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UNIQUE SOLVABILITY IN BIVARIATE HERMITE INTERPOLATION *

ANA MARCOT AND JOSE-JAVIER MARTINEZ!
Dedicated to Vttor Pereyra on the occasion of his 70th birthday

Abstract. We consider the question of unique solvability in the contxbivariate Hermite interpolation.
Starting from arbitrary nodes, we prescribe arbitrary ¢oras of Hermite type, and find an appropriate interpolatio
space in which the problem has a unique solution. We showtligatoefficient matrix of the associated linear
system is a nonsingular submatrix of a generalized Kromepkaduct of nonsingular matrices corresponding to
univariate Hermite interpolation problems. We also coesttie case of generalized polynomials, such as Cauchy-
Vandermonde systems.
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1. Introduction. Bivariate Hermite interpolation has recently been the ectbpf two
related papers by B. Shekhtmalb[ 16]. Although the purpose of those papers is to look
for spaces for which a certain Hermite interpolation prabis solvablefor any configura-
tion of interpolation pointsthe author starts from his assumptiontloé lack of unicity for
Hermite interpolation in the multivariate casé his assumption was a main item in one of
Shekhtman’s sources, a survey paper by R. A. Loretitgthat emphasized the existence of
singularmultivariate interpolation problems.

Our aim in this paper is to show that, just as in the univaraise, a bivariate Hermite
interpolation problem has a unique solutibane chooses the appropriate interpolation space
corresponding to the given arbitrary interpolation coiodis of Hermite type.

This positive result, in contrast with the results presernte[15, 16], is important if
one considers thapplicability of interpolation, for example in the finite element methag [
Another relevant application of bivariate interpolatiasthrecently been recalled ihj].

A key idea in our work is a generalization of the use of subioasrof a Kronecker
product of matrices. F. Stenger presented this idea#y fnd its importance was recognized
very early by G. Galimberti and V. Pereyrd][ who extended some of Stenger’s results to
the trivariate case. V. Pereyra and G. Scherer gave an earlputational treatment of the
Kronecker productl4] in which they emphasized the application to multivariateipolation
problems.

More recently, Hackd], in the context of bivariate Birkhoff interpolation, olited suffi-
cient conditions for a bivariate problem to be uniquely ablke. The work of Hack improves,
also by using tensor-product methods, previous resultsmdd in P, 10].

In his work, Hack does not consider the structure of the atiefit matrix of the linear
system associated with the interpolation problem. Takiregrhatrix structure into account,
and extending the work of Stenget7, Gasca and Martinez observe i5] fhat the suffi-
cient conditions given by Hack are also necessary for thguesolvability of the Birkhoff
interpolation problem.

*Received March 27, 2008. Accepted October 3, 2008. Publishéne on January 7, 2009. Recommended
by José Castillo. This work was supported by Research @ddml 2006-03388 from the Spanish Ministerio de
Educacion y Ciencia

fDepartamento de Matematicas, Universidad de Alcala, ganUniversitario, 28871-Alcala de Henares,
Madrid, Spain &éna. mar co@ah. es).

fDepartamento de Matematicas, Universidad de Alcala, psmniversitario, 28871-Alcala de Henares,
Madrid, Spain(j avi er. marti nez@ah. es).

20



ETNA

Kent State University
etna@mcs.kent.edu

BIVARIATE HERMITE INTERPOLATION 21

In addition, the matrix formulation allows a natural gerizegion to other spaces of uni-
variate functions, such as rational functions with prdssdipoles, a situation not addressed
by Hack.

The rest of the paper is organized as follows. In Sec®ome describe the polynomial
bivariate Hermite interpolation problem. We prove the #tse of a unique solution for
each given problem, and give an algorithm for computingiiSéction3. We give examples
in Section4. In Section5, we extend the approach of Sectidro the case of generalized
polynomials. Finally, in Sectiofi, we summarize some important features of our approach.

2. The bivariate Hermite interpolation problem. Following [5], let us consider the
set of bivariate functions

{Fij(z,y) = ®;(x)¥;(y) |i=0,...,n;7=0,...,m},
where®;(z) = 2* and¥,(y) = 3/, and the set of interpolation data of Hermite type given
by
aTithijf

Lij(f):W(Iivyij)v 1=0,...,n;5=0,...,m, (2.1)
wherez; € G (respectivelyy;; € H) are not necessarily different, < n, t;; < m, andG
and H are real intervalsHermite interpolation dataneans that if

ari+tijf

W(xia yij)

is an interpolation datum, then

arthf
W (xia yz])a

wherer < r; andt < t;;, are also interpolation data.
We assume, without loss of generality, that the index set{ (4, j) } in the equationZ.1)
is ordered so that

1.
I={(,j)]i=0,...,m7=0,....k(i)},
with
m=k(0)=k(1) =---=k(ig) > k(ip + 1)
= =k(i1) > > klis—1+1) = = k(is) (2.2)
and
is =M. (2.3)

2. Forany(i,j), (h,l) € I, one has
i1 =h < x; =, andr; = ry,. (2.4)

We can always achieve this order by reordering the absaidshe points(z;, ;).
The bivariate Hermite interpolation probleroonsists of finding a polynomial in the
interpolation spacél(x, y) = span{F;; | (¢,7) € I} such that

Lij(p) = zi;  V(i,j) €1,
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wherez;; are given real numbers.
It is important to realize that

Lij(Fux) = Li(®) - LY (),
where

d"idy,
dz™i

t.,
() diy
(1), L; (Ug) = i (Yij)-

Li(®y) =

3. Unique solvability. For the interpolation spadé(z, y), if we consider the basis

{xlyj | (i7]) 6 I} - {17y’ R 7yk(0)7x7 xy? R 7xyk(l)7 R 7xi07xi0y7 R 7xi0yk(i0)7

ghotl ghotly xi“Jrlyk(i“Jrl) Lo xte aty, L xisyk(is)}
with that precise order, and the interpolation points argitierpolation data in the corre-
sponding order, then we can write the interpolation cood&L;; (p) = z;; as a linear system

of equations
Dp* =z,

where the coefficient matrik is a submatrix of

Lo(®0)By Lo(®1)By -+ Lo(Pn)Bo
Li(®0)B1  L1(®1)B1 -+ L1(Pn) B
— _ _ , (3.1)
L, (®0)B, Ln(®1)B, -+ L,(®,)B,
with
[y —|r® -
zz_pdmﬂww_{%(%ﬂwﬂ vvvvv Li=0..m, (3.2)
= [2007 oy R0K(0)5 2105 - - 5 B1K(1)5 -+ - 5 An0s - - - aznk(n)]Ta and (33)
p* = [pOOa -+ 5 P0k(0), P10y - - - s P1k(1)5 - - -y PnO; - - - apnk(n)]T' (34)
More preciselyD is the submatrix of” obtained by considering:
e The firstk(i) + 1 rows of the row of blocks corresponding®, i =0, ..., n.
e Thefirstk(:)+1 columns of the column of blocks correspondin@tgi = 0, .. . , n.

The nonsingularity ofD follows from the following theoremq], which generalizes
Stenger’s result on the nonsingularity of a submatrix of Knenecker product of two ma-
trices [L7]. Before stating the theorem, we introduce some notatios défine

v ={0,1,...,k(:)} 1=0,...,m, (3.5)

Si={(m+1)i,(m+1)yi+1,....,(m+1)i+k()} 1=0,...,n, (3.6)

S = U Si7 and (37)
i=0

ap=10,1,...,0,} 1=0,...,s. (3.8)

With this notation,D is the submatrix o€ consisting of the rows' and the columns' of C,
which we write as

D = CI[8|9]. (3.9)
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In general, if/ andT" are ordered subsets of the index sets of rows and colummpgatasely,
of a matrix M/, we denote byM [J|T'] the matrix consisting of the entries of the rowisnd
columnsT’ of M.

THEOREM3.1.Let A = [aj;]i j—o.....» be a matrix of orden + 1, B; = [b%,]k.10.....m.

1=0,1,...,n, ben + 1 matrices of ordemn + 1, and
apoBo  ao1Bo -+ aonBo
aioB1 aniBr -+ a1,Br
anOBn anan Tt anan

If (2.2 and (2.3 hold, andA[a,|ay], p =0, ..., s, andB;[v;|v], i = 0,...,n, are nonsin-
gular, thenC[S|S] is nonsingular.

We now describe an algorithm for solving a linear system eftfpe Dx = =z with
D = C[S|S]. It will be very useful in the proof of Theore®.1 This algorithm, which is
an extension to our problem of the algorithm given by Stemgét 7], is due to Gasca and
Martinez (see] and references therein).

The linear systenDz = z, where

T = [200, -+ TOR(0) 105 - - - s T1k(1)s - - - » Tn0; - - - ,xnk(n)]T
and

2= [200 - -+, 206(0)> 2105 + + s Z1k(1)s - - - » Zn0s - - - ,znk(n)]T,
can be written in explicit form as

> bia Z @ijTj = Zik, (3.10)

r=01=k(ir+1)+1 j=0

k(ir)

wherei = 0,...,nandk =0,..., k(). Setting
cil :Zaijxﬂ l=k(ps1)+1,... k(i); r=0,...,81=0,...,n,
§=0

we write (3.10 in the form

k(ir)

S
E byicit = Zik,

r=0 l:k(ir+1)+l

wherei = 0,...,nandk =0,...,k(3).

The expressions above lead to Algoritl32 for solving the systenDx = z, which we
use to prove Theore@ L

Proof. If the conditions of Theorer@.1are satisfied, every linear system solved in Step 2
and Step 3 of Algorithn3.2 has a unique solution. Therefore, the algorithm gives atisolu
of the linear systenDxz = 2z for all vectorsz, and consequently the square matfixis
nonsingulard

Taking into account thab;(z) = z%,i = 0,...,n,and¥,(y) = ¢/, j = 0,...,m, itis
easy to see that in our case the matrix

A= [Li(9;)]

4,J=0,...,n
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ALGORITHM 3.2. SolveDzx = 2

Definei(_y) = —1andk(is41) = —1.

forr=0,...,s
Stepl.fori=id,_1+1,...,4,
Definez; = [Zi07 ey Zi7k(i)]T.
if r>0
Definecz(.l) = [Ci,k(i,‘)-i-lv ey Ci,k(o)]T.
%=z — Bilyi | k(i) + 1,... k(ig)] ¢!V
else
Step2.fori =14, 1 +1,...,4,,
SOlveBi [’}/Zh/z] CZ(-Q) = ZZ—, Wherecl@) = [Ci07 ceey Ci7k(i)]T.
Step 3.forl = k(iy+1) +1,...,k(ir)
Definec! = [cor, - - -, i 0]t
Solve A0, ...,i, | 0,...,i,] o' = ¢!, wherez! = [z, ..., 2; 4]
Step4.ifr<s
forl = k(iy41) +1,..., k(i)
d'=lcis11,--sen)f = Alip +1,...,n0,...,0,] 2!
end for.

is a confluent Vandermonde matrix of orde#- 1, and the matrices

Bi = {L’(j)(\l}l)}k,zzo,...,m’ 1=0,---,m

are confluent Vandermonde matrices of onaer 1. Consequently, all the matrice§a,, |a,],
p=0,...,s,andB;[vi|v:], 7 = 0,--- ,n, are also confluent Vandermonde matrices corre-
sponding to univariate Hermite interpolation problemsl trerefore they are nonsingular. In
this way, by Theoren3.1, we find that the coefficient matri® corresponding to the bivari-
ate Hermite interpolation problem is nonsingular; thathsg, bivariate Hermite interpolation
problem has unique solution. Fast algorithms for solvimgdir systems whose coefficient
matrices are confluent Vandermonde matrices can be founexémnple, in {].

4. Examples. We start this section with a detailed example that illussdhe algorithm
described in Sectio8.
EXAMPLE 4.1. Let us consider the following interpolation data:

o1 o1

f(1,2) = 46, 5, (1.2) =170, ay(l, 2) = 10,
_ of _ of _
£(3,4) = 490, oy (3.4) = 384, 3y (3,4) = 24.

Our aim is to find the interpolation polynomial correspomdin these data by using the
algorithm described in the previous section.
In this case, we have:

o =w2=1, 21 =3 =3, Yoo = Yo1 = 2, Y20 = 2, Y10 = Y11 = 4, Y30 = 4,
iv=1, i1=3, k(0)=k(1)=1, k2)=k(3) =0, s=1, n=3, m=1.

The corresponding interpolation spddér, ) in which our problem has the unique solution

p(z,y) =14 3y + b + Tay + 922 + 1123
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has the following basis:

{1,y,z, 2y, 2%, 2%}.

The matrix corresponding to univariate Hermite intergolatin = with interpolation data

), f3), f1(1), f'(3) is

1
27

3 3
27

O O = =
L
(@2 \VIENeRN o

the matrix for univariate Hermite interpolationjgnwith interpolation datg (2), f/(2) is

o
Bo= Bz = 0 1]
and the matrix for univariate Hermite interpolationginvith interpolation datef (4), f'(4) is
o

Bi=Bs= |, 4|

Let us show the steps of the algorithm in detail (frem= 0 to r = s = 1), taking into
account that for = 0, stepl is not necessary, and that foe= 1, step4 is not necessary.
r = 0: Step 2.We have

Zo = [46,10)]7 and 2z, = [490,24]T.
Solving the linear systems
Bo[0,1]0,1] ¢ = %, and B,[0,1/0,1] {2 = 7,
we obtain
2 = [co0, con]” = [26,10]7 and {2 = [c10,e11]T = [394,24]7.

Step 3. Forl = 1, we havec! = [co1,c11]7 = [10,24]T. Solving Az' = ¢!, we
obtainz! = [p()l,pll]T = [3, 7]T.
We observe that in writing = Qo(x)1 + Q1 (z)y, where

3

Qo(x) = poo + proT + p20x® + poz”® and Q1(z) = po1 + p1iz,

we have already obtaineg; (z) = 3 + Tx.
Step 4.Now, for! = 1, we obtain

d' = [ca1, 3] = A[2,3]0,1] 2 = [7,7]7,

e Q(z0) = 7, Q(ar) = 7.

r =1: Step 1.Fori = 2, we havez; = [z9] = [70], cgl) = [e21] = [7], and so we obtain
22 = Z2 — Bg[Oll] [7] = [56]
Fori = 3, we havezs = [z30] = [384], cgl) = [es1] = [7], and we obtain

53 = Z3 — B3[0|1] [7] = [356]
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Step 2.SinceB;[0|0] = B3[0]0] = [1], for i = 2, we must solve the linear system

[1] [c20] = 22 = [56],
and fori = 3, the linear system

[1] [es0] = 25 = [356],
and therefore we obtain

[c20] = [56] and [c30] = [356].
Step 3.Finally, we must solve the linear system
A 2° = [cgo, €10, 20, c30)" = [26, 394, 56, 356]7

whose solution is

"=

€T p007p107p205p30]T = [15579711]T'

All the linear systems involved correspond to univariaterkiee interpolation problems
(either inx or in y), and so they have unique solutions.

The following examples are taken frorhq] and [16], and all of them consider interpo-
lation data of Hermite type at two arbitrary interpolatiardes(a,, b;) and(az, b2) in which
only the first partial derivatives of an arbitrary functit, ) are involved. In {5] and [16],
it is shown that, in some of these examples (Examplgs4.3 4.7 and4.8), when selecting
an interpolation space for any configuration of the nadesb; ) and (a2, b2), the dimension
of the interpolation space is necessarily greater than timeber of interpolation data, and
therefore the interpolation problem does not have a uniqligisn. In each example, we
will show that to select the interpolation space describeSiactions for which the interpola-
tion problem has unique solution, we have only to distiniytngo different configurations of
the nodes: the two nodes along the same vertical line, anstheodes on different vertical
lines. In both configurations, the choice of the interpolatbasis is completely natural, and
the matrix in the systenp* = z corresponding to the interpolation problem is nonsingular
that is, the interpolation problem has a unique solution.

EXAMPLE 4.2. The Lagrange case. Let us consider the interpolatitan da

fla1,01), f(az,b2).

e (a1,b1) and(aq, bo) are along the same vertical lifie; = a2).
— The basis of the interpolation space {3: y }
- det(D) = b2 — bl
e (a1,by) and(az, bs) are on two different vertical linesi( # as).
— The basis of the interpolation space {4: x}
- det(D) = a2 — aj
ExAMPLE 4.3. Let us consider the interpolation data:

Flas.b), g—i(al,bn, Flaz bo).

e (a1,by) and(az, by) are along the same vertical liie; = az).
— The basis of the interpolation space {3 v, y*}
- det(D) = (bl — b2)2



ETNA

Kent State University
etna@mcs.kent.edu

BIVARIATE HERMITE INTERPOLATION 27

e (ay1,b1) and(as, by) are on two different vertical lines( # as).
— The basis of the interpolation space{s; y, «}
— det(D) = a2 — aq
EXAMPLE 4.4. Let us consider the interpolation data:

flax, by), %(al,bl), Z—Jy[(al,bl), flaz,b2).

e (ay1,b1) and(asg, bo) are along the same vertical lifie; = as).
— The basis of the interpolation space {s; v, %, v}
- det(D) = (bQ — b1)2

e (a1,b1) and(as, ba) are on two different vertical lines( # as).
— The basis of the interpolation space {g; y, x, 2%}
- det(D) = (a1 — CL2)2

ExXAMPLE 4.5. Let us consider the interpolation data:

f(al, b1)7 g—i(al, b1)7 f(a2, b2), g—i(am b2)-

e (ay1,b1) and(asg, bo) are along the same vertical lifie; = as).
— The basis of the interpolation space {g; vy, y2, =}
- det(D) = (bl — b2)2

e (ay,b1) and(as, by) are on two different vertical lines( # as).
— The basis of the interpolation space {8: y, =, 2%}
- det(D) = (a1 — CL2)2

EXAMPLE 4.6. Let us consider the interpolation data:

flax, by), g—i(al,bl), flaz,b2), %(GQ’ b2).
e (a1,b1) and(az, b) are along the same vertical litie; = as).
— The basis of the interpolation space {8: v, y2, v}
- det(D) = (bQ — b1)4
e (ay,b1) and(as, bo) are on two different vertical lines( # as).
— The basis of the interpolation space {3; y, z, xy}
— det(D) = (a1 — az)?
EXAMPLE 4.7. Let us consider the interpolation data:
flai,br), %(al, b1), ?)_i(al’ br), [f(az,b2), %(am b2).
e (ay1,b1) and(ase, bo) are along the same vertical lifie; = as).
— The basis of the interpolation space {g; v, y?, x, vy}
- det(D) = (bg — b1)3
e (a1,b1) and(as, b2) are on two different vertical lines( # as).
— The basis of the interpolation space {3: y, =, 2%, 23}
- det(D) = (a1 — CL2)4
ExXAMPLE 4.8. Let us consider the interpolation data:

0 0 0 0
flai,by), a_i(alabl)v 8_£(a1’b1)’ flaz,b2), 8_£(a27b2)7 8_£(a2’b2)'

e (a1,b1) and(az, b) are along the same vertical litie; = as).
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— The basis of the interpolation space{s: v, v2, v3, =,y }
- det(D) = (bQ — b1)5
e (a1,by) and(az, bs) are on two different vertical lines( # as).
— The basis of the interpolation space {3, y, r, zy, ¥2, 23}
— det(D) = (a1 — az)®
The multivariate interpolation problem is involved in theitie element method for solv-
ing partial differential equations. The example below wliow the existence of a unique
interpolant for the well-known Bogner-Fox-Schmit finiterldent [L], for the case in which
four interpolation data are prescribed on each node. Weidena more general situation in
which the nodes are not necessarily the four vertices oftamgte with sides parallel to the
coordinate axes, but they are on two different verticaldine
EXAMPLE 4.9. Let us consider the interpolation data

0 0 0?
fla), G, G, 5o @)

at the interpolation nod€s, ¢1), (a, ¢2), (b,d1) and(b, ds), wherea # b. The nodes are on
two different vertical lines, witle; # ¢ andd; # ds, i.e., there are two different nodes along
each one of the two vertical lines.

The basis of the interpolation space in which the problemshasique solution is:

{1y, 9% y% z 2y, ay?, 2y’ 2, 2Py, 2%y?, 2P, 28, 2Py, 2%y?, 2%yt )

That is, the interpolation space is in this case the wholeesfig; (z, y). The determinant of
the coefficient matrix of the linear system correspondint&interpolation problem is

(b — Q)IG(CQ - 01)8(d2 - d1)8 7§ 0.

The coefficient matrix of the linear system is the generdlikmnecker product of confluent
Vandermonde matrices.

5. The case of generalized bivariate polynomialsOur aim in this section is to show
the unique solvability of the bivariate Hermite interpaatproblem in the more general situ-
ation in which(®g, ®4,...,®,) and(¥o, ¥4,...,¥,,) are extended complete Tchebycheff
systems. We recall the definition of an extended completedytheff system.

DEFINITION 5.1. LetG be a real interval. We say th&®, ®4,...,®,,) is an extended
complete Tchebycheff (ECT) system of orden G if ®; € C™(G) Vi, andfork =0,...,n
and for every choice of points, ..., z, € G not necessarily different, the determinant of
the generalized Vandermonde matrix

PLACIN S
[ dmuzr]‘ )1’ (‘Tj ):|

is nonzero, wherg(x;) is the multiplicity ofz; in the ordered systerfxo, z1,...,2;_1).

REMARK 5.2. (1,z,22,...,2") and(1,y,y?,...,y™) are ECT systems.

Proceeding in the same way as in Sectipwe obtain that the interpolation problem can
be written as a linear systemp* = = satisfying 8.1)—(3.9).

Since(®g, ®4,...,®,) is an ECT system, all the matrice§a,|a,], p = 0,...,s, are
nonsingular, wherel = [L;(®;)] . In the same way, sincgl, ¥y,...,¥,,) is

3,i=0,....k

§,j=0,.esm
an ECT system, the matricd3 [;|y;] are nonsingular, whers; = [L,(j)(\lfl)hl ,

1=0,...;m
i=0,-- .
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By using Theoren8.1, we conclude that the coefficient matiX of the linear system
corresponding to the bivariate interpolation problem issingular, and therefore, the bivari-
ate Hermite interpolation problem has a unique solution.

An important particular case arises wheby, ®4,...,®,) and (¥y, ¥4,...,¥,,) are
systems of generalized polynomials, such as those coesid®f6, 13]. In this situation the
matrix D is a submatrix oiC, whereC' is the generalized Kronecker product of confluent
Cauchy-Vandermonde matrices. We illustrate this sitmatigh the following example.

EXAMPLE 5.3. Let us consider the following two systems of generdljzelynomials:

1 1
Py, 01, Py, P3) = (1,06, ——, ——
( 0, ¥1, *2, 3) <7Iax+17x+2)7

1 1
\Ij a\IJ 7\11 a\]] = 1, ) — .
(o, Wy, Uy, U3) ( yy+3y+4)
Our aim is to find an appropriate interpolation space, a satespf the tensor-product space
generated by the bivariate functions

{Fij(z,y) = ®;(x)¥;(y) |i=0,...,3;7=0,...,3},

in which the following Hermite interpolation problem hasmigue solution.
We consider the interpolation data

0 0
f(xay)v 8_J:170(x’y)7 a—;(l‘,y),

at the interpolation nodes:, b1), (a1, b2) and (aq, b3), wherea; # as. The nodes are on
two different vertical lines, anél; # b,, i.e., there are two different nodes along one of the
vertical lines.

The basis of the interpolation space of dimension which this problem has unique
solution is

1 1 1 1 1 1

Yy =5 T L, XY, } ) .

yy+3 y+4 ya:—i—l x+1yar+2

The determinant of the coefficient matrix of the linear syst®rresponding to the interpola-
tion problem is

(b2 = b1)%(ag — a1)°

(a1 + 1)4(a1 + 2)2(a2 + 1)3(a2 + 2)2(b1 + 3)2(b1 + 4)2(b2 + 3)2(132 + 4)2 70

An analogous case (@Oa (I)la (1)23 (1)3) = (17 €, IQ, xS) and(\Ij()a \Illv \1123 \113) = (17 Y, yQa yS)’
an example considered ifd][ In this case, the basis of the interpolation space is

{11 y7927y3a$7$y7$27$2y79€3}a

and the determinant of the coefficient matrix of the lineatsm corresponding to the inter-
polation problem is

(b2 — b1)5(a2 - a1)6 }é 0.

Therefore, using the approach presented in this paper, weefband an interpolation space
such that the interpolation problem has a unique soluti¢n¢hvcannot be obtained by using
the techniques presented iff.[
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6. Final remarks. In this section, we briefly state some of the advantageotigriesof

our approach:

(1]

(2]
(31

(4]
(5]
(6]
(7]

(8]
El

[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

1. Inthe polynomial case, the interpolation basis elemamsalways monomials.

2. Our approach applies not only to the polynomial case, laat o the more gen-
eral case in whicli®g, ®4,...,®,) and(¥y, ¥4,...,¥,,) are extended complete
Tchebycheff systems.

3. The matrix formulation of the bivariate Hermite intergtébn problem presented in

this paper can easily be extended to multivariate Hermte@olation problems.

. Our approach applies to the construction of more geneaited flement schemes.

. Using this approach, every new result obtained in theauidte setting can readily

be extended to the multivariate case.

[S20 >3
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