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CHEBYSHEV SEMI-ITERATION IN PRECONDITIONING FOR PROBLEMS
INCLUDING THE MASS MATRIX *

ANDY WATHENT AND TYRONE REES
Dedicated to Vctor Pereyra on the occasion of his 70th birthday

Abstract. It is widely believed that Krylov subspace iterative methade better than Chebyshev semi-iterative
methods. When the solution of a linear system with a symmatrd positive definite coefficient matrix is required,
the Conjugate Gradient method will compute the optimal apipnate solution from the appropriate Krylov sub-
space, that is, it will implicitly compute the optimal potymial. Hence a semi-iterative method, which requires
eigenvalue bounds and computes an explicit polynomialtforgust a little less computational work, give an infe-
rior result. In this manuscript, we identify a specific sttaa in the context of preconditioning where finite element
mass matrices arise as certain blocks in a larger matrixigmolwvhen the Chebyshev semi-iterative method is the
method of choice, since it has properties which make it sap& the Conjugate Gradient method. In particular,
the Chebyshev method gives preconditioners which arerlioparators, whereas corresponding use of conjugate
gradients would be nonlinear. We give numerical resultdvforexample problems, the Stokes problem and a PDE
control problem, where such nonlinearity causes poor cgeviee.
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1. Introduction. Suppose we are interested in solving a system of linear emqsat
Ax=Db (1.1

in the situation whered € R™*™ is sparse and is large. Such problems arise ubiquitously
in the numerical solution of partial differential equatiproblems as well as other areas. One
approach is to use iterative methods, and leading conteademethods of Krylov subspace
type. These require matrix vector products wittend compute a sequence of iterafes }
from a starting guess, which belong to nested Krylov subspaces

X) € X + span{rg, Arg, A%r, ..., A" 1rg}

fork = 1,2,...,n, wherer;, = b — Axy is the residual; see, for example, [L4, 26)].
The most well-known such method is the method of Conjugatdi®nts due to Hestenes
and Stiefel [L6], which is applicable in the case thadtis symmetric and positive definite.
Hereafter, we denote this method by the abbreviatiGn For indefinite symmetric matrices,
the MINRES method of Paige and Saundegg)[is the Krylov subspace method of choice
and this is the method we employ in our examples in this paper.

Most often, such Krylov subspace methods are used in cotiquneith a preconditioner
P [6]. The preconditioner should be such that an appropriatéorgubspace method ap-
plied to P~*A or AP~ 1, or if it is useful to preserve symmetry tt—' AM~T, where
P = MMT, will give a sequence of iterates which converges rapidlyerEin the sym-
metric case it is not necessary to form any factorizatiof?ah practice and, in fact, in all
cases all that is needed for a given veatas to be able to solvéz = r for z. For this
reason;P does not have to be known explicitly as a matrix, but it musabeear operator;
else the preconditioned operatBr ' A (or any of the other forms as above) to which the
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Krylov subspace method is applied is also not a linear operdfe comment that there are
well-known nonlinear Conjugate Gradient methods such asdhFletcher and ReeveS][
(see also PowellZ1]) in the optimization literature, but generally in the cexit of solving

a system of linear equations it would seem desirable to miaifinearity by using a linear
preconditionefP.

In this paper we explore a practical implication of this sienpbservation as it relates
to nested iterations when just part of the preconditionaoislinear. We give two practical
numerical examples, both for symmetric and indefinite magid of saddle-point form4].
The first arises from the mixed finite element approximatitthe Stokes problem in compu-
tational fluid dynamics and the second from a problem of PD&Estrained optimization. In
both cases, we employ the Minimal ResidudliNRES) method of Paige and Saunde?s§]
rather thanCG because this is the method of choice for symmetric and initiefiystems.
The issue of linear versus nonlinear preconditioning issés/ant for this iterative method as
for CG.

2. Preconditioning, Krylov subspace methods and Chebyshesemi-iteration. The
MINRES method is a Krylov subspace method based on the LanczosthlgorTo use
MINRES with a preconditione® = HH™, which must be symmetric positive definite, we
solve the (symmetric) system

H''AH Ty =H ', y=H"xz, (2.1)

which is equivalent toX.1). The matrixH is not required — all that is needed for a practical
algorithm is a procedure for evaluating the actior7of!; see, for example, Algorithm 6.1
in [8]. In some cases, an obvious preconditioning procedure reay bonlinear operator
Q =~ P~1. The theoretical framework for guaranteeing a minimum eogence rate for the
appropriate Krylov subspace is at least more complicateldnaaty no longer be valid with
use of such a nonlinear procedure, although in practicegossible that such a procedure
may give good results on some examples.

There are flexible Krylov subspace methods which allow foifiemént preconditioner
at each iteration; however, the performance (convergeri¢bgse methods is more complex,
and it might be considered generally desirable to stay witmé standard linear convergence
framework where possible. The most well-known of the flexilethods is the flexiblé M-
RES method for nonsymmetric matrice®d], though there has been significant research in
this area; for example, se2g and references therein, which also include work on symimetr
matrices. Simoncini and Szyld present a quite general aisaby Krylov subspace iteration
with preconditioning which is also a Krylov method for tkamematrix. In this case one
can view the iterates as lying in some higher-dimensiongldrsubspace and often can es-
tablish convergence. The situation we consider here airisgsveral practical applications
(as illustrated by our examples) and is different in thay@part of the preconditioner is an
iteration for adifferentmatrix.

Any Krylov subspace method (includir@G) computes iterates;, of the form

X = Xo + Qk71(A)I‘0, (2.2)

whereq;_ 1 is a polynomial of degreg — 1. Often this property is described in terms of the
residualsr, = b — Ax,, rather than the iterates as

ry = Pk(A)ro,

wherepy, is a polynomial of degrek satisfyingp,(0) = 1. This is easily seen fron2(2) by
multiplication of each side byl and subtraction frori:

T = b — .Axk =b - AXQ — .Aqk_l(.A)I‘o =Ty — .Aqk_l(A)I‘o = pk(.A)ro,



ETNA
Kent State University
http://etna.math.kent.edu

CHEBYSHEYV ITERATION IN PRECONDITIONING 127

wherepy(z) = 1 — zq—1(2) clearly satisfiep,(0) = 1. This procedure is clearly reversible
when A is invertible, hence the equivalence of these statemerta. SUppose that the same
Krylov subspace method is used on the same problem with er€liff starting vectat,; we
will compute iterates;, satisfying

Xk = X0 + qr—1(A)To,
wherer, = b — Axy. Even for the first iterate we will have

X1 = Xg + ’}/AI‘O = Xp + ’Y.Ab — ’7./42}(0
X1 = Xo + JAT) = %o + 7Ab — A%,

so that, for example,
X1+ X1 = X0 + %o + (7 +7)Ab — A%(yx¢ + 7%0).
Correspondingly ifcy = xo + Xo is chosen as starting vector, we get
X1 = Xo + 7Ab — 7A*X,.

Itis easy to see that; # x; + X1, whatever the values of the constantsThis is a simple
demonstration that any Krylov subspace method is nonljriearfact is in some sense well-
known, but is sometimes overlooked. The above demonstmatdmearity with respect to the
starting vector, but in a similar manner it is easy to showlinearity with respect to the right
hand side vector; in correspondence with the abovéxif= b and Ax = b are solved by a
Krylov subspace method for the same starting vegtpthenx; + X; is not the first iterate
for A(x+X) =b+ b. The sophistication o€ G is that it implicitly computes automatically
the best polynomial both with respect to the eigenvaluegl diut also dependent on the
components of the initial residual in the eigenvector dicets; see, for example3[p. 560],
[22, Section 2.5]. In summary, fo€G we haver, = p(A,ro)ro, i.€., the polynomiap
depends om.

The Chebyshev semi-iterative method was developed by GaabVarga 12, [13,
Section 10.1.5], and also Youn@q. This method, by contrast to CG, implicitly computes
the same shifted and scaled Chebyshev polynomials of eaplaleindependently of the
initial guess and right hand side vector provided the sametsgl bounding parameters are
used. Precisely, for the Chebyshev method applied to aetelRichardson iteration

X = (I — A)Xk,1 +b
we have the Chebyshev iteratigs, } satisfying
x —yr = sk(A)(x — xp),

wheresy, is a Chebyshev polynomial of degreehifted and scaled so that(0) = 1. Since

si does not depend axy nor onb, it is clear thaty;, is the result of applying a fixed linear
operator for the approximate solution df.{). This is true for eactk. Of course, using
different valuesk; # ko leads to different linear operators, as does varying thetsge
bounding parameters. For largetthe approximation will be better, but in terms of using
a fixed number of Chebyshev semi-iterative steps as a prémorat, the important point
we emphasize is that this preconditiorfeiis a linear operator. Thus, = p(A)r,, where
the polynomialp does not depend ary,. The same holds true if a different splitting than
Richardson is used; we will employ a Jacobi splitting in tkaraples below.
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The basic point here is that although the Chebyshev methogetes a sequence of
polynomials in the matrix as a Krylov subspace method ddesset polynomials are fixed
by the parameter estimates of the spectral interval or negioich are employed, i.e., the
coefficients do not depend on the starting guess nor thehagyid side, unlike witlCG. That
means for any particular choices of the spectral boundingmpaters that a fixed number of
steps of the Chebyshev semi-iteration is a fixed linear apefy and so can be reliably used
as a preconditioner for a linear system or, in fact, as a garfppeconditioner — this is how
we employ it in the examples below.

This is in contrast to even a fixed number of iterative stesKifylov subspace method,
which is always a nonlinear operator and so does not fit irddhkory of (linear) precondi-
tioning for linear systems of equations. It is reasonatdg ifrsufficiently many iterations of
a Krylov subspace method (or any other convergent iteratigthod) are employed so that
we essentially have convergence to the exact solution ttreecorresponding operator is lin-
ear, namelyd—'. Of course, if an inner convergence tolerance is useargmethod, then
this will give different preconditioners at each outer dtigon, in which case a flexible outer
iterative method should be employed. In any particular cataion, an appropriate flexible
method with an inner iteration could perform well; howewsrmentioned above, there is no
guarantee with such an approach because of the limitedetieslirunderstanding of flexible
methods. By contrast, our approach is completely coveredddlyknown theory, i.e., there
is a guaranteed upper bound on the work required. We emghthsizwe are not considering
inner/outer iterations here, but a fixed linear preconditig operator.

The Chebyshev semi-iteration has been previously explasea preconditioner in the
literature P, 10, 18, 19, 24]. In particular, it has recently been used successfully zeon-
ditioner by Golub, Ruiz and Touhaml], 30] in the case of solving a system with multiple
right hand sides. Some additional theoretical results e ta be found in the report by
Arioli and Ruiz [1].

3. Finite elements: the mass matrix. The major issue with Chebyshev methods is
getting good a priori estimated bounds for the eigenvall@stunately there are practical
situations where such bounds are analytically known. Owgh &ifor the (consistent) mass
matrix that arises in finite element computations.

Suppose that finite element basis functi¢gs, j = 1, ..., N} are used for some prob-
lem on a domaif), then the consistent mass matrix is just the Gramm matrix

Q:{quvlvjzlva}a qu:/¢Z¢Ja
Q

which is symmetric and positive definite because the badlialwiays be chosen to be linearly
independent. More than twenty years ago, the first authabksihed analytic bounds for the
eigenvalues of the matridiag(Q)~1Q, or equivalently for the generalized eigenvalues

satisfying

det(Q — AD) = 0,

whereD = diag(Q) [31]. For example, for any conforming mesh of tetrahedl)(ele-
ments in three dimensions, the result is

IN

A<

3

N =
N | Ut

and for a mesh of rectangular bi-line&?{) elements in two dimensions

9
T

IN

A< (3.1)

-
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For other elements, se8]]; the matrixwat hen. min the test set of matrices imat | ab
assembled by HighamJ] is precisely such a mass matrix for the ‘serendipity’ figtement.
The bounds are found to be as tight as possible in practicapatations in that there are
eigenvalues equal to both the upper and lower bounds.

Such a priori bounds are precisely what are required for @stedy semi-iteration. Cheby-
shev polynomials shifted from the intenfal1, 1] to [«, 8] and scaled so that their intercept
is unity will ensure that the Chebyshev iteratgs. } satisfy

k
VE—1
Ix=vall <2 (Y27 ) Ix =l

wherex = 3/«. For example, for th€); element with the required Jacobi splitting the result
is

1
[x —yrll2 < 2(§)ka —Xol|2

sincex = 9. The usual convergence result that is quoteddar iterates{x,, } is based on
precisely these same Chebyshev polynomials and is

k
Kk—1
P 32)

where |z||% = z”Az; see, for example,8 Theorem 2.4], {4, Theorem 3.1.1]. In all
the computations here which comp&& and Chebyshev for systems with the diagonal
scaling is used with both methods.

Figure3.1shows how little in general is lost in using the Chebyshevhmétather than
CG for such mass matrices. We give results for the first 20 immatfor both methods applied
to a diagonally preconditione@; mass matrix corresponding to a mesh sizéiof 27°
with a right hand side that is a random, normally distributedtor generated byandn in
mat | ab. The easily computable quantity for monitoring convergeimceach case is the
residualr;, = b — Axy, for CG, respectivelyr;, = b — Ay, for Chebyshev; hence, we show
the values of|r||2 in Figure3.1(a)and the values ofr || 4-1, the quantity that is actually
minimized byCG, in Figure3.1(b)

The behavior seen in Figu1is as we might expect from the theory. Although the
conjugate gradient method in general shows superlineatfecgence, in this particular case
the spectrum of the preconditioned system is essentialfpumly distributed (and the right
hand side is random), which corresponds to the situationish@onsidered to get the error
bound B.2). Thus, since CG on these matrices does not exhibit suparlitonvergence, the
linear convergence slope must be the same as that seen ih¢hg<hev case.

4. Numerical Examples. Problems with constraints lead to saddle-point systems — an
important class of symmetric (and nonsymmetric) indefinitgrices. The general structure

'S PRSI Er

whereA may either be symmetric (giving the classical saddle-pgyjistem) or non-symmetric
(giving a generalized saddle-point system). For a comprgifie survey of solution methods
for saddle-point systems, se§.[We consider only symmetrid here; in this situation4 is
symmetric and indefinite, and the solver of choice would lBeMONRES method of Paige
and Saunder[)).
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= = = Chebyshev = = = Chebyshev
—_—CG —_—CG

10° : : : 10" : ; ;
0 5 10 15 20 0 5 10 15 20
Number of iterations Number of iterations
(a) The residuals in the 2-norm (b) The residuals in thel=!-norm

FIGURE 3.1.Comparison of convergence @fG and Chebyshev semi-iteration.

4.1. Example 1. One of the more important PDE examples of a saddle-poineésy&
the Stokes problem:

Viu+Vp=f
V.- u=0;

see, for example 8] Chapters 5 and 6]. This problem arises as the most commoelrfard
the slow flow of an incompressible fluid. This problem is saljoint, and most discretiza-
tions — including conforming mixed finite elements in any domQ ¢ R? — lead to a
symmetric matrix blockA that is usually al x d block diagonal matrix with diagonal blocks
that are just discrete Laplacians. R

Silvester and Wather?B] proved that if A is a spectrally equivalent approximation of
the Laplacian, such as a multigrid cycle, apds the mass matrix as above (for the pressure
space), then a block diagonal preconditioner of the form

P—[’g g] (4.2)

leads to optimal convergence of tiBNRES iterative method for any (inf-sup) stable mixed
finite element discretization. That is, the solution 4f1f will be achieved in a number of
MINRES iterations which is bounded independently of the numben&howns in the finite
element discretization.

At eachMINRES iteration it is necessary to solve a system of equationseai#fficient
matrix P. Since a multigrid cycle is a simple stationary iteratidrisia linear operator —
although certainly not known in general in the form of a matBy using exactly the same
number of cycles (here, just one V-cycle) with the same nurobpre- and post-smoothing
steps at every application, this part of the preconditidaea fixed linear operator. This
is true even for the Algebraic Multigrid (AMG) procedure thvee employ in our example
computations. For the other part of the preconditionerliriag the solution of linear systems
with @, it is advantageous to use the results of the previous sedtiow the issue addressed
in this paper arises: use QfG (with any preconditioner) for thes@ systems will result in
a nonlinear preconditioner even if a fixed number of itersits employed, whereas a fixed
number of steps of a Chebyshev method@owith Jacobi splitting (i.e., with preconditioner
D = diag(Q)) is a linear operator, and so it preserves the linearit of

Some simple numerical results illustrate the issue and gshewelear advantage of the
Chebyshev method in this situation. For clarity in our noolature, we lety\; < Ay <--- <
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Am denote the eigenvalues of the symmetrically scaled mMAXTIX QD*% andvy,va, ..., vy,
denote the corresponding eigenvectors.

In Figure4.1, we plot the value of the Euclidean norm of the residual vetke iteration
number iNMINRES. In both cases we us@,—Q mixed finite elements and the Stokes sys-
tem is of size2467 x 2467. The (1,1) block of4.2) is given by a single AMG V-cycle using
HSL packageHSL_M 20 applied via amat | ab interface p]. The (2,2) block is approxi-
mated using a fixed number of steps of eitB& or Chebyshev semi-iteration, as described
above, with diagonal scaling for both methods. In both calses/elocity part of the right
hand side is given by the driven cavity flow problemfSS [7], whereas the pressure part,
g, is given byv(,,, +1y/2 andvs + v, ;1) /2 in Figures4.1(a)and4.1(b) respectively. The
pressure part of the right hand side is in this case not retdéwathe physical problem, but it
enables easy description of our particular example andsg@iveinitial residual which must
correspond to some starting guess for the correct physgiat hand side. We use or@G
iteration with starting vectov,, in Figure4.1(a)and twoCG iterations with starting vector
vy in Figure4.1(b) On the same plots are shown the results with the same nuhBaeby-
shev iterations with the exact spectral bounding paramel) for the @, pressure element
used here.

= = = Chebyshev = = = Chebyshev
—_—CG —_—CG

0 100 200 300 400 500 600 0 100 200 300 400
Number of iterations Number of iterations
(@) One step o€ G/Chebyshey, (b) Two steps ofC G/Chebyshev,
8 = V(m+1)/2:X0 = Vm 8 =V3+ V(mt1)/2:X0 = V1

FIGURE 4.1. Convergence oMINRES when using fixed number of steps@f and Chebyshev semi-
iteration in the preconditioner.

4.2. Example 2. Our second example also involves the saddle point systet) but as
it arises in the context of PDE-constrained optimizatiolmnglder the (distributed) optimal
control problem

1 N
131}1§||U—U||3+ﬁ||f||3 (4.3)
subjectto — VZu = finQ (4.4)
with u = g on 09, (4.5)

where( is some bounded domaignanda are prescribed functions, apds a regularization
parameter. It can be shown that upon discretization, tlublpm is equivalent to solving the

saddle point system
A BT X ¢
ERIE @
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whereA = { 2%Q g } B = [-Q K] with Q and K denoting the mass and stiffness

matrices, respectivel\2B, 27].

Rees, Dollar and Wathe2§] showed that if we us®INRES to solve this system then
an effective preconditioner is of the form

26Q 0 0
0 0 KQ'KT

whereQ andK are approximationsto the mass and stiffness matrices. theifirst example,
we can use a fixed number of multigrid iterations, say,forThe operatot) needs to be an
approximation to the mass matrix which preserves lineafity; thereforeCG is unsuitable,
but, because of the results in Secti®na fixed number of steps of the Chebyshev semi-
iteration with Jacobi splitting should perform well.

Figure4.2illustrates the situation. Here we take= [0, 1]? and discretize the problem
usingQ; finite elements with mesh sizZ=® (making.4 a2883 x 2883 system). We take the
regularization parameter = 10~2. We taket such that

0 { (20 = 1)%(2y = 1)? if (z,) € [0, 32
0 otherwise

For K we again use one AMG V-cycle usimtplL. packagdiSL_M 20 applied via arat | ab
interface p]. @ is one step of either diagonally scal€d or Chebyshev semi-iteration, and
in both cases the vectdrin the right hand side is that given by Example 123][ In Figure
4.2(a) the vectorc is given by[3v(,,41)/2 v3]T and the starting vectors for bo®G and
Chebyshev are(,,, 3/, for the (1,1) block ands, for the (2,2) block. In Figuret.2(b)

¢ = [v,, v3]T and the initial vectors are(,,11)/2 andv ,,4.3) /2.

10° 10°
= = = Chebyshev = = = Chebyshev
—_—CG —_—CG

=10 v RESTH I
= kY = K
A \
. 1
) .
10 10 l‘ 10710 “
“ kS
107" 107"
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Number of iterations Number of iterations
(a) One step o€ G/Chebyshev, (b) One step ofCG/Chebyshev,
_ T o1 _ 2 _ _ T L1 _ 2 _
c = (BVimt1)/2 v3)', X4 = V(m43)/2, X5 = c = (vm v3)', X§ = V(min/2 X5 =
V2 V(m+3)/2

FIGURE 4.2. Convergence oMINRES when using fixed number of steps@fG and Chebyshev semi-
iteration in the preconditioner.

In both these examples, we see failure in the convergenbe @iitteMINRES iteration
when we useCG, presumably because of the nonlinear nature of the pretoneli. Again,
these examples are artificial, but they serve to illustratealsior that may occur in a prac-
tical application. The Chebyshev method is covered by theali theory and s®IINRES
convergence in this case is as expected.
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We have shown that a small fixed number of iterations of theb@éigev semi-iteration
can behave better than CG, but it remains to be seen howiefehis actually is as a pre-
conditioner. In Tablet.1, we give iteration counts and timings to solve the systérg) (ising
(4.7) as a preconditioner for the described two-dimensionablera, where(Q represents
five steps of Chebyshev semi-iteration, ten steps of Chedwsémi-iterationdiag(Q), the
lumped mass matrix, or a sparse direct solvagks| ash in matlab). The number of it-
erations is given in brackets after the CPU time, and teste dene usingrat | ab version
7.5.0 on a machine with a dual processor AMD Opteron 244 (HBG

Here, again, we see that the sparse direct solver gives thléestiteration counts, as one
would expect, but the time taken to solve the system inceesisgerlinearly as the problem
size increases. The most efficient preconditioner out obttess considered here is ten steps
of the Chebyshev semi-iteration. In this case, since théignial solves in the preconditioner
are relatively more expensive, it pays to have a more ace@@proximation to the mass
matrix — which can be done comparatively cheaply — givingsagasolution time overall.
In Table4.2, the results are given for the corresponding problem iretBpace dimensions.

TABLE 4.1
Comparison of times and iterations to solvied) for different mesh sizes (with 3n unknowns) to a tolerance
of 106 for MINRES with (4.7) as a preconditioner, wher@ represents five steps of Chebyshev semi-iteration,

ten steps of Chebyshev iteratio, ag(Q), the lumped mass matrix, and a sparse direct sobsckslash in
matlab).

h 3n  Chebyshev (5) Chebyshev (10) Diagonal Lumpebdacksl| ash
272 27 0.15 (11) 0.12(6) 0.14(17) 0.16 (18) 0.12 (5)
273 147 0.17 (12) 0.15(8) 0.23(28) 0.24(28) 0.13 (7)
274 675 0.23 (12) 0.19(8) 0.37(30) 0.32(23) 0.17 (7)
275 2883 0.47 (12) 0.36 (8) 0.74 (27) 0.60 (20) 0.35(7)
276 11907 1.4 (11) 1.12(8) 2.42(26) 1.70(17) 1.31(7)
277 48387 5.5(11) 4.43(8) 9.05(24) 6.41(16) 5.73 (7)
278 195075 22.9 (10) 17.8(7) 38.0(23) 28.5(16) 43.9 (7)
279 783363 111 (10) 84.2(7) 102 (14) 115(15) 1956 (7)

TABLE 4.2

Comparison of times and iterations to solve the three-dsizeral problem corresponding td ) for different
mesh sizesh) (with 3n unknowns) to a tolerance d0~° for MINRES with (4.7) as a preconditioner, where
Q represents five steps of Chebyshev semi-iteration, tes sfe@hebyshev iteration, fifteen steps of Chebyshev
iteration, di ag(Q), the lumped mass matrix, and a sparse direct sdbae¥slash in matlab).

h 3n  Cheb. (5) Cheb. (10) Cheb. (15) Diagonal Lumpethacksl ash
277 81 0.32(11) 0.14 (9) 0.16 (7) 0.14(12) 0.15(12) 0.13 (5)
273 1029 0.37(18) 0.27 (11) 0.24(8) 0.47(33) 0.51(38) 0.22 (5)
2-1 10125 3.13(18) 2.10 (11) 1.60(8) 2.40(20) 2.85(23) 3.64 (7)
275 89373  29.3(18) 16.2 (9) 15.0(8) 18.9(16) 21.8(18) 94.4 (7)
276 750141 214 (15) 169 (11) 132(8) 136 (13) 173(16) — =)

5. Conclusions. In the context of preconditioning for Krylov subspace iter@a meth-
ods for solving linear systems, the use of a Krylov subspaethad in applying the precon-
ditioner — or part of the preconditioner — leads necessaoilg nonlinear preconditioner.
There are important situations where the Chebyshev senatite method is essentially as
effective as Conjugate Gradients, and it leads to a linezzgrditioner provided that a fixed
number of iterations are used. We have illustrated this bingitwo examples where the
consistent mass matrix is desired as part of a preconditamgso this issue is important.



ETNA
Kent State University
http://etna.math.kent.edu

134 A.J. WATHEN AND T. REES

Acknowledgments. We thank Godela Scherer for her patience and the two anorymou
referees for their comments, which have improved the camtigthis paper.

REFERENCES

[1] M. ARioLlI AND D. Ruiz, A Chebyshev-based two-stage iterative method as an alteent the direct
solution of linear systemJech. Report, STFC, Rutherford Appleton Laboratory, 2002

[2] S. AsHBY, T. MANTEUFFEL, AND J. OTTO, A comparison of adaptive Chebyshev and least squares poly-
nomial preconditioning for Hermitian positive definitediar systemsSIAM J. Sci. Comput., 13 (1992),
pp. 1-29.

[3] O. AXELSSON lterative Solution MethodsCambridge University Press, New York, 1994.

[4] M. BENzI, G. H. GoLuB, AND J. LIESEN, Numerical solution of saddle point problepscta Numer., 14
(2005), pp. 1-137.

[5] J.BOYLE, M. D. MIHAJLOVIC, AND J. A. SCOTT, HSLMI20: an efficient AMG preconditionefrech. Re-
port RAL-TR-2007-021, Department of Computational and WgghMathematics, Rutherford Appleton
Laboratory, 2007.

[6] P. Concus, G. GoLuB, AND D. O’LEARY, A generalized conjugate gradient method for the numerical
solution of elliptic partial-differential equationsn Proceedings of the Symposium on Sparse Matrix
Computations, J. R. Bunch and D. J. Rose, eds., Academis,Mew York, 1976, pp. 309-332.

[7] H. ELMAN, A. RAMAGE, AND SILVESTER. D.J.,Algorithm 886: IFISS, A Matlab toolbox for modelling
incompressible flowACM Trans. Math. Software, 33 (2007), 14 (18 pages).

[8] H.ELMAN, D. SILVESTER, AND A. WATHEN, Finite elements and fast iterative solvers: with applioas in
incompressible fluid dynamicblumerical Mathematics and Scientific Computation, Oxfordversity
Press, Oxford, 2005.

[9] R. FLETCHER AND C. REEVES, Function minimization by Conjugate GradientSomput. J., 7 (1964),
pp. 149-154.

[10] G. GoLuB AND M. KENT, Estimates of eigenvalues for iterative methddath. Comp., 53 (1989), pp. 249—
263.

[11] G. GoLus, D. Ruiz, AND A. TOUHAMI, A hybrid approach combining a Chebyshev filter and conjugate
gradient for solving linear systems with multiple rightdtasides SIAM J. Matrix Anal. Appl., 29
(2007), pp. 774-795.

[12] G. GoLus AND R. VARGA, Chebyshev semi iterative methods, successive overnelaxtgrative methods
and second order Richardson iterative methddsmer. Math., 3 (1961), pp. 147-156.

[13] G. H. GoLuB AND C. F. VAN LOAN, Matrix Computationsthird ed., The Johns Hopkins University Press,
Baltimore, 1996.

[14] A. GREENBAUM, Iterative Methods for Solving Linear Syster8$AM, Philadelphia, 1997.

[15] L. A. HAGEMAN AND D. M. YOUNG, Applied Iterative MethodsAcademic Press, New York, 1981.

[16] M. R. HESTENES ANDE. STIEFEL, Methods of conjugate gradients for solving linear systeinRes. Nat.
Bur. Standards, 49 (1952), pp. 409-436.

[17] N. HIGHAM, Algorithm 694: A collection of test matrices in MATLABCM Trans. Math. Software, 17
(1991), pp. 289-305.

[18] O. JoHNSON, C. MICCHELLI, AND G. PauL, Polynomial preconditioners for conjugate gradient cakul
tions SIAM J. Numer. Anal., 20 (1983), pp. 362-376.

[19] D. O’LEARY, Yet another polynomial preconditioner for the conjugatadient algorithm Linear Algebra
Appl., 29 (1991), pp. 377-388.

[20] C. C. RIGE AND M. A. SAUNDERS, Solution of sparse indefinite systems of linear equati®AM J.
Numer. Anal., 12 (1975), pp. 617-629.

[21] M. PoweLL, An efficient method for finding the minimum of a function oéssdwariables without calculat-
ing derivatives Computer J., 7 (1964), pp. 152-162.

[22] A. RAMAGE, Preconditioned Conjugate Gradient Methods for Galerkiniféi Element Equation$h.D. the-
sis, University of Bristol, 1990.

[23] T. REES, H. DOLLAR, AND A. WATHEN, Optimal solvers for PDE constrained optimizatiddlAM J. Sci.
Comput., to appear, 2009.

[24] Y. SAAD, Practical use of polynomial preconditioning for the corgiigy gradient methqdSIAM J. Sci.
Comput., 6 (1985), pp. 865—-881.

, A flexible inner-outer preconditioned GMRES algoritf®hAM. J. Sci. Comput., 14 (1993), pp. 461—

469.

, lterative methods for sparse linear systef8VS Publishing, Boston, 1996. Second edition, SIAM,
Philadelphia, 2003.

[27] J. SCHOBERL AND W. ZULEHNER, Symmetric indefinite preconditioners for saddle point peois with ap-
plications to PDE-constrained optimization problgnr®AM J. Matrix Anal. Appl., 29 (2007), pp. 752—

[25]

[26]




ETNA
Kent State University
http://etna.math.kent.edu

CHEBYSHEYV ITERATION IN PRECONDITIONING 135

773.

[28] D. SILVESTER AND A. WATHEN, Fast iterative solution of stabilised Stokes systems Ratdding general
block preconditionersSIAM J. Numer. Anal., 31 (1994), pp. 1352-1367.

[29] V. SIMONCINI AND D. SzYLD, Flexible inner-outer Krylov subspace methp@AM J. Numer. Anal., 40
(2003), pp. 2219-2239.

[30] A. TouHAwmI, Utilisation des Filtres de Tchebycheff et Construction dédenditioners Spectraux pour
I’Acceleration des Méthods de KryloRh.D. thesis, INPT-ENSEEIHT, Toulouse, France, 2005.

[31] A.J. WATHEN, Realistic eigenvalue bounds for the Galerkin mass matkbA J. Numer. Anal., 7 (1987),
pp. 449-457.



