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ON THE FAST REDUCTION OF SYMMETRIC RATIONALLY GENERATED
TOEPLITZ MATRICES TO TRIDIAGONAL FORM ∗

K. FREDERIX†, L. GEMIGNANI‡, AND M. VAN BAREL†

Abstract. In this paper two fast algorithms that use orthogonal similarity transformations to convert a symmetric
rationally generated Toeplitz matrix to tridiagonal form are developed, as a means of finding the eigenvalues of the
matrix efficiently. The reduction algorithms achieve cost efficiency by exploiting the rank structure of the input
Toeplitz matrix. The proposed algorithms differ in the choice of the generator set for the rank structure of the input
Toeplitz matrix.
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1. Introduction. The design of fast algorithms for Toeplitz matrices is a wide, active
research field in structured numerical linear algebra. One of the most fruitful ideas relies
upon the exploitation of the relationships between the properties of Toeplitz matrices and
Laurent series, whose domain is the unit circle in the complex plane. An up-to-date survey
of this beautiful mathematical theory can be found in [6]. For a given complex function
f(z) =

∑+∞
j=−∞ tjz

j defined for|z| = 1 we denoteTn = (tj−i)
n
i,j=1 then × n Toeplitz

matrix generated by the functionf(z), known as thesymbolof Tn, n ≥ 1. The representation
of a Toeplitz matrix by its symbol is a way to capture the structure which enables the initial
matrix problem to be recast into a functional setting.

The knowledge of the eigenvalues and the singular values of Toeplitz matrices is of con-
siderable interest in many applications, especially time series analysis and signal processing;
see [35, 36, 37] and the references given therein. Efficient algorithms have been devised for
Hermitian Toeplitz matrices generated by a Laurent polynomial or a rational function.

The methods by Trench [34, 33] and by Bini, Pan and Di Benedetto [4, 3, 5] employ the
specific form of the generating function to efficiently evaluate the characteristic polynomial
pn(z) = det(zI − Tn) and/or the Newton ratiopn(z)/p′n(z). The resulting methods are
suited for the computation of a few selected eigenvalues ofTn.

Alternatively, the eigenvalue algorithms proposed in [1, 27] and [15] for banded and
rationally generated symmetric Toeplitz matrices, respectively, can be used to compute the
whole eigensystem ofTn. Here the approach is to find an approximation of the input Toeplitz
matrix Tn in a certain algebra of matrices that are simultaneously diagonalized by a fast
trigonometric transform. In the rational case the eigenproblem forTn is thus converted to a
generalized eigenproblem for the matrix pencilH

(1)
n + Z

(1)
n − z(H

(2)
n + Z

(2)
n ), where for

i = 1, 2, H(i)
n belongs to the considered matrix algebra andZ

(i)
n is of small rank. By similar-

ity the pencil is further transformed into the modified formD(1)
n + Ẑ

(1)
n − z(D

(2)
n + Ẑ

(2)
n ),
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where fori = 1, 2, D
(i)
n is diagonal andrank(Ẑ

(i)
n ) = rank(Z

(i)
n ).

The latter (generalized) eigenproblem can be addressed by performing a sequence of
successive rank-one updates. The eigensystem of a matrix (pencil) modified by a rank-one
correction is obtained by solving the associatedsecular equation[24, 7]. The caveat of this
strategy is that at each step the complete eigensystem of theunperturbed matrix (pencil) is
required. It is well known [25, 41] that computing the eigenvectors of a matrix can be prone
to numerical instabilities and ill-conditioning problemseven if the matrix is Hermitian. For
this reason, the method is not recommended whenever only theeigenvalues ofTn are sought.
If, otherwise, we are interested in computing both the eigenvalues and the eigenvectors ofTn

then special techniques such as in [26] should be considered in the practical implementation
of the updating process.

In this paper we propose a novel eigenvalue algorithm for symmetric rationally gen-
erated Toeplitz matrices based on the matrix technology forrank-structuredmatrices. The
systematic study of this class of structured matrices was initiated in [19, 20, 21, 22], in the
monograph [14] and in [38]. The interested reader can consult the books [39, 40] for more de-
tails concerning rank structured matrices. The approximate rank-structure of general Toeplitz
matrices has been investigated in [30, 42, 31] for the purpose of finding efficient direct and
iterative linear solvers.

First, the interplay between Toeplitz matrices and Laurentseries is used to establish the
exact rank structure of rationally generated Toeplitz matrices. Then, we develop efficient al-
gorithms to compute thegeneratorsof the rank structure from the coefficients of the Laurent
polynomials defining the rational symbol. Two generator sets associated with two different
representations of the rank structures are specifically analyzed. Finally, we adapt the al-
gorithms developed in [8, 18] and [12] to efficiently transform by similarity the symmetric
Toeplitz matrix represented in condensed form via the generators of its rank structure into
a tridiagonal form. Efficient available QR implementationscan be used to compute all the
eigenvalues of a Hermitian tridiagonal matrix usingO(n2) flops.

The complexity of our composite eigensolvers depends on thesizen of the matrix and
on its rank structure. It is shown that the rank structure canbe specified byO(n · g(l, m))
parameters, wherel andm denote the degrees of the numerator and the denominator of the
symbol, respectively, andg(x, y) is a polynomial of low degree independent ofn, l andm. If,
as is usual in applications,n≫ max{l, m} then the overall cost of our eigenvalue algorithms
is O(n2). Furthermore, all the computations are carried out using unitary transformations
and, therefore, the algorithms are both fast and numerically robust.

The paper is organized as follows. In Section2, we provide a description of the rank
structure of symmetric rationally generated Toeplitz matrices. In Section3, we develop fast
algorithms to compute a condensed representation for this structure and to transform by uni-
tary similarity the input Toeplitz matrix represented via its generators into a tridiagonal form.
In Section4, an alternative tridiagonalization procedure dealing with a different generator
set is presented. In Section5, we discuss the practical implementation of our eigenvalue
algorithms and report the results of numerical experimentsand comparisons. Finally, our
conclusions are stated in Section6.

2. Rank structure of symmetric rationally generated Toeplitz matrices. Let

a(z) = a0 + a1z + . . . + aqz
q, c(z) = clz

−l + . . . + c1z
−1 + c0 + c1z + . . . + clz

l,

be two real Laurent polynomials, wherea0, . . . , aq andc0, . . . , cl are real,aq, cl 6= 0, and,
moreover,a(z) has no zeros in|z| ≤ 1. Then the rational function

t(z) =
c(z)

a(z)a(1/z)
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admits a Laurent expansion

t(z) =

∞∑

j=−∞

t|j|z
j, tj ∈ R,

in an open annulus around the unit circle in the complex plane[28].
Here we investigate the rank structure of the symmetric rationally generated Toeplitz

matrices

Tn =





t0 t1 . . . tn−1

t1
. . .

. . .
...

...
. . .

. . . t1
tn−1 . . . t1 t0




∈ R

n×n,

for increasingn.
The first result gives a useful decomposition oft(z) as considered in [16]. For the sake

of simplicity, in the sequel a (Laurent) polynomial of negative degree is understood to be the
zero polynomial and, similarly, a banded matrix with negative bandwidth reduces to the zero
matrix.

THEOREM 2.1. There exist a polynomialp(z) of degree at mostq and a symmetric
Laurent polynomials(z) of degree at mostl − q such that

(2.1) c(z) = s(z)a(z)a(1/z) + p(1/z)a(z) + p(z)a(1/z),

which implies

(2.2) t(z) =
c(z)

a(z)a(1/z)
= s(z) +

p(1/z)

a(1/z)
+

p(z)

a(z)
.

Proof. We first determine s(z) =
∑l−q

i=q−l s|i|z
i by imposing that

q(z) = c(z) − s(z)a(z)a(1/z) has degree less than or equal toq. Fromaq, a0 6= 0 it fol-
lows thata(z)a(1/z) =

∑q
i=−q γ|i|z

i is a symmetric Laurent polynomial of degree exactly
q, that is,γq 6= 0. The condition on the degree ofq(z) =

∑q
i=−q β|i|z

i is then equivalent to
determinings1, . . . , sl−q to satisfy the invertible triangular linear system





γq

γq−1
. . .

...
. . .

. . .
γ2q+1−l . . . γq−1 γq








sl−q

...
s1



 =




cl

...
cq+1



 .

Now observe that the computation ofp(z) = p0 + p1z + . . . + pqz
q is reduced to solving the

linear system

(2.3) J p = β, pT = [p0, . . . , pq], βT = [β0, . . . , βq],

whereJ ∈ R(q+1)×(q+1) is the Toeplitz-plus-Hankel matrix defined by

(2.4) J =





a0 . . . . . . aq

. . .
...

. . .
...

a0




+





a0 . . . . . . aq

... . .
.

... . .
.

aq




.
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Since all the zeros ofa(z) have modulus greater than 1 it can be shown [13] thatJ is invert-
ible and thereforep is uniquely obtained from (2.3).

The additive decomposition (2.2) of the symbolt(z) yields additive decompositions for
the Toeplitz matricesTn, n ≥ 1, which can be used to establish their rank structures. To
be precise, for any given pair of natural numbersl ≤ n and m ≤ n let us denote by
Fl,m,n ⊂ Cn×n the class ofn × n rank structured matricesA = (ai,j) ∈ Cn×n satisfy-
ing the rank constraints

(2.5) max
1≤k≤n−1

rankA(k + 1: n, 1: k) ≤ l, max
1≤k≤n−1

rankA(1 : k, k + 1: n) ≤ m,

whereB(i : j, k : l) is the submatrix ofB with entries having row and column indices in the
rangesi throughj andk throughl, respectively.

THEOREM 2.2. For anyn ≥ 1, we have

(2.6) Tn = Sn + Qn,

where Sn is a symmetric banded Toeplitz matrix with bandwidth at mostl − q and
Qn ∈ Fq,q,n. Whence, it follows thatTn ∈ Fm′,m′,n with m′ = max{l, q}.

Proof. We can assume thatdeg(p(z)) < deg(a(z)). If, otherwise,
deg(p(z)) = deg(a(z)) = q, we can consider̂p(z) = p(z) − δa(z) with δ determined
so thatdeg(p̂(z)) < q. Moreover, let us suppose that the zerosµ1, . . . µq of a(z) are all
distinct. Then the partial fraction decomposition ofp(z)/a(z) gives

p(z)

a(z)
=

q∑

i=1

ρi

z − µi
.

Since|µi| > 1 it follows that
ρi

z − µi
has a convergent Taylor series expansion in an open

disk centered at the origin of radius greater than 1. By straightforward calculations we obtain

that the rationally generated Toeplitz matrix with symbol
ρi

z − µi
is an upper triangular ma-

trix belonging toF0,1,n. The proof is then completed by invoking a continuity argument to
eliminate the conditions on the zeros ofa(z) being distinct.

It is worth noting that from the proofs of Theorems2.1and2.2 it follows that the addi-
tive decomposition (2.6) is essentially unique in the sense that bothSn andQn are uniquely
defined up to a diagonal correction which does not affect their rank structures. In the next
sections the properties of this decomposition are exploited in order to design a fast and nu-
merically robust tridiagonalization procedure for the matrix Tn.

3. Condensed representation ofTn. A basic preliminary step in the efficient reduction
of symmetric rationally generated Toeplitz matrices into tridiagonal form is the computation
of a condensed representation of the matrix entries, i.e., the coefficients of the associated
symbol, according to the rank-structure-revealing decomposition stated in Theorem2.2. The
desired quadratic cost of the tridiagonalization scheme isachieved by working directly on
this representation rather than on the input data. The rationale is that, unlike the Toeplitz-like
structure, the rank structure is maintained during the process so that the amount of work does
not increase significantly.

Let us assume that the rational symbolt(z) is given in the form (2.2) specified by the
polynomialss(z), a(z) andp(z). Note that if we knowq = deg(a(z)), then these polynomi-
als can be computed from the coefficients of the Laurent series of t(z) in O(l2 + q2) flops.
The matrixSn is a symmetric banded Toeplitz matrix of bandwidthl − q and, therefore, it
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can be specified compactly by its matrix entries, that is, thecoefficients ofs(z). In this and
the next section we design algorithms that compute a parameterization for the rank structured
matrixQn based on the knowledge ofa(z) andp(z). Adding these two representations yields
the input description for the matrixTn which is modified in the tridiagonalization process.

For the sake of notational simplicity here and hereafter we restrict ourselves to the case
l ≤ q, meaning thatQn and Tn can only differ from the elements on the diagonal, that
is, Tn = αIn + Qn, n ≥ 1. The general case can be treated similarly with just some
technical modifications. To representQn, there are several possibilities. We can use the
quasiseparable [20], the Givens-weight or the unitary-weight representation[11]. Once this
representation is obtained, several algorithms can be usedto solve the corresponding system
of linear equations [22, 10] or to solve the eigenvalue problem [23, 9, 18, 12]. Solving the
linear system can be performed inO(q2n) flops. Solving the eigenvalue problem can be done
in several ways, e.g., one can directly use theQR-algorithm on the rank structured matrix
Qn or one can transformQn into an orthogonally similar Hessenberg (and by symmetry
tridiagonal) matrix. The reduction into a tridiagonal matrix requiresO(qn2) flops.

In this section, we describe a tridiagonalization algorithm exploiting the quasisepara-
ble representation ofQn, whereas, in the next section an alternative approach basedon the
Givens-weight parametrization is presented.

3.1. The quasiseparable representation.LetTa, Tp denote the lower triangular Toeplitz
matrices (of size as appropriate in the equations) corresponding to the polynomialsa(z) and
p(z) respectively. Then we can expressQn as follows [17]:

(3.1) Qn = T−1
a Tp + T T

p T−T
a .

Note that the first term is a lower triangular Toeplitz matrixand the second term is its trans-
pose.

A representation for the rank structure ofQn can be easily obtained by partitioningTa

andTp in block bidiagonal form. Suppose thatn = m · q + k, 0 ≤ k < q. The block
partitioning ofTa andTp is

Ta =





Â0

−Â−1 A0

−A−1
. . .
. . .

. . .
−A−1 A0




, Tp =





B̂0

B̂−1 B0

B−1
. . .
. . .

. . .
B−1 B0




,

whereÂ0, B̂0 ∈ R
k×k, Â−1, B̂−1 ∈ R

q×k, Aj , Bj ∈ R
q×q, j = 0,−1, and

A0 =





a0

a1 a0

...
. . .

. . .
aq−1 . . . a1 a0




, B0 =





p0

p1 p0

...
. . .

. . .
pq−1 . . . p1 p0




,

A−1 = −





aq aq−1 . . . a1

. . .
. . .

...
aq aq−1

aq




, B−1 =





pq pq−1 . . . p1

. . .
. . .

...
pq pq−1

pq




,
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and

Â0 = A0(1 : k, 1: k), B̂0 = B0(1 : k, 1: k),

Â−1 = A−1(1 : q, q − k + 1: q), B̂−1 = B−1(1 : q, q − k + 1: q).

Let Fa ∈ Rq×q be the companion matrix associated withzqa(z−1), i.e.,

FT
a =





−a1/a0 −a2/a0 . . . −aq/a0

1 0 . . . 0
. . .

. . .
...

1 0




.

From Barnett’s factorization [2], it follows that

A−1 · A
−1
0 = F q

a .

Since the spectral radius ofF q
a is less than 1, the power sequence of the matrix tends to zero.

Let ∆ = Â−1Â
−1
0 ∈ Rq×k. The inverse ofTa is the block matrix given by

T−1
a =





Â−1
0

A−1
0 ∆ A−1

0

A−1
0 F q

a ∆ A−1
0 F q

a

. . .
...

...
. . .

. . .

A−1
0 F

(m−1)q
a ∆ A−1

0 F
(m−1)q
a . . . A−1

0 F q
a A−1

0





.

Therefore, by using (3.1) we arrive at the following block condensed representationof Qn.
THEOREM 3.1. The symmetric Toeplitz matrixQn defined by(3.1) can be partitioned

in a block formQn = (Q
(n)
i,j )m+1

i,j=1, whereQ
(n)
i,j ∈ Rni×nj , n1 = k, n2 = . . .m = q,

Q
(n)
i,j = Qj−i for j ≥ i ≥ 2, and

Q
(n)
i,j =

{
A−1

0 · F
q(i−2)
a · Γ

(n)
0 , if i ≥ 2, j = 1;

A−1
0 · F

q(i−j−1)
a · Γ1, if i− j ≥ 1, j ≥ 2,

where

Γ
(n)
0 = ∆B̂0 + B̂−1, Γ1 = F q

a B0 + B−1.

Representations of this form for rank structured matrices have been introduced in [14, 20]
in the framework ofquasiseparablematrices and matrices with smallHankel rank. In order
to merge the rank structures ofQn andSn, we find a suitable decomposition ofQn by per-
forming a step of block Neville elimination. LetBn be the block lower bidiagonal matrix
partitioned commensurable withQn and defined by

Bn =





Ik

Iq

−Σ
. . .
. . .

. . .
−Σ Iq




, Σ = A−1

0 F q
a A0.
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Then we have the following theorem.
THEOREM 3.2. The matrixPn = Bn ·Qn ·B

T
n is a symmetric block tridiagonal matrix

with subdiagonal blocks

P
(n)
2,1 = Q

(n)
2,1 , P

(n)
i+1,i = PT

1 = QT
1 − ΣQ0, 2 ≤ i ≤ m,

and diagonal blocks

P
(n)
1,1 = Q

(n)
1,1 , P

(n)
2,2 = Q

(n)
2,2 = Q0,

and

P
(n)
i,i = P0 = Q0 + ΣQ0Σ

T − ΣQ1 −QT
1 ΣT , 3 ≤ i ≤ m + 1.

From this theorem we conclude that

(3.2) Tn = B−1
n · (Pn + αBn · B

T
n ) ·B−T

n = B−1
n · Zn ·B

−T
n ,

where the “middle” factor

Zn = Pn + αBn · B
T
n

is a banded matrix with bandwidth2q − 1 at most. In the next subsection we exploit this
representation ofTn for the design of an efficient tridiagonalization procedure. Note that
whenl > q the “middle” factorZn = Pn + BnSnBT

n is a banded matrix with bandwidth
q + l − 1 at most.

3.2. Tridiagonal reduction algorithm. In this section we describe a fast block algo-
rithm for reducingTn into tridiagonal form by unitary transformations. In principle the reduc-
tion may be carried out using the scalar algorithm given in [18] for rank structured matrices
represented in quasiseparable form. The efficiency could befurther improved by adjusting
the algorithm to work directly with block rather than scalarquasiseparable representations,
similarly to the approach followed in [21] for the QR factorization of rank structured ma-
trices. Although the generalization is possible, the form (3.2) of Tn suggests the use of a
different block reduction scheme related to the scalar technique proposed in [8].

The building blocks of the tridiagonalization procedure are the QR factorization of small
matrices of sizeO(q) and standard bulge-chasing schemes for banded reduction [32]. Let

B−1
n = B

(0)
n andZn = Z

(0)
n . Moreover, letU (1) ∈ R

2q×2q be an orthogonal matrix deter-
mined to satisfy

U (1)T
=

[
U

(1)
1,1 U

(1)
1,2

U
(1)
2,1 U

(1)
2,2

]
, U (1)T

[
Iq

Σ

]
=

[
R(1)

0

]
,

whereU
(1)
1,1 , U

(1)
2,2 ∈ Rq×q andR(1) ∈ Rq×q is upper triangular. It is immediately seen that

the block Givens-like matrix

G(1) = I(m−2)q+k ⊕ U (1)T

is such that

G(1) ·B(0)
n =





Ik

B
(0)
n (k + 1: (m− 2)q, k + 1: (m− 2)q)

Σm−2R(1) . . . . . . . . . . . . ΣR(1)

0 . . . . . . . . . . . . 0

R(1) U
(1)
1,2

0 U
(1)
2,2





.
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The matrix on the right-hand side can be rewritten as





Ik

B(0)
n (k+1: (m−2)q,k+1: (m−2)q)

Σm−2R(1) ... ...... ... ΣR(1)

0 ... ...... ... 0
I2q




· (I(m−2)q+k ⊕

[
R(1) U

(1)
1,2

0 U
(1)
2,2

]
).

Set

B(1)
n =





Ik

B
(0)
n (k + 1: (m− 2)q, k + 1: (m− 2)q)

Σm−2R(1) . . . . . . . . . . . . ΣR(1)

0 . . . . . . . . . . . . 0
I2q




,

and

Z(1)
n = (I(m−2)q+k ⊕

[
R(1) U

(1)
1,2

0 U
(1)
2,2

]
) · Z(0)

n · (I(m−2)q+k ⊕

[
R(1) U

(1)
1,2

0 U
(1)
2,2

]
)T .

It is found thatZ(1)
n is still block tridiagonal.

Now letU (2) ∈ R2q×2q be the orthogonal matrix determined to satisfy

U (2)T =

[
U

(2)
1,1 U

(2)
1,2

U
(2)
2,1 U

(2)
2,2

]
, U (2)T

[
Iq

R(1)Σ

]
=

[
R(2)

0

]
,

whereR(2) ∈ Rq×q is upper triangular. Let us define the block Givens-like matrix G(2) by

G(2) = I(m−3)q+k ⊕ U (2)T
⊕ Iq.

Observe that

G(2) ·B(1)
n =





Ik

B(0)
n (k+1: (m−3)q,k+1: (m−3)q)

Σm−3R(2) ... ...... ... ΣR(2)

0 ... ...... ... 0

R(2) U
(2)
1,2

0 U
(1)
2,2

Iq





.

Again we can write

G(2) ·B(1)
n = B(2)

n · (I(m−3)q+k ⊕

[
R(2) U

(2)
1,2

0 U
(2)
2,2

]
⊕ Iq),
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where

B(2)
n =





Ik

B
(0)
n (k + 1: (m− 3)q, k + 1: (m− 3)q)

Σm−3R(2) . . . . . . . . . . . . ΣR(2)

0 . . . . . . . . . . . . 0
... . . . . . . . . . . . .

...

I3q





.

Set

Z(2)
n = (I(m−3)q+k ⊕

[
R(2) U

(2)
1,2

0 U
(2)
2,2

]
⊕ Iq) ·Z

(1)
n · (I(m−3)q+k ⊕

[
R(2) U

(2)
1,2

0 U
(2)
2,2

]
⊕ Iq)

T .

As a result of these matrix multiplications the block tridiagonal structure ofZ(1)
n is destroyed.

Specifically, we have that

Z(2)
n ((m− 3)q + k : n, (m− 3)q + k : n) =





Z
(2)
m−1,m−1 Z

(2)
m,m−1

T
Z

(2)
m+1,m−1

T

Z
(2)
m,m−1 Z

(2)
m,m Z

(2)
m+1,m

T

Z
(2)
m+1,m−1 Z

(2)
m+1,m Z

(2)
m+1,m+1



 ,

that is, a bulge in position(m+1, m−1) and its symmetric analogue in position(m−1, m+1)
appear. To chase away this bulge we can determine an orthogonal matrix W (1) ∈ R

2q×2q

such that the matrix

W (1)T

[
Z

(2)
m,m−1 Z

(2)
m,m

Z
(2)
m+1,m−1 Z

(2)
m+1,m

]

is upper triangular. Then the transformation

Z(2)
n ← (I(m−2)q+k ⊕W (1)T

) · Z(2)
n · (I(m−2)q+k ⊕W (1))

is used to restore the block tridiagonal structure ofZ
(2)
n . It is worth noting thatB(2)

n and
(I(m−2)q+k ⊕ W (1)) commute so that the process can continue in a similar fashion. The
overall complexity isO(m2q3) = O(n2q) flops.

4. An alternative approach. In this section, an alternative method for reducingQn

into tridiagonal form by unitary transformations is described. The proposed approach relies
upon the construction of a Givens-weight representation for the rank structured matrixQn

based on the knowledge ofa(z) andp(z); see equation (3.1). In the following subsections,
the algorithm that computes a Givens-weight representation for the rank structured matrix
Qn based on the knowledge ofa(z) andp(z), and the algorithm to bring the matrix into
Hessenberg form is explained.

4.1. Givens-weight representation.A rank structured matrix can be represented by a
Givens-weight representation. It is a compact internal representation which consists of a
sequence of Givens arrows which have widthr (this means that the Givens arrow consists
of r Givens transformations, withr the rank of the structure blocks), and a weight matrix
containing compressed information about the elements in the rank structure. The weights are
stored during this process of determining the sequence of Givens arrows.
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(a) (b)

FIG. 4.1. Example of a Givens-weight representation: (a) the rank structure, (b) the corresponding Givens-
weight representation.

Figure4.1(a)shows an example of the kind of rank structured matrix which is considered
in this paper. Figure4.1(b) shows the corresponding Givens-weight representation of the
rank structured matrix. At the left the arrows denote the Givens arrows (consisting ofr
Givens transformations, in this caser = 2), and the elements in gray denote the weights.
The representation is internal. Therefore elements outside the rank structure are not touched.
For a more detailed description about the computation of such a compact representation the
interested reader is referred to [11].

Computing a Givens-weight representation forQn consists of finding a sequence of
Givens arrows whose product is the orthogonal matrixQ such that

QT Qn = Rq,

with Rq a lower banded matrix withq subdiagonals. It is important to see now that applying
an orthogonal transformationQT to the rows ofQn is the same as applyingQ to the columns
of Ta in the first term and to the columns ofTp in the second term in (3.1), i.e.,

(4.1) QT Qn = (TaQ)−1Tp + (TpQ)T T−T
a .

The matrixQ is the product of a sequence of Givens arrows which consist ofq Givens trans-
formations where each Givens arrow works from right to left on the columns of the matrix and
makes a subdiagonal ofTa zero. It can be shown thatTaQ is a nonsingular upper triangular
matrix (havingq nonzero superdiagonals) whileTpQ is a banded matrix havingq superdiag-
onals. Therefore(TaQ)−1Tp hasq subdiagonals and(TpQ)T T−T

a hasq subdiagonals. The
sequence of Givens arrows consisting ofq Givens transformations is the Givens-part of the
Givens-weight representation.

The Givens transformations and the weights are determined in the same order as when
computing a Givens-weight representation, meaning going from the bottom to the top of the
structure. Instead of working on the matrixQn, we will work on the matrixTa by making it
upper triangular to determine the weights. The algorithm isexplained for a7× 7 matrix with
q = 2. This is shown in Figure4.2.

In fact, the algorithm only requires the information of the first termT−1
a Tp because the

second term describes the upper triangular part ofQn. But for completeness the result of
the actions of the algorithm on the matrixQn and the second termT T

p T−T
a are also shown.

The bold box inQn denotes the weights which we want to compute or which alreadyhave
been computed. In the other matrices (the sum), it denotes the elements we have to compute
to obtain the weights. Note thatTa, T T

a is represented as a matrix in the figures and not
T−1

a , T−T
a , respectively.

Before we can start to makeTa upper triangular, the weights of the bottomq blocks are
computed, denoted in the bold box inQn in Figure4.2(a). These elements lie inside the rank
structure, but no Givens transformations will act on them, so the real elements will be stored.
To compute these elements, only information of the elementsin the two bold boxes of the
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Qn Tp TpTa
−1 Ta

−T

=

−1−1

+

T

(a) Computation of the weights of the bottomq blocks.

=

−1−1

+

(b) Making the bottom row ofTa upper triangular.

=

−1−1

+

(c) Computation of the weight of theq + 1 structure block.

FIG. 4.2.Computation of the weights.

termT−1
a Tp is required; see Figure4.2(a). The product of the bold boxes in the second term

will give an upper triangular matrix, so this cannot be of anyinfluence on the elements which
we want to compute.

To compute these weights, the elements of a submatrix of size(q + 1)× (q + 1) of T−1
a

are required. Let us represent the whole lower block triangular matrixTa and its inverse by

Ta =

[
A 0
B C

]
, T−1

a =

[
A−1 0

−C−1BA−1 C−1

]
,

with A ∈ C(n−q−1)×(n−q−1), B ∈ C(q+1)×(n−q−1) andC ∈ C(q+1)×(q+1). Matrix C−1 is
the submatrix (denoted in the bold box in the first term of Figure4.2(a)) we need to compute
the weights. Instead of inverting the whole matrixTa, only the inversion of a small submatrix
is necessary. The weights of theq bottom structure blocks are obtained by multiplying the
inverse ofC with the corresponding columns ofTp. This is shown in Figure4.2(a). This step
is a preparation step because no Givens transformations were computed.

Now the actual construction of the Givens-weight representation is explained. In general,
the matrixTa will be successively made upper triangular by applying Givens transformations
and the corresponding weights will be computed. The processstarts with creating zeros in a
specific row ofTa (this row corresponds to the row in the matrixQn, where we want to create
zeros) by applyingq Givens transformations to the columns of this matrix. To be complete,
the transposed Givens transformations have to be applied tothe matrixQn and also to the
second term; this is shown in Figure4.2(b)(gray elements denote compressed elements). It
is considered that the transposed Givens transformation onQn is only applied to the columns
inside the rank structure. This limited number of columns iscalled the action radius of the
Givens transformation. The action radius is denoted with a bold line in Figure4.2(b).

Now it is possible to compute the weight of the structure block. This time the second
term also has no influence on the weight. To compute the weight, the inverse of a submatrix
of TaQ1 (Q1 is the product of theq Givens transformations already applied to the columns
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FIG. 4.3.Givens-weight representation forQn.

of the matrix) of size(q + 1)× (q + 1), C, is needed.TaQ1 is upper block triangular and we
represent the matrix and its inverse as follows:

TaQ1 =




A 0 0
B C D
0 0 E



 , (TaQ1)
−1 =




A−1 0 0

−C−1BA−1 C−1 −C−1DE−1

0 0 E−1



 ,

with A ∈ C(n−q−2)×(n−q−2), B ∈ C(q+1)×(n−q−2), C ∈ C(q+1)×(q+1), D ∈ C(q+1)×1 and
E ∈ C. Only the inverse of the small matrixC, of size(q+1)×(q+1), is required to compute
the weight. When this inverse is computed, it can be multiplied with the corresponding
column ofTp to obtain the weight of the structure block; see Figure4.2(c).

This process of making a row ofTa upper triangular and then computing the weight by
inverting a small submatrix of sizeq+1×q+1 and multiplying it to the corresponding column
of Tp is continued until all the weights of the blocks in the rank structure are computed. After
each step, the bold box inT−1

a Tp will move up along the diagonal by one element. The result
of the algorithm is shown in Figure4.3. Theq Givens transformations which belong to one
weight are represented by a Givens arrow of widthq.

4.2. Tridiagonal reduction algorithm. The next step is to reduce the rank structured
matrix with the corresponding Givens-weight representation into a Hessenberg (and by sym-
metry tridiagonal) matrix. To do this the method to transform a given matrix with a Givens-
weight representation into a Hessenberg matrix discussed in [12] is simplified. In [12], the
given Givens-weight representation is transformed into a zero-creating Givens-weight repre-
sentation and then the matrix is brought in Hessenberg form by peeling off the tails of the
Givens transformations meanwhile making the structure blocks one-by-one upper triangular,
or in other words, bringing the columns in Hessenberg form.

In this paper, the transformation to a zero-creating Givens-weight representation is omit-
ted and the process is not going to peel off the tails of the Givens transformations. The process
is split into two parts: in the first part the precomputed Givens arrows are applied outside the
rank structure and in the second part the matrix is brought into Hessenberg form.

During the first part, the precomputed Givens transformations are applied in the same or-
der as when constructing the Givens-weight representation(§4.1) to the elements outside the
rank structure. This means that the Givens transformationsare applied successively outside
their action radii. During the second part, each column is brought into Hessenberg form by
applying a Householder transformation. Also the symmetry of the matrix will be exploited.

The initial situation of the algorithm is shown in Figure4.3(this is the end situation of the
construction of the Givens-weight representation). For each weight, there areq precomputed
Givens transformations. These are combined in a Givens arrow of width q, and each Givens
arrow has a specific action radius. The algorithm applies thecomputed Givens arrows of the
Givens-weight representation successively to the elements outside the rank structure (or in
other words, outside the action radius) in the same order as they were computed. In order to
preserve the eigenvalue spectrum, the transposes of the Givens transformations are applied to
the columns.
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(a) (b) (c) (d)

FIG. 4.4. Exploiting symmetry. (a) Compute the required superdiagonal element, and fill it in into the weight
matrix, (b) Apply the current Givens transformation to the rows, (c) Apply the transposed Givens transformation to
the columns, (d) The current superdiagonal element has no role anymore, and therefore it is removed from the weight
matrix.

In Figure4.4, the exploitation of the symmetry is explained. Only the diagonal and the
q subdiagonals are considered, since the rest is known by symmetry. The first Givens arrow
is decomposed into itsq Givens transformations. When we want to apply the current Givens
transformation (denoted in bold) to the rows, the corresponding superdiagonal element has to
be computed (by symmetry) and has to be filled in into the weight matrix. This is shown in
Figure4.4(a).

Then the Givens transformation can be applied outside the action radius until the column
of the added superdiagonal element; see Figure4.4(b). Notice that after this the top element
of the corresponding weight element is turned from gray to white; see Figure4.4(c). This
weight element is “completely released”, meaning that no more Givens transformations act
on it (the other Givens transformations have smaller actionradii). To complete the similarity
transformation, the transposed Givens transformation hasto be applied to the columns; see
Figure4.4(c). Now the superdiagonal element has no role anymore, therefore it is removed
from the weight matrix; see Figure4.4(d).

The same principle as explained in Figure4.4 is used during the whole algorithm. So,
the same principle is done for the second Givens transformation of the first Givens arrow.
The result is shown in Figure4.5(a). Notice that after the application of the Givens arrow, the
corresponding weight is “completely released”.

Starting from Figure4.5(a), the flow of the algorithm is explained. Apply theq Givens
transformations of the current Givens arrow outside their action radius, as explained in Fig-
ure4.4(this is shown in Figure4.5(a)- 4.5(b)). Notice that when this is done, the matrix has
no q subdiagonals anymore, and some fill-in elements appear in the matrix. This is shown in
Figure4.5(b). The next step is to remove these fill-in elements (in Figure4.5(b)there is only
one fill-in element located at position(7, 4)) by applying Givens transformations to create
again a matrix withq subdiagonals. Because of similarity reasons, the transposed Givens
transformation is also applied to the columns. This processis shown in Figure4.5(c)-4.5(d).

This process of applying the Givens transformations outside the rank structure and re-
moving the fill-in elements is continued until all the Givensarrows are applied outside their
action radius. At the end, a matrixR = QQnQH with q subdiagonals is obtained. Then the
matrixR + αI has to be transformed into a Hessenberg (or by symmetry tridiagonal) matrix.

Note that whenl > q the matrixSn has to be updated under the action of the Givens
transformations of the Givens-weight representation ofQn: S = QSnQH . The matrixS is a
matrix with l subdiagonals. The sum of the two matricesR andS results in a matrix withl
subdiagonals which has to be transformed into a Hessenberg matrix.

To bring the matrix into Hessenberg form the columns are brought one-by-one into Hes-
senberg form, this time starting at the top of the structure.Again the symmetry is exploited.
Figure4.6(a)gives the matrix when the first column has already been brought into Hessen-
berg form. This is done by applying a Householder transformation. Notice that there is a
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(a) (b) (c) (d)

FIG. 4.5.Process to apply the Givens transformation outside the rankstructure. (a) Apply the current Givens
transformation to the rows and the transposed Givens transformation to the columns, remove the current superdiag-
onal element, (b) Apply the current Givens transformation to the rows and the transposed Givens transformation to
the columns, remove the current superdiagonal element, (c)Remove the fill-in element by applying a Givens trans-
formation to the rows and also the transposed Givens transformation to the columns, (d) The matrix has againq

subdiagonals. The next Givens transformation can be applied.

(a) (b) (c) (d)

FIG. 4.6.Process to bring the matrix into Hessenberg form. (a) First column has been brought in Hessenberg
form, (b) Apply Givens transformation to make block upper triangular, (c) Apply the transposed Givens transforma-
tion to the columns, (d) Remove superdiagonal element, notice that there has been some fill in.

fill-in element in position(5, 2).
Now the second Householder transformation has to be appliedfor bringing the second

column into Hessenberg form (second structure block has to become upper triangular). Be-
fore this can be done some superdiagonal elements have to be added; see Figure4.6(b). To
complete the similarity transformation the Hermitian transposed operation has to be applied
to the columns; see Figure4.6(c). After this there will be fill-in elements in columns3 and4;
see Figure4.6(d). These will be removed when the next column is brought into Hessenberg
form by applying another Householder transformation.

This process is continued until the Hessenberg form is obtained. Now efficient algorithms
can be used to compute the eigenvalues of the matrix.

5. Numerical results. To check the accuracy and the numerical stability of the proposed
fast tridiagonalization algorithms, we have performed several numerical experiments. For the
sake of comparison the algorithm of Section3, namedalg 1, exploiting the quasiseparable
representation of the input matrix entries and the algorithm of Section4, referred to asalg 2,
dealing with the Givens-weight representation of these entries have been implemented in
MATLAB 1. To test the proposed algorithms, first three typical numerical examples taken
from [35] are tested and then more specific test problems are considered. The first three
examples are the following:

1. The Toeplitz matrix (Kac, Murdock and Szegö [29]) considered is:

Tn = (0.5|i−j|)n
i,j=1.

The corresponding rational function is

t(z) =
0.75

(1 − 0.5z)(1− 0.5z−1)
.

1MATLAB is a registered trademark of The MathWorks, Inc.
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TABLE 5.1
Numerical errors generated byalg 1 for example1, 2, 3.

n Example1 Example2 Example3
10 1.0 × 10−15 6.4 × 10−16 1.6 × 10−15

50 2.0 × 10−15 1.2 × 10−15 3.2 × 10−15

100 4.1 × 10−15 1.7 × 10−15 3.3 × 10−15

500 1.4 × 10−14 3.5 × 10−15 1.0 × 10−14

1000 2.3 × 10−14 5.6 × 10−15 1.6 × 10−14

TABLE 5.2
Numerical errors generated byalg 2 for example1, 2, 3.

n Example1 Example2 Example3
10 5.2 × 10−16 6.6 × 10−16 1.3 × 10−15

50 1.1 × 10−15 1.3 × 10−15 2.6 × 10−15

100 1.4 × 10−15 1.2 × 10−15 4.1 × 10−15

500 1.7 × 10−15 4.1 × 10−15 8.2 × 10−15

1000 1.6 × 10−15 4.0 × 10−15 1.8 × 10−15

2. The rational function is

t(z) =
z−2 − 3.5z−1 + 1.5− 3.5z + z2

a(z)a(z−1)
,

wherea(z) = (1− 0.1z)(1− 0.2z).
3. The rational function is

t(z) =
z−3 − z−2 + 2z−1 + 1 + 2z − z2 + z3

a(z)a(z−1)
,

wherea(z) = 1− 0.4z − 0.47z2 + 0.21z3.
The computed eigenvalues are compared to the exact eigenvalues of the matrixTn, which

are computed with the functioneig in MATLAB. The results of the numerical experiments
of these three examples are shown in Table5.1and Table5.2 for algorithmalg 1 andalg 2,
respectively. Specifically, the tables contain the relative errors (in norm) between the com-
puted and exact eigenvalues for the three examples and different matrix sizes. The accuracy
of the two algorithms is comparable, the computed eigenvalues are very accurate in all the
cases, and the error increases slightly when the matrix sizeincreases.

The previous three examples are simple examples because thevalues forq are small
q = 1, 2, 3, (l = 0, 2, 3). Therefore other specific problems will be tested. For a specific
value of q, we will distinguish three different cases for the zeros of the polynomiala(z)
(these are the poles oft(z)). The polynomialc(z) does not vary in the three cases and its
degree equals the degree of polynomiala(z) (l = q). The zeros of the polynomial are chosen
outside but close to the unit circle in three different ways.In case1, the argument of the poles
are normally distributed around the unit circle; in case2, some zeros ofa(z) are clustered
together but there are still zeros at the left of the unit circle; and in case3 all the zeros are
located at one side of the unit circle. Figure5.1 shows the localization of the zeros ofa(z)
andc(z) for q = 6.

The main goal of these numerical experiments is the investigation of the behaviour of
the fast algorithms under less favourable conditions. In particular, as an effect of the location
of the poles it is seen that the coefficients of the Laurent expansion of the rational function
1/(a(z)a(z−1) vary much in magnitude. This implies that the inverse of the Jury matrixJ
in (2.4) can also have a large norm thus yielding a large absolute error in the computed
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(c) Case 3

FIG. 5.1. Localization of the zeros ofa(z) andc(z) around the unit circle forq = 6. A plus sign denotes a
zero ofa(z), and a circle denotes a zero ofc(z).

solutionp̂ of the linear system (2.3). Suppose that̂p− p = δ. Then from

p̂(1/z)

a(1/z)
+

p̂(z)

a(z)
=

p(1/z)

a(1/z)
+

p(z)

a(z)
+

δ(1/z)a(z) + δ(z)a(1/z)

a(z)a(1/z)
,

it follows that ‖∆‖, ∆ = T̂n − Tn, can be large, too. The matrix̂Tn denotes the Toeplitz
matrix generated by the perturbed symbolp̂(1/z)

a(1/z) + p̂(z)
a(z) . Specifically, a rough qualitative

estimation says that the perturbation error should be of orderκ(J )‖Tn‖, whereκ(J ) denotes
the condition number ofJ , which gives a relative error of orderκ(J ).

Table5.3-5.8shows the results for three different values of the degree ofpolynomiala(z)
(q = 6, 10, 20). Each table contains the results for the three different cases described above
and for different matrix sizes. The condition number of the matrix J is also reported in the
bottom row of the tables.

The experimental results displayed in the tables are in goodaccordance with the theo-
retical expectations. Both algorithms are numerically robust and the condition number of the
matrixJ gives a good indication of the loss in accuracy in the computed eigenvalues. It can
also be seen that the accuracy slightly increases when the matrix size increases.

TABLE 5.3
Numerical errors generated byalg 1 for Exampleq = 6 in the three different cases.

n Case1 Case2 Case3
100 2.9 × 10−15 2.5 × 10−12 6.8 × 10−9

500 4.7 × 10−15 2.6 × 10−12 7.3 × 10−9

1000 6.8 × 10−15 2.6 × 10−12 7.5 × 10−9

κ(J ) 5.8 × 100 2.0 × 103 4.4 × 106

TABLE 5.4
Numerical errors generated byalg 2 for Exampleq = 6 in the three different cases.

n Case1 Case2 Case3
100 1.3 × 10−15 7.8 × 10−13 2.0 × 10−9

500 3.1 × 10−15 8.6 × 10−13 2.9 × 10−9

1000 3.1 × 10−15 1.0 × 10−12 3.3 × 10−9

κ(J ) 5.8 × 100 2.0 × 103 4.4 × 106

6. Conclusion. We introduced two novelO(n2) fast algorithms to reduce ann×n sym-
metric rationally generated Toeplitz matrix into tridiagonal form by unitary transformations.
Both algorithms rely upon the exploitation of the rank structures of the Toeplitz matrix that
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TABLE 5.5
Numerical errors generated byalg 1 for Exampleq = 10 in the three different cases.

n Case1 Case2 Case3
100 1.7 × 10−15 2.2 × 10−13 1.1 × 10−5

500 3.1 × 10−15 3.4 × 10−13 1.2 × 10−5

1000 5.1 × 10−15 4.0 × 10−13 1.3 × 10−5

κ(J ) 6.6 × 100 2.4 × 103 3.7 × 109

TABLE 5.6
Numerical errors generated byalg 2 for Exampleq = 10 in the three different cases.

n Case1 Case2 Case3
100 1.1 × 10−15 7.6 × 10−13 3.2 × 10−6

500 2.3 × 10−15 8.4 × 10−13 4.5 × 10−6

1000 3.3 × 10−15 8.7 × 10−13 4.9 × 10−6

κ(J ) 6.6 × 100 2.4 × 103 3.7 × 109

TABLE 5.7
Numerical errors generated byalg 1 for Exampleq = 20 in the three different cases.

n Case1 Case2 Case3
100 1.3 × 10−15 5.7 × 10−13 8.0 × 10−4

500 4.8 × 10−15 5.6 × 10−13 1.3 × 10−3

1000 5.3 × 10−15 5.6 × 10−13 1.4 × 10−3

κ(J ) 7.5 × 100 1.6 × 104 1.6 × 1011

TABLE 5.8
Numerical errors generated byalg 2 for Exampleq = 20 in the three different cases.

n Case1 Case2 Case3
100 1.6 × 10−15 1.1 × 10−13 2.0 × 10−4

500 3.0 × 10−15 1.3 × 10−13 4.9 × 10−4

1000 7.5 × 10−15 1.7 × 10−13 6.3 × 10−4

κ(J ) 7.5 × 100 1.6 × 104 1.6 × 1011

are enlightened by a suitable additive decomposition of therational matrix symbol. The com-
putation of such a decomposition reduces to the solution of an associated Jury system. The
two proposed algorithms differ in the choice of the generator set for the rank structures of
the Toeplitz matrices. Numerical experiments show that theproposed approaches are numer-
ically reliable and, whenever the Jury system is well-conditioned, the error in the computed
eigenvalues is of the order of the norm of the input matrix.
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