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A NOTE ON NUMERICALLY CONSISTENT INITIAL VALUES FOR HIGH
INDEX DIFFERENTIAL-ALGEBRAIC EQUATIONS  *

CARMEN AREVALO'
Dedicated to \ctor Pereyra on the occasion of his 70th birthday

Abstract. When differential-algebraic equations of index 3 or higher solved with backward differentiation
formulas, the solution can have gross errors in the first fpss even if the initial values are equal to the exact
solution and even if the stepsize is kept constant. Thigsdise question of what acensistentnitial values for the
difference equations. Here we study how to change the enietl ivalues into what we catiumerically consistent
initial values for the implicit Euler method.
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1. Introduction. A differential-algebraic equation (DAE) has the form
F(t,z,2) =0,

where the matriXdF/0z is singular. Here we shall consider the differential-algébequa-
tion of the form

p=U(t,v) (1.1a)
0= F(t,p,v) + G(t,p,v) A (1.1b)
0= R(t,p), (11C)

wheret e R,p e R",v e R, A e R*, andU : R x R™ — R", F: R x R" x R™ — R™,
G:RxR"xR"™ — R™ andR : R x R” — R*. Assume that < min(m,n) in order
to avoid an over-determined system. The systért) (has index 3 ifOR/dp - OU /v - G is
nonsingular for alk € [to, T']. For simplicity we take, = 0.

The algebraic variables appear linearly asliri ) in important classes of physical prob-
lems. This condition is fulfilled, for example, by the Euleagrange equations of multibody
mechanics, which have applications in biomechanics, tmaujcs of machinery, robotics,
and vehicle design.

To solve this type of DAE, several techniques have been dersil. One proposition has
been to solve the system in its original formulation usingrekward differentiation formula
(BDF), as implemented in the DAE solver DASSA];[but such a variable-step-size, variable-
order code based on BDF methods presents some essent@lldés when solving higher
index DAEs, especially in the accuracy of the algebraicalaés P].

The initial values(po, vo, Ao) are said to beonsistenif the DAE has a differentiable
solution(p(t), v(t), A(¢)) in the intervall0, T'] such thai{p(0), v(0), A(0)) = (po, vo, Xo)-

Brenan and EngquisB] definednumerically consistent starting values to ordet 1 for
thek-step BDF applied tol(. 1) as starting valuex—1, - - ., pols [Vk—15 - - - s Vo], [Me—1, - - -, Ao]
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such that
Ipj = p(t)|] < Kih*+! (1.2a)
[o; = v(t;)]| < Kah* ! (1.2b)
IR(t;,ps)|l < Ksh*+? (1.2¢)

for some constant&’y, Ko, K3 andj = 0,1,...,k — 1. They proved that thé-step BDF

(k = 1,...,6) with constant step siz& converges globally wittO(h*) accuracy to the
solutions, but only after aftér+1 steps, and provided the method uses numerically consistent
starting values to ordér + 1.

In particular, for the implicit Euler method the state vatissp andv haveO(h) accuracy
after the first step, but the error in the algebraic variabieO(1), even when the initial values
are exact. By approximating the errors in the algebraicalde, a correction mechanism was
devised in order to obtaif? () accuracy even in the initidd steps P]. These formulas correct
the errors locally and produc®(h) accurate algebraic variables.

Our view is that thesé@(1) errors are caused by initial values that are inconsistetht wi
the difference equations. We attempt to redefinmerically consistenhitial values as initial
values that areonsistent with the difference equatipas opposed to those consistent with
the differential equation, as il (2). We explain the)(1) errors in the algebraic variables as
a result of starting the BDF solver with initial values thag aonsistent with the differential
equation, but not with the difference equations. Once théstablished, we develop a scheme
to construct numerically consistent initial values. Waslirate our results by solving the same
problems that appear id].

2. Numerically consistent initial values. Initial values that are numerically consistent
with the difference equation generated by an ogderethod should produa@(h?) accurate
solutions.

DEFINITION 2.1. The sef(zg, 21, ..., zr—1) is anumerically consistent initial valuat
t = i, for a differential equationf (¢, z, &) = 0, solved with ak-step multistep method of
order p, if the method initiated witlizo, 21, . .., 2,—1) generates the approximatian, such
that

a:(tk)—a:k :O(hp) (21)

For differential-algebraic equations (DAES) in semi-egipform

i: = f(t7 x? )\)

0=yg(t,z,A)
of index less than 2, consistent initial conditions are alsmerically consistent; but for
higherindex DAEs, consistent initial conditions do note&sarily produce an approximation

satisfying @.1). Forindex 3 DAEs, in fact, BDF methods approximate the algie variables
with O(1) errors after the first step, even if the initial values arectxa

3. Euler-Lagrange equations and the implicit Euler formula. The index 3 formula-
tion of constrained multibody systems is
= (3.1a8)
Mi = F(p,v) + G(p)* A (3.1b)
0=R(p), (3.1c)
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where M is the positive definite mass matrig, = OR/0p, andG(p)M ~1G(p)T is non-
singular.

To simplify notation, we will denot&(p;) by Gy and F(p1,v1) by Fi. When the
implicit Euler formula is applied to3.1) using exact initial values, the algebraic variahle
has anO(1) errore* = \(t;) — A, that can be approximated with(h) accuracy by ]

A= (GIM'GDHI\GI M R + ).

The implicit Euler method requires initial values only fdate variablep andv. Taking the
initial condition

po = p(0) + O(h?) (3.2a)
vg = v(0) — RM'GT 6N + O(R?), (3.2b)
the first step is
p1 = po + hvy
vy = v+ h(I = BYM~'Fy + hM'GT s\
0= R(pl)a

where the matribx3 is dependent op; and is defined by
B=M'cl (GGG,

The matrixB is a projector and3 - M ~1GT = M~'GT.

We denote the global errorstatby e? = p(t1)—p1, €’ = v(t1)—v; ande® = \(t;)— ;.
The O(h) accurate correction terd\ may be expressed in terms of the exact value of the
algebraic variable as

o\ = %((GlM‘le)‘lGlM‘lFl +A(t)).

By expanding(¢) andwv(t) aboutt; and evaluating at= 0 we obtain
e® = hM'GT (5N + €*) + O(h?)

h2

2

These expressions lead to

e’ = he¥ —

MY (F(p(t1),v(t1)) + G(p(t1)) " A(t1)) + O(R®).

h2
)

and multiplying byG; we can conclude that

e? MY GT(G MI\GTY'\G M~ Fy — F(t)) + M 'GTe* + 0(h?),

G1eP = W2GLM'GT e + 0(h?).

If we expandR(p) aboutp; and use the fact that = O(h?) together withR(p(t1)) = 0
andR(p;) = 0, we finally obtainG;e? = O(h*), thus implying that

& =0(h).

In other words, the initial conditior3(2) is numerically consistent foi3(1) solved with the
implicit Euler method.
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The initial value 8.2H may be written as
vo = v(0) + B(v(0) — v1) + O(h?). (3.3)
Equation 8.3) in the form

vo — v(0) + O(h?) __p (v1 — v(0)) (3.4)
h h
can be interpreted as an indication that the initial valees fconsistent with the differential
equation are also consistent with the difference equatibyio the case that(0) is in the null
space of7; . In practical terms, this would require theto) = —(GoM *GE)1GoM ~ Fy+
O(h).

As the change in initial values for the state variablés O(h), it will not affect the
accuracy of the solution in any of the state variables.

4. The more general caseThe more general problem we consider here is

p=Ul(t,q) (4.1a)
qg=F(t,p,q) +G(t,p,q)A (4.1b)
0= R(tp). (4.1¢)

This is an index 3 DAE ifr,, - U, - G is non-singular.
According to P], the algebraic variabld is estimated by the first step of the implicit Eu-
ler method with arO(1) errore® = A(t;) — Ay, which is approximated witl(h) accuracy

by
SA = (R, U,G) ' R,[U,(F + GAUY],
where all functions are evaluatedtat ¢;. The first implicit Euler step is
p1=po+ hU(t1,q1)

q1 = qo + h(F(t1,p1,q1) + G(t1,p1,q1)A1)
0= R(t1,p1)

with numerically consistent initial condition
po = p(0) + O(h%) (4.2a)
qo = q(0) — hGSA + O(h?). (4.2b)
We may write ¢.20 as
go = q(0) — AUqg(q1 — q(0)) — hAU; + O(h?)
with A = G(R,U,G) ' R,. The matrixAU, is a projector withAU,G = G.

The last equation can be written as

90 —q(0) _ Ay, a(0) AU, + O(h),
h h
mirroring equation §.4) whenU is independent of. In this case, the numerically con-
sistent initial values fory are consistent with the differential equationA/, - ¢ = 0,
that is, only if ¢ is in the null space ofAU,. In practical terms, this would require that
A(O) = _(RPUQG)_IRpUqF |t:0-
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5. Computational results. We illustrate our results with the following two index 3
DAEs from [1].

PrROBLEM 5.1. The system of Euler-Lagrange equations

T =2y+x\ (5.1a)
= —2x+y\ (5.1b)
0=a"+y* -1 (5.1c)
has the solution
x =sin(1+1)? y = cos(1 + t)?
u = 2(1+1t)cos(1 +t)? v =—2(1+t)sin(1 +t)?
A= —4(141t)%

PROBLEM 5.2. This problem is defined in the form.() with

}T

=[Py 21 z-05] .
Its solution is
a::?cost2 y:?sint2 z=0.5
u:—?tsinﬁ v = V3t cost? w=1
A= —2¢2 8= —0.5sint>.

Problemss.1and5.2were solved with implicit Euler using = 0.0005 andh = 0.001.
After the first step the algebraic variableshowsO(1) errors. Problen%.1was solved with
to = 0, SOG(Py)T Ao = [sin(1) cos(1)] A\g. Therefore,\(0) would have to be close to
zero (but is instead equal to -4) for the exact initial valteebe numerically consistent. The
numerically consistent initial values were calculatedr(3.3) and the step was redone. The
exact initial valuegu  v] = [1.0806 —1.6829] were changed t§1.0814 —1.6824] for
h = 0.0005 and t0[1.0823 —1.6819] for » = 0.0010. This resulted in algebraic variables
of O(h) accuracy %.1). For Problem5.2 with ty = 1 andh = 0.001, the initial values
for g were changed from—0.72874  0.93583 1] to [—0.72985 0.93931 1], producing
algebraic variables aD(h) accuracy, as shown in Tabe2

The results presented in Figusel show theO(1) errors when Problerf.1was solved
using exact initial values, and th@(h) errors in the algebraic variable obtained by using
numerically consistent initial values.
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TABLE 5.1
Absolute errors in the algebraic variable for Problem5.1 using implicit Euler with step sizés0005 and
0.0010. O(1) errors and their corrected values are displayed in bold face

h = 0.0005 h = 0.001

t; numerically numerically
exact IV | consistent IV | exact|V | consistent IV
0.0005 | 2.0040 0.004030
0.0010 | 0.0040085| 0.0040085 2.0080 0.0080120
0.0015 | 0.0040185| 0.0040185
0.0020 | 0.0040286| 0.0040286 0.0080341| 0.0080341

TABLE 5.2
Absolute errors in the algebraic variable for Problem5.2 using implicit Euler with step sizés0005 and
0.0010. O(1) errors and their corrected values are displayed in bold face

h = 0.0005 h = 0.001

t; numerically numerically
exact IV consistent IV | exactlV | consistent IV
0.0005 | 2.3973 0.0047995
0.0010 | 0.0056125| 0.0056125 2.3917 0.009586
0.0015 | 0.0055573| 0.0055573
0.0020 | 0.0055028| 0.0055028 0.011062| 0.011062

Implicit Euler solution with exact initial values
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Implicit Euler solution with numerically consistent initial values
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FiGc. 5.1. Implicit Euler used to solve an index 3 DAE test problem (s&8 using numerically consistent
initial values. Global errors with exact initial values (pand numerically consistent initial values (bottom).
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