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Abstract. When differential-algebraic equations of index 3 or higherare solved with backward differentiation
formulas, the solution can have gross errors in the first few steps, even if the initial values are equal to the exact
solution and even if the stepsize is kept constant. This raises the question of what areconsistentinitial values for the
difference equations. Here we study how to change the exact initial values into what we callnumerically consistent
initial values for the implicit Euler method.
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1. Introduction. A differential-algebraic equation (DAE) has the form

F (t, x, ẋ) = 0,

where the matrix∂F/∂ẋ is singular. Here we shall consider the differential-algebraic equa-
tion of the form

ṗ = U(t, v) (1.1a)

v̇ = F (t, p, v) + G(t, p, v)λ (1.1b)

0 = R(t, p), (1.1c)

wheret ∈ R, p ∈ R
n, v ∈ R

m, λ ∈ R
s, andU : R × R

m → R
n, F : R × R

n × R
m → R

m,
G : R × R

n × R
m → R

m×s andR : R × R
n → R

s. Assume thats ≤ min(m, n) in order
to avoid an over-determined system. The system (1.1) has index 3 if∂R/∂p · ∂U/∂v · G is
nonsingular for allt ∈ [t0, T ]. For simplicity we taket0 = 0.

The algebraic variables appear linearly as in (1.1b) in important classes of physical prob-
lems. This condition is fulfilled, for example, by the Euler-Lagrange equations of multibody
mechanics, which have applications in biomechanics, the dynamics of machinery, robotics,
and vehicle design.

To solve this type of DAE, several techniques have been considered. One proposition has
been to solve the system in its original formulation using a backward differentiation formula
(BDF), as implemented in the DAE solver DASSL [4]; but such a variable-step-size, variable-
order code based on BDF methods presents some essential difficulties when solving higher
index DAEs, especially in the accuracy of the algebraic variables [2].

The initial values(p0, v0, λ0) are said to beconsistentif the DAE has a differentiable
solution(p(t), v(t), λ(t)) in the interval[0, T ] such that(p(0), v(0), λ(0)) = (p0, v0, λ0).

Brenan and Engquist [3] definednumerically consistent starting values to orderk+1 for
thek-step BDF applied to (1.1) as starting values[pk−1, . . . , p0], [vk−1, . . . , v0], [λk−1, . . . , λ0]
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such that

‖pj − p(tj)‖ ≤ K1h
k+1 (1.2a)

‖vj − v(tj)‖ ≤ K2h
k+1 (1.2b)

‖R(tj , pj)‖ ≤ K3h
k+2 (1.2c)

for some constantsK1, K2, K3 andj = 0, 1, . . . , k − 1. They proved that thek-step BDF
(k = 1, . . . , 6) with constant step sizeh converges globally withO(hk) accuracy to the
solutions, but only after afterk+1 steps, and provided the method uses numerically consistent
starting values to orderk + 1.

In particular, for the implicit Euler method the state variablesp andv haveO(h) accuracy
after the first step, but the error in the algebraic variableλ isO(1), even when the initial values
are exact. By approximating the errors in the algebraic variable, a correction mechanism was
devised in order to obtainO(h) accuracy even in the initialk steps [2]. These formulas correct
the errors locally and produceO(h) accurate algebraic variables.

Our view is that theseO(1) errors are caused by initial values that are inconsistent with
the difference equations. We attempt to redefinenumerically consistentinitial values as initial
values that areconsistent with the difference equations, as opposed to those consistent with
the differential equation, as in (1.2). We explain theO(1) errors in the algebraic variables as
a result of starting the BDF solver with initial values that are consistent with the differential
equation, but not with the difference equations. Once this is established, we develop a scheme
to construct numerically consistent initial values. We illustrate our results by solving the same
problems that appear in [1].

2. Numerically consistent initial values. Initial values that are numerically consistent
with the difference equation generated by an orderp method should produceO(hp) accurate
solutions.

DEFINITION 2.1. The set(x0, x1, . . . , xk−1) is a numerically consistent initial valueat
t = t0 for a differential equationf(t, x, ẋ) = 0, solved with ak-step multistep method of
orderp, if the method initiated with(x0, x1, . . . , xk−1) generates the approximationxk such
that

x(tk) − xk = O(hp). (2.1)

For differential-algebraic equations (DAEs) in semi-explicit form

ẋ = f(t, x, λ)

0 = g(t, x, λ)

of index less than 2, consistent initial conditions are alsonumerically consistent; but for
higher index DAEs, consistent initial conditions do not necessarily produce an approximation
satisfying (2.1). For index 3 DAEs, in fact, BDF methods approximate the algebraic variables
with O(1) errors after the first step, even if the initial values are exact.

3. Euler-Lagrange equations and the implicit Euler formula. The index 3 formula-
tion of constrained multibody systems is

ṗ = v (3.1a)

Mv̇ = F (p, v) + G(p)T λ (3.1b)

0 = R(p), (3.1c)
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whereM is the positive definite mass matrix,G = ∂R/∂p, andG(p)M−1G(p)T is non-
singular.

To simplify notation, we will denoteG(p1) by G1 and F (p1, v1) by F1. When the
implicit Euler formula is applied to (3.1) using exact initial values, the algebraic variableλ1

has anO(1) errorǫλ = λ(t1) − λ1 that can be approximated withO(h) accuracy by [2]

δλ = (G1M
−1GT

1 )−1G1M
−1F1 + λ1.

The implicit Euler method requires initial values only for state variablesp andv. Taking the
initial condition

p0 = p(0) + O(h3) (3.2a)

v0 = v(0) − hM−1GT
1 δλ + O(h2), (3.2b)

the first step is

p1 = p0 + hv1

v1 = v0 + h(I − B)M−1F1 + hM−1GT
1 δλ

0 = R(p1),

where the matrixB is dependent onp1 and is defined by

B = M−1GT
1 (G1M

−1GT
1 )−1G1.

The matrixB is a projector andB · M−1GT
1 = M−1GT

1 .
We denote the global errors att1 by ǫp = p(t1)−p1, ǫv = v(t1)−v1 andǫλ = λ(t1)−λ1.

TheO(h) accurate correction termδλ may be expressed in terms of the exact value of the
algebraic variable as

δλ =
1

2
((G1M

−1GT
1 )−1G1M

−1F1 + λ(t1)).

By expandingp(t) andv(t) aboutt1 and evaluating att = 0 we obtain

ǫv = hM−1GT
1 (δλ + ǫλ) + O(h2)

ǫp = hǫv − h2

2
M−1(F (p(t1), v(t1)) + G(p(t1))

T λ(t1)) + O(h3).

These expressions lead to

ǫp =
h2

2
M−1(GT

1 (G1M
−1GT

1 )−1G1M
−1F1 − F (t1)) + h2M−1GT

1 ǫλ + O(h3),

and multiplying byG1 we can conclude that

G1ǫ
p = h2G1M

−1GT
1 ǫλ + O(h3).

If we expandR(p) aboutp1 and use the fact thatǫp = O(h2) together withR(p(t1)) = 0
andR(p1) = 0, we finally obtainG1ǫ

p = O(h4), thus implying that

ǫλ = O(h).

In other words, the initial condition (3.2) is numerically consistent for (3.1) solved with the
implicit Euler method.
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The initial value (3.2b) may be written as

v0 = v(0) + B(v(0) − v1) + O(h2). (3.3)

Equation (3.3) in the form

v0 − v(0) + O(h2)

h
= −B

(v1 − v(0))

h
(3.4)

can be interpreted as an indication that the initial values for v consistent with the differential
equation are also consistent with the difference equation only in the case thaṫv(0) is in the null
space ofG1. In practical terms, this would require thatλ(t0) = −(G0M

−1GT
0 )−1G0M

−1F0+
O(h).

As the change in initial values for the state variablev is O(h), it will not affect the
accuracy of the solution in any of the state variables.

4. The more general case.The more general problem we consider here is

ṗ = U(t, q) (4.1a)

q̇ = F (t, p, q) + G(t, p, q)Λ (4.1b)

0 = R(t, p). (4.1c)

This is an index 3 DAE ifRp · Uq · G is non-singular.
According to [2], the algebraic variableΛ is estimated by the first step of the implicit Eu-

ler method with anO(1) errorǫΛ = Λ(t1) − Λ1, which is approximated withO(h) accuracy
by

δΛ = (RpUqG)−1Rp[Uq(F + GΛ)Ut],

where all functions are evaluated att = t1. The first implicit Euler step is

p1 = p0 + hU(t1, q1)

q1 = q0 + h(F (t1, p1, q1) + G(t1, p1, q1)Λ1)

0 = R(t1, p1)

with numerically consistent initial condition

p0 = p(0) + O(h3) (4.2a)

q0 = q(0) − hGδΛ + O(h2). (4.2b)

We may write (4.2b) as

q0 = q(0) − AUq(q1 − q(0)) − hAUt + O(h2)

with A = G(RpUqG)−1Rp. The matrixAUq is a projector withAUqG = G.
The last equation can be written as

q0 − q(0)

h
= −AUq

q1 − q(0)

h
− AUt + O(h),

mirroring equation (3.4) when U is independent oft. In this case, the numerically con-
sistent initial values forq are consistent with the differential equation ifAUq · q̇ = 0,
that is, only if q̇ is in the null space ofAUq. In practical terms, this would require that
Λ(0) = −(RpUqG)−1RpUqF |t=0.
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5. Computational results. We illustrate our results with the following two index 3
DAEs from [1].

PROBLEM 5.1. The system of Euler-Lagrange equations

ẍ = 2y + xλ (5.1a)

ÿ = −2x + yλ (5.1b)

0 = x2 + y2 − 1 (5.1c)

has the solution

x = sin(1 + t)2 y = cos(1 + t)2

u = 2(1 + t) cos(1 + t)2 v = −2(1 + t) sin(1 + t)2

λ = −4(1 + t)2.

PROBLEM 5.2. This problem is defined in the form (4.1) with

p =
[

x y z
]T

q =
[

u v w
]T

Λ =
[

λ β
]T

U =
[

2u v w − 1
]T

F =
[

−y 2x + y sin t2 − 4yt 4zt2 + 0.5 sin t2
]T

G =

[

x 0 2z
0 2y 1

]T

R =
[

x2 + y2 + z2 − 1 z − 0.5
]T

.

Its solution is

x =

√
3

2
cos t2 y =

√
3

2
sin t2 z = 0.5

u = −
√

3

2
t sin t2 v =

√
3t cos t2 w = 1

λ = −2t2 β = −0.5 sin t2.

Problems5.1and5.2were solved with implicit Euler usingh = 0.0005 andh = 0.001.
After the first step the algebraic variableλ showsO(1) errors. Problem5.1was solved with
t0 = 0, so G(P0)

T λ0 = [sin(1) cos(1)] λ0. Therefore,λ(0) would have to be close to
zero (but is instead equal to -4) for the exact initial valuesto be numerically consistent. The
numerically consistent initial values were calculated from (3.3) and the step was redone. The
exact initial values

[

u v
]

=
[

1.0806 −1.6829
]

were changed to
[

1.0814 −1.6824
]

for
h = 0.0005 and to

[

1.0823 −1.6819
]

for h = 0.0010. This resulted in algebraic variables
of O(h) accuracy (5.1). For Problem5.2 with t0 = 1 andh = 0.001, the initial values
for q were changed from

[

−0.72874 0.93583 1
]

to
[

−0.72985 0.93931 1
]

, producing
algebraic variables ofO(h) accuracy, as shown in Table5.2.

The results presented in Figure5.1show theO(1) errors when Problem5.1was solved
using exact initial values, and theO(h) errors in the algebraic variable obtained by using
numerically consistent initial values.
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TABLE 5.1
Absolute errors in the algebraic variableλ for Problem5.1 using implicit Euler with step sizes0.0005 and

0.0010. O(1) errors and their corrected values are displayed in bold face.

h = 0.0005 h = 0.001
tj numerically numerically

exact IV consistent IV exact IV consistent IV
0.0005 2.0040 0.004030
0.0010 0.0040085 0.0040085 2.0080 0.0080120
0.0015 0.0040185 0.0040185
0.0020 0.0040286 0.0040286 0.0080341 0.0080341

TABLE 5.2
Absolute errors in the algebraic variableλ for Problem5.2 using implicit Euler with step sizes0.0005 and

0.0010. O(1) errors and their corrected values are displayed in bold face.

h = 0.0005 h = 0.001
tj numerically numerically

exact IV consistent IV exact IV consistent IV
0.0005 2.3973 0.0047995
0.0010 0.0056125 0.0056125 2.3917 0.009586
0.0015 0.0055573 0.0055573
0.0020 0.0055028 0.0055028 0.011062 0.011062
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FIG. 5.1. Implicit Euler used to solve an index 3 DAE test problem (see text) using numerically consistent
initial values. Global errors with exact initial values (top) and numerically consistent initial values (bottom).
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