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Abstract. Two new quasi-linear elliptic systems of partial differential equations to automatically generate two-
dimensional boundary conforming structured grids are formulated. One of the new systems generates grids with
near-uniform cell areas. The other produces meshes with near-uniform coordinate line spacings. In both cases, the
resulting grids conform to complex boundaries with severe singularities without self-overlapping. In contrast with
other elliptic generators, the control functions are held as dependent variables. They obey Poisson-type equations
with appropriate forcing. Grid quality analysis reveals the advantage in terms of smoothness and cell area uniformity
of the new grids compared with other structured grids. An efficient procedure to combine the novel elliptic grids
with algebraic grids for large domains is devised.

Key words. elliptic grids, control functions, smoothness, complex geometries, nearly uniform cell area, nearly
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1. Introduction. The first successful elliptic grid generator consisted of a homogeneous
system of two quasi-linear elliptic partial differential equations (PDE). It was derived by
Winslow in the late sixties and its definition is given in his seminal paper [22]. The co-
ordinates of the grid points were the unknown functions of the PDE system. They were
numerically obtained by solving a Dirichlet boundary valueproblem governed by Winslow’s
equations. The most attractive feature of these grids is their smoothness. However, a major
drawback is that there is no control of the location of grid lines. Undesired clustering of grid
points normally occurs around the inner boundaries of multiple connected domains. In con-
trast, large spacing between grid lines is usually observedin the neighborhood of the outer
boundaries. As a consequence, cells that are excessively small (inner region) or excessively
large (outer region) are obtained. Inappropriately small cells cause instabilities for numeri-
cal methods employed in the computation of field variables, while excessively large cells are
responsible for inaccurate approximations. Numerous works to establish control of the grid
line locations have appeared in recent years. A good summaryof these techniques can be
found in Chapter 8 of the book by Hansen et al. [8] and the Handbook of Grid Generation by
Thompson et al. [19].

In a recent work [20], we added grid line control to commonly used elliptic grid gener-
ator systems by introducing the Branch Cut Grid Control (BCGC) technique. For multiple
connected domains with a single hole,O-type grids with cells of appropriate size for com-
putation of field variables were generated. Control of the spacing between grid lines was
established from a smooth initial distribution of grid points along the boundaries of the re-
gion, followed by definition of the control functionsφ andψ from this initial distribution.
High quality grids were produced which contributed to the stability of explicit finite differ-
ence schemes used to compute the long-time simulation of annular vibrating membranes. In
a subsequent work [21], the BCGC grids were successfully employed in the computation of
pressure fields for several acoustic scattering problems.
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The technique developed in [20] was extended to multiply-connected domains with more
than one hole in [2]. The new algorithm was based on the decomposition of the original do-
main into nested sub-domains or blocks, each one containinga single hole. Then, the BCGC
technique was applied to obtain an independent grid for eachblock, after which a smoothness
process was implemented to smooth the block interfaces. As aresult, globally smooth grids
for domains with multiple holes were obtained. These new grids were also successfully tested
over a variety of multiply connected domains by numericallysolving problems of acoustic
scattering from multiple obstacles [4]. Depending on the geometrical characteristics of the
region, some undesired separation of grid lines at certain locations occurred after the genera-
tion. Therefore, a posteriori adjustment of the control functions was required to improve the
quality of the BCGC grid generated.

In the present work, a detailed derivation and grid quality analysis of two novel elliptic
grid generator models is performed. For one of them, the motivation is to automatically gen-
erate grids controlling the area of the cells, while the other one seeks to control the grid line
separation along the curvilinear coordinates. Their most relevant feature is that the control
functionsφ andψ are not determined beforehand as usual. Instead, they are part of the un-
knowns for a quasi-linear elliptic system of four partial differential equations. More precisely,
they obey Poisson-type equations with appropriate forcing.

These grids were briefly introduced and used for the computation of acoustic scattering
pressure fields in [1, 3]. To the best of our knowledge, there is not any previous treatment
where the commonly used elliptic generating system has beenextended to four equations
including two more elliptic equations for the control functions. An advantage of doing this
is that the generation process is fully automatic. But more importantly, the control functions
automatically adjust themselves during the generation process to produce grids satisfying
desired geometrical properties that will be discussed in more detail in the following sections.

2. Control functions and distribution of grid lines. Classical elliptic grid generators
can be considered as a transformationT from a computational domainD′ with rectangular
coordinates(ξ, η) (1 ≤ ξ ≤ N1 and1 ≤ η ≤ N2), to the physical domainD with curvi-
linear coordinates(x(ξ, η), y(ξ, η)). The transformationT is defined by numerically solving
a Dirichlet boundary value problem governed by the familiarquasi-linear elliptic system of
partial differential equations [13, 19, 20] given by

αxξξ − 2βxξη + γxηη = −αψ(ξ, η)xξ − γφ(ξ, η)xη, (2.1)

αyξξ − 2βyξη + γyηη = −αψ(ξ, η) yξ − γφ(ξ, η) yη. (2.2)

The symbolsα, β andγ represent the scale metric factors of the coordinate transformation.
They are defined asα = x2

η + y2
η, β = xξxη + yξyη, γ = x2

ξ + y2
ξ . The JacobianJ of the

transformationT is given byJ = xξyη −xηyξ. The functionsψ andφ play an important role
in the geometrical aspects of the cells of elliptic grids. For this reason, they are called grid
control functions.

The control functions are normally defined before the generation process starts. Two
main approaches follow. One consists of defining the controlfunctions from the initial distri-
bution of mesh points. For instance in [6], they are defined from the initial node distribution
and later iteratively adjusted during the generation process. More recently, effective clustering
(or stretching) of grid lines at desired locations was obtained from corresponding clustering
(or stretching) present in the initial distribution of nodes on a branch cut of the physical do-
main [2, 20]. This was possible forO-type grids on multiply connected regions with one or
more holes even in the presence of boundary singularities. However, as described in the pre-
vious section, some posteriori grid generation parameter adjustments were required in some
cases.
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The other approach, described in detail in [19, Chapter 4], requires the introduction of a
parameter spaceP and a definition of a “grid control map” from the computational domain
D′ to P . The definition of the grid control map is not simple, especially when generating
smooth grids in the entire domain. In some cases, it is necessary to solve Laplace’s equation
for the parameters involved in the grid control map.

The focus of this work is on the strict automatic generation of high-quality grids based
on controlling two important geometrical properties of thegrid cells. One is the area of
the cells and the other is the grid line separation along the curvilinear coordinatesξ and
η, respectively. A fully automatic generation can be achieved by extending the generating
elliptic system (2.1)–(2.2) to four equations and by letting the control functionsφ andψ be
the two additional unknowns.

The definition of these new equations is motivated by the effects that changes of the
control function values in (2.1)–(2.2) have on the distribution of the grid lines. To illus-
trate these effects, consider a uniformly spaced rectangular grid with step sizes∆ξ = 1 and
∆η = 1 defined on the computational domainD′. Discrete values forξ and η are rep-
resented byξi = i∆ξ andηj = j∆η, for i = 1, . . .N2 andj = 1, . . .N1, respectively.
Also,xi,j andyi,j correspond to discrete values ofx(ξi, ηj) = x(i, j) andy(ξi, ηj) = y(i, j),
respectively. Discrete approximations for the other dependent variables are denoted accord-
ingly.

In [2, 4], it was found that an increment of theφ-value at a given grid point produces a
local displacement of the correspondingη-curves (η = constant) in the direction of increasing
η (outward). Similarly, a decrement ofφ-values brings the grid lines inwards in the direction
of decreasingη. Moreover, the displacement of theη-curves is proportional to the magni-
tude of the changes experienced byφ. The relationship between changes ofψ values and
displacement ofξ-curves (ξ = constant) is analogous.

The above statements are illustrated in Figure2.1. The left grid A corresponds to values
of the control functions at stepk and at the point(ξi, ηj) given byφk(ξi, ηj) andψk(ξi, ηj).
The intermediate grid B is obtained at a subsequent stepk + 1 by increasing the value of
φ at (ξi, ηj); more precisely, by requiring thatφk+1(ξi, ηj) > φk(ξi, ηj). The final grid
C is obtained from the intermediate one after increasing thevalue of ψ, at (ξi, ηj), i.e,
ψk+1(ξi, ηj) > ψk(ξi, ηj).
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FIGURE 2.1.Making grids with uniform area cells.(A) φk
ij , ψ

k
ij (B) φk+1

ij > φk
ij (C)ψk+1

ij > ψk
ij .

In the following sections, two new elliptic grid generatingsystems will be derived. The
key idea in the formulation of the first one is to subject changes of the control functionsφ and
ψ at specific locations to relative changes of the area of consecutive cells at these locations.
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For the second elliptic system, changes ofφ andψ at grid points are subjected to changes of
the distance between consecutive grid points along the curvilinear coordinatesξ andη.

3. Grids with nearly uniform cell area: J-grids. The value of the Jacobian at a grid
point provides an approximation of the area of the cell containing that point. This is illustrated
in Figure3.1(A) where a generic cell enclosing a regionR is shown. The area of this region
A(R) can be approximated byA(R) ≈ | ~Xξ∆ξ × ~Xη∆η| where ~X = (x(ξ, η), y(ξ, η)), and
∆ξ = ∆η = 1. Therefore,A(R) ≈ |xξyη − xηyξ| = |J |. As a consequence, near-uniform
cell area meshes are equivalent to meshes with near constantJacobian at all nodes.

A common method to numerically solve the generating quasi-linear elliptic system of
PDEs (2.1)–(2.2) is to use an iterative method [4, 8, 19, 20]. From the previous paragraph,
we conclude that if the Jacobian gradient were required to approach zero at every node at the
end of the iteration process, then a final nearly uniform cellarea grid could be obtained. This
observation, together with the relationship between values of φ andψ with displacement of
grid lines (described in the previous section), suggests using the components of the gradient
(Jξ, Jη) as regulatory terms for the values of the control functions during the iteration process.
In particular, it leads to a consideration of the following discrete equations for the control
functionsφ andψ,

φk+1

ij = φk
ij +

k1

4
(Jη)

k

ij
, (3.1)

ψk+1

ij = ψk
ij +

k2

4
(Jξ)

k

ij
, (3.2)

wherek1 > 0 andk2 > 0 are real constants. Equation (3.1) states that values of the control
functionφ will increase (decrease) if derivatives in the direction ofη of the JacobianJ are
positive (negative). In practical terms,φij will increase (decrease) if the area of the cell
located at(ξi, ηj+1) is bigger (smaller) than the area of the one at(ξi, ηj). As a consequence,
the common grid line of these two cells will move in such a way to decrease the difference
between their areas (see Figure2.1).

Equation (3.2) also states an analogous relationship between the motion of the grid lines
at the interface of two neighboring cells along theξ-direction and the control functionψ. As
a consequence (see Figure2.1) under rather general conditions, when equations (3.1)–(3.2)
are coupled with the discrete approximation of the grid generation model governed by
(2.1)–(2.2), and an iterative numerical method, such as point SOR [20], is used to solve all of
them, then the area of all cells gradually tends to a near-constant value. In fact, the direction
of the grid line displacements depends on the signs ofJη andJξ.
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FIGURE 3.1.(A) Cell area (B) Distance betweenξ-curves (C) Distance betweenη-curves.
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A differential equation corresponding to (3.1) can be derived if valuesφk
ij are replaced

by the average values ofφ about the four neighboring points of(ξi, ηj), respectively. More
precisely, equation(3.1) is replaced by

φk+1

i,j =
φk

i+1,j + φk
i−1,j + φk

i,j+1 + φk
i,j−1

4
+
k1

4
(Jη)

k

i,j
. (3.3)

Now, by noticing that the term on the left and the first term on the right of (3.3) corre-
spond to a second order central finite difference approximation of ∇2

ξ,ηφ, written in itera-
tive form, the discrete equation (3.3) can be associated to the differential equation given by
∇2

ξ,ηφ = −k1Jη. Similarly, a continuous version of (3.2), ∇2
ξ,ηψ = −k2Jξ, can be analo-

gously obtained. By adding these two equations to the commonly used quasi-linear system
(2.1)–(2.2), a new elliptic grid generation model is obtained

αxξξ − 2βxξη + γxηη = −αψ xξ − γφxη, (3.4)

αyξξ − 2βyξη + γyηη = −αψ yξ − γφ yη, (3.5)

φξξ + φηη = −k1Jη, (3.6)

ψξξ + ψηη = −k2Jξ. (3.7)

This is the first novel elliptic grid generator proposed in this work. It consists of the familiar
elliptic equations (3.4)–(3.5) combined with Poisson type equations for the control functions.
As described above, by forcing these new elliptic equationswith the rate of change of the
Jacobian along the curvilinear coordinate directions, it is possible to produce grids with near-
uniform cell areas. Grids obtained by numerically solving the above system will be called
J-grids in the remainder of this work. The effectiveness of the proposed new elliptic system
is illustrated by several examples in the following sections.

4. Grids with nearly uniform line spacing: αγ-grids. At a given grid point(xij , yij),

the value
√
α =

√

x2
η + y2

η denoted by
√
αij approximates the local distance between con-

secutiveη-curves (η= constant). The arc lengthds(η) between two consecutiveη-curves

(η = j andη = j + 1) is approximated byds(η) ≈ ‖
(

~Xη

)

ij
∆η ‖, where ~Xij = (xij , yij)

and∆η = 1. Therefore,

ds(η) ≈
√

(xη)2
ij

+ (yη)2
ij

=
√
αij .

Similarly, the arc length between two consecutiveξ-curves (ξ = i andξ = i + 1) at ~Xij

may be approximated by the local valueds(ξ) ≈ √
γ

ij
=
√

(xξ)
2

ij
+ (yξ)

2

ij
. These facts are

illustrated in Figure3.1(B,C). They also suggest that meshes with near-equidistantη-curves
and near-equidistantξ-curves could be obtained by generating grids with their respective
values ofα andγ approximately equal at all nodes.

From the previous paragraph, we conclude that ifαη ≈ 0 andγξ ≈ 0 at every node at
the end of the iteration process, then the spacing of the new coordinate lines will be near-
uniform in theη-direction andξ-direction, respectively. The above statements, togetherwith
the relationship between the values ofφ andψ and the displacement of coordinate lines at
grid points, leads to a formulation of the following discrete equations

φk+1

ij = φk
ij +

k1

4
(αη)

k

ij
and ψk+1

ij = ψk
ij +

k2

4
(γξ)

k

ij
. (4.1)
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By repeating the steps performed for the discrete equations(3.1)–(3.2) in the previous section,
it is possible to show that equations (4.1) correspond to a discretization of the differential
equations∇2

ξ,ηφ = −k1αη and∇2
ξ,ηψ = −k1γξ, respectively.

A new elliptic system is obtained by adding the continuous counterpart of (4.1) to (2.1)–
(2.2). Hence, the second elliptic grid generation system of thiswork can be written as

αxξξ − 2βxξη + γxηη = −αψ xξ − γφxη, (4.2)

αyξξ − 2βyξη + γyηη = −αψ yξ − γφ yη, (4.3)

φξξ + φηη = −k1αη, (4.4)

ψξξ + ψηη = −k2γξ. (4.5)

Grids obtained by numerically solving this system will be calledαγ-grids.

Appropriate boundary conditions must be added to the new elliptic systems (3.4)–(3.7)
and (4.2)–(4.5) before they can be used to generate grids. For the physical coordinate com-
ponentsx andy, these boundary conditions are, as usual, of Dirichlet type. They are defined
by specifying an initial distribution of grid points along the physical boundariesη = 1 and
η = N2. In contrast, Neumann-type boundary conditions are imposed for the control func-
tionsφ andψ. More precisely, they are free to change at the ends, i.e.,φη = ψη = 0, when
η = 1 andη = N2. For the coordinatesx andy, as well as for the control functionsφ
andψ, conditions of periodicity (or continuity) are imposed at the branch cutξ = 1 and
ξ = N1. Therefore, the grid points at the branch cut are free to move, and they adjust during
the generation process.

Grids obtained by using the elliptic system (4.2)–(4.5) certainly exhibit near-uniform
coordinate line spacings, as shown in the following sections. In all our experiments, we will
havek1 = k2 = 1. These choices fork1 andk2 will produce stable results in our numerical
experiments. A more detailed analysis regarding the influence of values ofk1 andk2 on the
grid quality will be discussed at the end of Section6.

5. Numerical method. The boundary value problems for the generation ofJ-grids and
αγ-grids described by the system of partial differential equations (3.4)–(3.7) and (4.2)–(4.5),
respectively, are numerically solved. The technique employed in [20] for multiple connected
domains with a single hole or as in [2, 4] for those domains with multiple holes is used. It
consists of using centered finite difference approximationcombined with point SOR iteration
followed by a smoothness process. The only exceptions are inthe approximations ofφη and
ψη at η = 1 andη = N2, respectively, where one-sided second order finite differences are
employed. As a result, a set of discrete equations is obtained. For thex component of the
interior grid points(xi,j , yi,j), they are written in iterative form as follows

xk+1

i,j =
1

2(α+ γ)i,j

[

αi,j

((

1 +
ψk

i,j

2

)

xk
i+1,j +

(

1 −
ψk

i,j

2

)

xk+1

i−1,j

)

+ (5.1)

γi,j

((

1 +
φk

i,j

2

)

xk
i,j+1 +

(

1 −
φk

i,j

2

)

xk+1

i,j−1

)

−βi,j

2
(xk

i+1,j+1 − xk
i+1,j−1 − xk+1

i−1,j+1
+ xk+1

i−1,j−1
)

]

,
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for k = 1, 2, . . ., where

αi,j = ((xη)i,j)
2 + ((yη)i,j)

2 , βi,j = (xξ)i,j(xη)i,j + (yξ)i,j(yη)i,j ,

γi,j = ((xξ)i,j)
2

+ ((yξ)i,j)
2
, (xη)i,j = (xk

i,j+1 − xk+1

i,j−1
)/2,

(yη)i,j = (yk
i,j+1 − yk+1

i,j−1
)/2, (xξ)i,j = (xk

i+1,j − xk+1

i−1,j)/2,

(yξ)i,j = (yk
i+1,j − yk+1

i−1,j)/2, i = 2, . . . , N2 − 1, j = 2, . . . , N1 − 1.

Completely analogous equations are obtained for they component of the coordinate points.
Additionally, the discretized version of the Poisson-typeequation for the control function

φ at interior points is given by

φk+1

i,j =
φk

i+1,j + φk+1

i−1,j + φk
i,j+1 + φk+1

i,j−1

4
+
k1

4
(Jη)k

i,j , k = 1, 2, . . . , (5.2)

where

(Jη)k
i,j = (xξη)i,j(yη)i,j + (xξ)i,j(yηη)i,j − (xηη)i,j(yξ)i,j − (xη)i,j(yξη)i,j

and

(xηη)i,j = xk
i,j+1 − 2xk

i,j + xk+1

i,j−1
,

(yηη)i,j = yk
i,j+1 − 2yk

i,j + yk+1

i,j−1
,

(xξη)i,j = (xk
i+1,j+1 − xk+1

i−1,j+1
− xk

i+1,j−1 + xk+1

i−1,j−1
)/4,

(yξη)i,j = (yk
i+1,j+1 − yk+1

i−1,j+1
− yk

i+1,j−1 + yk+1

i−1,j−1
)/4,

for i = 2, . . . , N2−1, j = 2, . . . , N1−1, while the other control functionψ is approximated
by analogous formulas at grid points(xi,j , yi,j). Thek andk + 1 super-indices represent the
current and the subsequent steps of the iterative process, respectively. At the boundary points,
we discretize the Neumann-type boundary condition for the control functions using a second
order one-sided finite difference formula. For instance at the inner boundary wherej = 1,
the following discrete equation is employed

φk+1

i,1 = (4φk
i,2 − φk

i,3)/3. (5.3)

Similar equations are formulated for the control functionψ at boundary grid points.
The SOR method consists of the iteration of the previous discrete equations combined

with an accelerating mechanism. The numerical values obtained at iterationk+1 are updated
by using a linear combination of values at stepsk andk+1. For instance, for thex-coordinate
the updated values are defined byxk+1

i,j = ωxk+1

i,j + (1 − ω)xk
i,j . Values of the relaxation

parameterω are in the interval(0, 2). Also, the iteration process requires an initial grid.
In Section7, we will define typical algebraic initial grids. The iteration stops when the
maximum distance between all corresponding points of two consecutive grids is less than a
specified tolerance.

6. Grid quality analysis. In Figure6.1, the generation of a nearly uniform cell-area
51 × 21 J-grid is illustrated for a five-cusps astroid domain. On the right hand side, changes
in the control functionφ, as the iteration progresses, are depicted. The relationship between
changes of theφ values and the motion of theη-curves, discussed in Section2, is observed.
The cells with the smallest areas in the initial grid are located at the four cusps of the astroid,
as shown at the top of Figure6.1. It is precisely at these points where the control functionφ
grows more as the grid generation progresses. As a consequence, the separation ofη curves
close to the inner boundary is greatly increased with respect to the initial grid. This produces
a final grid (bottom graph of Figure6.1) whose cell areas are more uniform.
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TABLE 6.1
Jacobian comparison on different grids for five-cusp astroid domain.

Grid type Jmin Jmax

51 × 51 101 × 101 201 × 201 51 × 51 101 × 101 201 × 201
Winslow 1.14e-4 6.84e-6 4.14e-7 1.15e-1 2.88e-2 7.19e-3
BCGC 5.22e-4 2.11e-5 1.36e-6 5.76e-2 1.44e-2 3.58e-3
αγ-Grid 6.93e-4 4.48e-5 2.39e-6 5.16e-2 1.30e-2 3.32e-3
J-Grid 6.61e-3 4.69e-4 2.73e-5 5.60e-2 1.36e-2 3.16e-3

6.1. Cell area. In Table6.1, a comparison of the Jacobian for different grids of the same
size for the five-cusps astroid domain of Figure6.1 is made. As discussed in Section3, the
Jacobian value at a grid point serves to approximate the areaof the corresponding grid cell.
From the table values, it is observed how the difference between maximum and minimum
values ofJ differs by a little over one order of magnitude for aJ-grid, while for the others
is mostly three order of magnitudes. Also, the minimum Jacobian is greater forJ-grids. For
instance, the minimum Jacobian for a201 × 201 J-grid is almost two orders of magnitude
larger than for a Winslow grid of the same size, and, almost one order of magnitude larger
than a BCGC grid of the same size. There are physical problemswhere clusters of cells in
certain locations are required for more accurate field computation. However, when the area
of the cells fall below a threshold the grid lines may overlap, producing folded grids which
are undesirable for field variable computations.

6.2. Smoothness.Another important grid property is smoothness. In [4], we measured
smoothness by considering approximations of tangent vectors at every interior grid point
xi,j = (xi,j , yi,j) along theη andξ coordinate lines, respectively. For instance, along the
ξ-direction the following backward and forward finite difference approximations are used for
the tangent vector atxi,j = (xi,j , yi,j),

x
fwd
ξ (xi,j) = xi+1,j − xi,j ; x

bwd
ξ (xi,j) = xi,j − xi−1,j .

The angleκi,j betweenxbwd
ξ andx

fwd
ξ at the grid pointxi,j satisfies

cosκi,j =
x

bwd
ξ (xi,j) · xfwd

ξ (xi,j)

‖ x
bwd
ξ (xi,j) ‖ ‖ x

fwd
ξ (xi,j) ‖

.

A good measure of the smoothness atxi,j = (xi,j , yi,j) in the ξ-direction is given by the
deviation of the angleκi,j from the value zero. Therefore, the maximum deviation from
smoothness (MDS) in theξ-direction for a given grid can be defined as

MDSξ = max (κi,j) , 1 ≤ i ≤ N1 − 1, 2 ≤ j ≤ N2 − 1,

and the average deviation from smoothness (ADS) in theξ-direction as

ADSξ =
1

(N1 − 1)(N2 − 2)

N1−1
∑

i=1

N2−1
∑

j=2

κi,j .

Analogously, the maximum deviation from smoothness MDSη and the average deviation from
smoothness ADSη in theη-direction, can be defined from one-sided finite difference approx-
imations of the tangent vector atxi,j in theη-direction.
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In Table6.2, MDS values for the five-cusps astroid domain of Figure6.1 are reported
for different types of grids of various sizes. For this particular domain, there are no major
smoothness variations among the different grids along theη-direction. In theξ-direction,
however, maximum deviation from smoothness occurs on the first interior η-curve in the
vicinity of the astroid’s cusps. This is expected since the elliptic grids are trying to conform
to the slope singularity present there. From the table values, the smoothness improvement
experienced byJ-grids in theξ-direction compared with the others is noticeable.

TABLE 6.2
Maximum deviation from smoothness for the five-cusps astroid domain.

Grid type MDSξ MDSη

51 × 51 101 × 101 201 × 201 51 × 51 101 × 101 201 × 201
Winslow 109◦ 114◦ 116◦ 11.3◦ 12.0◦ 12.3◦

BCGC 88.6◦ 92.4◦ 94.6◦ 12.9◦ 13.7◦ 14.0◦

αγ-Grid 72.8◦ 77.4◦ 83.2◦ 12.5◦ 13.6◦ 14.0◦

J-Grid 33.0◦ 36.9◦ 41.2◦ 8.4◦ 12.0◦ 13.4◦

On the other hand, the sensitivity of the quality of the final grid to the constantsk1

andk2 is shown in Table6.3 on 51 × 51 grids for the five-cusps astroid domain. The grid
quality parameters reported in the table are the minimum Jacobian valueJmin, maximum Ja-
cobian valueJmax, maximum deviation from orthogonality (as defined in [7]) at the Astroid’s
boundary MDObdy, maximum deviation from smoothness along theξ-direction MDSξ, and
maximum deviation from smoothness along theη-direction MDSη.

The last row of Table6.3 contains the number of iterations needed for the process to
converge to the final grid. As an initial guess for the SOR process, the control functionsφ
andψ are set equal to zero. Whenk1 = k2 = 0 the control functions in equations (3.6)
and (3.7) are not fed back from the gradient of the Jacobian, and therefore they remain zero
through the entire iteration process. As a consequence, thecasek1 = k2 = 0 corresponds
to Winslow grids. This explains the relatively large difference betweenJmin andJmax in
Table6.3for the casek1 = k2 = 0. But as long as the control functions are influenced by the
Jacobian, i.e., whenk1, k2 > 0, they iteratively adjust to produce grids of nearly uniformcell
area.

Another important difference is observed for the parameterMDSξ: Winslow grids bend
much more thanJ-grids at complex boundaries. The grid quality parameters show little
variation for the nonzero values ofk1 andk2, although it is noticeable that the number of
SOR iterations increases with larger values of these constants. This is due to oscillations on
the control function values at the early stages of the iterative process for larger values ofk1

andk2.
Similar behaviors are observed for the sensitivity of the grid quality parameters with

respect to variations ofk1 andk2 for theαγ-grids. Experiments for finerJ-grids andαγ-
grids were also performed. It was found that largerk1 andk2 values lead to a divergent grid
generation algorithm. For instance for the51 × 51 grid of Table6.3, theJ-grid algorithm is
divergent whenk1, k2 ≥ 13. Also for 101 × 101 J-grids, the generation algorithm diverges
for values ofk1, k2 ≥ 15.

6.3. Orthogonality. Regarding orthogonality at the inner boundaries, for theJ-grids
andαγ-grids over multiple connected regions with a single hole, the parameters MDO (max-
imum deviation from orthogonality) and ADO (mean deviationfrom orthogonality) intro-
duced in [7] are used. In particular, they are calculated for the multiple connected domains
described in Table6.4 and depicted in Figure6.2. These experiments illustrate thatJ-grids
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TABLE 6.3
Sensitivity to the constantsk1,2 for the five-cusps astroid domain on a51× 51 J-grid.

k1 = k2 = 0.0 k1 = k2 = 0.5 k1 = k2 = 1.0 k1 = k2 = 1.5
Jmin 1.14e-4 6.19e-3 6.61e-3 6.76e-3
Jmax 1.15e-1 5.99e-2 5.60e-2 5.59e-2

MDObdy 5.6◦ 3.9◦ 3.5◦ 3.4◦

MDSξ 109◦ 39◦ 33◦ 31◦

MDSη 11.3◦ 8.2◦ 8.4◦ 8.4◦

Iter 544 668 707 751

andαγ-grids are near-orthogonal for domains without entrant corners such as the five-cusps
astroid and the ellipse of Figure6.2. However, for a singular domain with entrant corners such
as the epicycloid (also shown in Figure6.2), the deviation from orthogonality is large near the
cusps. This is expected not only for theJ andαγ algorithm but for any non-self-overlapping
grid generator near this type of singularity. It is well known that simultaneously conditioning
more than one property of the grid potentially results in clashing demands [12]. For example,
in [5], it is shown that reducing the aspect ratio values may result in an increase in the mean
deviation from orthogonality (ADO). In our case, the conforming and non-self-overlapping
properties of the algorithms under study preclude the orthogonality about the cusps.

A well-known algorithm based on a system of two quasi-linearelliptic equations such
as (2.1) and (2.2) that respects orthogonality at the boundary is called GRAPE (Grids about
Airfoils using Poisson’s Equation). The theory behind thisalgorithm is due to Steger and
Sorenson, and can be found in [17]. It is intended for smooth boundaries. This algorithm
certainly produces near-orthogonal grids for smooth boundaries, but it will face the same
opposing demands (orthogonality versus non-self-overlapping) for singular boundaries as the
one described by the epicycloid at the cusps. The GRAPE algorithm also produces grids
with cells of non-uniform area similar to Winslow grids awayfrom the boundaries. This may
cause lack of accuracy for field computations in the interiorregions.

TABLE 6.4
Deviation from orthogonality at boundary points for101× 101 J andαγ-grids.

Astroid Ellipse Epicycloid
J-grid αγ-grid J-grid αγ-grid J-grid αγ-grid

MDObdy 3.4◦ 3.2◦ 5.9◦ 4.8◦ 63.9◦ 58.5◦

ADObdy 2.1◦ 2.0◦ 3.8◦ 2.6◦ 50.1◦ 42.2◦

7. Mixed algebraic-J grids and mixed algebraic-αγ grids. Although it is possible to
generate globalJ-grids andαγ-grids for large domains, it may be computationally expensive
in most practical applications. For large domains bounded by geometrically complex bound-
aries, it is more convenient to generate elliptic grids for arelatively small region surrounding
the obstacle. For the remaining, geometrically simpler part of the domain, an algebraic gen-
eration method is usually good enough for field computations, and is much faster due to its
explicit nature.

For geometrically complex domains, combination of generation techniques has become
a common practice. For instance, this approach was followedby Sherer and Visbal [15], who
employed overset grids as a support for the simulation of acoustic scattering from multiple
cylinders. The overset technique employs interpolating polynomials to match a boundary-
fitted grid around the obstacles with an algebraic Cartesianmesh covering the rest of the
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FIGURE 6.2.Zoom onJ-grids showing the deviation from orthogonality at boundary points.

domain.
In this section, we construct some meshes for various complex domains. They consist of

portions ofJ-grids orαγ-grids for that part of the domain surrounding the the holes of mul-
tiple connected domains and algebraic meshes for the remaining parts. To start the process,
an initial algebraic grid is generated. It is obtained by first defining an initial distribution of
points along the physical boundaries (ξ-direction). Then, these boundary points are linearly
interpolated inside the domain in theη-direction producingξ-curves. Along each of these
ξ-curves, piecewise uniform partitions with the same numberof points are defined. Different
step sizes are used for different segments of theξ-curves. This means that nodes are locally
uniformly distributed on eachξ-curve. Using these points, the gridη-curves are generated by
linear interpolation along theξ-direction, producing a final algebraic grid.

The resulting algebraic grids are illustrated at the left inFigure7.1and Figure7.2for two
different domains. They conform to the boundaries but are generally non-smooth. They have
very skewed cells around the boundary corner and cusps. Also, the abrupt changes from a
small step size in the more dense region to the large step sizein the intermediate region creates
non-smoothness along theξ-curves. Additionally, the complex bounding curves may induce
self-overlapping of grid lines, and the propagation of slope discontinuities to the interior of
the domain.

The new elliptic grid generators which are the subject of this work are now used to
smooth the algebraic grids of Figures7.1 and 7.2. The algorithm to generateJ-grids is
applied to the algebraic grid at the left in Figure7.1while the algorithm to generateαγ-grids
is applied to the algebraic grid at the left in Figure7.2. However, they are applied only in
the neighborhood of the boundaries, where the density of grid lines is greater (darker regions
in the initial algebraic grid figures). As a result, grid properties such as orthogonality, line-
smoothness, area-uniformity, and line-spacing are greatly improved within these regions.

Once the elliptic grids have been generated in the neighborhood of the boundaries (inner
and outer), the portion of the algebraic grid occupying the intermediate region is regenerated.
First, the distribution of points along theξ-curves is redefined. This is done by interpolating
the location of grid points from the two smoothed boundary regions to the intermediate region
by means of Hermite polynomials of degree four. As a result, the abrupt changes from a small
step size in the more dense regions to the large step size in the intermediate regions along the
ξ-curves is replaced by a smooth changes in the step sizes. Thenew grid points along the
ξ-curves are linearly interpolated along theξ-direction producing an improved intermediate
algebraic grid.

More detailed graphs of the initial algebraic grids and the final mixed grids are shown in
Figures7.3and7.4. There are noticeable smoothness improvements experienced by the cells
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FIGURE 7.1. Initial algebraic grid and final61× 61 mixed algebraic-J grid.
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FIGURE 7.2. Initial algebraic grid and final61× 61 mixed algebraic-αγ grid.

around the complex boundaries. Also, a smooth transition for the separation of theη-curves
along theξ-direction, from the near boundary elliptic grid cells to the algebraic grid cells of
the intermediate regions, is observed.

As a final experiment, we construct mixed grids for the multiply-connected region con-
sisting of a NACA2412 airfoil as the inner boundary and an ellipse as the outer boundary;
see Figure7.5. Most algebraic grids overlap at the airfoil trailing edge even for modest grid
sizes. In Figure7.6, a zoom on the airfoil trailing edge for121 × 121 initial and mixed
algebraic-J grids is shown. Values of the Jacobian at the cell containingthe trailing edge
areJ1,1 = −7.29 × 10−9 for the initial algebraic grid,J1,1 = 1.94 × 10−5 for the mixed
algebraic-αγ grid, andJ1,1 = 4.79× 10−5 for the mixed algebraic-J grid. The negative sign
of J1,1 for the cell of the trailing edge indicates an overlapping ofcells. This anomaly is fixed
by applying theJ-grid andαγ-grid algorithms about the trailing edge starting with thisinitial
grid. Again, the initial grid cell areas and line spacings are enhanced by the application of the
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FIGURE 7.3. Zoom of121× 121 initial algebraic grid (left) and final mixed algebraic-J grid (right).
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FIGURE 7.4.Zoom of121× 121 initial algebraic grid (left) and final mixed algebraic-αγ grid (right).
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FIGURE 7.5. Initial algebraic 61× 61 grid (left) and mixed algebraic-J-grid (right) around a NACA2412 airfoil.
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FIGURE 7.6.Zoom on121 × 121 initial algebraic and mixed grids for the NACA2412 airfoil at the trailing edge.

new techniques.

8. Conclusions. The commonly used elliptic grid generation system given by
(2.1)–(2.2) has been extended to four elliptic equations. The new models exploit the geo-
metric properties of the JacobianJ (cell area) and the metric factorsα (grid line separation
along theη-direction) andγ (grid line separation along theξ-direction) for their formulations.

The key aspect in the formulation of the two new equations is the knowledge that in-
creasing (decreasing) values of the control functionsφ andψ of the classical elliptic system
produces relocation of the grid lines in the positive direction (negative direction) along the
η-direction andξ-direction, respectively.

It is seen from the various domains considered in this work that the final grid is the
ultimate product of a series of adjustments ofφ andψ during an iterative process. These
adjustments obey to the need of minimizing the area or line spacing differences between cells
without sacrificing the boundary conforming property.

The main difference between the elliptic generation technique proposed in this work
and known elliptic methods is that the control functionsφ andψ are completely unknown
and the generation is fully automatic. They are not defined before the generation starts as
in [10, 11, 13, 14, 19, 20]. They are not modified to minimize errors of supported field
computation as in [9]. If a specific distribution of grid points (such as special clustering or
stretching of grid lines) is not required anywhere in the domain being discretized, thenJ
andαγ-grids constitute a good choice because of their enhanced properties in terms of near
uniformity of cell area and line spacing. Nevertheless, oneshould notice a natural appearance
of a cluster ofη-curves in a neighborhood of the inner boundaries forαγ-grids. However,
the distance among theη-curves does not grow as much as for other elliptic generators away
from the inner boundaries. This is due to the tendency of theαγ-grids to preserve the grid
line separations.

The two-dimensional grid generation algorithm introducedin this work can be naturally
extended to three-dimensional domains. To start, considerthe classical two-dimensional al-
gorithm formed by (2.1)–(2.2). In three dimensions, a natural extension consists of adding
a third elliptic equation for the physical coordinatez and a third computational variable
ζ. Also, a third control functionΛ is needed for three-dimensional elliptic grid genera-
tors. The corresponding metric factors and the JacobianJ have geometrical interpretations,
such as surface separation and cell volume, respectively. Detailed formulations are found
in [8, 10, 16, 18, 19]. They consist of the quasi-linear elliptic system of partial differential
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equations given by

a11xξξ + a22xηη + a33xζζ + 2(a12xξη + a13xξζ + a23xηζ) = (8.1)

−a11 ψxξ − a22φxη − a33Λ xζ ,

a11yξξ + a22yηη + a33yζζ + 2(a12yξη + a13yξζ + a23yηζ) = (8.2)

−a11ψ yξ − a22φ yη − a33Λ yζ ,

a11zξξ + a22zηη + a33zζζ + 2(a12zξη + a13zξζ + a23zηζ) = (8.3)

−a11ψ zξ − a22φzη − a33Λ zζ,

where theaij (i, j = 1, 2, 3) are the metric factors of the three-dimensional transformation
between the computational domain of(ξ, η, ζ) points and the physical domain of(x, y, z)
points. Their definitions are found in [16], and the Jacobian is given by

J =

∣

∣

∣

∣

∣

∣

xξ xη xζ

yξ yη yζ

zξ zη zζ

∣

∣

∣

∣

∣

∣

.

As a second step in the extension of the present algorithms tothree dimensions, we
add a third term representing the second derivative with respect toζ to the previous Poisson
equations for the control functionsψ andφ. Also, a third Poisson equation for the new
control functionΛ is added to the system. Therefore, the three-dimensional version of the
J-algorithm includes the previous equations (8.1)-(8.3) and the following Poisson equation
for the control functions

ψξξ + ψηη + ψζζ = −k2Jξ, (8.4)

φξξ + φηη + φζζ = −k1Jη, (8.5)

Λξξ + Ληη + Λζζ = −k3Jζ . (8.6)

A completely analogous extension can be carried out for the formulation of the three-dimensional
αγ algorithm. The actual implementation of these algorithms for three-dimensional domains
will be the subject of a forthcoming publication.

The novel grids derived here may be very appropriate for computation on complex do-
mains if they are combined with other grid-types as shown in Section7. Recently, we have
successfully used them to support the pressure field computation in acoustic scattering from
an obstacles with complex shapes [3]. Due to their attractive features (smoothness, non-
self-overlapping, nearly uniform cell area or nearly uniform line spacing) and their relatively
simple implementation, we are confident that these grids will be a great aid to accurate field
computations in important problems in applied areas such asfluids and waves.
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