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Abstract. We develop a derivative-free preconditioned residual watfor solving nonlinear steady fluid flows.
The new scheme is based on a variable implicit precondit@riéchnique associated with the globalized spec-
tral residual method. The new scheme is robust and allowserioah computation of the steady state of the two-
dimensional incompressible Navier-Stokes equations (IN&Eich we consider here in both primary variables and
streamfunction-vorticity formulations. The results ane@uraging and agree with those reported in the literature.
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1. Introduction. Preconditioning is a widely-used approach to acceleratungerical
methods for solving linear as well as non-linear problemat. [ihear systems, it is widely
developed and very well understood. However, the art ofgurditioning iterative methods
for nonlinear problems remains a challenge, and it is notalbwnderstood.

The emergence of non-monotone residual methods, such esdtirtroduced by Barzi-
lai and Borwein in optimizationd, 13, 26] and globalized versions which enhance its robust-
ness and effectivenessZ, 22, 23, 27), gives the possibility of efficiently solving large-scale
nonlinear problems, incorporating in a natural way a pre@@ning strategy. Non-monotone
globalization strategies for nonlinear problems have bexpopular in the last few years.
These strategies make it possible to define globally coevei@gorithms without monotone
decrease requirements. The main idea behind non-monoti@tegses is that, frequently,
the first choice of a trial point along the search directiattelsi significant information about
the problem structure, and that such knowledge can be gestioy imposing a decrease
condition.

In this work we adapt and extend the ideas introduceilZnf2] for large-scale nonlinear
problems like those that appear in the solution of the stélady flow problem. In particu-
lar, we add a preconditioning strategy fully describedlifi[ Thelid-driven cavityproblem
is a numerically challenging standard benchmark problemrmémlinear solvers that corre-
sponds to computing either evolving or steady flows of the-tivoensional incompressible
Navier-Stokes equation on a rectangular cavity. To comgtetedy states, two approaches are
commonly considered: time-dependent methods that contipeiteteady state by applying a
time marching scheme to the evolutive NSE (for Reynolds rensithat are lower than the
bifurcation value), and methods that solve the steadyS&E by fixed point or Newton-like
schemes. It is well known that direct solution of the steathte NSE is more difficult than
time marching, and that it requires very robust scheme®aalty as the Reynolds number
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Re increases. The literature on this topic is very rich, frong.ethe relaxation schemes
proposed by Crouzeixlfl] to the more recent defect-correction methods; $5¢ gnd the
references therein. However, these methods are very glogated to the structure of the
NSE and use a linearization of the equation at each step.

Our aim in this article is to compute the solution of the steathte NSE by an implicit
preconditioned version of the spectral residual methoth gliobalization. The method we
introduce here uses only the solution of the linear part@&tuation, which can be obtained
efficiently with a fast solver (e.g., FFT and multigrid).

The article is organized as follows. First, in Sectiyrafter describing the inverse pre-
conditioning strategy and the globalization strategy far tesidual scheme, we derive our
new algorithm combining the dynamical and the optimizaapproach. Then, in Sectidh
we adapt the discretization of the steady-state two-diinaasincompressible Navier-Stokes
equations to the framework of the nonlinear scheme. Finiallgectiord, as a numerical il-
lustration, we present the solution of the steady-state f$®Hifferent Reynolds numbers
(up to Re = 5000). We solve the problem in the primary variables as well astieasn
function-vorticity formulation. Our results agree witretbnes in the literature and show the
robustness of the proposed method.

2. The basic algorithm and its ingredients. In a general framework, let us consider
the nonlinear system of equations

F(z) =0, (2.1)

whereF' : R" — R" is a continuously differentiable mapping. This framewoekgralizes
the nonlinear systems that appear, for example, afteretiziorg the steady-state models for
fluid flows, to be discussed later in this work.

To solve @.1), some iterative schemes have been recently presenteslytamatically
use the residual vectors as search directi@2sqZ]; i.e., the iterations are defined as

Thp1 = T £ N F(2p), (2.2)

where);, > 0 is the step-length and the search direction is eiffi@r;, ) or — F'(x),) depend-
ing on which one is a descent direction for the merit function

f@) = F(2)|3 = F(z)"F(x). (2.3)

These schemes are effective and competitive with Newtorelrschemes for large-scale
nonlinear systemsg| 6, 21] when the step lengths are suitably chosen. The convergg#nce
(2.2 is associated with a derivative-free non-monotone lireag fully described in12],
which will be discussed in the forthcoming subsections.

There are many choices of the step lengtHor which convergence is guaranteed. The
well-known non-monotone spectral choice has interestioggrties; it is defined as the ab-
solute value of

T
Sk—15k—1

5 24
nglyk—l ( )

wheresy_1 = x — xx—1, andy,_1 = F(xy) — F(xzr—1). Obtaining the step length using
(2.4 requires a reduced amount of computational work, acdelethe convergence of the
process, and involves the last two iterations in a way thainporates first-order information
into the search directior2[ 13, 17, 26).

In the forthcoming subsections, we discuss the precomgitizersion of the basic scheme
(2.2) and the specific inverse preconditioner to be used in thikwbe globalization strat-
egy to guarantee global convergence, and how to obtain ¢ipeletgths that accelerate the
convergence while improving the stability of the process.
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2.1. The preconditioned schemeln order to present the preconditioned version of
(2.2 we extend the ideas discussed 23][for unconstrained minimization to the solution of
(2.2). The well-known and somehow ideal Newton’s method for isg\{2.1) from an initial
guessr, can be written as

Thtl = Th — Jk_lF(xk), (2.5)

whereJ;, = J(xj) and.J(x) is the Jacobian of evaluated at.

Recently, a preconditioned scheme, associated to theegradirection, was proposed
to solve unconstrained minimization problem@§][ When solving 2.1), the preconditioned
version of .2) produces the iterates

Tl = Tk + ApZks (2.6)

wherez, = +C} F(x), Ck is a nonsingular approximation t@;l, and the scalap;, is
given by
Zh-17k-1

e = (Ak—1) =

. 2.7)
Rp—1Yk—1

In (2.6), if C;, = I (the identity matrix) for allk, thenz, = +F(xy), and sinces;_; =
Ak—12k—1 then ), coincides with 2.4). Therefore, ifCy, = I the method reduces t@.Q).
On the other hand, if the sequence of iterates converges,tand we improve the quality
of the preconditioner such that(x,) converges to/ ~!(z*) then, as discussed (], \x
tends to one and we recover Newton’s method, which posséstdscal convergence under
standard assumption&4]. In that sense, the iterative schen#f is flexible, and allows
intermediate options by choosing suitable approximatignbetween the identity matrix and
the inverse of the Jacobian matrix. For building suitableragimations toJ ! (zj) F(x4),
we will test implicit preconditioning schemes that do najuie the explicit computation of
C, as described in Sectich2

2.2. Inverse preconditioning schemesBYy adapting our recent work on approximating
the Newton direction using an ordinary differential eqaat{ODE) model, we will obtain
the inverse preconditioner foR (1) in the framework of the iterative global preconditioned
residual algorithm presented in the next subsection. Toehd, we develop an automatic
and implicit scheme to directly approximate the precoodgid directiorz; at every step in
(2.6) withouta priori knowledge of the Jacobian éfand with only a reduced and controlled
amount of storage and computation. As we will discuss ldkgs, new scheme avoids as
much as possible the cost of any calculations involving ited; and also allows us to obtain
asymptotically the Newton direction by improving the a@ayrin the ODE solver.

The method we introduce here starts from the numerical iatem of the Newton flow
aimed at computing the root @f as the stable steady state of

dx _

== (@) Fla). (2.8)
Notice that the preconditioned gradient method can be bibby applying a forward Euler
method to 2.8); see, e.g., ). The value||F(z)| is decreasing along the integral curves
and converges at an exponential rate to zero; for detais[1s€0] and references therein.
Introducing the decoupling

dz
J(x)z = F(x), (2.10)
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we see that the algebraic condition that link® « is, in fact, a preconditioning equation. In
order to relax its resolution, a time derivativesrs added as

dx

2 (2.11)
% = F(z) — J(2)=. (2.12)

This last system allows us to compute numerically the rodt bl an explicit time marching
scheme since the steady state is asymptotically stabld;16fér more details. Let; be
discrete times, and denote by andz; the numerical approximations ta(t;) and z(ty).
The application of the simple forward Euler method2al()—(2.12 reads

Tpy1 = Tk — (b1 — )2k, (2.13)
Zht1 = 2k + (1 — i) (F(zx) — J(zx)2k) - (2.14)

REMARK 2.1. As stated above, we want to avoid the computation ofdbekian matrix,
soJ(x)z is classically approached by a finite difference scheme
()2 ~ Flx+7z2)— F(:v)7

T

for a small given positive real number

Notice that the dynamics of the differential systetnl()—(2.12 can be very slow. As
proposed in10], a way to speed up the convergence to the steady state isficadly intro-
duce two time scales by computing for every discrete tipn@n approximation of the steady
state of the equation in. More precisely, we write

Step 1. With optimization method 1, computeas an approximation of the steady state of

dz F(xy +72) — F(xi)
@ == : ’
z(0) = zp—1.

Step 2. With optimization method 2, computg, ; from z;, by

Tht1 = Tk + Ak 2k -

The preconditioning relies on the accuracy for solving dtefs optimization method 1,
we proposed in10] to apply some iterations of Cauchy-like schemes that werdas in
Section2.3. As optimization scheme 2, which defines the stgpwe use the spectral gradient
method. Promising results were obtained 18][on some classical optimization problems.
However, the solution of steady-state NSE needs a moretrstiisme for the time marching
of 2*. The scheme IPR described below becomes crucial in practisas. We now present
the general form of the scheme.

ALGORITHM 2.2 (Implicit Preconditioned Residual Method (IPR)).
Step 1. With Cauchy-like minimization, computg as an approximation of the steady state
of

dz F(xy +72) — F(xy)
@ == : ’
z(0) = zk—1
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Step 2. With GPR, compute,; from xj, by

Tht1 = Tk + Ak 2k -

2.3. Generalized Cauchy-type minimization forz,. We now describe several ways
of computing Cauchy-type step lengths for buildingin Step 1 of the IPR method. The
computation of a steady state by an explicit scheme can balemated by enhancing the
stability domain of the scheme, since this allows the usaigfdr time steps. In that sense,
the accuracy of a time marching scheme is not a priority. Apgénway to derive more stable
methods is to use parametrized one-step schemes and tofddrdu@eters not to increase the
accuracy as in classical Runge-Kutta methods, but to ingptbe stability. For example,
in [4, 9], a method was proposed to iteratively compute fixed poirth Varger descent
parameter starting from a specific numerical time schemeaeMcecisely, defining:(z) =
F(z*)—(F (2% +72)—F(2*))/7, this method consists of integrating the differential egra

dy
o~ CW (2.15)
y(0) = zp—1,

by thep-step scheme

Givenyo = Zk—1
Forj = 0,... until convergence
SetK; = G(yj)
Form=2,...,p
SetK,,, = G(SEk + At Kmfl)
Setyr1 =y; + At Y7 BiK;

Here}~" , 3, = 1. At convergence, we obtaif and we set;, = g, which will be used as
our preconditioned direction at iteratién

Classically, the convergence can be accelerated by congpatieach iteration the step
length in order to minimize the Euclidean norm of the curmasidual. This gives rise to
variants of the Cauchy schem@.[ Of course, the minimizing parameter becomes harder to
compute a® increases. We list now the optimal values of the paramebeys+ 1,2, 3. The
casep = 3 represents, as far as we know, a new choice of step lengtlesamual methods.

In what follows, for any two vectors andw, (v, w) = vTw, r* = F(x;), and

F(x, +7v) — F(xy)

Av = . ~ J(xg)v.
e p =1 (Cauchy method)
Ark k)
F=1, Ay, = Artr)
K A

e p = 2 (Enhanced Cauchy 1 (EC1) sex 10])
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We set
a = |[r¥]|3, b= (Ar",rF), c= [ Ar®i3,
= reor e= r, Ar = r r
d = (A% k), (A2rk, Art), f=(A%k A%,
fb—ed Atge — d
- I3 AL B2 I3}
e p = 3 (Enhanced Cauchy 2 (EC2))
We set
a= | Ar*]3, b= A%F|3, c= | A%"|3,
= ro.,r e = r,r = To,Tr
d = (Ar*, ), (A" k), f= (A% k),
At — —aye — gvf + afb+4 dy? — dcb + gee
b g%c+ a?b — ach + ay? — 2aryg
(Atg)(ay 4+ ge) +vf —ec
=1
b + (Atg)?(v% — be) ’
By = — (Atg)*(—ay +ge) + (Atp)(1.f —ec+ab—yg) — fb+ e
(Ati)*(—be+77) ’
B3 =1= 01— fa.

2.4. Globalization strategy. In order to guaranee that the implicit preconditioned resid
ual (IPR) method converges from any initial guess, we neextitba globalization strategy.
This is an important feature, especially when dealing wiginly nonlinear flow problems and
high Reynolds numbers. Indeed, for highly nonlinear protdgpoure methods (i.e., without a
globalization strategy) will diverge unless the initialeps is very close to the solution, which
is not a practical assumption. To avoid the derivatives efrtterit function, which are not
available, we will adapt the recently developed globailastrategy of La Cruz et al1p] to
our preconditioned version.

Assume tha{ny } is a sequence such that > 0 for all k € N and

> ik < o0, (2.16)
k=0

Assume also that < v < 1 and0 < oy < omax < 00. Let M be a positive integer. Let
Tmin, Tmax D€ Such thad < 7w < Tmax < 1. Given an arbitrary initial point, € R™, an
algorithm that allows us to obtairy, ., starting fromz;, is given below.

ALGORITHM 2.3 (Global Implicit Preconditioned Residual Method (G)PR
Step 1.

Choose)\;, such that\;| € [omin, omax) (described in the next subsection).

Build the vectorC), F'(xy) (inverse preconditioned direction).
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Computef, = max{f(zx), ..., f(Tmax{ok—r+1})}-
Setz «— —\.C}, F(Ik)
Seta; — 1, « 1.

Step 2.

If f(zx + atz) < fr +ne — vad |23 then
Definez, = z, o = a4, o1 = T + Qg 2k

Else if f(zx — a_2) < fi + nx — yo2 ||2]3 then
Definezy, = —z,a = a—, Tp11 = ) + Qg 2.

Else
ChooS@v i new € [TminQt s Tmax@+]s —new € [TminQ—, Tmax@—|.
Replacev; < aqpow, Q- — Q_peyw-
Go to Step 2.

REMARK 2.4. As discussed inlp], the algorithm is well defined, i.e., the backtrack-
ing process (choosiNg. e anda_,.,,) IS guaranteed to terminate successfully in a finite
number of trials. Moreover, global convergence is alsobdistaed in [L2]. Indeed, if the
symmetric part of the Jacobian éfat anyz,, is positive (or negative) definite for atl, then
the sequencéf(xy)} tends to zero.

3. Application to the solution of the steady 2D lid-driven caity.

3.1. The problem. The equilibrium state of a driven square cavity is descrimgthe
steady-state Navier-Stokes equation, which, in primariates, can be written as

1 .
—§AU+ VP+ (U-VU) = finQ=]0, 1[2, (3.1)
V-U:OinQ:]O,l[Q,
U = BC onof.

HereU = (u,v) is the velocity field,P is the pressure, anfl is the external force. For
our applications, we will consider the so-called drivenigaease, sof = 0 and the fluid
is driven by a proper boundary condition BC. We denote thessif the unit squar@ by
T;,i=1,...,4: "1 is the lower horizontal sidd;s is the upper horizontal sid€}, is the left
vertical side, and'y is the right vertical side. In Figur& 1, we show the location of the main
vortices of the steady state of the lid driven cavity: Priyndortex, Top Left Vortex (TL1),
Bottom Right Vortices (BR1 and BR2), and Bottom Left Vort®L(). For additional details
on this benchmark application, se5].

We distinguish two different driven flows, according to theice of the boundary con-
ditions on the velocity. More precisely = V' = 0 at the boundary except f@f on Iz,
where we have two options:

e U(x,1)=1: Cavity A (lid driven cavity)
o U(z,1) = (1 — (1 —2x)?)? : Cavity B (regularized lid driven cavity)

3.2. Discretization and implementation in primary variables.

3.2.1. Discretization. The discretization is performed on staggered grids of MAgGety
in order to verify a discrete inf-sup (or Babushka-Brezaidition that guarantees the stabil-
ity; see R5]. Taking NV discretization points in each direction on the pressure gre obtain

142



ETNA
Kent State University
http://etna.math.kent.edu

U=g, V=0

Primary (central) vortex

u=v=0 u=v=0

U=v=0

FIGURE 3.1.The lid driven cavity - Schematic localization of the mearteroregions

the linear system

vA,U+ B,P+ NL,(UV)—-F =0,
vA,V +B,P+ NL,(U,V)—F, =0, (3.2)
BLU + BZV =0,
whereU,V € RNWV-1) p ¢ RVN*N andA, and A, are the discretization matrices of
minus the Laplacian operator on theandV grids, respectively. Similarly3, andB, are the
discretization matrices of the first derivativearandy for the pressure in the velocity grids.
The operatord.,, and L,, are the nonlinear terms dii andV respectively; and, finallyf;

andFy are the discrete external forces for the horizontal and éntoal velocities. Equation
(3.2 is then a square linear system2irkx N(N — 1) + N2 unknowns.

3.2.2. Implementation. The discrete problen8(2) can be written as a nonlinear system
F(U,V,P) =0,

with the obvious notation.
Now, letS be the Stokes solution operator defined by

S(F,G,0) — (U,V, P),
where(U, V, P) solves the linear part 08(2), i.e., the Stokes problem

vA,U + B,P = F,
vA,V + B,P = G, (3.3)
BLU+ B!V = 0.

Finally we introduce the function@l

G((U,V,P) = S(F(U,V,P)).
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The scheme consists of applying the implicit globalizeccpralitioned gradient method to
the differential system

X

dt ’
dz

= G(X)-HZ
i G(X)-HZz,

(3.4)

whereX = (U, V, P) and wheré is an approximation to the gradient@fX ), as described
in Remark2.1of Section2.3.

3.3. Thew — ¢ formulation. One of the advantage of the — ¢ formulation is that
the NSE are decoupled into two problems: a convection ddfugquation and a Poisson
problem. In particular, we can use the FFT to solve the lipeablems, as described in this
section.

3.3.1. The formulation. Thew — ¢ formulation is obtained by taking the curl of the
NSE [16, 25]. Letw = 0u/dy — Ov/0x, and writeu = Oy /dy, v = —0¢/dz, where
Vi = w. Then we have the equations

1 oY ow I Ow

AY =w, (3.6)
w(z,0) = wo(x). (3.7)

The boundary conditions o are derived using the standard approach based on the dis-
cretization of Ay on the boundaries; se&€, 25]. With the conditions on: andw [16, 25],
we have

w(z,0,t) = gi;f(:z:,o,t) only,
w(z, 1,t) = gi;f(x, 1,t) onTs,
w(0,y,t) = %(O,y,t) onTs,
w(l,y,t) = %(1,3/,& onl'y.

Therefore, since)spg = 0 andu = 0v¢/dy, v = —9dv¢/dx, we obtain by using Taylor
expansions

wi,0 = # (Vi1 — 8ti2), (3.8)
w1 = gy (i1 8 — Ghg(in) (3.9)
wo,j = # (1, — 8¢2,5) (3.10)
WN+1,j = # (=¥N-1, +8¥n,)- (3.11)

Hereg(x) denotes the boundary condition function for the horizovntédcity at the boundary
I'3. Homogeneous Dirichlet boundary conditions applyt@nd the operators are discretized
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by second order centered schemes on a uniform mesh compo3égdints in each direction
of the domain of step-size = 1/(N + 1). The total number of unknowns is theiv=.

The boundary conditions on are implemented iteratively according to the relations
(3.8—(3.11), making the finite difference scheme second order accurate

3.3.2. Implementation. With (3.8—(3.11), we can compute the boundary conditions
for w. We denote by (v), 01(v), anddX () the contributions of the boundary conditions
to the discretization operators 8f, 9,,, and—A. The problem to solve is

Fi,9) = o= (Aw+ D)) + Dyt (Doso + 94(8)) — Doty (D + 04 (8) =0,
FQ(W,'[/J) = A1/1+w =0.

Here A is the discretization matrix of A, andD,, andD,, are the discretization matrices of
0, ando, respectively. The problem to solve is then

r =[] = o]

For convenience, we sé&f = (w, ). Now, as we did for the primary variables formulation,
we return to the dynamical system framework of the methodsete

6tw) =[],

and we consider the evolutionary system

dxX

E )
2 _ Gx) -1z 842
E - - ’

whereHZ is an approximation of the gradient 6{X) at Z, as described in Rematk L
Here, A is the classical pentadiagonal finite difference matrixtfar Laplace operator on a
square, and linear systems withcan be cheaply solved using fast solvers such as FFT or
multigrid. In this paper, we will use the FFT.

4. Numerical results.

4.1. General implementation of the algorithm. We now list the information required
by the GIPR method:
The positive integei.
The parameters andry.
The initial value of the descent paramelgr
The merit function. We use the Euclidian norm of the residua X )||».
The accuracy of the global method: the solution is consierecurate when
IF(X)]2 < 107°.
The accuracy imposed for solving the preconditioning eiquat

F(z* + 72) — F(2)

— F(z*) =0,

which is characterized by
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— The choice of the optimization method 1. In our implemeotatve have used
the Enhanced Cauchy 2 as discussed above.

— The number. We setr = 108,

— The number of iteratiomprec, which can vary at each step. We choose to
increasenprec as the norm of the residuat = F'(x;,) decreases in order to
improve the preconditioning near the solution:

Adaptive computation ofiprec:
nprec, given
for k =0, ... until convergence
if |7*[]2 < 0.1 then
nprec = ceil X (—logo(||r*||2) + 1) x nprec.

The reasoning behind the decision to improve the qualithefdreconditioner near the
solution is this: near an isolated solution, the merit fiorcy is strictly convex, and hence it
makes sense to reduce the condition number of the apprcedmpasitive-definite Hessian of
f in the neighborhood of the solution. This is achieved byéasingnprec as the norm of
the residual, i.e., the value of the merit function, is reztlic

4.2. Computation of steady states of NSEWe now present the numerical solution of
the steady state of the two-dimensional driven cavity féfiedent Reynolds numbers. Our
results agree with those in the literatuBe 7, 15, 18, 19, 24, 28-30] (see figures and tables
below); and to prove the robustness of the solution methediake as the initial guess the
solution of the Stokes problem, which becomes farther fioensteady state as the Reynolds
number increases. We will pay special attention to the smiutf NSE in thew — ¥ for-
mulation. However, let us mention that the scheme appl&stal NSE in primary variables
(U — P), the linear solver being a Stokes solver. The crucial prakpoint is to have at our
disposal a fast solver for the linear problems: FFT or mailligpr thew — ¥ formulation and
multigrid Uzawa [7] for the U — P formulation.

As we see in our results, the globalization strategy is ingdwhile the residual is not
small enough. Furthermore, the preconditioning makeses&hsse to the solution.” For that
reason, we choose to activate the preconditioning progedgss the residual decreases by
increasing the number of inner iterations in the solutiothefpreconditioning step (step 1 of
the scheme). This allows us to obtain fast convergence arttievhile saving computational
time at the beginning.

We observe that the number of outer iterations increasdsthét Reynolds number but
not so much with the dimension of the problem. In all casesfitt part of the convergence
process is devoted to “maintaining” the iterates in a neighbod of the solution. All the
computations have been done witthM.AB 7 on a 2Ghz dual core PC with two gigabytes of
RAM.

We now present the parameters of the scheme that we usedvimgsihe flow in cavity
B and also in cavity for the stream function-vorticity formulation of NSB! is the number
of discretization points in each direction of the domain. Y the parameter values in
Tables4.14.2

TABLE 4.1
Cavity B
Re N v M  nprec, Prec. Method Adaptetlprec  «q
1000 127 9x102 2 4 Enhanced Cauchy 2 yes 10
2000 127 9x10* 2 4 Enhanced Cauchy 2 yes 104
5000 255 9x102 2 4 Enhanced Cauchy 2 yes 104
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TABLE 4.2
Cavity A
Re N v M  nprec, Prec. Method Adaptedprec  «g
1000 127 9x102 2 4 Enhanced Cauchy 2 yes 10
3200 255 9x10° 2 4 Enhanced Cauchy 2 yes 104

The results are reported in Figurés—4.3. Most of the work is done at the beginning
of the iterations, while the globalization is acting to sliab the iterates. This phenomenon
is amplified as the Reynolds numbe&s becomes large. An acceleration of the convergence
is obtained when the residual is small enough, simpeec increases. The shapes of the
solutions are identical with that of the literature, suchings, 7, 15, 16, 18, 19, 24, 28-3(];
particularly, the special values agree.

600

1000

FIGURE 4.1. Convergence history (residual norm versus iterationsysthiow, Cavity B,Re = 1000 (left),
andRe = 2000 (right); second row, cavity ARe = 1000 (left), andRe = 3200 (right).

We also report some special values of the solution for CaBitgnd Re = 5000 in
Table4.3 where we also compare them with results in the literature.

4.3. Solution of NSE in primary variables. We now present the numerical results for
the solution of the steady-state NSE in primary variables. dhange the value of during
the iterations in order to increase the non-monotonicithhefGIPR as follows

if ||7%]] < 1073 theny = 0.9.
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FIGURE 4.2. Steady-state NSBRe = 5000, N=255. Residual norm versus iterations (top left), isesirof
the vorticity (top right), isolines of the kinetic energyoftom left), and median values of the horizontal and of the
vertical velocity (bottom right).

This practical choice reduces the number of line searchask{tackings) near the solution,
and so it reduces the overall computational effort for cogeace. In Tablé.4, we present the
numerical solution of the cavity B problem f&e = 400 andRe = 1000. The level curves
of the pressure, the vorticity, the kinetic energy and theash function agree with those
in the literature. Notice that fewer iterations are reqaifer convergence than are needed
for the same example using the stream-vorticity formutatidhis is due mainly to the fact
that the boundary conditions are implemented exactly feppttimary variables formulation,
whereas they are approximated iteratively for the streartieity formulation. However, the
computational effort required at each iteration of the priynvariables formulation is greater
than that needed for the stream-vorticity formulation. ded, in the first case a coupled
system of3 N2 variables needs to be solved, whereas two system& ofariables need to be
solved in the second case; see Sec8on

5. Concluding remarks. We have presented a robust scheme to solve steady fluid flows
that involves an implicit preconditioned search directoapproximate the Newton direction
directly. Our approach is in sharp contrast with the cladsiewton type schemes (e.g.,
Newton-Krylov [21], defect corrections31]) in which the nonlinear problem is linearized
at every Newton iteration and a preconditioner is develdpedhe inner linear solver in
the standard way. Here, we propose to avoid the linearizggiocess by preconditioning
(implicitly) the nonlinear problem. The efficiency of thehgme is increased when a fast
solver is used for the preconditioned linear system. Thelt®se obtain on the numerical
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FIGURE 4.3. Steady-state NSE, Cavity Be = 5000, N=255 isolines of the stream function.
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FIGURE 4.4. Convergence history (residual norm versus iterations)yigaB, N=63, Re = 400 (left) and
N=127,Re = 1000 (right).

solution of NSE, by adding a globalization strategy, shoat the proposed method is robust.
As it has been already established, it is harder to solvetijrthe steady-state NSE than to
compute the steady state by time marching schemes applikd gvolutionary equation.

The new method is also flexible since the choice of the pretionthg step is completely
free. We would like to stress that the preconditioned glialedl spectral residual method can
be applied to a large number of scientific computing problesspecially when no (simple)
preconditioner can be built, such as in Computational Hydamics (CFD), and also in nu-
merical linear algebra when solving Riccati matrix equadior some other nonlinear matrix
problems. These are topics that deserve further invegtigat

Acknowledgments. This work was supported by SIMPAF project from INRIA futurs.
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TABLE 4.3
Cavity B.Re = 5000

IGPR IGPR Sheng9] Pascal P4
Formulation w—1 w — U, P U, P
Discretizationz FD FD Spectral FEM
Grid / Mesh 127 x 127 255 x 255 33 x 33 129 x 129
At 0.03 0.05
\ortex
x 0.5234 0.51953 0.516 0.5390
Y 0.539 0.539 0.531 0.5313
P —0.07761 —0.085211 —0.08776 —0.0975
w —1.2687 —1.3866 —2.169
Vortex (B L)
x 0.078125 0.078125 0.094 0.0859
Y 0.125 0.125 0.094 0.1172
W) 6.8393 x 107%  7.95x107*  7.5268 x 107*  6.723 x 104
w 0.7468 0.844 0.7310
Vortex (B R)
x 0.8203 0.8164 0.922 0.8047
Y 0.08593 0.082 0.094 0.0781
0 1.8528 x 1073 2.041 x 103  0.77475 x 1073 2.42 x 1073
w 1.42177 1.58687 2.009
Vortex (T L)
T 0.07812 0.0859 0.078 0.0781
Y 0.9062 0.9101 0.92 0.906
Y 5.6645 x 10™*  7.149 x 107*  6.778 x 10~* 7.86 x 1074
w 0.88813 1.098 1.159
TABLE 4.4
Cavity B.
Re N v M nprec, Prec. Method Adaptedprec  «p
400 63 10* 2 5 Enhanced Cauchy 2 yes 102
1000 127 10* 2 4 Enhanced Cauchy 2 yes 104
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