that||Al|, A = T,, — T}, can be large, too. The matrik, denotes the Toeplitz

matrix generated by the perturbed sym%}% + ZE‘;) Specifically, a rough qualitative
estimation says that the perturbation error should be cdroel7) || T, ||, wherex(J ) denotes
the condition number af/, which gives a relative error of ordex 7).

Table5.3-5.8shows the results for three different values of the degreelyinomiala(z)

(¢ = 6,10,20). Each table contains the results for the three differes¢salescribed above
and for different matrix sizes. The condition number of thatrix 7 is also reported in the
bottom row of the tables.

The experimental results displayed in the tables are in gmadrdance with the theo-
retical expectations. Both algorithms are numericallyusttand the condition number of the
matrix 7 gives a good indication of the loss in accuracy in the congatgenvalues. It can
also be seen that the accuracy slightly increases when thiecsize increases.

TABLE 5.3
Numerical errors generated kalg 1 for Exampleg = 6 in the three different cases.

n Casel Case2 Case3
100 29x10 1 25x10 12 68x10 9
500 4.7x1071%  26x10712 7.3x10°
1000 6.8x 107 26x10712 75x107Y
K(T) 5.8 x 100 2.0 x 103 4.4 x 108

TABLE 5.4
Numerical errors generated kalg 2 for Exampleg = 6 in the three different cases.

n Casel Case2 Case3
100 1.3x1075% 78 x10°8 2.0x1077
500 3.1x1071° 86x10713 29x10°
1000 3.1x107'® 1.0x107'2 33x10°
K(T) 5.8 x 100 2.0 x 103 4.4 x 108

6. Conclusion. We introduced two noveD(n?) fast algorithms to reduce anx n sym-
metric rationally generated Toeplitz matrix into tridiagd form by unitary transformations.
Both algorithms rely upon the exploitation of the rank stures of the Toeplitz matrix that
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n Casel Case2 Case3
100 1.7x107% 22x10718 1.1x10°°
500 3.1x1071% 34x10718 1.2x10°°
1000 5.1x107%% 40x1071 1.3x10°°
k(J) 6.6 x10° 2.4 x 103 3.7 x 109

TABLE 5.6

Numerical errors generated talg 2 for Exampleg = 10 in the three different cases.

n Casel Case2 Case3
100 1.1x107 76x10"18 32x10°F
500 23x107' 84x10° ' 45x1076
1000 3.3x1071% 87x10718 49x10°6
k() 6.6 x 109 2.4 x 103 3.7 x 109

TABLE 5.7

Numerical errors generated katg 1 for Exampleg = 20 in the three different cases.

n Casel Case2 Case3
100 1.3x107 57x1071 80x107%
500 4.8x1071% 56x10718  1.3x10°3
1000 53 x1071% 56x10718 14x10°3
k(J)  7.5x 100 1.6 x 10* 1.6 x 1011

TABLE 5.8

Numerical errors generated katg 2 for Exampleg = 20 in the three different cases.

n Casel Case2 Case3
100 1.6x10° 15 1.1x10°13 20x10%
500 3.0x1071® 13x10"18 49x107*
1000 7.5x107%  1.7x107' 6.3 x 107
k(J)  7.5x10° 1.6 x 104 1.6 x 101!

are enlightened by a suitable additive decomposition ofdtienal matrix symbol. The com-
putation of such a decomposition reduces to the solutiomafssociated Jury system. The
two proposed algorithms differ in the choice of the genarati for the rank structures of
the Toeplitz matrices. Numerical experiments show thaptioposed approaches are numer-
ically reliable and, whenever the Jury system is well-ctinded, the error in the computed
eigenvalues is of the order of the norm of the input matrix.
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