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ELLIPTIC GRIDS WITH NEARLY UNIFORM CELL AREA AND LINE SPACIN G*

VIANEY VILLAMIZAR  AND SEBASTIAN ACOSTA!
Dedicated to Vctor Pereyra on the occasion of his 70th birthday

Abstract. Two new quasi-linear elliptic systems of partial diffei@hequations to automatically generate two-
dimensional boundary conforming structured grids are tdated. One of the new systems generates grids with
near-uniform cell areas. The other produces meshes withumi@rm coordinate line spacings. In both cases, the
resulting grids conform to complex boundaries with sevangugarities without self-overlapping. In contrast with
other elliptic generators, the control functions are heddlapendent variables. They obey Poisson-type equations
with appropriate forcing. Grid quality analysis reveals #uvantage in terms of smoothness and cell area uniformity
of the new grids compared with other structured grids. Arcieffit procedure to combine the novel elliptic grids
with algebraic grids for large domains is devised.
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1. Introduction. The first successful elliptic grid generator consisted adabgeneous
system of two quasi-linear elliptic partial differentiadueations (PDE). It was derived by
Winslow in the late sixties and its definition is given in hengnal paper2]. The co-
ordinates of the grid points were the unknown functions & BDE system. They were
numerically obtained by solving a Dirichlet boundary vafweblem governed by Winslow’s
equations. The most attractive feature of these grids is $heoothness. However, a major
drawback is that there is no control of the location of gnietB. Undesired clustering of grid
points normally occurs around the inner boundaries of iplelttonnected domains. In con-
trast, large spacing between grid lines is usually obseirvélde neighborhood of the outer
boundaries. As a consequence, cells that are excessivaly (@mer region) or excessively
large (outer region) are obtained. Inappropriately smallsccause instabilities for numeri-
cal methods employed in the computation of field variabldslerexcessively large cells are
responsible for inaccurate approximations. Numerous svawlestablish control of the grid
line locations have appeared in recent years. A good sumofahese techniques can be
found in Chapter 8 of the book by Hansen et &].dnd the Handbook of Grid Generation by
Thompson et al.]9].

In a recent work 20], we added grid line control to commonly used elliptic griehgr-
ator systems by introducing the Branch Cut Grid Control (BJ@chnique. For multiple
connected domains with a single holestype grids with cells of appropriate size for com-
putation of field variables were generated. Control of thecemy between grid lines was
established from a smooth initial distribution of grid p@imlong the boundaries of the re-
gion, followed by definition of the control functions and+ from this initial distribution.
High quality grids were produced which contributed to tresbdity of explicit finite differ-
ence schemes used to compute the long-time simulation efl@nvibrating membranes. In
a subsequent worlk[l], the BCGC grids were successfully employed in the compariaif
pressure fields for several acoustic scattering problems.
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The technique developed i&(] was extended to multiply-connected domains with more
than one hole ing]. The new algorithm was based on the decomposition of thegrai do-
main into nested sub-domains or blocks, each one containgmgle hole. Then, the BCGC
technique was applied to obtain an independent grid for bk, after which a smoothness
process was implemented to smooth the block interfaces. rAsut, globally smooth grids
for domains with multiple holes were obtained. These nedsgniere also successfully tested
over a variety of multiply connected domains by numericatiyving problems of acoustic
scattering from multiple obstacled][ Depending on the geometrical characteristics of the
region, some undesired separation of grid lines at certaiations occurred after the genera-
tion. Therefore, a posteriori adjustment of the controkfiions was required to improve the
quality of the BCGC grid generated.

In the present work, a detailed derivation and grid qualitglgsis of two novel elliptic
grid generator models is performed. For one of them, thevatioin is to automatically gen-
erate grids controlling the area of the cells, while the ptre seeks to control the grid line
separation along the curvilinear coordinates. Their melstvant feature is that the control
functions¢ and« are not determined beforehand as usual. Instead, they dreffihe un-
knowns for a quasi-linear elliptic system of four partidfeliential equations. More precisely,
they obey Poisson-type equations with appropriate forcing

These grids were briefly introduced and used for the comiputaf acoustic scattering
pressure fields inl] 3]. To the best of our knowledge, there is not any previoudineat
where the commonly used elliptic generating system has brtmded to four equations
including two more elliptic equations for the control fuimects. An advantage of doing this
is that the generation process is fully automatic. But momedrtantly, the control functions
automatically adjust themselves during the generatiocgs® to produce grids satisfying
desired geometrical properties that will be discussed irendetail in the following sections.

2. Control functions and distribution of grid lines. Classical elliptic grid generators
can be considered as a transformatidofrom a computational domai®’ with rectangular
coordinateg¢, n) (1 < ¢ < Ny andl < 5 < N»), to the physical domai® with curvi-
linear coordinateéz (€, ), y(€,n)). The transformatioff’ is defined by numerically solving
a Dirichlet boundary value problem governed by the famiijaasi-linear elliptic system of
partial differential equationsl]3, 19, 20] given by

avee — 2Bxey + Yrny = —ap(&,n) ve — (€, M) T4, 2.1)
aYee — 2BYen + Vynn = —ab(§,m) ye — vH(&, 1) yy- (2.2)

The symbolsy, 3 and~y represent the scale metric factors of the coordinate toamsftion.
They are defined as = =7} +y;, 3 = zexy + yeyy, 7 = 27 + y¢. The Jacobia/ of the
transformatior” is given byJ = x¢y, — z,ye. The functions) and¢ play an important role
in the geometrical aspects of the cells of elliptic gridsr #as reason, they are called grid
control functions.

The control functions are normally defined before the gdimrarocess starts. Two
main approaches follow. One consists of defining the cofiraitions from the initial distri-
bution of mesh points. For instance i#,[they are defined from the initial node distribution
and later iteratively adjusted during the generation pgechlore recently, effective clustering
(or stretching) of grid lines at desired locations was at®difrom corresponding clustering
(or stretching) present in the initial distribution of neden a branch cut of the physical do-
main [2, 20]. This was possible fo©-type grids on multiply connected regions with one or
more holes even in the presence of boundary singularitiegieider, as described in the pre-
vious section, some posteriori grid generation parameljeisaments were required in some
cases.
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The other approach, described in detaili8,[Chapter 4], requires the introduction of a
parameter spacE and a definition of a “grid control map” from the computatibdamain
D’ to P. The definition of the grid control map is not simple, espiiahen generating
smooth grids in the entire domain. In some cases, it is napess solve Laplace’s equation
for the parameters involved in the grid control map.

The focus of this work is on the strict automatic generatibhigh-quality grids based
on controlling two important geometrical properties of tpéd cells. One is the area of
the cells and the other is the grid line separation along th&ilmear coordinateg and
7, respectively. A fully automatic generation can be achielg extending the generating
elliptic system 2.1)—(2.2) to four equations and by letting the control functiahandy be
the two additional unknowns.

The definition of these new equations is motivated by thectfféhat changes of the
control function values inA.1)—(2.2 have on the distribution of the grid lines. To illus-
trate these effects, consider a uniformly spaced rectanguid with step sizea\¢ = 1 and
An = 1 defined on the computational domai¥. Discrete values fo€ andr are rep-
resented by; = iA¢ andn; = jAn, fori =1,...Ny andj = 1,... Ny, respectively.
Also, z; ; andy; ; correspond to discrete valuesid;, n;) = x(¢,7) andy (&, n;) = y(i, 7).
respectively. Discrete approximations for the other delpanhvariables are denoted accord-
ingly.

In [2, 4], it was found that an increment of thievalue at a given grid point produces a
local displacement of the correspondipgurves ¢ = constant) in the direction of increasing
n (outward). Similarly, a decrement gfvalues brings the grid lines inwards in the direction
of decreasing). Moreover, the displacement of thecurves is proportional to the magni-
tude of the changes experienceddy The relationship between changesyo¥alues and
displacement of-curves £ = constant) is analogous.

The above statements are illustrated in Figtifie The left grid A corresponds to values
of the control functions at steppand at the pointé;, n;) given by¢* (&, m;) andy* (&, n;).
The intermediate grid B is obtained at a subsequent stepl by increasing the value of
¢ at (&;,m;); more precisely, by requiring that*+1(¢;,n;) > ¢*(&,n;). The final grid
C is obtained from the intermediate one after increasingviiae of ¢, at (&;,n;), i.e,

¢k+1(5i777j) > djk(glvnj)

A B C
Jt JH1 JH1
J J
J
j'1 i1 1 i+1 i i 1+1 J-1 3 7 it1
E=11, i, i+1 E=1i1, 1 1:+1 E=1-1, 1, i+1
n=Jj1j, j+1 n=Jj1j j+ N=JLJ j+1

FIGURE 2.1.Making grids with uniform area cells(A) <b,’fj, wf‘J (B) <bfj+1 > qufJ ©) wfjﬂ > 1/)213

In the following sections, two new elliptic grid generatisigstems will be derived. The
key idea in the formulation of the first one is to subject chemgf the control functions and
1) at specific locations to relative changes of the area of canise cells at these locations.
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For the second elliptic system, changeg@nd+) at grid points are subjected to changes of
the distance between consecutive grid points along thelin@ar coordinateg and.

3. Grids with nearly uniform cell area: .J-grids. The value of the Jacobian at a grid
point provides an approximation of the area of the cell coimg that point. This is illustrated
in Figure3.1(A) where a generic cell enclosing a reginis shown. The area of this region
A(R) can be approximated b§(R) ~ |)5§A§ X anm whereX = (z(¢,7),y(¢,71)), and
A¢ = An = 1. Therefore A(R) = |zey, — xyye| = |J|. As a consequence, near-uniform
cell area meshes are equivalent to meshes with near codatatiian at all nodes.

A common method to numerically solve the generating quasal elliptic system of
PDEs @.1)—(2.2) is to use an iterative method,[8, 19, 20]. From the previous paragraph,
we conclude that if the Jacobian gradient were required pocageh zero at every node at the
end of the iteration process, then a final nearly uniformaxedh grid could be obtained. This
observation, together with the relationship between &abfe) andq with displacement of
grid lines (described in the previous section), suggestgyibe components of the gradient
(Je, Jy) as regulatory terms for the values of the control functiamét) the iteration process.
In particular, it leads to a consideration of the followinigaete equations for the control
functions¢ and,

Ol = ol + 1 (o) (3.1)
k
Ui =l + 5 (e (3.2)

wherek; > 0 andks > 0 are real constants. Equatiod {) states that values of the control
function ¢ will increase (decrease) if derivatives in the directiomaif the Jacobian/ are
positive (negative). In practical terms,; will increase (decrease) if the area of the cell
located a(&;, n;+1) is bigger (smaller) than the area of the onééatn;). As a consequence,
the common grid line of these two cells will move in such a waylécrease the difference
between their areas (see Figré).

Equation 8.2) also states an analogous relationship between the mdttbe grid lines
at the interface of two neighboring cells along thdirection and the control functiopn. As
a consequence (see Figwrd) under rather general conditions, when equatién®+£(3.2
are coupled with the discrete approximation of the grid getien model governed by
(2.)—(2.2), and an iterative numerical method, such as point SBIR s used to solve all of
them, then the area of all cells gradually tends to a neastaohvalue. In fact, the direction
of the grid line displacements depends on the signg,aind.J,.

A B

Ficure 3.1.(A) Cell area (B) Distance betwegncurves (C) Distance betweepcurves.
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A differential equation corresponding t8.() can be derived if valueﬁfj are replaced
by the average values @fabout the four neighboring points ¢f;, n,), respectively. More
precisely, equatiof3.1) is replaced by

¢§+1:¢1+13+¢1 1,5 ¢j+1+¢1] l+ﬁ

7 1 (s

ige (3.3)
Now, by noticing that the term on the left and the first term ba tight of 3.3) corre-
spond to a second order central finite difference approximatf V2 ¢n®, written in itera-
tive form, the discrete equatio3.) can be associated to the d|fferent|al equation given by

m(b = —ki1J,. Similarly, a continuous version 08(9, V2 gn¥ = —k2J¢, can be analo-
gously obtained. By adding these two equations to the corfynmed quasi-linear system
(2.1)—(2.2), a new elliptic grid generation model is obtained

ax¢e — 20Ten + YTy = —Q) Te — VP Xy, (3.4)
aYee = 20Yen + VYnn = —Y ye — Y Yn, (3.5)
beg + Oy = —k1Jy, (3.6)
Yee + Yny = —kaJe. (3.7

This is the first novel elliptic grid generator proposed iis thork. It consists of the familiar
elliptic equationsg.4)—(3.5 combined with Poisson type equations for the control fiomst.
As described above, by forcing these new elliptic equatieitis the rate of change of the
Jacobian along the curvilinear coordinate directions, jtdssible to produce grids with near-
uniform cell areas. Grids obtained by numerically solvihg above system will be called
J-grids in the remainder of this work. The effectiveness efpinoposed new elliptic system
is illustrated by several examples in the following secéion

4. Grids with nearly uniform line spacing: a-y-grids. At a given grid point(z;;, y;),
the value,/a = /22 + y2 denoted by, /a;; approximates the local distance between con-
secutiven-curves = constant). The arc lengtths(n) between two consecutivg-curves
(n = j andn = j + 1) is approximated byls(n) ~ || (X,])}‘An |, whereX;; = (zi;,vi;)
ij
andAn = 1. Therefore,

ds(n) = \/(29)}; + (yn)i; = V5.

Similarly, the arc length between two consecutiveurves € = i and¢ = i + 1) at Xz-j

may be approximated by the local vali€¢) ~ Vi = ,/(xf)fj + (yf)fj. These facts are
illustrated in Figure3.1(B,C). They also suggest that meshes with near-equidigtantves
and near-equidistarg-curves could be obtained by generating grids with theipeesve
values ofa andy approximately equal at all nodes.

From the previous paragraph, we conclude that,if~ 0 andv¢ ~ 0 at every node at
the end of the iteration process, then the spacing of the mardmate lines will be near-
uniform in then-direction and-direction, respectively. The above statements, togetitar
the relationship between the valuesgfnd and the displacement of coordinate lines at
grid points, leads to a formulation of the following dis@etuations

k k
ot =0l + 7 (an)ly and G =+ T (e (4.2)
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By repeating the steps performed for the discrete equatibiis-(3.2) in the previous section,
it is possible to show that equations.7) correspond to a discretization of the differential
equationsVz , ¢ = —kiay, andVz ) = —ki7¢, respectively.

A new elliptic system is obtained by adding the continuousnterpart of 4.1) to (2.1)—
(2.2). Hence, the second elliptic grid generation system ofitliigk can be written as

Qxee — 2BLen + YTy = —) Te — Y Ty, (4.2)
Wee = 20Yen + VY = —QP Ye — 7P Y, (4.3)
Pee + Pny = —kian, (4.4)
Ve + Yy = —k27e. (4.5)

Grids obtained by numerically solving this system will bdeda~-grids.

Appropriate boundary conditions must be added to the naptielsystems §.4)—(3.7)
and @.2—(4.5 before they can be used to generate grids. For the physioadlimate com-
ponentse andy, these boundary conditions are, as usual, of Dirichlet.t{ffey are defined
by specifying an initial distribution of grid points alonget physical boundaries = 1 and
n = N,. In contrast, Neumann-type boundary conditions are imghémethe control func-
tions¢ and«. More precisely, they are free to change at the endsgi.e= 1, = 0, when
n = landn = N,. For the coordinates andy, as well as for the control functions
and ), conditions of periodicity (or continuity) are imposed hetbranch cut = 1 and
& = N;. Therefore, the grid points at the branch cut are free to mave they adjust during
the generation process.

Grids obtained by using the elliptic systed.9)—(4.5) certainly exhibit near-uniform
coordinate line spacings, as shown in the following sestidn all our experiments, we will
havek; = ko = 1. These choices fdt; andk, will produce stable results in our numerical
experiments. A more detailed analysis regarding the inflee values o, andk; on the
grid quality will be discussed at the end of Secttbn

5. Numerical method. The boundary value problems for the generatiod-gfrids and
ay-grids described by the system of partial differential dune (3.4—(3.7) and ¢.2—(4.5),
respectively, are numerically solved. The technique eggalan [20] for multiple connected
domains with a single hole or as i,[4] for those domains with multiple holes is used. It
consists of using centered finite difference approximatmmbined with point SOR iteration
followed by a smoothness process. The only exceptions @heiapproximations ab,, and
1y atn = 1 andn = N, respectively, where one-sided second order finite diffegs are
employed. As a result, a set of discrete equations is olataiRer thex component of the
interior grid points(x; ;, y; ;), they are written in iterative form as follows

1 k. k.
P = gy | |1+ 2L | ab (1 2 2l 5.1
YT 2 )iy [a N << A )Iz“’ﬁ( 2 )xHﬂ) 6D
ko ko
Yi,g ((1 + ;J> ol i+ (1 - %) If?%)

_Bij

k k k+1 k+1
5 (Ti1, 41 — Tig1j-1 — Titt 41 T xil,jl)] ;
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fork =1,2,..., where

= ((In)u) + (yn)ig)?, Bij = (xe)ij(®n)ig + (Ye)ii(Un)i
Yig = ((@e)iz)” ((ya- D (@a)ig = (@l — 2t/ 2,
(Wndig = Wi —uE20/20 @iy = (@l — 2 ))/2,
(Ye)ij = (yiJrl.,j — yi_ljj)/Q, i=2,...,No—1, j=2... N —1

Completely analogous equations are obtained foytbemponent of the coordinate points.
Additionally, the discretized version of the Poisson-tggeation for the control function
¢ at interior points is given by
k+1 k+1
¢k+1 H‘LJ + ¢z 1,5 + ¢1 g+ T ¢ =1 ky

k _
s . + 5 k=1,2,..., (52

where

()i = @en)ig(Wn)i + @e)i Wam)ig — @nm)is We)is — (n)i5 (Wen)ing

and
(Tyn)ig = Iz 1 2 ;+ If?ll,
(Ynn)ij = yz g+1 2yij + ylk;r,ll,
(wen)iy = (af Lit1,j41 — f+11,j+1 z+1 j—1 7t $f+1lj /4,
Wen)iv = Wi jon =Yty = Yis o U 0/4,

fori=2,...,N,—1, 5 =2,..., Ny — 1, while the other control functiot is approximated
by analogous formulas at grid poirits; ;,v; ;). Thek andk + 1 super-indices represent the
current and the subsequent steps of the iterative proesggctively. At the boundary points,
we discretize the Neumann-type boundary condition for th#rol functions using a second
order one-sided finite difference formula. For instanceéhatibner boundary wherg = 1,
the following discrete equation is employed

PiTt = (4¢F, — ¢k 3) /3. (5.3)

Similar equations are formulated for the control functioat boundary grid points.

The SOR method consists of the iteration of the previouseliseequations combined
with an accelerating mechanism. The numerical valuesobdat iteratiork 4+ 1 are updated
by using a linear combination of values at sté@sdk+ 1. For instance for the-coordinate
the updated values are defined ;' = wz"" + (1 — w)af ;. Values of the relaxation
parameterw are in the interval0,2). Also, the iteration process requires an initial grid.
In Section7, we will define typical algebraic initial grids. The iterati stops when the
maximum distance between all corresponding points of twtseoutive grids is less than a

specified tolerance.

6. Grid quality analysis. In Figure6.1, the generation of a nearly uniform cell-area
51 x 21 J-grid is illustrated for a five-cusps astroid domain. On tightrhand side, changes
in the control functionp, as the iteration progresses, are depicted. The relafpbsiween
changes of the values and the motion of thecurves, discussed in Secti@nis observed.
The cells with the smallest areas in the initial grid are tedaat the four cusps of the astroid,
as shown at the top of Figufel It is precisely at these points where the control function
grows more as the grid generation progresses. As a consggjuba separation af curves
close to the inner boundary is greatly increased with raspebe initial grid. This produces
a final grid (bottom graph of Figur@ 1) whose cell areas are more uniform.
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TABLE 6.1
Jacobian comparison on different grids for five-cusp astidomain.

Grid type Imin Jmaz
51 x 51 101 x 101 201 x 201 51 x 51 101 x 101 201 x 201
Winslow 1.14e-4 6.84e-6 4.14e-7 1.15e-1 2.88e-2 7.19e-3
BCGC 5.22e-4 2.11e-5 1.36e-6 5.76e-2 1.44e-2 3.58e-3
av-Grid  6.93e-4 4.48e-5 2.39e-6 5.16e-2 1.30e-2 3.32e-3
J-Grid 6.61e-3 4.69e-4 2.73e-5 5.60e-2 1.36e-2 3.16e-3

6.1. Cell area.In Table6.1, a comparison of the Jacobian for different grids of the same
size for the five-cusps astroid domain of Figéré is made. As discussed in Sectidnthe
Jacobian value at a grid point serves to approximate theddrie corresponding grid cell.
From the table values, it is observed how the difference éetwmaximum and minimum
values ofJ differs by a little over one order of magnitude for/agrid, while for the others
is mostly three order of magnitudes. Also, the minimum J&uools greater for/-grids. For
instance, the minimum Jacobian foR@l x 201 J-grid is almost two orders of magnitude
larger than for a Winslow grid of the same size, and, almostamler of magnitude larger
than a BCGC grid of the same size. There are physical problgmese clusters of cells in
certain locations are required for more accurate field cdatjmn. However, when the area
of the cells fall below a threshold the grid lines may overlamducing folded grids which
are undesirable for field variable computations.

6.2. SmoothnessAnother important grid property is smoothness. 4 {ve measured
smoothness by considering approximations of tangent k&ebevery interior grid point
x;; = (=i ;,v:;) along then and¢ coordinate lines, respectively. For instance, along the
&-direction the following backward and forward finite difé@rce approximations are used for
the tangent vector &; ; = (;;, i ;).

d
X[ (xig) = Xip1j — Xigi xUUxiy) =X — Xio1.

The anglex; ; betweenx?? andx/"? at the grid point; ; satisfies
fwd
xtd(x; ;) - x " (xi 5)

COS Kj,j =

— :
I (i) I 1™ (i) |

A good measure of the smoothnesxat = (z; ;,v; ;) in the ¢-direction is given by the
deviation of the angles; ; from the value zero. Therefore, the maximum deviation from
smoothness (MDS) in the-direction for a given grid can be defined as

MDS¢ = max (ki ;), 1<i< Ny —1, 2<j<Ny—1,

and the average deviation from smoothness (ADS) irgtt&ection as

1 lelNgfl
ADS; = Ri,j-
¢ <N1—1><N2—2>; 2 g

Analogously, the maximum deviation from smoothness MB6d the average deviation from
smoothness ADSin then-direction, can be defined from one-sided finite differermerax-
imations of the tangent vector &f ; in then-direction.
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In Table6.2, MDS values for the five-cusps astroid domain of FigGreare reported
for different types of grids of various sizes. For this pautar domain, there are no major
smoothness variations among the different grids alongtd&ection. In the¢-direction,
however, maximum deviation from smoothness occurs on tkeifiterior n-curve in the
vicinity of the astroid’s cusps. This is expected since tlipte grids are trying to conform
to the slope singularity present there. From the table galthee smoothness improvement
experienced by/'-grids in theg-direction compared with the others is noticeable.

TABLE 6.2
Maximum deviation from smoothness for the five-cusps dddi@nain.

Grid type MDS MDS,,
51 x 51 101 x 101 201 x 201 51 x 51 101 x 101 201 x 201
Winslow 109 114 116 11.3 12.00 12.3
BCGC 88.6 922.4 94.6° 12.9 13.7 14.0°
avy-Grid 72.8 7.8 83.2 12.53° 13.6° 14.00
J-Grid 33.0 36.9 41.2 8.4 12.00 13.#¢

On the other hand, the sensitivity of the quality of the finatlgo the constant#;
andk. is shown in Tablé.30on 51 x 51 grids for the five-cusps astroid domain. The grid
quality parameters reported in the table are the minimumhlan valueJ,,;,,, maximum Ja-
cobian value/,, ..., maximum deviation from orthogonality (as definedil) fat the Astroid’s
boundary MDQg,,, maximum deviation from smoothness along {héirection MDS&, and
maximum deviation from smoothness along thdirection MDS,.

The last row of Table.3 contains the number of iterations needed for the process to
converge to the final grid. As an initial guess for the SOR pss¢ the control functions
and are set equal to zero. Whén = ko = 0 the control functions in equation8.©)
and @.7) are not fed back from the gradient of the Jacobian, and fiver¢hey remain zero
through the entire iteration process. As a consequenceasdek; = ko = 0 corresponds
to Winslow grids. This explains the relatively large diffece between,,,;,, and J,,,. in
Table6.3for the casé:; = k; = 0. But as long as the control functions are influenced by the
Jacobian, i.e., whehy, k2 > 0, they iteratively adjust to produce grids of nearly unifazedl
area.

Another important difference is observed for the paramiées,: Winslow grids bend
much more than/-grids at complex boundaries. The grid quality paramethosvslittle
variation for the nonzero values &f andk,, although it is noticeable that the number of
SOR iterations increases with larger values of these cotsstahis is due to oscillations on
the control function values at the early stages of the it@airocess for larger values éf
andks.

Similar behaviors are observed for the sensitivity of thigl guality parameters with
respect to variations df; andk, for the ay-grids. Experiments for finey-grids anda-y-
grids were also performed. It was found that largeandks values lead to a divergent grid
generation algorithm. For instance for the x 51 grid of Table6.3 the J-grid algorithm is
divergent wherk,, k2 > 13. Also for 101 x 101 J-grids, the generation algorithm diverges
for values ofkq, ko > 15.

6.3. Orthogonality. Regarding orthogonality at the inner boundaries, for fhgrids
anday-grids over multiple connected regions with a single hdie,garameters MDO (max-
imum deviation from orthogonality) and ADO (mean deviatioom orthogonality) intro-
duced in [/] are used. In particular, they are calculated for the mig@tgmnnected domains
described in Tabl€.4 and depicted in Figuré.2 These experiments illustrate thatgrids
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TABLE 6.3
Sensitivity to the constants » for the five-cusps astroid domain orba x 51 J-grid.

ki =ka=00 ki =k=05 ki =k=10 ki =k =15

Tomin 1.14e-4 6.19e-3 6.61e-3 6.76e-3
Jmaz 1.15e-1 5.99e-2 5.60e-2 5.59e-2
MDOq, 5.6° 3.9 3.5 3.4
MDS; 109 3% 3 31°
MDS, 11.3 8.2 8.4 8.4
lter 544 668 707 751

anda~y-grids are near-orthogonal for domains without entranbeos such as the five-cusps
astroid and the ellipse of Figu€e2. However, for a singular domain with entrant corners such
as the epicycloid (also shown in Figuse?), the deviation from orthogonality is large near the
cusps. This is expected not only for tieanda~y algorithm but for any non-self-overlapping
grid generator near this type of singularity. It is well knothat simultaneously conditioning
more than one property of the grid potentially results irslslag demandsl]. For example,

in [5], it is shown that reducing the aspect ratio values may t@sain increase in the mean
deviation from orthogonality (ADO). In our case, the comfiimg and non-self-overlapping
properties of the algorithms under study preclude the gdhality about the cusps.

A well-known algorithm based on a system of two quasi-lineliiptic equations such
as @.1) and Q.2 that respects orthogonality at the boundary is called GRABrids about
Airfoils using Poisson’s Equation). The theory behind thigorithm is due to Steger and
Sorenson, and can be found ih7]. It is intended for smooth boundaries. This algorithm
certainly produces near-orthogonal grids for smooth baued, but it will face the same
opposing demands (orthogonality versus non-self-ovpitey) for singular boundaries as the
one described by the epicycloid at the cusps. The GRAPE itligorlso produces grids
with cells of non-uniform area similar to Winslow grids awfagm the boundaries. This may
cause lack of accuracy for field computations in the inteiégions.

TABLE 6.4
Deviation from orthogonality at boundary points fod1 x 101 J and a-y-grids.

Astroid Ellipse Epicycloid

J-grid  avy-grid J-grid  ay-grid J-grid  avy-grid
MDOgyq, 3.4 3.2 5.9 4.8 63.9 58.5
ADOyq,  2.7° 2.0 3.8 2.6° 50.1° 42.2

7. Mixed algebraic-J grids and mixed algebraic«y grids. Although it is possible to
generate global-grids andxy-grids for large domains, it may be computationally expessi
in most practical applications. For large domains boundegdometrically complex bound-
aries, it is more convenient to generate elliptic grids foelatively small region surrounding
the obstacle. For the remaining, geometrically simplet phthe domain, an algebraic gen-
eration method is usually good enough for field computatiand is much faster due to its
explicit nature.

For geometrically complex domains, combination of genenaiechniques has become
a common practice. For instance, this approach was folldwegherer and Visball[], who
employed overset grids as a support for the simulation ofistio scattering from multiple
cylinders. The overset technique employs interpolatinignmmials to match a boundary-
fitted grid around the obstacles with an algebraic Cartesiash covering the rest of the
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FIGURE 6.2.Zoom onJ-grids showing the deviation from orthogonality at boungppints.

domain.

In this section, we construct some meshes for various congjamains. They consist of
portions of.J-grids ora~y-grids for that part of the domain surrounding the the hofasnual-
tiple connected domains and algebraic meshes for the r@mgyarts. To start the process,
an initial algebraic grid is generated. It is obtained byt fitsfining an initial distribution of
points along the physical boundarigsdirection). Then, these boundary points are linearly
interpolated inside the domain in thedirection producing-curves. Along each of these
&-curves, piecewise uniform partitions with the same nunob@oints are defined. Different
step sizes are used for different segments oftearves. This means that nodes are locally
uniformly distributed on eacf-curve. Using these points, the grjecurves are generated by
linear interpolation along th&-direction, producing a final algebraic grid.

The resulting algebraic grids are illustrated at the leRigure7.1and Figure7.2for two
different domains. They conform to the boundaries but aregly non-smooth. They have
very skewed cells around the boundary corner and cusps., tisabrupt changes from a
small step size in the more dense region to the large stepdize intermediate region creates
non-smoothness along tljecurves. Additionally, the complex bounding curves mayuice
self-overlapping of grid lines, and the propagation of slaliscontinuities to the interior of
the domain.

The new elliptic grid generators which are the subject of thork are now used to
smooth the algebraic grids of Figur@sl and 7.2 The algorithm to generaté-grids is
applied to the algebraic grid at the left in Figuré while the algorithm to generatey-grids
is applied to the algebraic grid at the left in Figur€. However, they are applied only in
the neighborhood of the boundaries, where the density dfligwes is greater (darker regions
in the initial algebraic grid figures). As a result, grid peofles such as orthogonality, line-
smoothness, area-uniformity, and line-spacing are gr@afiroved within these regions.

Once the elliptic grids have been generated in the neigldoorbf the boundaries (inner
and outer), the portion of the algebraic grid occupying ttierimediate region is regenerated.
First, the distribution of points along tifecurves is redefined. This is done by interpolating
the location of grid points from the two smoothed boundagyoes to the intermediate region
by means of Hermite polynomials of degree four. As a resudtabrupt changes from a small
step size in the more dense regions to the large step size intdrmediate regions along the
&-curves is replaced by a smooth changes in the step sizesnelihgrid points along the
&-curves are linearly interpolated along thwelirection producing an improved intermediate
algebraic grid.

More detailed graphs of the initial algebraic grids and thelfimixed grids are shown in
Figures7.3and7.4. There are noticeable smoothness improvements expedéydee cells
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FIGURE 7.2.Initial algebraic grid and final61 x 61 mixed algebraicay grid.

around the complex boundaries. Also, a smooth transitiothi® separation of the-curves
along the¢-direction, from the near boundary elliptic grid cells t@thlgebraic grid cells of

the intermediate regions, is observed.

As a final experiment, we construct mixed grids for the miytippnnected region con-
sisting of a NACA2412 airfoil as the inner boundary and aipsé as the outer boundary;
see Figure&/.5. Most algebraic grids overlap at the airfoil trailing edgee for modest grid
sizes. In Figurer.6, a zoom on the airfoil trailing edge fdr21 x 121 initial and mixed
algebraics grids is shown. Values of the Jacobian at the cell contaittiegtrailing edge
areJ; 1 = —7.29 x 107 for the initial algebraic grid,J; ; = 1.94 x 10~° for the mixed
algebraicey grid, andJ; ; = 4.79 x 10~ for the mixed algebraict grid. The negative sign
of .J; ; for the cell of the trailing edge indicates an overlappingeifs. This anomaly is fixed
by applying the/-grid anday-grid algorithms about the trailing edge starting with tihisial
grid. Again, the initial grid cell areas and line spacings@nhanced by the application of the
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new techniques.

8. Conclusions. The commonly used elliptic grid generation system given by
(2.1)—(2.2) has been extended to four elliptic equations. The new nsogedgbloit the geo-
metric properties of the Jacobiah(cell area) and the metric factoss(grid line separation
along then-direction) andy (grid line separation along tiedirection) for their formulations.

The key aspect in the formulation of the two new equationsiéskinowledge that in-
creasing (decreasing) values of the control functiorad) of the classical elliptic system
produces relocation of the grid lines in the positive di@tinegative direction) along the
n-direction and.-direction, respectively.

It is seen from the various domains considered in this wodkt the final grid is the
ultimate product of a series of adjustments¢goind« during an iterative process. These
adjustments obey to the need of minimizing the area or liaeisg differences between cells
without sacrificing the boundary conforming property.

The main difference between the elliptic generation temtiproposed in this work
and known elliptic methods is that the control functiahand are completely unknown
and the generation is fully automatic. They are not definddrbehe generation starts as
in [10, 11, 13, 14, 19, 20]. They are not modified to minimize errors of supported field
computation as in9]. If a specific distribution of grid points (such as specikistering or
stretching of grid lines) is not required anywhere in the dombeing discretized, thes
anday-grids constitute a good choice because of their enhanagzepies in terms of near
uniformity of cell area and line spacing. Nevertheless,shmuld notice a natural appearance
of a cluster ofp-curves in a neighborhood of the inner boundariesdfgrgrids. However,
the distance among thecurves does not grow as much as for other elliptic genesaway
from the inner boundaries. This is due to the tendency ohth@rids to preserve the grid
line separations.

The two-dimensional grid generation algorithm introduethis work can be naturally
extended to three-dimensional domains. To start, confiideclassical two-dimensional al-
gorithm formed by 2.1)—(2.2). In three dimensions, a natural extension consists ofraddi
a third elliptic equation for the physical coordinateand a third computational variable
(. Also, a third control function\ is needed for three-dimensional elliptic grid genera-
tors. The corresponding metric factors and the Jacobbibave geometrical interpretations,
such as surface separation and cell volume, respectivedyailed formulations are found
in [8, 10, 16, 18, 19]. They consist of the quasi-linear elliptic system of palrtifferential
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equations given by

a11%ee + 20Ty + az3t¢cc + 2(a12%ey + a13T¢¢ + a23Tne) = (8.1)
—a11 Y — agnpx, —azzA e,

a11Yge + a22Ynn + assycc + 2(ar12yen + a13yec + az3ync) = (8.2)
—a11Y ye — azdy, — asshyc,

a112¢¢ + 202y + as3zee + 2(a122¢y + a132¢c + a232n¢) = (8.3)

—an zg — a0z, — asz z¢,

where thea;; (i,j = 1,2, 3) are the metric factors of the three-dimensional transétion
between the computational domain @f n, ¢) points and the physical domain ¢6f, y, z)
points. Their definitions are found id§], and the Jacobian is given by

Ig Iﬁ IC
J=1ve yn Y
Ze  Zp o %

As a second step in the extension of the present algorithntisré@ dimensions, we
add a third term representing the second derivative withaetsto( to the previous Poisson
equations for the control functiong and ¢. Also, a third Poisson equation for the new
control functionA is added to the system. Therefore, the three-dimensiomsioveof the
J-algorithm includes the previous equatioBslj-(8.3) and the following Poisson equation
for the control functions

Vee + Yy + eg = —ka e, (8.4)
bec + O + dcc = —kady, (8.5)
Aee + Ny + Ace = —ksJe. (8.6)

A completely analogous extension can be carried out fordfradilation of the three-dimensional
ay algorithm. The actual implementation of these algorithargliree-dimensional domains
will be the subject of a forthcoming publication.

The novel grids derived here may be very appropriate for edatfpn on complex do-
mains if they are combined with other grid-types as showndatiSn7. Recently, we have
successfully used them to support the pressure field coitiquia acoustic scattering from
an obstacles with complex shape}. [ Due to their attractive features (smoothness, non-
self-overlapping, nearly uniform cell area or nearly unifidine spacing) and their relatively
simple implementation, we are confident that these gridsbeib great aid to accurate field
computations in important problems in applied areas sudhiigs and waves.
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