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Abstract. We develop a derivative-free preconditioned residual method for solving nonlinear steady fluid flows.
The new scheme is based on a variable implicit preconditioning technique associated with the globalized spec-
tral residual method. The new scheme is robust and allows numerical computation of the steady state of the two-
dimensional incompressible Navier-Stokes equations (NSE), which we consider here in both primary variables and
streamfunction-vorticity formulations. The results are encouraging and agree with those reported in the literature.
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1. Introduction. Preconditioning is a widely-used approach to acceleratingnumerical
methods for solving linear as well as non-linear problems. For linear systems, it is widely
developed and very well understood. However, the art of preconditioning iterative methods
for nonlinear problems remains a challenge, and it is not so well understood.

The emergence of non-monotone residual methods, such as theone introduced by Barzi-
lai and Borwein in optimization [2, 13, 26] and globalized versions which enhance its robust-
ness and effectiveness [12, 22, 23, 27], gives the possibility of efficiently solving large-scale
nonlinear problems, incorporating in a natural way a preconditioning strategy. Non-monotone
globalization strategies for nonlinear problems have become popular in the last few years.
These strategies make it possible to define globally convergent algorithms without monotone
decrease requirements. The main idea behind non-monotone strategies is that, frequently,
the first choice of a trial point along the search direction hides significant information about
the problem structure, and that such knowledge can be destroyed by imposing a decrease
condition.

In this work we adapt and extend the ideas introduced in [12, 22] for large-scale nonlinear
problems like those that appear in the solution of the steadyfluid flow problem. In particu-
lar, we add a preconditioning strategy fully described in [10]. The lid-driven cavityproblem
is a numerically challenging standard benchmark problem for nonlinear solvers that corre-
sponds to computing either evolving or steady flows of the two-dimensional incompressible
Navier-Stokes equation on a rectangular cavity. To computesteady states, two approaches are
commonly considered: time-dependent methods that computethe steady state by applying a
time marching scheme to the evolutive NSE (for Reynolds numbers that are lower than the
bifurcation value), and methods that solve the steady-state NSE by fixed point or Newton-like
schemes. It is well known that direct solution of the steady-state NSE is more difficult than
time marching, and that it requires very robust schemes, especially as the Reynolds number
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José Castillo.
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Re increases. The literature on this topic is very rich, from, e.g., the relaxation schemes
proposed by Crouzeix [11] to the more recent defect-correction methods; see [31] and the
references therein. However, these methods are very closely related to the structure of the
NSE and use a linearization of the equation at each step.

Our aim in this article is to compute the solution of the steady-state NSE by an implicit
preconditioned version of the spectral residual method, with globalization. The method we
introduce here uses only the solution of the linear part of the equation, which can be obtained
efficiently with a fast solver (e.g., FFT and multigrid).

The article is organized as follows. First, in Section2, after describing the inverse pre-
conditioning strategy and the globalization strategy for the residual scheme, we derive our
new algorithm combining the dynamical and the optimizationapproach. Then, in Section3,
we adapt the discretization of the steady-state two-dimensional incompressible Navier-Stokes
equations to the framework of the nonlinear scheme. Finally, in Section4, as a numerical il-
lustration, we present the solution of the steady-state NSEfor different Reynolds numbers
(up to Re = 5000). We solve the problem in the primary variables as well as in stream
function-vorticity formulation. Our results agree with the ones in the literature and show the
robustness of the proposed method.

2. The basic algorithm and its ingredients. In a general framework, let us consider
the nonlinear system of equations

F (x) = 0, (2.1)

whereF : R
n → R

n is a continuously differentiable mapping. This framework generalizes
the nonlinear systems that appear, for example, after discretizing the steady-state models for
fluid flows, to be discussed later in this work.

To solve (2.1), some iterative schemes have been recently presented thatsystematically
use the residual vectors as search directions [12, 22]; i.e., the iterations are defined as

xk+1 = xk ± λk F (xk), (2.2)

whereλk > 0 is the step-length and the search direction is eitherF (xk) or−F (xk) depend-
ing on which one is a descent direction for the merit function

f(x) = ‖F (x)‖22 = F (x)TF (x). (2.3)

These schemes are effective and competitive with Newton-Krylov schemes for large-scale
nonlinear systems [5, 6, 21] when the step lengths are suitably chosen. The convergenceof
(2.2) is associated with a derivative-free non-monotone line search, fully described in [12],
which will be discussed in the forthcoming subsections.

There are many choices of the step lengthλk for which convergence is guaranteed. The
well-known non-monotone spectral choice has interesting properties; it is defined as the ab-
solute value of

sT
k−1sk−1

sT
k−1yk−1

, (2.4)

wheresk−1 = xk − xk−1, andyk−1 = F (xk) − F (xk−1). Obtaining the step length using
(2.4) requires a reduced amount of computational work, accelerates the convergence of the
process, and involves the last two iterations in a way that incorporates first-order information
into the search direction [2, 13, 17, 26].

In the forthcoming subsections, we discuss the preconditioned version of the basic scheme
(2.2) and the specific inverse preconditioner to be used in this work, the globalization strat-
egy to guarantee global convergence, and how to obtain the step lengths that accelerate the
convergence while improving the stability of the process.
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2.1. The preconditioned scheme.In order to present the preconditioned version of
(2.2) we extend the ideas discussed in [23] for unconstrained minimization to the solution of
(2.1). The well-known and somehow ideal Newton’s method for solving (2.1) from an initial
guessx0 can be written as

xk+1 = xk − J
−1
k F (xk), (2.5)

whereJk = J(xk) andJ(x) is the Jacobian ofF evaluated atx.
Recently, a preconditioned scheme, associated to the gradient direction, was proposed

to solve unconstrained minimization problems [23]. When solving (2.1), the preconditioned
version of (2.2) produces the iterates

xk+1 = xk + λkzk, (2.6)

wherezk = ±Ck F (xk), Ck is a nonsingular approximation toJ−1
k , and the scalarλk is

given by

λk = (λk−1)
zT

k−1zk−1

zT
k−1yk−1

. (2.7)

In (2.6), if Ck = I (the identity matrix) for allk, thenzk = ±F (xk), and sincesk−1 =
λk−1zk−1 thenλk coincides with (2.4). Therefore, ifCk = I the method reduces to (2.2).
On the other hand, if the sequence of iterates converges tox∗, and we improve the quality
of the preconditioner such thatC(xk) converges toJ−1(x∗) then, as discussed in [10], λk

tends to one and we recover Newton’s method, which possessesfast local convergence under
standard assumptions [14]. In that sense, the iterative scheme (2.6) is flexible, and allows
intermediate options by choosing suitable approximationsCk between the identity matrix and
the inverse of the Jacobian matrix. For building suitable approximations toJ−1(xk)F (xk),
we will test implicit preconditioning schemes that do not require the explicit computation of
Ck, as described in Section2.2.

2.2. Inverse preconditioning schemes.By adapting our recent work on approximating
the Newton direction using an ordinary differential equation (ODE) model, we will obtain
the inverse preconditioner for (2.1) in the framework of the iterative global preconditioned
residual algorithm presented in the next subsection. To that end, we develop an automatic
and implicit scheme to directly approximate the preconditioned directionzk at every step in
(2.6) withouta priori knowledge of the Jacobian ofF and with only a reduced and controlled
amount of storage and computation. As we will discuss later,this new scheme avoids as
much as possible the cost of any calculations involving matrices, and also allows us to obtain
asymptotically the Newton direction by improving the accuracy in the ODE solver.

The method we introduce here starts from the numerical integration of the Newton flow
aimed at computing the root ofF as the stable steady state of

dx

dt
= −(J(x))−1F (x). (2.8)

Notice that the preconditioned gradient method can be obtained by applying a forward Euler
method to (2.8); see, e.g., [1]. The value‖F (x)‖ is decreasing along the integral curves
and converges at an exponential rate to zero; for details, see [1, 20] and references therein.
Introducing the decoupling

dx

dt
= −z (2.9)

J(x)z = F (x), (2.10)
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we see that the algebraic condition that linksz to x is, in fact, a preconditioning equation. In
order to relax its resolution, a time derivative inz is added as

dx

dt
= −z, (2.11)

dz

dt
= F (x) − J(x)z. (2.12)

This last system allows us to compute numerically the root ofF by an explicit time marching
scheme since the steady state is asymptotically stable; see[10] for more details. Lettk be
discrete times, and denote byxk andzk the numerical approximations tox(tk) andz(tk).
The application of the simple forward Euler method to (2.11)–(2.12) reads

xk+1 = xk − (tk+1 − tk)zk, (2.13)

zk+1 = zk + (tk+1 − tk) (F (xk)− J(xk)zk) . (2.14)

REMARK 2.1. As stated above, we want to avoid the computation of the Jacobian matrix,
soJ(x)z is classically approached by a finite difference scheme

J(x)z ≃
F (x+ τz)− F (x)

τ
,

for a small given positive real numberτ .
Notice that the dynamics of the differential system (2.11)–(2.12) can be very slow. As

proposed in [10], a way to speed up the convergence to the steady state is to artifically intro-
duce two time scales by computing for every discrete timetk an approximation of the steady
state of the equation inz. More precisely, we write

Step 1. With optimization method 1, computezk as an approximation of the steady state of

dz

dt
= F (xk)−

F (xk + τz)− F (xk)

τ
,

z(0) = zk−1.

Step 2. With optimization method 2, computexk+1 from xk by

xk+1 = xk + λkzk.

The preconditioning relies on the accuracy for solving step1. As optimization method 1,
we proposed in [10] to apply some iterations of Cauchy-like schemes that we describe in
Section2.3. As optimization scheme 2, which defines the stepλk, we use the spectral gradient
method. Promising results were obtained in [10] on some classical optimization problems.
However, the solution of steady-state NSE needs a more robust scheme for the time marching
of xk. The scheme IPR described below becomes crucial in practical cases. We now present
the general form of the scheme.

ALGORITHM 2.2 (Implicit Preconditioned Residual Method (IPR)).
Step 1. With Cauchy-like minimization, computezk as an approximation of the steady state
of

dz

dt
= F (xk)−

F (xk + τz)− F (xk)

τ
,

z(0) = zk−1.
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Step 2. With GPR, computexk+1 from xk by

xk+1 = xk + λkzk.

2.3. Generalized Cauchy-type minimization forzk. We now describe several ways
of computing Cauchy-type step lengths for buildingzk in Step 1 of the IPR method. The
computation of a steady state by an explicit scheme can be accelerated by enhancing the
stability domain of the scheme, since this allows the use of larger time steps. In that sense,
the accuracy of a time marching scheme is not a priority. A simple way to derive more stable
methods is to use parametrized one-step schemes and to fit theparameters not to increase the
accuracy as in classical Runge-Kutta methods, but to improve the stability. For example,
in [4, 9], a method was proposed to iteratively compute fixed points with larger descent
parameter starting from a specific numerical time scheme. More precisely, definingG(z) =
F (xk)−(F (xk+τz)−F (xk))/τ , this method consists of integrating the differential equation







dy

dt
= G(y),

y(0) = zk−1,
(2.15)

by thep-step scheme

Giveny0 = zk−1

For j = 0, . . . until convergence
SetK1 = G(yj)
Form = 2, . . . , p

SetKm = G(xk + ∆tKm−1)
Setyk+1 = yj + ∆t

∑p
i=0 βiKi

Here
∑p

i=1 βi = 1. At convergence, we obtain̄y, and we setzk = ȳ, which will be used as
our preconditioned direction at iterationk.

Classically, the convergence can be accelerated by computing at each iteration the step
length in order to minimize the Euclidean norm of the currentresidual. This gives rise to
variants of the Cauchy scheme [8]. Of course, the minimizing parameter becomes harder to
compute asp increases. We list now the optimal values of the parameters for p = 1, 2, 3. The
casep = 3 represents, as far as we know, a new choice of step length for residual methods.
In what follows, for any two vectorsv andw, 〈v, w〉 = vTw, rk = F (xk), and

Av =
F (xk + τv) − F (xk)

τ
≈ J(xk)v.

• p = 1 (Cauchy method)

βk
i = 1, ∆tk =

〈Ark, rk〉

‖Ark‖2
.

• p = 2 (Enhanced Cauchy 1 (EC1) see [9, 10])
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We set

a = ‖rk‖22, b = 〈Ark, rk〉, c = ‖Ark‖22,

d = 〈A2rk, rk〉, e = 〈A2rk, Ark〉, f = 〈A2rk, A2rk〉,

∆tk =
fb− ed

fc− e2
, β1 = 1−

∆tke− d

∆t2kf
, β2 = 1− β1.

• p = 3 (Enhanced Cauchy 2 (EC2))
We set

a = ‖Ark‖22, b = ‖A2rk‖22, c = ‖A3rk‖22,

d = 〈Ark, rk〉, e = 〈A2rk, rk〉, f = 〈A3rk, rk〉,

g = 〈A2rk, Ark〉, α = 〈A3rk, Ark〉, γ = 〈A3rk, A2rk〉,

∆tk =
−αγe− gγf + αfb+ dγ2 − dcb+ gce

g2c+ α2b− acb+ aγ2 − 2αγg
,

β1 = 1 +
(∆tk)(αγ + gc) + γf − ec

(∆tk)2(γ2 − bc)
,

β2 = −
(∆tk)2(−αγ + gc) + (∆tk)(γf − ec+ αb− γg)− fb+ γe

(∆tk)3(−bc+ γ2)
,

β3 = 1− β1 − β2.

2.4. Globalization strategy. In order to guaranee that the implicit preconditioned resid-
ual (IPR) method converges from any initial guess, we need toadd a globalization strategy.
This is an important feature, especially when dealing with highly nonlinear flow problems and
high Reynolds numbers. Indeed, for highly nonlinear problems, pure methods (i.e., without a
globalization strategy) will diverge unless the initial guess is very close to the solution, which
is not a practical assumption. To avoid the derivatives of the merit function, which are not
available, we will adapt the recently developed globalization strategy of La Cruz et al. [12] to
our preconditioned version.

Assume that{ηk} is a sequence such thatηk > 0 for all k ∈ N and

∞
∑

k=0

ηk <∞. (2.16)

Assume also that0 < γ < 1 and0 < σmin < σmax < ∞. LetM be a positive integer. Let
τmin, τmax be such that0 < τmin < τmax < 1. Given an arbitrary initial pointx0 ∈ R

n, an
algorithm that allows us to obtainxk+1 starting fromxk is given below.

ALGORITHM 2.3 (Global Implicit Preconditioned Residual Method (GIPR)).
Step 1.

Chooseλk such that|λk| ∈ [σmin, σmax] (described in the next subsection).
Build the vectorCk F (xk) (inverse preconditioned direction).
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Computef̄k = max{f(xk), . . . , f(xmax{0,k−M+1})}.
Setz ← −λkCk F (xk).
Setα+ ← 1, α− ← 1.

Step 2.
If f(xk + α+z) ≤ f̄k + ηk − γα

2
+‖z‖

2
2 then

Definezk = z, αk = α+, xk+1 = xk + αkzk.
Else iff(xk − α−z) ≤ f̄k + ηk − γα

2
−‖z‖

2
2 then

Definezk = −z, αk = α−, xk+1 = xk + αkzk.
Else

Chooseα+new ∈ [τminα+, τmaxα+], α−new ∈ [τminα−, τmaxα−].
Replaceα+ ← α+new, α− ← α−new.
Go to Step 2.

REMARK 2.4. As discussed in [12], the algorithm is well defined, i.e., the backtrack-
ing process (choosingα+new andα−new) is guaranteed to terminate successfully in a finite
number of trials. Moreover, global convergence is also established in [12]. Indeed, if the
symmetric part of the Jacobian ofF at anyxk is positive (or negative) definite for allk, then
the sequence{f(xk)} tends to zero.

3. Application to the solution of the steady 2D lid-driven cavity.

3.1. The problem. The equilibrium state of a driven square cavity is describedby the
steady-state Navier-Stokes equation, which, in primary variables, can be written as

−
1

Re
∆U +∇P + (U · ∇U) = f in Ω =]0, 1[2, (3.1)

∇ · U = 0 in Ω =]0, 1[2,

U = BC on∂Ω.

HereU = (u, v) is the velocity field,P is the pressure, andf is the external force. For
our applications, we will consider the so-called driven cavity case, sof = 0 and the fluid
is driven by a proper boundary condition BC. We denote the sides of the unit squareΩ by
Γi, i = 1, . . . , 4: Γ1 is the lower horizontal side,Γ3 is the upper horizontal side,Γ2 is the left
vertical side, andΓ4 is the right vertical side. In Figure3.1, we show the location of the main
vortices of the steady state of the lid driven cavity: Primary Vortex, Top Left Vortex (TL1),
Bottom Right Vortices (BR1 and BR2), and Bottom Left Vortex (BL1). For additional details
on this benchmark application, see [25].

We distinguish two different driven flows, according to the choice of the boundary con-
ditions on the velocity. More preciselyU = V = 0 at the boundary except forU on Γ3,
where we have two options:

• U(x, 1) = 1 : Cavity A (lid driven cavity)
• U(x, 1) = (1− (1− 2x)2)2 : Cavity B (regularized lid driven cavity)

3.2. Discretization and implementation in primary variables.

3.2.1. Discretization. The discretization is performed on staggered grids of MAC type
in order to verify a discrete inf-sup (or Babushka-Brezzi) condition that guarantees the stabil-
ity; see [25]. TakingN discretization points in each direction on the pressure grid, we obtain
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BR1

BR2

TL1

BL1

Primary (central) vortex

U=g, V=0

U=V=0

U=V=0

U=V=0

FIGURE 3.1.The lid driven cavity - Schematic localization of the mean vortex regions

the linear system










νAuU +BxP +NLu(U, V )− F1 = 0,

νAvV +ByP +NLv(U, V )− F2 = 0,

Bt
xU +Bt

yV = 0,

(3.2)

whereU, V ∈ R
N(N−1), P ∈ R

N×N , andAu andAv are the discretization matrices of
minus the Laplacian operator on theU andV grids, respectively. Similarly,Bx andBy are the
discretization matrices of the first derivative inx andy for the pressure in the velocity grids.
The operatorsLu andLv are the nonlinear terms onU andV respectively; and, finally,F1

andF2 are the discrete external forces for the horizontal and the vertical velocities. Equation
(3.2) is then a square linear system in2×N(N − 1) +N2 unknowns.

3.2.2. Implementation. The discrete problem (3.2) can be written as a nonlinear system

F(U, V, P ) = 0,

with the obvious notation.
Now, letS be the Stokes solution operator defined by

S(F,G, 0) 7→ (U, V, P ),

where(U, V, P ) solves the linear part of (3.2), i.e., the Stokes problem











νAuU +BxP = F,

νAvV +ByP = G,

Bt
xU +Bt

vV = 0.

(3.3)

Finally we introduce the functionalG

G((U, V, P ) = S(F(U, V, P )).
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The scheme consists of applying the implicit globalized preconditioned gradient method to
the differential system











dX

dt
= −Z,

dZ

dt
= G(X)−HZ,

(3.4)

whereX = (U, V, P ) and whereH is an approximation to the gradient ofG(X), as described
in Remark2.1of Section2.3.

3.3. Theω − ψ formulation. One of the advantage of theω − ψ formulation is that
the NSE are decoupled into two problems: a convection diffusion equation and a Poisson
problem. In particular, we can use the FFT to solve the linearproblems, as described in this
section.

3.3.1. The formulation. Theω − ψ formulation is obtained by taking the curl of the
NSE [16, 25]. Let ω = ∂u/∂y − ∂v/∂x, and writeu = ∂ψ/∂y, v = −∂ψ/∂x, where
∇ψ = ω. Then we have the equations

−
1

Re
∆ω +

∂ψ

∂y

∂ω

∂x
−
∂ψ

∂x
,
∂ω

∂y
= 0, (3.5)

∆ψ = ω, (3.6)

ω(x, 0) = ω0(x). (3.7)

The boundary conditions onω are derived using the standard approach based on the dis-
cretization of∆ψ on the boundaries; see [16, 25]. With the conditions onu andv [16, 25],
we have

ω(x, 0, t) =
∂2ψ

∂y2 (x, 0, t) onΓ1,

ω(x, 1, t) =
∂2ψ

∂y2 (x, 1, t) onΓ3,

ω(0, y, t) =
∂2ψ

∂x2 (0, y, t) onΓ2,

ω(1, y, t) =
∂2ψ

∂x2 (1, y, t) onΓ4.

Therefore, sinceψ∂Ω = 0 andu = ∂ψ/∂y, v = −∂ψ/∂x, we obtain by using Taylor
expansions

ωi,0 =
1

2h2
(ψi,1 − 8ψi,2) , (3.8)

ωi,N+1 =
1

2h2
(−ψi,N−1 + 8ψi,N − 6hg(ih)) , (3.9)

ω0,j =
1

2h2
(ψ1,j − 8ψ2,j) , (3.10)

ωN+1,j =
1

2h2
(−ψN−1,j + 8ψN,j) . (3.11)

Hereg(x) denotes the boundary condition function for the horizontalvelocity at the boundary
Γ3. Homogeneous Dirichlet boundary conditions apply toψ, and the operators are discretized
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by second order centered schemes on a uniform mesh composed byN points in each direction
of the domain of step-sizeh = 1/(N + 1). The total number of unknowns is then2N2.

The boundary conditions onω are implemented iteratively according to the relations
(3.8)–(3.11), making the finite difference scheme second order accurate.

3.3.2. Implementation. With (3.8)–(3.11), we can compute the boundary conditions
for ω. We denote by∂h

x(ψ), ∂h
y (ψ), and∂h

∆(ψ) the contributions of the boundary conditions
to the discretization operators of∂x, ∂y, and−∆. The problem to solve is

F1(ω, ψ) =
1

Re

(

Aω + ∂h
∆(ψ)

)

+Dyψ
(

Dxω + ∂h
x (ψ)

)

−Dxψ
(

Dyω + ∂h
y (ψ)

)

= 0,

F2(ω, ψ) = Aψ + ω = 0.

HereA is the discretization matrix of−∆, andDx andDy are the discretization matrices of
∂x and∂y respectively. The problem to solve is then

F (ω, ψ) =

[

F1(ω, ψ)
F2(ω, ψ)

]

=

[

0
0

]

.

For convenience, we setX = (ω, ψ). Now, as we did for the primary variables formulation,
we return to the dynamical system framework of the method: weset

G(ω, ψ) =

[

A−1F1(ω, ψ)
A−1F2(ω, ψ)

]

,

and we consider the evolutionary system











dX

dt
= −Z,

dZ

dt
= G(X)−HZ,

(3.12)

whereHZ is an approximation of the gradient ofG(X) at Z, as described in Remark2.1.
Here,A is the classical pentadiagonal finite difference matrix forthe Laplace operator on a
square, and linear systems withA can be cheaply solved using fast solvers such as FFT or
multigrid. In this paper, we will use the FFT.

4. Numerical results.

4.1. General implementation of the algorithm. We now list the information required
by the GIPR method:

• The positive integerM .
• The parametersγ andηk.
• The initial value of the descent parameterλ0.
• The merit function. We use the Euclidian norm of the residual‖F (X)‖2.
• The accuracy of the global method: the solution is considered accurate when
‖F (X)‖2 < 10−6.
• The accuracy imposed for solving the preconditioning equation

F (xk + τz)− F (xk)

τ
− F (xk) = 0,

which is characterized by
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– The choice of the optimization method 1. In our implementation we have used
the Enhanced Cauchy 2 as discussed above.

– The numberτ . We setτ = 10−8.
– The number of iterationnprec, which can vary at each step. We choose to

increasenprec as the norm of the residualrk = F (xk) decreases in order to
improve the preconditioning near the solution:
Adaptive computation ofnprec:

nprec0 given
for k = 0, . . . until convergence

if ‖rk‖2 < 0.1 then
nprec = ceil×

(

− log10(‖r
k‖2) + 1

)

× nprec0.

The reasoning behind the decision to improve the quality of the preconditioner near the
solution is this: near an isolated solution, the merit function f is strictly convex, and hence it
makes sense to reduce the condition number of the approximated positive-definite Hessian of
f in the neighborhood of the solution. This is achieved by increasingnprec as the norm of
the residual, i.e., the value of the merit function, is reduced.

4.2. Computation of steady states of NSE.We now present the numerical solution of
the steady state of the two-dimensional driven cavity for different Reynolds numbers. Our
results agree with those in the literature [3, 7, 15, 18, 19, 24, 28–30] (see figures and tables
below); and to prove the robustness of the solution method, we take as the initial guess the
solution of the Stokes problem, which becomes farther from the steady state as the Reynolds
number increases. We will pay special attention to the solution of NSE in theω − Ψ for-
mulation. However, let us mention that the scheme applies also to NSE in primary variables
(U − P ), the linear solver being a Stokes solver. The crucial practical point is to have at our
disposal a fast solver for the linear problems: FFT or multigrid for theω−Ψ formulation and
multigrid Uzawa [7] for theU − P formulation.

As we see in our results, the globalization strategy is important while the residual is not
small enough. Furthermore, the preconditioning makes sense “close to the solution.” For that
reason, we choose to activate the preconditioning progressively as the residual decreases by
increasing the number of inner iterations in the solution ofthe preconditioning step (step 1 of
the scheme). This allows us to obtain fast convergence at theend while saving computational
time at the beginning.

We observe that the number of outer iterations increases with the Reynolds number but
not so much with the dimension of the problem. In all cases, the first part of the convergence
process is devoted to “maintaining” the iterates in a neighborhood of the solution. All the
computations have been done with MATLAB 7 on a 2Ghz dual core PC with two gigabytes of
RAM.

We now present the parameters of the scheme that we used for solving the flow in cavity
B and also in cavityA for the stream function-vorticity formulation of NSE.N is the number
of discretization points in each direction of the domain. Wegive the parameter values in
Tables4.1–4.2.

TABLE 4.1
Cavity B

Re N γ M nprec0 Prec. Method Adaptednprec α0

1000 127 9× 102 2 4 Enhanced Cauchy 2 yes 10
2000 127 9× 1011 2 4 Enhanced Cauchy 2 yes 104

5000 255 9× 102 2 4 Enhanced Cauchy 2 yes 104
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TABLE 4.2
Cavity A

Re N γ M nprec0 Prec. Method Adaptednprec α0

1000 127 9× 102 2 4 Enhanced Cauchy 2 yes 10
3200 255 9× 106 2 4 Enhanced Cauchy 2 yes 104

The results are reported in Figures4.1–4.3. Most of the work is done at the beginning
of the iterations, while the globalization is acting to stabilize the iterates. This phenomenon
is amplified as the Reynolds numberRe becomes large. An acceleration of the convergence
is obtained when the residual is small enough, sincenprec increases. The shapes of the
solutions are identical with that of the literature, such asin [3, 7, 15, 16, 18, 19, 24, 28–30];
particularly, the special values agree.
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FIGURE 4.1. Convergence history (residual norm versus iterations): First row, Cavity B,Re = 1000 (left),
andRe = 2000 (right); second row, cavity A,Re = 1000 (left), andRe = 3200 (right).

We also report some special values of the solution for CavityB and Re = 5000 in
Table4.3, where we also compare them with results in the literature.

4.3. Solution of NSE in primary variables. We now present the numerical results for
the solution of the steady-state NSE in primary variables. We change the value ofγ during
the iterations in order to increase the non-monotonicity ofthe GIPR as follows

if ‖rk‖ < 10−3 thenγ = 0.9.
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FIGURE 4.2. Steady-state NSE,Re = 5000, N=255. Residual norm versus iterations (top left), isolines of
the vorticity (top right), isolines of the kinetic energy (bottom left), and median values of the horizontal and of the
vertical velocity (bottom right).

This practical choice reduces the number of line searches (backtrackings) near the solution,
and so it reduces the overall computational effort for convergence. In Table4.4, we present the
numerical solution of the cavity B problem forRe = 400 andRe = 1000. The level curves
of the pressure, the vorticity, the kinetic energy and the stream function agree with those
in the literature. Notice that fewer iterations are required for convergence than are needed
for the same example using the stream-vorticity formulation. This is due mainly to the fact
that the boundary conditions are implemented exactly for the primary variables formulation,
whereas they are approximated iteratively for the stream-vorticity formulation. However, the
computational effort required at each iteration of the primary variables formulation is greater
than that needed for the stream-vorticity formulation. Indeed, in the first case a coupled
system of3N2 variables needs to be solved, whereas two systems ofN2 variables need to be
solved in the second case; see Section3.

5. Concluding remarks. We have presented a robust scheme to solve steady fluid flows
that involves an implicit preconditioned search directionto approximate the Newton direction
directly. Our approach is in sharp contrast with the classical Newton type schemes (e.g.,
Newton-Krylov [21], defect corrections [31]) in which the nonlinear problem is linearized
at every Newton iteration and a preconditioner is developedfor the inner linear solver in
the standard way. Here, we propose to avoid the linearization process by preconditioning
(implicitly) the nonlinear problem. The efficiency of the scheme is increased when a fast
solver is used for the preconditioned linear system. The results we obtain on the numerical
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FIGURE 4.3.Steady-state NSE, Cavity B,Re = 5000, N=255 isolines of the stream function.
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FIGURE 4.4. Convergence history (residual norm versus iterations), Cavity B, N=63,Re = 400 (left) and
N=127,Re = 1000 (right).

solution of NSE, by adding a globalization strategy, show that the proposed method is robust.
As it has been already established, it is harder to solve directly the steady-state NSE than to
compute the steady state by time marching schemes applied tothe evolutionary equation.

The new method is also flexible since the choice of the preconditioning step is completely
free. We would like to stress that the preconditioned globalized spectral residual method can
be applied to a large number of scientific computing problems, especially when no (simple)
preconditioner can be built, such as in Computational FluidDynamics (CFD), and also in nu-
merical linear algebra when solving Riccati matrix equations or some other nonlinear matrix
problems. These are topics that deserve further investigation.
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TABLE 4.3
Cavity B.Re = 5000

IGPR IGPR Shen [29] Pascal [24]
Formulation ω − ψ ω − ψ U , P U , P

Discretizationx FD FD Spectral FEM
Grid / Mesh 127× 127 255× 255 33× 33 129× 129

∆t 0.03 0.05
Vortex
x 0.5234 0.51953 0.516 0.5390
y 0.539 0.539 0.531 0.5313
ψ −0.07761 −0.085211 −0.08776 −0.0975
ω −1.2687 −1.3866 −2.169

Vortex (B L)
x 0.078125 0.078125 0.094 0.0859
y 0.125 0.125 0.094 0.1172
ψ 6.8393× 10−4 7.95× 10−4 7.5268× 10−4 6.723× 10−4

ω 0.7468 0.844 0.7310
Vortex (B R)

x 0.8203 0.8164 0.922 0.8047
y 0.08593 0.082 0.094 0.0781
ψ 1.8528× 10−3 2.041× 10−3 0.77475× 10−3 2.42× 10−3

ω 1.42177 1.58687 2.009
Vortex (T L)

x 0.07812 0.0859 0.078 0.0781
y 0.9062 0.9101 0.92 0.906
ψ 5.6645× 10−4 7.149× 10−4 6.778× 10−4 7.86× 10−4

ω 0.88813 1.098 1.159

TABLE 4.4
Cavity B.

Re N γ0 M nprec0 Prec. Method Adaptednprec α0

400 63 104 2 5 Enhanced Cauchy 2 yes 102

1000 127 104 2 4 Enhanced Cauchy 2 yes 104
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